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ABSTRACT

In the context of over-parameterization, there is a line of work demonstrating
that randomly initialized (stochastic) gradient descent (GD) converges to a glob-
ally optimal solution at a linear convergence rate for the quadratic loss function.
However, the convergence rate of GD for training two-layer neural networks ex-
hibits poor dependence on the sample size and the Gram matrix, leading to a
slow training process. In this paper, we show that for training two-layer ReLU?
Physics-Informed Neural Networks (PINNs), the learning rate can be improved
from the smallest eigenvalue of the limiting Gram matrix to the reciprocal of the
largest eigenvalue, implying that GD actually enjoys a faster convergence rate.
Despite such improvements, the convergence rate is still tied to the least eigenvalue
of the Gram matrix, leading to slow convergence. We then develop the positive
definiteness of Gram matrices with general smooth activation functions and provide
the convergence analysis of natural gradient descent (NGD) in training two-layer
PINNS, demonstrating that the maximal learning rate can be O(1) and at this
rate, the convergence rate is independent of the Gram matrix. In particular, for
smooth activation functions, the convergence rate of NGD is quadratic. Numerical
experiments are conducted to verify our theoretical results.

1 INTRODUCTION

In recent years, neural networks have achieved remarkable breakthroughs in the fields of image
recognition [He et al.| (2016), natural language processing |Devlin et al.| (2018)), reinforcement learning
Silver et al.|(2016), and so on. Moreover, due to the flexibility and scalability of neural networks,
researchers are paying much attention in exploring new methods involving neural networks for
handling problems in scientific computing. One long-standing and essential problem in this area
is solving partial differential equations (PDEs) numerically. Classical numerical methods, such as
finite difference, finite volume and finite elements methods, suffer from the curse of dimensionality
when solving high-dimensional PDEs. Due to this drawback, various methods involving neural
networks have been proposed for solving different type PDEs Miiller & Zeinhofer (2023)); Raissi et al.
(2019); [Yu et al.{(2018)); Zang et al.|(2020); Siegel et al.[(2023)). Among them, the most representative
approach is Physics-Informed Neural Networks (PINNs) [Raissi et al.|(2019). In the framework of
PINNS, one incorporate PDE constraints into the loss function and train the neural network with it.
With the use of automatic differentiation, the neural network can be efficiently trained by first-order
or second-order methods.

In the applications of neural networks, one inevitable issue is the selection of the optimization
methods. First-order methods, such as gradient descent (GD) and stochastic gradient descent (SGD),
are widely used in optimizing neural networks as they only calculate the gradient, making them
computationally efficient. In addition to first-order methods, there has been significant interest in
utilizing second-order optimization methods to accelerate training. These methods have proven to be
applicable not only to regression problems, as demonstrated in Martens & Grosse|(20135)), but also to
problems related to PDEs, as shown in Miiller & Zeinhofer| (2023)); Raissi et al.|(2019).

As for the convergence aspect of the optimization methods, it has been shown that gradient descent
algorithm can even achieve zero training loss under the setting of over-parameterization, which refers
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to a situation where a model has more parameters than necessary to fit the dataDu et al.| (2018} 2019);
Allen-Zhu et al.| (2019alb)); |Arora et al.| (2019); [L1 & Liang (2018)); |[Zou et al.| (2020); |Cao & Gu
(2019). These works are based on the idea of neural tangent kernel (NTK)Jacot et al.|(2018), which
shows that training multi-layer fully-connected neural networks via gradient descent is equivalent
to performing a certain kernel method as the width of every layer goes to infinity. As for the finite
width neural networks, with more refined analysis, it can be shown that the parameters are closed
to the initializations throughout the entire training process when the width is large enough. This
directly leads to the linear convergence for GD. Despite these attractive convergence results, the
learning rate depends on the sample size and the Gram matrix, so it needs to be sufficiently small to
guarantee convergence in practice. However, doing so results in a slow training process. In contrast
to first-order methods, the second-order method natural gradient descent (NGD) has been shown to
enjoy fast convergence for the L? regression problems as demonstrated in Zhang et al.| (2019);|Cai
et al.| (2019), and PINN problems as in Miiller & Zeinhofer| (2023);|Guzman-Cordero et al.| (2025]).
However, the convergence of NGD in the context of training PINNS is still an open problem. In this
paper, we demonstrate that when training PINNs, NGD indeed enjoys a faster convergence rate.

1.1 CONTRIBUTIONS
The main contributions of our work are summarized as follows:

* For the PINNs, we simultaneously improve both the learning rate 1 of gradient descent
and the requirement for the width m. The improvements rely on a new recursion for-
mula for gradient descent. Specifically, our analysis yields a different step-size criterion
1 = O(1/Amax ), which empirically permits larger practical learning rates than the O()\)
requirement in |Gao et al.[(2023)), see Remark 3.8. The requirement for the width m, i.e.

m = (%), can be improved to m = (%g(log(%))), where ) indicates

that some terms involving log(m) are omitted.

* We present a framework for demonstrating the positive definiteness of Gram matrices for
a variety of commonly used smooth activation functions, including the logistic function,
softplus function, hyperbolic tangent function, and others. This conclusion is not only
applicable to the PDE we have considered but can also be naturally extended to other forms
of PDEs.

* We provide the convergence results for natural gradient descent (NGD) in training over-
parameterized two-layer PINNs with ReLU? activation functions and smooth activation
functions. Due to the distinct optimization dynamics of NGD compared to GD, the learning
rate can be O(1). Consequently, the convergence rate is independent of n and Ao, leading to
faster convergence. Moreover, when the activation function is smooth, NGD can achieve a
quadratic convergence rate.

1.2 RELATED WORKS

First-order optimizers. There are mainly two approaches to studying the optimization of neural
networks and understanding why first-order methods can find a global minimum. One approach
is to analyze the optimization landscape, as demonstrated in Jin et al.| (2017); |Ge et al.| (2015).
It has been shown that gradient descent can find a global minimum in polynomial time if the
optimization landscape possesses certain favorable geometric properties. However, some unrealistic
assumptions in these works make it challenging to generalize the findings to practical neural networks.
Another approach to understand the optimization of neural networks is by analyzing the optimization
dynamics of first-order methods. For the two-layer ReLU neural networks, as shown in Du et al.
(2018)), randomly initialized gradient descent converges to a globally optimal solution at a linear rate,
provided that the width m is sufficiently large and no two inputs are parallel. Later, these results were
extended to deep fully-connected feedforward neural networks and ResNet with smooth activation
functions Du et al.|(2019)). Results for both shallow and deep neural networks depend on the stability
of the Gram matrices throughout the training process, which is crucial for convergence to the global
minimum. In addition to regression and classification problems, |Gao et al.| (2023) demonstrated the
convergence of the gradient descent for two-layer PINNs through a similar analysis of optimization
dynamics. However, both |Du et al.| (2018)) and (Gao et al.| (2023) require a sufficiently small learning
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rate and a large enough network width to achieve convergence. In this work, we conduct a refined
full-batch convergent analysis of the over-parameterized PINN regime for GD and NGD, building
upon |Gao et al.[(2023)). There’re contemporaneous work analysis concentrate on stochastic Jin & Wu
(2025) and non-overparameterized Niellen & Miiller] (2025) settings.

Second-order optimizers. Although second-order methods possess better convergence rate, they are
rarely used in training deep neural networks due to the prohibitive computational cost. As a variant of
the Gauss-Newton method, natural gradient descent (NGD) is more efficient in practice. Meanwhile,
as shown in|Zhang et al.|(2019) and |Cai et al.|(2019), NGD also enjoys faster convergence rate for the
L? regression problems compared to gradient descent. Miiller & Zeinhofer (2023) proposed energy
natural gradient descent for PINNs and deep Ritz method, demonstrating experimentally that this
method yields solutions that are more accurate than those obtained through GD, Adam or BFGS.
After observing the ill-conditioned loss landscape of PINNs, Rathore et al.[(2024) introduced a novel
second-order optimizer, NysNewtonCG (NNCG), showing that NNCG can significantly improve
the solution returned by Adam+L-BFGS. Moreover, under the assumption that the P£.*-condition
holds, Rathore et al.[(2024) demonstrated that the convergence rate of their algorithm is independent
of the condition number, which is similar with our result. However, although the PL.*-condition
holds for over-parameterized neural networks in the context of regression problems|Liu et al.| (2022),
it remains unclear whether this condition holds for PINNs. |De Ryck et al.| (2024) showed that
operator-preconditioning analysis establishes convergence for linearized PINN problems. In this
paper, we provide the convergence analysis for NGD in training two-layer PINNs with ReLU?
activation functions or smooth activation functions, showing that it indeed converges at a faster rate.

1.3 NOTATIONS

We denote [n] = {1,2,--- ,n} for n € N. Given a set S, we denote the uniform distribution on
S by Unif{S}. We use I{E} to denote the indicator function of the event E. For two positive
functions fi(n) and f2(n), we use fi(n) = O(f2(n)), f2(n) = Q(fi(n)) or fi(n) < fa(n) to
represent f1(n) < C fa(n), where C'is a universal constant C'. A universal constant means a constant
independent of any variables. Throughout the paper, we use boldface to denote vectors. Given
x1, -+ ,xq € R,weuse (z1, - ,xq) or [, - ,x4] to denote a row vector with -th component x;
for i € [d] and then (w1, -+ ,24)T € R?is a column vector.

1.4 ORGANIZATION OF THIS PAPER

In Section 2, we provide the problem setup for training two-layer PINNs. We then present the
improved convergence results of gradient descent for PINNSs in Section 3. In Section 4, we analyze
the convergence of natural gradient descent in training two-layer PINNs with ReLU? activation
functions and smooth activation functions. In Section 5, we conduct experiments to verify the
theoretical results. The limitations are briefly discussed in Section 6 and we conclude in Section 7.
All the detailed proofs and experiments are provided in the Appendix for readability and brevity.

2 PROBLEM SETUP

In this section, we consider the same setup as |Gao et al.| (2023), focusing on the PDE with the
following form.

d
Ou 0%*u
—\r) = 22\&) = ,x € (0,T) xQ,
oy \®) ~ 2 ar(®) I @) 2 €T X )
u(x) = g(x), € {0} x QU[0,T] x 9,
where Q C R? is an open and bounded domain, x = (29,21, ,24)7 € R4 and 2 € [0, 7]

is the time variable. In the following, we assume that ||z|[; < 1 for z € [0,7] x Q and f, g are
bounded continuous functions.

Moreover, we consider a two-layer neural network of the following form.
1 m
d(z;w,a) = — Z aro(wle), 2)

r=1
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where w = (w{, - ,wh)T € R™+2) q = (ay,--- ,a,)T € R™ and for r € [m], w, € R**+?
is the weight vector of the first layer, a,. is the output weight and o (+) is the ReLU? activation function.
Here, & = (27, 1)T € R4*2 is the augmented vector from x and in the following, we write z for &
for brevity.

Similar to that for the L? regression problems, we initialize the first layer vector w,.(0) ~ N(0, I),
output weight a, ~ Unif({—1,1}) for » € [m] and fix the output weights. In the framework of

PINNS, given training samples {a:p pep and {y;}72 that are from interior and boundary respectively,
we denote s, (w) and h;(w) by
1 a2¢>
sp(w) = T ((%0 Z 5 (T w f(a;p)> 3)
and 1
hj(w) = —— w) — i))- )
i(w) \/@((ﬁ(% ) —9(y5))

Then the empirical loss function can be written as

1
Lw) = 5 (Is(w)[l3 + [R(w)[3), Q)
where s(w) = (s1(w), -+, 8y, (w))T € R™ and h(w) = (hy(w), -+, hp, (w))T € R72.
The gradient descent updates the hidden weights by the following formulations:
OL(w(k
(w(k)) ©

w.(k+1)=w.(k)—n S

for all » € [m] and k € N, where n > 0 is the learning rate. The Gram matrix H (w) is defined as
H(w)=JJ", where

7= (851(10) L Gsnl(w)7 ahl(w)’.._ ’ ahnz(w)>T. o
ow ow ow ow

3 IMPROVED RESULTS OF GD FOR TwWO-LAYER PINNS

To simplify the analysis, we make the following assumptions on the training data.

Assumption 3.1. For p € [ny] and j € [n2], ||z, ]2 < V2, ||ly;]l2 < V2, where all inputs have been
augmented.

Assumption 3.2. No two samples in {z, },1; U {y;}}2, are parallel. This is guaranteed because
augmenting x with (x, 1) ensures all samples are dlstlnct

Under Assumption 3.2, Lemma 3.3 in |Gao et al.| (2023)) implies that the Gram matrix H*> :=
Ew~ar(o,r)[H (w)] is strictly positive definite and we let A\g = Ay, (H ). Similar to the case of
the regression problem in|Du et al.|(2018)), H*° plays an important role in the optimization process.
Specifically, under over-parameterization and random initialization, we have two facts that (1) at
initialization || H (0) — H>||3 = O(1/+/m) and (2) for any iteration k € N, || H (k) — H(0)||2 =
O(1/+/m). The following two lemmas can be used to verify these two facts, which are crucial in the
convergence analysis.

Lemma 3.3. If m = Q2 (i—% log (%)), we have that with probability at least 1 — 6, || H (0) —
H> ||y < 22 and A (H(0)) > 3.

Remark 3.4. Under the premise of deriving the same conclusion as our Lemma 3.3, the Lemma
3.5 in|Gao et al.|(2023) requires that m = (M (log(%)y), where some terms involving

(n1in2)?A3
log(m) are omitted. In contrast, on one hand, our conclusion is independent up to logarithmic factors
in ny + no, and on the other hand, our conclusion exhibits a clear dependence on d. Moreover,
the method in |Gao et al.| (2023) involves truncating the Gaussian distribution and then applying
Hoeffding’s inequality, which is quite complicated. In contrast, we utilize the concentration inequality
for sub-Weibull random variables, which serves as a simple framework for this class of problems.
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Lemma 3.5. Ler R € (0,1], if w1(0),- - ,w,,(0) are i.i.d. generated from N (0,I), then with
probability at least 1 —§ —nye~ ™1 the following holds. For any set of weight vectors wy, - - - , w,, €
R that satisfy ||w, — w,.(0)||2 < R for any r € [m), then

| (w) = H(0)||r < CMR, ®)
where M = 2(d + 2) log(2m(d + 2)/0) and C is a universal constant.

Remark 3.6. The Lemma 3.6 in |Gao et al. (2023) shows that when ||w, — w,(0)]2 < R =

o (W) holds for all 7 € [m], then || H (w) — H(0)|> < 22. In contrast, our Lemma

3.5 only requires R = O (W) to reach same result.

For the L? regression problem, as shown in|Du et al.[(2018)), the convergence of gradient descent
requires that the learning rate n = O(\o/n?), where n is the sample size of the regression problem.
It is evident that this requirement on the learning rate is difficult to satisfy in practical scenarios, since
Ao is unknown and n? is too large . For PINNSs, (Gao et al.| (2023)) follows the methodology of |Du
et al.| (2018)), thus inheriting similarly stringent requirements on the learning rate. By investigating a
new decomposition method for the residual, we arrive at our main result.

Theorem 3.7. Under Assumption 3.1 and Assumption 3.2, if we set the number of hidden nodes

d8 md ni + ng
m=o(gioe’ (757 e (2572))

and the learning rate n = O (ﬁ), then with probability at least 1 — § over the random

initialization, the gradient descent algorithm satisfies

L(k) < (1 - 77;0>k L(0) ©)

forallk € N.

Remark 3.8. It may be confusing that (Gao et al.| (2023) has used the same method in |Du et al.
(2018), yet it only requires 7 = O(Ag). Actually, it is because that the loss function of PINN has

been normalized. If we let n; = ny = n and H™ be the Gram matrix induced by unnormalized

loss function of PINN, then Ap,in (H ™) = Ajpin (H)/n, leading to the convergence rate similar
to that of regression problem. At this point, due to the normalization of loss function, | H*||y =
Amaz (H ®) can be bounded by the trace of H °°, which is an explicit constant that is independent of
the sample size n1, no. As A, depends on the sample size, it is expected that our n = O(1/Aaz)
is an improvement over n = O(A4, ) in|Gao et al.| (2023)). A practical computation for 1D Poisson
equation is \,in = 3.47 x 1071 and 1/Apax = 1/(1.73 x 10*) = 5.78 x 107°, suggesting that
our analysis indeed improves the learning rate requirements.

4 CONVERGENCE OF NGD FOR TwWO-LAYER PINNS

Although we have improved the learning rate of gradient descent for PINNSs, it may still be necessary
to set the learning rates to be sufficiently small. Because, although tr(H °) is an explicit constant, it
depends on the form of the PDE. However, the loss function of PINNs has a much worse conditioning
due to the appearance of the PDE operator. So the ill-conditioning occurs when we move from
regression to PINNs, brings strict restrictions for the learning rate of gradient descent for PINNs. This
is a central motivation for second-order and natural gradient methods. Moreover, the convergence rate
1— % also depends on Ay, which depends on the sample size and may be extremely small. |[Zhang
et al.| (2019) and|Cai et al.|(2019) have provided the convergence results for natural gradient descent
(NGD) in training over-parameterized two-layer neural networks for L? regression problems. They
showed that the maximal learning rate can be O(1) and the convergence rate is independent of A,
which result in a faster convergence rate. However, the situation in PINNs is significantly different
from regression due to the presence of derivative terms from the partial differential equations,
which complicates the analysis. Miiller & Zeinhofer| (2023) and |(Guzman-Cordero et al.| (2025)
studied the energy natural gradient descent (ENGD) for PINNs with practical Woodbury, momentum,
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and randomization techniques, demonstrated highly accurate solutions empirically. A theoretical
convergence analysis, however, has not yet been established in these works. We note that the NGD
in|Zhang et al.| (2019) and the ENGD in |Miiller & Zeinhofer (2023) coincide up to the choice of
the Moore—Penrose pseudoinverse or the use of the Woodbury matrix identity; therefore, we do not
distinguish between them in this work. In the section, we conduct the convergence analysis of NGD
for PINNs and demonstrate that it results in a faster convergence rate for PINNs compared to gradient
descent.

In this section, we consider the same setup as described in Section 2. During the training process, we
fix the output weight a and update the hidden weights via NGD. The optimization objective is the
empirical loss function presented in (5), which is defined as follows:

1
L(w) = 5 (Is(w)[l3 + [R(w)[3) (10)
The NGD gives the following update rule:

wk+ 1) = w(k) — I (k)" (J(R)T(R)T) ™ (Z((IZ))) , (11)

where .
J(k) = (Jl (k)Ta e aJn1+n2 (k)T) € R(n1+n2)xm(d+2)

is the Jacobian matrix for the whole dataset and 1 > 0 is the learning rate. Specifically, for p € [n],

T T
Jp(k’) = [(agzgf)> S (ag’zj(:)) c Rlxm(d-‘rQ) (]2)
and for j € [na],
Oh; (k) ’ Oh; (k) g 1xm(d+2
Jn1+j(k) = < 8;;1 ) I ( 81jum ) cR xm(d+ ) (13)

Remark 4.1. We note that Zhang et al.| (2019) and (Cai et al.| (2019) have independently and
concurrently established the convergence of NGD in the context of regression problems. The

difference lies in the fact that[Zhang et al.| (2019) focused on ReLU activation functions, whereas
(2019) considered smooth activation functions and consistently set the learning rate to 1. Here,
following Zhang et al.| (2019), we refer to this approach as NGD. In|Cai et al. (2019), the authors
derived this method based on NTK kernel regression and termed it the Gram-Gauss-Newton (GGN)
method. The extension of NGD convergence from regression to PINNS is challenging because of the
complexity of the PDE residual loss.

Remark 4.2. The classical Gauss-Newton method Bonfanti et al|(2024) is given by w(k + 1) =
w(k) — (J(k;)TJ(k:))_1 J(k)T (Z((IZD Although this formula looks different from the NGD
update (11), the two coincide when 1 = 1 at the level of the Moore-Penrose pseudoinverse: J (k)+ =
(J (k)T I (k) IR = Jk)T (J(k;)J(k:)T)_l. However, this equivalence is only algebraic. In
practice the two updates behave differently because J (k) € R("1+72)xm(d+2) jg highly rectangular
and never invertible strictly, and different pseudoinverse representations apply in row-dependent or
column-dependent cases. The computational cost are also different, as pointed in|Guzman-Cordero]
with Woodbury’s Identity. The NGD’s formula (11) in this work, originally adopted
from[Zhang et al| (2019)), also coincides with the energy natural gradient descent (ENGD) proposed
in | Miiller & Zeinhofer| (2023); Guzman-Cordero et al.|(2025) once the Moore—Penrose inverse or
Woodbury identity is applied. A crucial distinction arises in the over-parameterized regime. The
Gauss-Newton Gram matrix J (k)7 J (k) € R™(d+2)xm(d+2) hecomes extremely high-dimensional
and typically singular as m grows, while the NGD J(k)J (k)T € R(m1+n2)x(ni+n2) won’t, This
difference is key for both practical scalability and numerical stability.

For the activation function of the two-layer neural network

o(x;w,a) = ;m;aro(w? z), (14)
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we consider settings where o (-) is either the ReLU?® activation function or a smooth activation
function satisfying the following assumption.

Assumption 4.3. There exists a constant ¢ > 0 such that sup, . [0(*)(2)| < c and for any z, Z eR,
08 (2) — oW ()| < ez — 2], (15)

where k € {0, 1,2, 3}. Moreover, o(-) is analytic and is not a polynomial function. We also assume

that for any positive integer n > 2, lirf o™ (x)/¢(x) = ¢, # 0, where the function ¢(-) needs
T—r+00
b
lim o(z) =0, tm 220 g
r—+00 T—>+00 gb(x)

holding for any constant b > 1.

Lemma 4.4. Ifno two samples in {z,},2, U{y;} 2, are parallel, then the Gram matrix H* is
strictly positive definite for activation functions that satisfy Assumption 4.3, i.e., Ao := Apin (H™) >
0.

Remark 4.5. Assumption 4.3 holds for various commonly used activation functions, including
logistic function o(2) = 1/(1+ e~ %) (with ¢(2) = e~ %), softplus function o(2) = log(1+ e*) (with
#(z) = e~*), hyperbolic tangent function o(z) = (e* —e~%)/(e* + e~ %) (with ¢(z) = e~2?), swish
function o(2) = z/(1 + e~ *) (with ¢(z) = ze™#) and others.

Unlike the approach for gradient descent,|Zhang et al.| (2019) focus on the change of the Jacobian
matrix for NGD rather than the Gram matrix. Roughly speaking, they show that when ||w — w(0)||2
is small, then || J (w) — J (0)||2 is also proportionately small. However, this approach is not applicable
to PINNs, because the loss function involves derivatives. Roughly speaking, the stability considered in
Zhang et al.|(2019) is more global in nature, whereas ours is local. In fact, the PINN loss includes first-
and second-order derivatives of the neural output (see Eq. (3)~(4)), so each Jacobian block 0s,, /0w,
and Oh; /0w, contains higher-order derivatives of the activation and of the weights. Consequently,
even a small perturbation in weights may cause large variations in the derivatives, violating the
Lipschitz-type condition required by Zhang et al.|(2019). Since the subsequent conclusions require
the boundedness of local weights, we do not use this stability. Moreover, from the Theorem 1 in
Zhang et al.| (2019)), we can see that this stability imposes additional constraints on the learning rate.
Therefore, we instead focus on the stability of J(w) with respect to each individual weight vector
w, in the following Lemma, which provides a more targeted approach.

Lemma4.6. Ler R € (0,1], ifw1(0), - ,wy,(0) are i.i.d. generated N'(0, I), then with probability
at least 1 — P(8,m, R) the following holds. For any set of weight vectors wy, - - - ,w,, € R that
satisfy for any r € [m], ||w, — w,(0)||2 < R, then

(1) when o (-) is the ReLU® activation function, we have that

[T (w) = J(O)][> < CMVR, (16)
where C'is a universal constant, M = 2(d + 2)log(2m(d + 2)/0) and
P(6,m,R) =6 +nje ™, (17)

(2) when o () is the smooth activation function satisfies Assumption 4.3, we have that
[J(w) = J(0)|]2 < CdR (18)
form > log?(1/8), where C'is a universal constant and P(5,m, R) = 6.
With the stability of Jacobian matrix, we can derive the following convergence results.
Theorem 4.7. Let L(k) = L(w(k)), then the following conclusions hold.

(1) When o (-) is the ReLU® activation function, under Assumption 3.2, we set

1 dS 6 md n1+n2
—0( D8 (1)
m=o (g () e (5)

and n € (0, 1), then with probability at least 1 — § over the random initialization for all k € N
L(k) < (1 = n)*L(0). (19)
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(2) When o () is the smooth activation function satisfies Assumption 4.3, under Assumption 3.2, we

set & p
- 1 m ni + no
m=a (e (7)o (5))
and n € (0, 1), then with probability at least 1 — & over the random initialization for all k € N
L(k) < (1= n)*L(0). (20)

In Theorem 4.7, the requirements of m with ReLU® and smooth activation functions exhibit different
dependencies on A\ and d. The discrepancy is primarily due to the distinct formulations presented in
(16) and (18) of Lemma 4.5.

Remark 4.8. We first compare our results with those of NGD for L? regression problems. Given

that the convergence results are the same, our focus shifts to examining the necessary conditions
for the width m. As demonstrated in Zhang et al.| (2019) and |Cai et al.| (2019), it is required that

m = (;{—;S) for ReLU activation function and m = Q (max { n? ndlog(n/6)
0

AT a2
activation function. Clearly, our result has a worse dependence on d, which is inevitable due to the
involvement of derivatives in the loss function. Moreover, our requirement for m appears to be almost
independent of n, primarily because our loss function has been normalized. With smooth activation
functions, in addition to the dependence on d, Theorem 4.7 (2) only requires that m = Q(Ay 3.
However, Cai et al.| (2019) demands a more stringent condition, requiring that m = Q(Ag 4).

) for smooth

Comparing with our results in Section 3, the requirement for m in Theorem 4.7 (1) is the same
as in Theorem 3.8, when we make 7 less close to 1. On the other hand, since n = O(1) and the
convergence rate only depends on 7, NGD can lead to faster convergence than GD.

Note that as 7 approaches 1, the width m tends to infinity, thus, the convergence results in Theorem
4.7 become vacuous. In fact, when n = 1, NGD can enjoy a second-order convergence rate even
though m is finite, provided that o (-) satisfies Assumption 4.3.

Corollary 4.9. Under Assumption 3.2 and Assumption 4.3, set 1 = 1 and

do md ny + no
mQ<)\310g(6>log< 5 )),

then with probability at least 1 — 0, we have
CB' | (s(1)
h(t)

s(t+1) <
t + 1 /mA3
forallt € N, where C'is a universal constant and B = \/2(d + 2) log(2m(d + 2) /&) + 1. Moreover,

we can get a second order convergence result for regression problems with smooth activation functions
as follows.

2

2

ly —u(t+1)[2 S Hy u(t)]3-

/ )\3
Instead of inducing on the convergence rate of the empirical loss function, as shown in Condition 1,
we perform induction on the movements of the hidden weights as follows.

Condition 1. At the ¢-th iteration, we have ||w,(t)||2 < B and

CB2JI(0)

[[w,(t) — w,(0)]]2 < =R

T VmXo

for all » € [m], where C'is a universal constant and B = \/Q(d +2)log (W) + 1.

With Condition 1, we can directly derive the following convergence rate of the empirical loss function.
Corollary 4.10. If Condition 1 holds fort = 0,--- |k and R <Rand R’ < V1T —=nvAo, then
L(t) < (1= n)"L(0),

holds fort =0, - - - , k, where R is the constant in Lemma 4.5 and R =CMVRisin (16) when o
is the ReLU® activation function, R’ = CdRis in (18) when o satisfies Assumption 4.3.
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5 EXPERIMENTAL RESULTS

We conduct a comparative evaluation of the NGD against existing optimizers for PINN training
with respect to accuracy, computational efficiency, and alignment with theoretical analysis. The
experimental implementations are listed in the Appendix A.

Table 1: Relative L?-error of Different Optimizers.

SGD Adam L-BFGS NGD
1D Poisson 1.28e-01 z431e020  6.46€-02 +1.43e.00  2.63e-04 +895e05  1.67€-05 +9.07¢-06
2D Poisson 1.45e-01 +734e02 5.32e-03 97904  3.17€-03 +866e04  1.12€-04 6.99-05
1D Heat 5.43e-01 z998e020  6.91e-03 +131e03  4.98e-03 +183c03  3.42e-04 +7.52¢.05
2D Helmholtz | 8.48e+00 +637e+00  1.06e+00 +8.11e01  3.35€+00 «1.94e+00  6.67€-03 = 1.89-03
10D Poisson 1.35e-02 8.17e03  3.15€-03 +8.93e-04 nan 9.91e-04 = 1.47e-04

Comparison to Existing Optimizers. We report the relative L2-error of the NGD optimizer to the
commonly used first order optimizers (the SGD optimizer, the Adam optimizer) and second order
optimizer (the L-BFGS optimizer) in Table[I] Here ‘nan’ means the training loss becomes infinity.
We see that NGD performs best on all five equations.

Learning Rate Study. We report the behavior of convergence at different learning rates, showing
the strong robustness of the NGD method to hyperparameter selection. Table [2]demonstrates that,
unlike SGD and Adam which demand small learning rates for convergence, the NGD maintains
stable convergence across a wide range of learning rates without notable accuracy deterioration. This
characteristic, which markedly outperforms conventional optimization approaches, clearly illustrates
the strong robustness of the NGD method to hyperparameter selection.

Table 2: Relative L?-error Comparison Across Different Learning Rates 7).

learning rate n 1.0 0.5 0.1 0.05 0.01 0.005 0.001
SGD nan nan nan nan 1.19¢-02 6.91e-02 7.36e-02
Adam 1.01e+00 1.00e+00 1.00e+00 1.01e+00 1.64e-02 3.25¢-02 1.49e-02
NGD 1.97¢-03 1.18e-03 3.24e-04 1.87e-04 1.12e-04 1.22¢-04 1.68e-04

Network Width Study. A comparative analysis of the model performance is performed with
progressively increasing network widths. Table [3|demonstrates that increasing network width leads
to significant accuracy improvements. This trend validates that wider architectures exhibit enhanced
function approximation capabilities.

Table 3: Relative L2-error Comparison Across Different Network Width m for NGD.
m 20 40 80 160 320 640 1280 2560
error | 1.59-03 7.21e-04 5.18e-04 3.8e-04 3.08e-04 2.76e-04 1.78e-04 7.05e-05

Fast Convergence Study. We report the training loss convergence results for different optimizers.
We train SGD and Adam for 10000/20000 epochs with learning rate 1e-3, and the NGD for 100/200
epochs with learning rate 0.1. Figure[T]empirically demonstrates that the NGD converges much faster
than commonly used SGD and Adam optimizers, which is consistent with our theoretical analysis
equation (9) in Theorem 3.7 and equation (20) in Theorem 4.7.

Empirical Convergence Rates Study. We continue to report the empirical convergence rates of
the NGD in different equations. We compare the empirical training loss curves of the NGD when
7 = 0.1 with the theoretical linear rates in our main Theorems 4.7. The theoretical decay follows
L(k) =~ C(1 — n)*, and the fitted experimental decay is L(k) ~ O(k~1->®) for 1D Poisson equation,
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3
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Figure 1: Training Loss Decay Comparison for 1D Poisson (left), 1D Heat (middle) and 2D Poisson
(right) Equations.

O(k~192) for 1D Heat equation and O(k~'-*3) for 2D Poisson equation in Figure[2} For the heat
equation, convergence initially exceeds the predicted rate and later slows markedly. This is consistent
with known NTK decay and multi-phase behaviors in PINNs. Generally, the empirical loss of NGD
roughly follows the predicted linear regime in early iterations, before entering a slower phase usually
observed across all optimizers.

—— experimental decay —— experimental decay —— experimental decay
theoretical decay 102 theoretical decay 10 theoretical decay

training loss
training loss
training loss

0 20 a0 0 B0 100 120 140 0 20 40 &0 80 100 0 20 40 60 80 100 120 140
epochs epochs epochs

Figure 2: The Experimantal Training Loss Decay and Theoretical Decay (Theorem 4.7) for 1D
Poisson (left), 1D Heat (middle) and 2D Poisson (right) Equations.

6 LIMITATIONS

The computational cost of NGD is mainly on the (J - JT)~! with the Jacobian matrix .J is of size
n X p, where n = ny + no is the training data size and p = m(d + 2) is the number of trainable
parameters. So NGD will be quite expensive for large amount of training data.As a result, several
cost-effective variants have been proposed, such as K-FAC [Martens & Grosse|(2015); |[Dangel et al |
[2025), ENGD Miiller & Zeinhofer] (2023)); |Guzman-Cordero et al.| (2025) and mini-batch
NGD. We only proved the convergence results for the full-batch NGD in this paper, and it would
be interesting to investigate the convergence of these methods for PINNs in future works. On the
other hand, while the over-parameterized assumption enables the use of NTK stability for proving
global convergence, the practical guarantee for arbitrary sampled projected gradient descent without
assumption on the network size Nieen & Miiller| (2025) address a different framework, and the NGD
analysis without over-parameterized assumption represent an interesting complementary direction.

7 CONCLUSION AND OUTLOOK

In this paper, we have improved the conditions required for the convergence of gradient descent for
PINNs, showing that gradient descent actually achieves a better convergence rate. Furthermore, we
demonstrate that natural gradient descent can find the global optima of two-layer PINNs with ReLU?
or smooth activation functions for a class of second-order linear PDEs. Compared to gradient descent,
natural gradient descent exhibits a faster convergence rate and its maximal learning rate is O(1).
In conclusion, the NGD offers three key advantages: 1) more relaxed learning rate requirements;
2) faster convergence rates independent of \g; 3) superior empirical performance. Additionally,
extending the convergence analysis to deep neural networks, stochastic version of NGD, and studying
the generalization error of trained PINNs are important directions for future research.
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A EXPERIMENTAL IMPLEMENTATION

In this section, we provide several examples to demonstrate the superiority of the natural gradient
descent(NGD) approach. The configurations used in these examples are listed in Table[d] We report
the relative L2-error of the NGD optimizer to the commonly used first order optimizers (the SGD
optimizer, the Adam optimizer) and second order optimizer (the L-BFGS optimizer) in Table|l| The
relative L2-error is defined as follows:

VN (1) — e (i)
SN e ()P

where @ denotes the predicted solution and wu,.s represents the reference solution. To show the
generalization ability of NGD, we should note that the testing collocation points {x; } Y ; are different
from the training samples {x,, } ;1 and {y;}}2,.

relative L? error = 21

Table 4: Configurations of Different Equations.

Ny Ny  batchsize hidden layers hidden neurons activation function
1D Poisson 500 2 100 1 128 tanh(-)
2D Poisson 1,000 200 100 1 128 tanh(-)
1D Heat 1,000 200 100 1 128 tanh(-)
2D Helmholtz | 1,000 200 100 1 128 tanh(-)
10D Poisson | 10,000 1,000 100 1 128 tanh(-)

A.1 1D POISSON EQUATION

First, we begin with a toy example of the 1D Poisson equation to display the performance of the
NGD method. The equation is defined in the domain 2 = [0, 7],

{825 @

The true solution is set as u(z) = sin(x), which allows us to derive the corresponding force term
f(x) = sin(x). We randomly sample Ny = 500 points in the domain €. For the neural network
architecture, we employ a single hidden layer model with 128 units and tanh(-) activation functions
across all computations. The NGD optimizer is trained for 100 epochs, while the LBFGS optimizer
is run for 1 epoch with a maximum of 500 iterations per epoch. All other optimizers are run for
10, 000 epochs for comprehensive comparison. The relative L2-error is 1.67¢ — 05 for the NGD
optimizer. Figure3|shows the predicted solution for the 1D Poisson equation alongside the reference
solution. The prediction is in excellent agreement with the reference solution, highlighting the
superior performance of the NGD method. Figure ] depicts the loss decay during the training process,
we can see that the NGD method achieves a quite small loss at the very beginning.

A.2 2D POISSON EQUATION

We consider a 2D Poisson equation in the domain Q2 = [0, 1] x [0, 1],

{‘$—$=mw,mwd% (23)
u(z,y) =0, (z,y) € 00.
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Figure 3: Reference Solution and Predicted Solution for the 1D Poisson Equation.

The true solution is given by u(x,y) = sin(nz)sin(my), and the force term f(x,y) =
272 sin(mrz) sin(7y) is consequently derived.

We sample [N, = 200 random points on the boundary 02 and Ny = 1,000 random points within the
domain §2. We employ a single hidden layer model with 128 units and tanh(-) activation functions
across all computations. We run the NGD method for 200 epochs, while the L-BFGS method is
trained for 1 epoch with a maximum of 5, 000 iterations per epoch. All other optimization methods
are trained for 20, 000 epochs. The resulting relative L2-error is 1.12e — 04. Figure [5]illustrates
the prediction of the 2D Poisson equation, along with the exact solution and the absolute error
between them. It is clear that the predicted solution closely matches the reference solution, further
demonstrating the superior performance of the NGD method. Figure [6]shows the loss decay during
training, demonstrating that the NGD method converges significantly faster than other optimization
methods.

A.3 1D HEAT EQUATION

We consider the 1D heat equation

ou(t,x 82u(t,x 2
o) = 1O (1) € [0,1)%,

u((a)fx) =sin(rz), x€[0,1] (24
u(t,z) =0, (t,z)€0,1] x{0,1}.

The reference solution is analytically defined by u(¢, z) = exp(—’%t) sin(rz). We generate Nj, =
200 random sampling points for the boundary and initial conditions and N; = 1, 000 random points
in the domain €2 to evaluate the PDE residual. The neural network used for all computations consists
of 1 hidden layer, each containing 128 neurons with tanh(-) activation functions. To train the model,
we run the NGD method for 200 epochs and the L-BFGS method for 1 epoch with a maximum
of 5,000 iterations per epoch, and other optimizers are trained for 10,000 epochs. The resulting
relative L2-error is 3.42e — 04. Figure provides a visual comparison between the predicted and
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Figure 5: NGD Prediction and Analysis for the 2D Poisson Equation.
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Figure 6: Loss Decay for the 2D Poisson Equation.

exact solutions for the 1D heat equation, along with the corresponding absolute error distribution.
The high degree of accuracy in the predicted solution demonstrates the effectiveness of the NGD
method, showing its ability to capture the solution with remarkable precision. Figure ]shows the loss
curve over the course of training for the 1D heat equation. Notably, the NGD method rapidly reduces
the loss, reaching a low value in the training process, demonstrating its efficiency in optimization.
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Figure 7: NGD Prediction and Analysis for the 1D Heat Equation.

A.4 2D HELMHOLTZ EQUATION

We deal with the 2D helmholtz equation on the domain 2 = [0, 1] x [0, 1] given by

2 2
{ 58+ 5 R, y) = fry),  (2,y) €9,

u(z,y) =0,

(x,y) € O0.
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Figure 8: Loss Decay for the 1D Heat Equation.

The reference solution for k = 4 is u(z,y) = sin(wz) sin(47ry), and the force term f(x,y) can be
easily computed. To evaluate the performance of the NGD approach on the 2D Helmholtz equation,
we generate [V, = 200 random boundary points on 92 and Ny = 1,000 random points inside the
domain 2. The neural network employed consists of 1 hidden layers with 128 neurons per layer,
utilizing tanh(-) activation functions. Training is carried out for 200 epochs using the NGD method
and 1 epoch with a maximum of 5, 000 iterations for L-BFGS. All other optimizers are run for 20, 000
epochs for comparison. The computed relative L2-error is 6.67e — 03, which is 3 orders of magnitude
lower than those of the remaining optimizers. Figure [Jillustrates the predicted solution along with
the exact reference solution and the absolute error distribution. The results indicate that the NGD
method effectively captures the oscillatory nature of the Helmholtz equation, achieving a high level
of accuracy. Figure[I0]shows the evolution of the loss function during training for the 2D Helmholtz
equation. In particular, the NGD method demonstrates rapid convergence, achieving a low loss value
at the end of the training process.

A.5 10D PoI1ssON EQUATION

We conduct experiments to show that the NGD can also perform better than SGD, Adam, and
L-BFGS for high-dimensional PDEs, despite that all optimizers become more challenging as the
dimensionality of PDEs increases. As an example in higher dimensions, we consider again the
Poisson equation in 10 spatial dimensions

—Au = f(z), xe€Q=10,1°,
10 . (26)
u(x) =Y, sin(rxy), x € 0€.
We use the manufactured solution
10
v RO SR, z— Zsin(wzk) 27
k=1
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Figure 9: NGD Prediction and Analysis for the 2D Helmholtz Equation.
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hence f = m2u*. We sample N}, = 1,000 random points on the boundary 92 and Ny = 10,000
random points within the domain 2. We employ a single hidden layer model with 128 units and
tanh(-) activation functions across all computations We run the NGD method for 200 epochs, while
the L-BFGS method is trained for 1 epoch with a maximum of 5, 000 iterations per epoch. All other
optimization methods are trained for 20, 000 epochs. The resulting relative L?-error is 9.91e — 04. It
is clear that the predicted solution closely matches the reference solution, further demonstrating the
superior performance of the NGD method.

A.6 TRAINING EFFICIENCY COMPARISON

For training efficiency comparison among different optimizers, we present the computational time,
memory usage, and error rates for both the 2D Poisson equation and the 10D Poisson equation.
Table [5]and Table [6] demonstrate that training time and memory requirements increase for all four
optimizers as the problem dimension grows. Despite this, the NGD method still achieves the lowest
error while maintaining comparable computational overhead.

Table 5: Training efficiency comparison for 2D Poisson equation.

Optimizers lr Epochs Training efficiency Training time Max memory Rel. L2 error
SGD 0.001 20,000 0.047 s/epoch 15min49s 14.62 MB 1.45e-01
Adam 0.001 20,000 0.054 s/epoch 18min2s 14.75 MB 5.32e-03
L-BFGS - 200 0.51 s/epoch 1mind1s 41.53 MB 3.17e-03
NGD 0.1 200 3.67 s/epoch 12min13s 14.75 MB 1.12¢-04

Table 6: Training efficiency comparison for 10D Poisson equation.

Optimizers lr Epochs  Training efficiency Training time Max memory Rel. L2 error
SGD 0.001 20,000 0.92 s/epoch 2h33min 328.11 MB 1.05e-02
Adam 0.001 20,000 0.95 s/epoch 2h39min 328.11 MB 2.31e-03
L-BFGS - 200 26.1 s/epoch 1h27min 349.17 MB nan
NGD 0.1 200 37.1 s/epoch 2h4min 328.11 MB 9.91e-04

A.7 NUMERICAL EXAMINATION FOR MULTI-LAYER PINNS

While our convergence proof is based on the two-layer PINNs for simplicity, the extension to
practical multi-layer PINNs are missing. The restriction of two-layer is primarily technical: it
enables precise control of the NTK evolution and allows us to rigorously establish Jacobian stability
(Lemma 4.6) and global convergence (Theorem 4.7). Extending these results to deeper networks is
indeed possible but significantly more involved, as it requires layer-wise coupling analysis of the
NTK (as in Allen-Zhu et al., 2019). Nevertheless, we report the NGD for different layer PINNs
on 2D Poisson equation, to show the NGD can converge as depth increases. We train NGD with
learning rate 0.1, and each are trained with 200 epochs. Table[7]shows the convergence trends remain
consistent with our theoretical predictions: NGD maintains a small relatively L? error for different
layers, while the overall convergence slows moderately as depth increases. Especially the NGD’s
memory requirements keeps almost the same as layers increased (note that the inverse of J.J7 is
independent of the parameters), and the computational burden only increase almost linearly with the
total parameters.

Table 7: Training comparison of NGD for different layers on 2D Poisson equation.

Hidden layers | Total parameters Training efficiency Training time Max memory Rel. L2 error
1 512 3.67 s/epoch 12min13s 14.75 MB 1.12¢-04
3 33,280 8.29 s/epoch 27min37s 14.75 MB 3.41e-04
6 82,432 17.53 s/epoch 58min25s 20.17 MB 4.29e-04
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A.8 GENERALIZATION LOSS EXAMINATION

While our theoretical analysis focuses on the optimization of the training loss, the behavior of the
generalization error after training is not covered by our current convergence guarantees and is beyond
the scope of this work. Nevertheless, we provide an empirical study to examine how the number of
collocation points affects overfitting for different optimizers in the over-parameterized regime. We
consider the 2D Poisson equation and vary the total number of collocation points N = Ny + Ny
used to train the physics-informed loss (5). NGD is trained with a learning rate of 0.1 for 200 epochs
to ensure stable convergence of the training loss. SGD and Adam are trained for 20,000 epochs
with a learning rate of le-3, and L-BFGS is run for one epoch with a maximum of 50,000 iterations.
To approximate the generalization error, we evaluate the physics-informed loss (5) on a very fine
grid with Ny = 100, 000 interior points and IV, = 1,000 boundary points. As shown in Table EI,
increasing the number of collocation points consistently reduces the generalization error, bringing
it close to the training loss. For the 2D Poisson problem considered here, using approximately
N = 5,000 samples appears sufficient to mitigate overfitting while maintaining small generalization
error across all examined optimizers.

Table 8: Generalization error comparison using different collocation points.

Optimizers | Training loss | N =100 N =500 N =1,000 N =5,000 N = 20,000
SGD 2.13e-03 5.80e-02  1.37e-02 1.03e-02 2.59¢-03 1.68e-03
Adam 9.71e-06 1.03e-03  4.59e-04 1.24e-04 3.41e-05 1.39¢-05

L-BFGS 7.74e-06 9.16e-04  4.31e-05 3.93e-05 1.02e-05 8.65¢-06
NGD 2.86e-06 2.51e-04  2.04e-05 1.22e-05 2.78e-06 2.91e-06

B PROOF OF SECTION 3

Before the proofs, we first define the event

Aip = {Fw : [|[w — w,(0)||]2 < R, I{w x; > 0} # I{w,(0)Tx; > 0}} (28)
forall i € [n].
Note that the event happens if and only if |w,.(0)Tx;| < ||z;||2R, thus by the anti-concentration
inequality of Gaussian distribution, we have

2R
P(As) = P prio w20 (12] < B) = Pos <R) < . 29
(Air) N0, ]lz:12) ([2] < R) N, (|2l < R) N (29)

Let S; = {r € [m] : I{As} = 0} and S} = [m]\S..

Then, we need to recall that

aSp(w) Qy " T ’ T 1 1 T 9 " T
= r - T - 2
o = T |7 Wm0 wley) (o, )~ ol o [y~ 20" ],
(30)
and O (w)
Glw (€79 4 T
= DY, 31
6'“]7- \/WWQO- (wr y])y] ( )

B.1 PROOF OF LEMMA 3.3

Proof. In the following, we aim to bound | H (0) — H*®||p, as | H(0) — H*®||s < ||H(0) — H*®||p.

Note that the entries of H (0) — H have three forms as follows.

§° (Ontw0) Dutw)) g :<8Si(“’(°” asﬂ'(""“m, 62)

—~ ow, ow, . ow, = Ow,
O~ [ Dsi(w(0) Oh;(w(0)\ l Osi(w(0)) Oh;(w(0)) ] a3
TZ_;< ow, = Ow, > w(0) T_1< ow, ' Ow, >

20

I

)
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and

~ / Ohi(w(0)) Oh;(w(0))
Z< ow, = ow, >

\~ / Ohi(w(0)) Oh;(w(0))
S ] o

For the first form (30), to simplify the analysis, we let

Z,(i) = 0 (w,(0) @:)wro (0)a; + 0 (w,(0) ;) <0d1+1>

"

1 0
-0 (wr(O)Twp)erl(O)”ng —20 (wT(O)TiDi) <wr1(0)>

and
XT(Z]) = <ZT‘(Z)7 Z, (])>7
then
3 <58p(;:~zf0)), 38;‘@(550)) >—]Ew lz <8sp6(:z£0))7 c’)sjézf())) >1 _ m% S [, i) — EX, i5)].

Note that | X,.(ij)| < 1+ ||w,-(0)]|3, thus

<1+ |[flw,(0 < d2.

X,y S 1+l )] I3,

H2 le
2
Here, for more details on the Orlicz norm, see the remarks after Lemma D.1.

For the centered random variable, the property of 1 quasi-norm implies that

16 () = BLG-(i))llwy S 1% (@)l y + [BIX ()]l < 4.

Therefore, applying Lemma D.1 yields that with probability at least 1 — &,

é;[mﬁ ~EX ()] $ S o (5) + £ (o (;))

which directly yields that

ij <88}}§Zr(0))’ asjg;ufo»> . Z<8Spawro ’88%(550))>1

r=1 —1

(35)
Similarly, for the second form (31) and third form (32), we can deduce that
9si(w(0) Oh;(w(0)\ o 9si(w(0)) Oh;(w(0)) o @
awr T Ow, w(0) ow, = Ow, vy V/mimam
and
Ohi(w(0)) Oh;(w(0))\ Ohi(w(0)) Oh;(w(0)) o &
) IE’w(O) ) ~ .
BwT ow, ow, ow, " oM

[N

Thus applying Lemma D.1 yields that with probability at least 1 — &,

=~/ 9s;(w(0)) Ohj(w(0 "~/ si(w(0)) Oh;(w(0 d? 1 d? 1
S (P ) e [Z< S ))>] ‘ < Ty (5) s o= (5,
B - (36)
and with probability at least 1 — 6,
"/ 0hi(w(0)) Oh;(w(0)) "/ Ohi(w(0)) Oh;(w(0)) d? (1 de 1
; < ow, = Ow, > ~Ew ; < ow, = Ow, >] S nay/m log ] +ngm log 5
(37)
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Combining the above we can deduce that with probability at least 1 — 4,
|H(0) — H||3
< ||[H(0) - H*||3

d* ni + no d* ni + no 4
< —1lo ~— {1 o e

e (257 o (s (5
<d741 <n1+n2).

m 1)

Thus when log (”ﬁ"?) < A0 e

~ 4°

we have A, (H (0))

Y
o
>

(=)

B.2 PROOF OF LEMMA 3.5

Proof. We first reformulate the term éang(k) in (28) as follows.

Osp(w) a T WroTpo T 1 . 2
o) o ) (0, ) o @) (o)) <o @l

ow, J/mny

It suffices to bound || H (w) — H (0)|| r, which can in turn allows us to bound each entry of H (w) —
H(0).

For i € [n1] and j € [n4], we have that

ot =3 (G )

r=1

1 m W 0Ls ’ 1 "
Y (o ) (s, ) o e (o)) o T e

r=1

voop WroT 0 T Ty 2,
7 7)) (g, ) o T () o T B )
After expanding the inner product term, we can find that although it has nine terms, it only consists of
six classes. For simplicity, we use the following six symbols to represent the corresponding classes.

"o 7 ror oo oo i

oo ,00,00,0 0,0 0,0 O

. "o
For mstance, o o represents

T, WroT40 T, 1 T 1 T, WroZ 50
(" wFe) (g, ) oo Fe) (o, ) ) ('l (o)) o ) (, 20", ).

In fact, when bounding the corresponding terms for H,;(w) — H;;(0), the first four classes can
be grouped into one category. They are of the form fi(w) fo(w)f5(w) f4(w), where for each 4
(1 <i< 4) fi(w) is Lipschitz continuous with respect to || - |2 and |f;(w)| < |Jw]|2 (Note that

o' (-) = (0" (-))?). On the other hand, when ||w; — wy|s < R < 1, we can deduce that

[ fr(wi) fo(wi) f3(wr) fa(wi) — fi(ws) f2(ws) f3(w2) fa(ws)| S R([lwi 3 +1).
Thus, for the terms in H;;(w) — H;;(0) that belong to the first four classes, we can deduce that they
are less than C' R(||w,(0)||3 + 1), where C'is a universal constant.

For the classes o o and o o, they are both involving o that is not Lipschitz continuous. To
make it precise, we write the class ¢ o explicitly as follows.

T
Wr0Ti0 ) ,
J

T\~
Fao wlmwal (oS

o (w
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Note that when ||w, — w,.(0)||2 < R, we have that

1"

o (wy xj) =0 (we(0)"z;)| = [[{w,; z; >0} — H{w,(0)"z; > 0}| < I{4;,},
where the event A, has been defined in (36).

Thus, we can deduce that for the terms in H;;(w) — H;;(0) that belong to the classes o ¢ and
oo, they are less than

C[(H{An} + I{A;: ) (lw,(0)[13 + 1) + R(|Jw.(0)]15 + 1)] ,
where C is a universal constant.

Similarly, for the last class oo that are of the form

" "
T T

o (wizi)o (wiz;) w32 x;,

we can deduce that
" mnr 1"’

o (wlzi)o" (w) ;) |wn [52] @5 — 0 (w,(0) @i)o " (w,(0) ' @)) [ we (0)|[32] @,
< HAiw v Ajp Hlwe (0)[3 + R([lwr (0)]5 + 1)

Combining the upper bounds for the terms in the six classes, we have that

)~ HyO)] o | (szr ||2> S A+ A (0 O + 0 ) + 1)+ R
s |- (szr ||2> +;Z<I{Air}+f{Ajr}><||wr<o>3+1>+R],

(38)
where the last inequality follows from that ||w,-(0)||3 < ||w,-(0)]|3 + 1 due to Young’s inequality for
products.

Now, we focus on the term = >~ I{A;, }||w, (0)]|3.
r=1

P (o) 2 2108 (3)) <5

P <|wr(o)||§ > 2(d +2) log (W)) < 6.

Since
and then

This implies that

P (Elr € [m], [|w,(0)]|3 > 2(d + 2) log (W)) <. (39)

Let M = 2(d + 2)log ( 224#2)), then

m

—ZI{A”}IIW( 2

m

= ZI{Air}er(O)IIE*I{IIwT( M3 < M} + — ZI{AM}IIwr( M2 I {llw(0)]]5 > M}

ZI{AW}Jr ZIIwr NI {llw:(0)[13 > M}.

Applying Bernstein’s inequality for the first term yields that with probability at least 1 — e~™%,

1m
— I{A;.} <A4R.
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Moreover, from (39), we have that with probability at least 1 — §, the second term I{||w,.(0)||3 >
M} = 0 holds for all r € [m].

—mR

Thus with probability at least 1 — § — nqe , we have that for any ¢ € [n;] and j € [nq],

1
[Hyj(w) = Hy (0)] S - [RM? + RM? + ]

Fori € [n1],j € [n1 +2,n2] and i € [ny + 1, ng], j € [ne], from the form of %(:f’), ie.,

8hj(w) __Gar 0/(,wTy_)y.
ow, /nam rgIIgn
we can obtain similar results for the terms <gf‘i , %> and <gi‘u , ‘Z}:j >

With all results above, we have that with probability at least 1 — § — ny e~ MR,

|H(w) — H(0)||r < M?R.

B.3 PROOF OF LEMMA B.1

Indeed, the stringent requirement of the learning rate in|Du et al.|(2018)) stems from an inadequate
decomposition method for the residual. Specifically, in|Gao et al.|(2023)), the decomposition for the
residual in the (k + 1)-th iteration is same as the one in Du et al.| (2018), i.e.,

s(k+1)\ _ (s(k) s(k+1) s(k)
(h(kz + 1)) = (h(k)) + Kh(k+ 1)) - (h(kz)ﬂ : (40)
which leads to the requirements that 7 = O(\g) and m = Poly(ny,ng,1/J). Thus, it requires a new

approach to achieve the improvements for 77 and m. In fact, we can derive the following recursion
formula.

Lemma B.1. Forall k € N, we have
(A1) = @ —nrn (50)) + o, an

T(k) = (TH(R), - T2 ()T € R

where

and for p € [n1),

10 = sylh+ 1) = 5,0 = (228 ol 1) - wit)). @)
forj € [na),
L4 (k) = by + 1) — hy(h) — <a’g‘1f]’f) (k1) - w(k)> . @3)

In the recursion formula (39), I; (k) serves as a residual term. From the proof, we can see that
11 (k) |l2 = O(1/+/m) and thus, as m becomes large enough, only the term I —nH (k) is significant.
This observation is the reason for the requirement of 7.

Proof. First, we have
Osp (k)

syl 1) = 58 = syl + 1) = 5y = ( 22, wit 1) = wid) )| + (28w 1)~ i)

= IV(k) + I5 (k).
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For the second term I} (k), from the updating rule of gradient descent, we have that

ow ’ ow
=~/ 0sy(k) OL(k)
——;77< ow, = Ow, >

m . e 5 ng _ (45)
- </ Dsp(k) Osi(k) [ Osp(k) Ohy(k)
= t_1< Y. . >st(k)+;< G o, >h](k)
O

where [H (k)], denotes the p-row of H (k).
Similarly, for h(k), we have

oh; (k) Oh,(k)

4 1) = hy(8) = [+ 1) = (8 = (P2 ot 1) = wit) )| + (P2 ot 1) - wit))

= I (k) + 13 (k)

(46)
and
ny j k
B0 = <l H 0L (504 @)
Combining (42), (43), (44) and (45) yields that
s(k+1) s(k)\ _
(h(k+ 1)) - (h(k)) = Li(k) + I(k)
k
= I(k) — nH (k) (Z((k))> .
A simple transformation directly leads to
s(k+1)\ _ s(k)
(h(k + 1)) = —nH(k)) (h(k)) + I (k),
which is exactly (39), the new recursion formula we need to prove. [

B.4 PROOF OF THEOREM 3.7

Similar to|Du et al.[(2018)) and |Gao et al.|(2023), we prove Theorem 3.7 by induction. Our induction
hypothesis is the following convergence rate of the empirical loss and upper bounds for the weights.

Condition 2. At the ¢-th iteration, we have that for each r € [m], ||w,.(¢)||2 < B and

L(t) < (1 - ";0)2«», )

where B = \/Q(d +2)log (W) + 1 and L(k) is an abbreviation of L(w(k)).

From the update formula of gradient descent, we can directly derive the following corollary, which
indicates that under over-parameterization, the weights are closed to their initializations.
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Corollary B.2. If Condition 2 holds fort = 0, - - - | k, then we have for every r € [m),
CB*/L0)

oo (1) = w0, O < = 2L = R (49)

where C'is a universal constant.

Proof Sketch: Assume that Condition 2 holds for ¢t = 0,--- , k, it suffices to demonstrate that
Condition 2 also holds for t = k + 1.

From the recursion formula (40), we have that

[}

_ H(I — nH(k)) (Z((k))) + I (k)

(]|

where the inequality follows from the Cauchy’s inequality.

2
(50)

2

< [T —nH(¥)|l3 + T (k)ll5 + 2|17 = nH (k)] 12 (F)l3

2

)

Combining Corollary B.2 with Lemma 3.5, we can deduce that when m is large enough, we have
|H (k) — H(0)|]|]2 < Xo/4. Thus, Apin(H(K)) > Ao/2 and I — nH (k) is positive definite
when 7 = O(1/||H||2). On the other hand, with Corollary B.2, we can derive that || I (k)||2 =
O(nvVL(k)/+/m). Plugging these results into (48), we have

stk+ 1D\

[asyl)
((1—%“) co () +o () |GH)]
<(-) |G

where the last inequality holds when m is large enough.

61y

Now we come to prove Theorem 3.7.

Proof. Corollary B.2 implies that when m is large enough, we have ||w, (k + 1) — w,(0)||2 < 1 and
then ||w, (k +1)||2 < B. Thus, in induction, we only need to prove that (46) also holds for ¢ = k+1,
which relies on the recursion formula (49).

Recall that the recursion formula is

S(k + 1) . S(k)
(h(k + 1)) = (I —nH(k)) (h(k) + I (k).
From Corollary B.2 and Lemma 3.5, taking CM?2R < % in (8) and R < Rin (47) yields that

A Ao

0 3
IH K2 < I1HO)llz + = < [HZ|lz + o < SI1H>]2.

Therefore, if we take 7 < 2 then I — nH(k) is positive definite and || —nH (k)||y < 1— 1230

3 HH""H ’

Combining these facts with the recursion formula, we have that
2
(s(k + 1))
h(k+1) )
s(k
== wrran (33)

2
< <1 77)\0>
- 2

2

2+wmmﬁ+2<r o) (30) nw) o

o))
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Thus, it remains only to bound || I (k)||2-

For I (k), recall that I, (k) = (I} (k),--- , 17 (k), IP* T (k), - -, I T2 (k)T € R™ ™2 and for
p € [ni],

) = sy 1) = 5,08 = { 2 i+ 1) - i),

for j € [na],

1) =y 1) = 1500 - (25 ol 1) = ) )
Recall that
sp(k) = f< (Zar xp>wro<k>—aro”(wr<k>%p>||wr1<k>||§> —f(xp>>
and
Pon) = o w6 o0y + 0 w67 () ) =0 a0 s 0

2 6,) ()]

Define x,,.(k) := o/(wr(k)Twp)wTo(k:) and x2,.(k) == ¢ (w,(k)Tz,) w1 (k)3 ie. L. (k) and
er (k) are related to the operators 8 7 and Awu respectively.

Then define

ovL (k
Xir(k)=xi,r(k+1)_xér(k)_< Epr( )

,wr(k+1) — wr(kz)>

T

and

X2 (k) = X2 (k+ 1) — X2, (k) — <5>;pr(k)

T

,we(k+1) — wr(k’)> .
At this time, we have

IP

Zar XpT‘ )Z[Q)T(k):l :

The purpose of deﬁning Xpr (k) and X5, (k) in thlS way is to enable us to handle the terms related to

nl

the operators 7+ and Au separately.
We first recall some definitions. For p € [n4],

Ay = 13w+ lw — w, ()]s < R, [{w" @, > 0} # H{w,(0) x, > 0}}
and S, = {r € [m] : I{A,, = 0}}, S; = [1]\S,.
In the following, we are going to show that |x},.(k)| = O(||w,.(k + 1) — w,(k)||3) for every r € [m]
and |7, (k)| = O(|lwr(k + 1) = w,(k)|3) for r € Sp, [, (k)| = O(||wr(k + 1) — wr(k)|2) for
re S;-. Thus, we can prove that || I; (k)| = O (@) Then combining with (69) leads to the

conclusion.

For x,,.(k), from its definition, we have that

X (B) = 0 (w, (ke + 1) T2, )wpo(k + 1) — 0 (w, (k) @y )wo(k)
— (w,(k+1) = w,(k), 2p)0 (w, (k) @y wro (k) — (wro(k + 1) — wro(k))o (w, (k) )
= (0 (we(k+1)Ta,) — 0 (w,(k) @) weo(k + 1) — (wp(k + 1) — w,(k), zp)o (w,(k) @, )wo(k).
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From the mean value theorem, we can deduce that there exists ((k) € R such that
; o (wr(k+1)7a,) — o (w (k) @y) = o (((k)(w,(k+1) = w.(k), z,)
an
0" (Ck) = 0" (wn (k) Tp)| < [C(R) = wp (k) Ty
< V2lwe(k +1) = wy (k)2

Then, for x,,.(k), we can rewrite it as follows.
X (k) = 0 (C(R)) (wr (b + 1) = wi (k) @p)wpo (k + 1) = (w,(k + 1) = w,(k), )0 (wr (k) @, )w,o(k)

= (7" (k) = o (k) ) ) w0y (k4 1) = w, (k) @y (b + 1)

- [{w, 0+ 1) = wr (), 20" (w, (B) ") (w0 (k 4 1) = w0 (k)]
This implies that
[Xpr (B)] S Bllw:(k +1) = w,(k)|3.
For x2,.(k), we write it as follows explicitly.
e (k) = 0" (wp(k + 1) @) (k + 1)”2 =0 (w, (k) @p)[wn (F)]13
— (w,(k+1) —w, (k) @p)o (w, (k) @) |[wp (k)]I3 (53)
— 2wy (k4 1) — wy (k), wp (K)o ('wr(k)Ta:p).
Note that for the term o (w, (k)T w,)||w,1 (k)||3, we can rewrite it as follows.
o (w, (k) @p) w1 ()3
= 0" (w, (k) @p) | wr1 (k) — wpa(k+ 1) +wp (k+ 1|3

=0 (w, (k) ap) [ wp (k) — wpa (k + D)3 + [ (k + 1[5 = 2(w (k + 1) = w,a (), wea (k + 1),
(54)
where the first term o (w,.(k)T &) ||w,1 (k) — w1 (k4 1)||3 = O(B|jw, (k + 1) — w,(k)|]3).

Plugging (52) into (51) yields that
k) = [0 (wr (k1)) = 0 (w, (k) ) [y (k + 13
— (w (k + 1) = wy (k), @) (w, (k) ") [, (k)3
20wy (k + 1) = wpr (k) wn (k + 1) = wra (k)0 (w, (8) @) + O(Bllw, (k + 1) = w, (k)|3)
= [0 (wo(k + )T y) = 0" (wi (1) @,) = (w0, (k + 1) = w, (k) @) (w, (k) pnuwﬂ(kﬂ)nz
+ {w,(k + 1) = w, (k) @) (wr (k) ) ([ (k + D)3 = [y (R)]13)
+ O(Bl|w, (k + 1) = w, (k)]3)
= [0 (w,(k+ DT @y) = 0" (w, (1)) = (w0, (k+1) = w, (k). @p)0” (w, (1) )] lwn (k + D)3

+ O(Bllwy(k + 1) — w,(k)|)3).
(55)
Thus, we only need to consider the term

o (wy(k+1)T@,) = o (we (k) ) = (w,(k+ 1) = w,(k),@p)o (w, (k) @,).
For r € S, since ||w,(k + 1) — w,(0)]]2 < R, [|lw,(k) — w,(0)|2 < R, we have that I{w, (k +
1Tz, >0} = I{w,(k)Tx, > 0}, which yields that
o (we(k+1)7Tay) — o (w (k) xy) = (wr(k + 1) = we(k),zy)o (wi(k) @)
= [(w, (k + 1)T2p) [{w, (k + 1) T2y > 0} — (w (k)" ) {w, (k) 2, > 0}]
— (w,(k + 1) — w, (), zp) [ {w, (k) @, > 0}
= [(wr(k + 1)Tay) H{w, (k) @, > 0} = (w, (k) @) I {w, (k) Tz, > 0}]
= (wi(k +1) = w (k), ) [{w, (k)" z, > 0}
=0.

(56)
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Forr € Spl, the Lipschitz continuity of o’ implies that

o (w,(k+1)Tay) ~0 (w, (k) @) —(w, (k+1)~w, (k), z,)o (w, (k) a,) = 0<||wr<k+1>(5—7z;r<k>||z>.

Combining (53), (54) and (55), we can deduce that for r € S,,,

[Xor (k)] S Bllwy (k +1) — w,(k)|I3

and for r € SZJ;,

X (0] S Bllwy (k +1) — wi (k)5 + B?||lw, (k +1) — w, (k)]2-

With the estimations for x},.(k) and {7, (k), we have

09 < e 30509+ 65 40
R (58)
< w, — W, 3 2'wr 2.
S G 2 Bl 1) = wn b + F%{BH (k -+ 1)~ w, ()]

For j € [ny], we consider 17 (k), which can be written as follows.

I (k) = hj(k +1) — hy(k) — <w(k+ 1) —w(k), a}‘;’i )>

= Z o [ we(k+1)Ty;) = o(w, (k) y;) — (we(k+1) — wr(k)ayﬁal(wr(k)Tyj)] .

r=1

From the mean value theorem, we have that there exists ((k) € R such that

/

o(w.(k+1)Ty;) — o(w (k) y;) = o (C(k)(wy(k + 1) — w, (), y;)

and

’

|0 (C(K)) = o (w, (k) "y;)| < 2BIC(K) — w, (k) y,]

lo(w, (k +1)Ty, w, (k)" y;) — (we(k + 1) — we(k), y;)o (w, (k)7 y;)]

1 y;j) —o(
= [0 (C(k){w, (k + 1) = wr (k). y;) — 0w, (k) y;) = (wr(k+1) = w,(k),y5)0 (wr (k) "y;)|
= (0 (C(k)) = o' (w, (k) "y;)) (wy (k + 1) = w, (k), ;)]
S Bllwr(k+1) — we(k)|l2-

Therefore, for j € [ns],

3

17+ (k) (k+1) — we(k)[f3- (59)

From the updating rule of gradient descent, we can deduce that for every r € [m],

OL(k)
ow,

BQ
< ”ﬁ (k). (60)
2

g (5 + 1) — . (K) 2 = H—n
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Plugging (58) into (57) and (56), we can deduce that

B m
B0 S ——= ) llwe(k+1) —w. (k)3 + (k+1) — w. (k)2
mm Tz:; ’ 7‘65L
B < 1n’*B* B? nB
< L(k) + L(k
~ ?B°L(k)  nB*\/L(k) 1 & n
= - —~ Z I{re Sy}
ynim Jyniooom
2B5\/L(0)\/L(k \/ ) 1
\/nim \/n
and
: B X
ni+j 2
WIS Zom 3 wrlh+ 1)~ wn (D]
B < n’*B*
< L(k 62
S M (62)
< n?B®\/L(0)\/L(k)
- Nom
Note that 9R
P(4,,) < ors S, ={r e [m]:I{A,,} =0}
Thus, from Bernstein’s inequality, we have that with probability at least 1 — e ™%,
—y I{reSyy=—>» I{A,} S4R.
m; {res,;} m;{pv}w
Then the inequality holds for all p € [n;] with probability at least 1 — nye~"%. Plugging this into
(59), we can conclude that for every p € [n4]
i < MB°VLO0)y/L(k) | nB'v/L(k)
7 (K)] < + R. (63)
A/nim A/ N1
Combining (60) and (61), we have that
no
11 (R) 2 = JZ P (R)Z + D 1 (k)2
j=1
2B%\/L(0)\/L(k) 4
B*\/L(k)R.
N + 0B/ L(k)
Plugging this into (50) yields that
s(k+1)
k + 1
2
nAo s(k nAo
s 1 _ ) (h((k))) L@ +2 (1 - ) H( ) ()1l
<

25/ 2 5
[(1—77)‘0 +C2<UB L(O)+nB4R> +20<"B VL) +nB4>

() )

G,

Jm

2

IN

)

2
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where C'is a universal constant and the last inequality requires that

2 R5
n2B%\/L(0
— ©) < nho, nB*R < nho.

Recall that we also require CM2R < 22 for R in (8) and
. CB?%\/L(0
g = CBVIO) g
VMo
for R in (47) to make sure || H (k) — H(0)]|]2 < %.

Finally, with R = O(3%) and the upper bound of L(0), m needs to satisfies that
M*B*L(0) d® md ny + no
=Q(—F—2 )= Flog’ ([ — )1 :
meo (5 o (g (5 s (25)

C PROOF OF SECTION 4

C.1 PROOF OF LEMMA 4.4

Proof. Recall that

Isi(w)  Osp(w) O(w)  Ohyy(w)

_ T _
H(w)=D"D, D= ow = 7 Odw T ow 7 Ow ’

and H* = Ey,nr0,1) H(w).

T

We denote p(z;w) = o (wTx)wy — o (wTz)||w:||2, where w = (wo, wT)T, wy € R, w; € R,

then
Osp(w) 1 a, Op(xy;w,)

ow, Vngvm o Ow,
Similarly, we denote ¢ (y; w) = o(w?y), then
ohjw) 1 a dblyw,)

ow,  nyvym  Ow,

With the notations, we can deduce that

1 Op(x,;w) dp(xi;w .
7E’w~N(O,I) 90( - )7 (p( z ) ) 1§p§n1a1§3 Snla
ny ow ow
1 0 ; 0 i
HY = Ewn(0.1) @(wp,w), ysiw) , 1<p<mnyn+1<j<ng+ny,
P 170 ’ ow ow
1 15 sw) O G w .
—EwnN(0,1) Ll ), lyyiw) . mi4+1<p<ni4ngn +1<j<ng+ns,
o ’ ow ow

where H< is the (p, j)-th entry of H.

The proof of this lemma requires tools from functional analysis. Let 7{ be a Hilbert space of integrable
(d + 2)-dimensional vector fields on R*2, i.e., f € H if Eyppnro, 0[]l f(w)]|3] < oc. The inner
product for any two elements f, g in H is Eyypr(0,1)[(f(w), g(w))]. Thus, proving H* is strictly
positive definite is equivalent to show that

Op(x1;w)  Op(n,;w) OP(y1;w) Op(Yny; w)

ow 7 ow = ow ow €A
are linearly independent. Suppose that there are a1, - - - , aupy, B1, - -, Bny, € R such that
Oo(xy;w ov(x,, ;w 0 Jw 0V (Yn.; w .
041 (p( 1 ) + . _|_ anl QO( 1 ) + /81 '(/J(yl ) + . + ﬁn2 ¢(y 2 ) — 0 n H
ow ow ow ow
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This implies that

N Op(x1;w) 0p(Ly,; w)
U dw ow
holds for all w € R¥*1, as o(-) is smooth.

8’(/}(y17 )
ow

OV (Yny; w)

+ 5 =0 (64

+...+5n2

First, we compute the derivatives of ¢ and v with respect to w. For the k-th derivative of ¢ (y; w)
with respect to w, we have

Mp(y; w) (k) (20T @ (K)
T owk ¢ (w y)y )
where ® denotes the tensor product.
For @(x; w), let po(x; w) = o (wlx)w and p;(z; w) = o (wTx)w?2 for 1 < i < d. Then
d

(@ w) = o(m;w) — Y i@ w).

=1

For the k-th derivative of ¢q(a; w) with respect to w, analogous to the Leibniz rule for the k-th
derivative of the product of two scalar functions, we have

6k' . ) k ) .
@gl(;,w) = D) (T )z @) 4 Z;we@(l—n @ e0 @ 22D ) (17 )
= . (65)
= o "D (wz)wex®®) + o) (w'x Z
where ey = (1,0, --- ,0)T € R4*+! and in the second equality, e((f) denotes that e is placed at the
i-th position.
Similarly, for ¢;(x; w) where 1 < i < d, taking ¢ = 1 as example, we have
k .
" pr(zw) _ o2 (0T )2z ®) 4 2y 5D (7 ) Ze(z) 2 o@*-1)
dw*
‘ ‘ i=1 (66)
+ k(k - 1)o® (wTx) Z el el @ x®k-2)
1<i<j<k

where e; € Rt is a vector with the (i + 1)-th component equal to 1 and all other components equal
to 0, and egz) indicates that e; is placed at the i-th position.

By combining the derivatives of ¢q(x;w),- -, pq(x; w) from equations (65) and (66), we can

’ d "
compute the k-th derivative of woo (w?z) — 3" w?o (w'x) as follows:

i=1

0 p(x; w) B 0% po(x;w) B i O i (x; w)

owk Owk — ow*

k
= woo * D (wTz)2®®) + o) (wTx) Z eéi) @ 2®*)
i=1

d (67)

k
— Z wio D) (w2)z®®) 1 2kw,o* D (wlx Z el @ x®k-1)
i=1

+h(k = 1)o®) (w"x) Z el @ el @ x®k-2)

1<i<j<k
Note that when any two points in {&1, - , &n,, Y1, , Yn, } are non-parallel, the tensors
pBmitn2) ®(n1+nz) ®(ni+n2)  @(ni+ns)
1 ) n1 1 ’ ’ yng
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are linearly independent (see Lemma G.6 in|Du et al.| (2019)). This observation motivates us to take
the (k — 1)-th derivative of both sides of equation (64) with respect to w, yielding

"y (y1; w) Y (Yny; w)
owk owk

" p(1; w) OF (e, ; w)
Tt T tem T

ai + b1 + o+ B = 0. (68)

Since this equation holds for all w € R¥*!, we specifically consider w = (wp, 04), where wy is to
be determined. Under this condition, equation (68) becomes

ni na
woza { (k+1) xg)wf?(k)} + Za,, |:o'(k) (woxg)zp} + Zgj [g( w yj)y;@(k) ~0,
p=1 =1

(69)
where the tensor z), is defined as
k d
2= el @xd® —k(k 1) Z Z Yoel @xft. (70)
i=1 t=11<i<j

. s . (n)
By assumption, for any positive integer n > 0 we have lim = 1 (;c )
xr——400
the case where all input components satisfy 20 = - .. = mo =99 =
condition, equation (69) simplifies to:

= ¢, # 0. We first consider
=49 = a > 0. Under this

ny

woo ¥ (woa) [Z oy

p=1

ni

+ o™ (wpa) [Z apZp

p=1

+ o™ (woa) Zﬁij) =0. (71)

Dividing both sides of equation (71) by ¢(wga) yields
k+1 woa (k) (wOa) ni
w a — a,z,
ey (S| i’ S

p=1

U(k)(woa) ®(k)_ _
" woa) Zﬁjy B

Now taking the limit as w tends to positive infinity, we observe that ﬁ
. (k+1) . . . . . .
constant, while wy W diverges to infinity. This asymptotic behavior leads to the following

Za 22k = 0, Zapzp + Zﬁjy@’(’“) (73)

By the linear independence of the tensor products (estabhshed earlier), we can deduce that o, = 0

converges to a non-zero

conclusions:

for all p = 1,---,n;, which subsequently implies Z Bjy®(k) = 0 and thus §; = 0 for all

j = 17 s, N
When our previous assumption does not hold—that is, when 2, - - -,z ,y{,--- 5 are not neces-
sarily all equal—we proceed as follows:
Case 1: All elements are strictly positive.
Let b = min{a?,--- 2% ,4?,---, 49 }. Dividing both sides of (68) by ¢(wyb), we observe that for
any x > b,
lim 70(”)(100@ =
wo—+00  P(wpb)

Thus, the problem reduces to the previously considered case where all inputs are equal (to b). Due
to linear independence, the coefficients «, and §; corresponding to the minimal b must vanish.
Repeating this process iteratively, we conclude that all o, and 3; must be zero.

Case 2: Some elements are zero.
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Since the x;, are interior points (and thus non-zero), any zero-valued inputs must correspond to
boundary or initial conditions. Let us assume without loss of generality that 4, - - - y22 are all zero.

1. If o (0) = 0, , then following our previous method, we can conclude that the coefficients
corresponding to non-zero inputs vanish. Returning to equation (68), we have

Zﬁj (wTy;)y?™ =o0. (74)

By the independence of y1, - - - , Yn,, we can deduce that ﬂjo(k)(wTyj) = 0 holds for all j € [ns)].

From the assumption, we can select w such that o(*) (wTyj) # 0, and consequently, 5; = 0 holds
forall j € [na].

2. If 0(F)(0) # 0, let b be the smallest strictly positive value among z9, - - - ,x%l Y ,y22. Divide
(71) by ¢(web/2). Since all other positive terms decay to zero as wy — 400, we obtain:
na
: ®(k
JJim Zl Bia® (0)yF™ [é(wob/2) = 0. (75)
J:
no
This implies that Z ﬂjy®(k = 0. By linear independence, all 3; = 0. O

Remark C.1. The key point in the proof lies in the fact that the order of the PDE in the interior is
higher than that of the initial and boundary conditions, allowing for a natural extension to broader
classes of PDEs. For general PDEs, we may focus solely on the interior and boundary, assuming the
interior is of second order and the boundary is of first order. Suppose the second-order interior term

is taken at xg, i.e., it has the form 2 o 2 , and the first-order boundary term is also taken at xo. Since we
can translate the coordinates, without loss of generality, we can assume that all xy-components are

positive.

For the interior, taking the k-th derivative of w3o(?) (w”x) yields that

k
wio ™2 (w!x)2®®) 4 2kweo ) (wlx) Z egl) ® 2@k
i=1
+ k(k — 1)o® (wTz) Z el @ el @ x®*2),
1<i<j<k

For the boundary, taking the k-th derivative of woo") (w” ) yields that

k
o * ) (wT ) wez®® + o) (wTx) Ze((f) ® z®H),
i=1

As before, we set w = (wy, 0). Then, the equation (69) becomes

ZO‘ [ (E+1) (1 22) }HUOZQ [ ®) (1 22) ]“LZO‘ [ ) (woa0) 2!

—|—woZBj [0( W yj y;g( )] +Zﬁ [ woyjo)zﬂ =0,
j=1

g, zll), z] are tensors of similar form z,, in (70), whose explicit definitions are omitted for
simplicity. Dividing both sides by wo(b(wox ) reduces it to the form considered earlier. We can
therefore conclude that the Gram matrix is strlctly positive definite. Indeed, since the orders of the
interior and boundary terms in the partial differential equation differ, we can relax the conditions in
Lemma 4.4 to simply requiring that no two samples in {z, }, 2, are parallel and no two samples in
{y; ;'21 are parallel. In brief, we can set k = n; — 1 and k = no — 1 in equation (68), and then use

the method described above.

where z
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Remark C.2. For the activation functions sin(z) and cos(z), in equation (69), we may assume that
o+ (z) = sin(z), 0¥ (z) = — cos(x). Dividing both sides of equation (69) by wy and letting
wo — +00, we can obtain

ni

I { s®] ~o.
wog&oopzl ap sm(ng £ 0

We express the general form of the components of the tensor above as
ny
Z o Cp Sin woar Z a; sin(web; ),
p=1
where the b; > 0 are distinct and ¢p denotes the components of the tensor m®( ). For simplicity, we
denote wy as z. To prove that Z ap:c? k) = 0, we need to show that any component of this tensor
p=1

ni n
is zero, i.e., its general form satisfies > a,c, = 0. This is equivalent to proving > a; = 0.
p=1 i=1

Let f(z) = > a;sin(b;x), note that dividing both sides of equation (69) by wy yields that f(x) =
i=1
O(1/z). Thus, we can consider the average energy of f2(z) over the interval [T, T + L], i.e

1 T+L
7 / f2(x)dz.
T
Expanding this, we obtain

1 /T+L (Zn: ) 2
— a;sin(b;x) | dx
LJr i=1

n

1 T+L
l / Z a?sin® (b;z) + Z a;a;sin(b;x) sin(b;x) | dx

r i#]
_ 1 — 5 1 " sin(20;(T 4 L)) — sin(2b;T)
=3 ; o =7 ; i
1~ sin((bi = b)(T + L)) — sin((bi — b;)T)
t 2 2(b; — by)
i#]
sin((b; + b;)(T + L)) — sin((b; + b;)T)
Z ;G .
z;éj 2(1)1‘ + bj)

Taking the limits L — 400 and 7" — +00 in the above equation, the right-hand side tends to 5 Z a?

Regarding the left-hand side, recall that f(z) = O(1/x), thus for any € > 0, there exists Tp such that
for all z > Ty, | f(z)| < e. Therefore, for T' > T and any L, we have

1 [T+
- fA(z)dr < €.
1),
By the arbitrariness of €, we can deduce that
1 [T+
lim —/ f2(x)dz = 0.
T

T,L—~+o0 L

n n ni

Hence, we can deduce that % 21 a? = 0, which implies that 21 a; =0, 1.e., 21 apcp = 0. Finally,
1= 1= p=

we obtain

ni
Z ap:c?(k) =0.
p=1
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Applying the same approach as before, we conclude that o, = 0 for all p € [n;]and 3; = 0 for all
J € [na].

C.2 PROOF OF LEMMA 4.6

Proof. Recall that

Isp(w) Gr "o T "o T T 2
) — o w4 o ) (o)) =0 )l
0
—2¢" (w? xp) (w”)]
and oh (w)
Glw o (€29 ’ T, )
dw, g (W YU
(1) When o(-) is the ReLU? activation function.
65p(w)

From the form of , we can deduce that

Hasp(w) B Bsp( )

8wr 3wr 2
S o [Rlwr(0)]2 + 1) + [T{w, > 0) ~ H{w,(0)7a, > 0}{(lw, )] + 1] (76)
= nllm [R(|w, (0)]|2 + 1) + I{A}(|lw, (0)]3 + D],

where the second inequality follows from the fact ||w — w,-(0)|]2 < R < 1 and the definition of A,,
in (28).

Similarly, we have that

Ohj(w)  0h;(0) 1
- S , ). -
Combining the above equations, we can deduce that
[[J(w) — J(0)]3
< [|J(w) = J(0)]I%
ni+ng

= Z | Ji(w) = J:(0)113

asp 8Sp Z ’U) 3hJ(O) 2
=t _1 awr =1 awr ow, 2

1

Zi(R<||wr<o>|\2+1>+I{Apr}<||wr< 0l +1)° anm (Rlfw,(O)]l2 + R)?

- nim
(I

>

A
Ms

\]
Il
-

< S ||2+1>+LZZI{APT}<HW<O>H3H>
= S (o ) + 1)
s D0 3 A} (e OVl (01 < MY + o OV (. (01 > A1) +1)

9 M1 m

oL A+ lewr VAT ||w, (0)]|3 > M7},

plrl

(Il (0)]I3 + 1) +

A
3=
M3

%
Il
-
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where M = 2(d + 2) log(2m(d + 2)/4). Note that from (39), we have
2 2
P (3r € ol (0013 2 20+ 2y (2242 )) <5
mR

On the other hand, applying Bernstein’s inequality yields that with probability at least 1 — nje™™",

m

= Z[{AP,} < 4R

holds for all p € [ny].
Therefore, we have that

|J(w) — J(0)||3 S MR*+ R*+ M?R < M*R
holds with probability at least 1 — § — n;e ™™,

(2) Note that when o satisfies Assumption 4.3, 0,0 and o are all Lipschitz continuous and
bounded. Thus, we can obtain that

Osp(w)  Osp(0) < 1 9 < 1 9
|pteed - 26O S Rl O+ a0 (O)+1) £ =R, O3+, 79)

where the second inequality is from Young’s inequality.

Similarly, we have

Ohj(w)  0h;(0) 1
H awr B 8w,« QSMR(H?DT(O)”2+1) (79)

Combining the above equations yields that

1T (w) = T(0)]I3

< p p y
= Z Z 8'wr Z awr w, |,
r=1 p:l =1
- = 1 n2 1
< - 2 ,
N ; (; nlm(RHwT )3+ R) Jrjzlwm (R||w,(0)]|2 + R)

2l o & 1\ , & :
SR |d*+ —4/log | = — (log | =
s s (5) < (e 3) |
where the last inequality follows from the fact that ||||w,(0)]|3]| " < d? and Lemma D.1. O
2

C.3 PROOF OF THEOREM 4.7

For the sake of completeness in the proof, we restate Condition 1 and Corollary 4.11 from the main
text, and label them as Condition 3 and Corollary C.3, respectively.

Condition 3. At the ¢-th iteration, we have ||w,(t)||2 < B and
CB*VIO) _
NGO

for all » € [m], where C'is a universal constant and B = \/Q(d +2)log (W) +1.

l[wr(t) = wr(0)[|2 <
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Corollary C.3. If Condition 3 holds fort =0, .k and R < Rand R" < /T — v/Ao, then
L(t) < (1 —n)'L(0),

holds fort =0, - - - | k, where R is the constant in Lemma 4.5 and R =CMvVRin (16) when o is
the ReLU? activation function, R" = CdR in (18) when o satisfies Assumption 4.3.

Thanks to Corollary C.3, it is sufficient to prove that Condition 3 also holds for ¢ = k + 1. For
readability, we defer the proof of Corollary C.3 to the end of this section. In the following, we
are going to show that the Condition 3 also holds for ¢ = k + 1, thus combining Condition 3 and
Corollary C.3 leads to Theorem 4.7.

Sketch Proof of Theorem 4.7. First, let u(t) = (Z((?)>, then from the updating formula of NGD
(11), we have

u(t+1) —u(t)

=u (w(t) —nJ () TH®) u(w(t))) — w(w(t))

) e
—— [ (P 0 0 utw0) ) a
_ 0w ) e 0\ (80)
—— [ (2O ey E ) ) ) a

Y Jou(w(t))  ou(w(s)) . .
+/o< e ow MO H®) U(t)>ds

= I (t) + Ix(b),
where the second equality is from the fundamental theorem of calculus and w(s) = sw(t + 1) +
(1 —s)w(t) = w(t) — snd ()T H(t) " u(t).

In the proof, we assume that Condition 3 holds for £ = 0, - - - , k. Then from Corollary C.3, to prove
Theorem 4.7, it suffices to demonstrate that this condition also holds for ¢ = k+ 1. Here, we primarily
explain the process from Condition 3 to Corollary C.3, while other content is placed in the following
full proof of Theorem 4.7.

Note that W = J(t), thus I (t) = nu(t). Plugging this into (80) yields that

u(t+1) = (1 —n)u(t) + I2(t). (81)

From the above equation, we can see the difference between NGD and GD. Recall that the iteration
formula for GD is
u(t+1)=(1—nH®)u(t) + IL(t).

Precisely because of this, the convergence rate of GD is inevitably influenced by \q , whereas that of
NGD is not.

From the stability of the Jacobian matrix, we can deduce that || I2(t)]|l2 = O(n||u(t)|l2/v/m).
Plugging this into (81) yields that

lu(t + D)3
< 1@ =mu@®)]3 + L2013 + 201 = n)llu@) 2] L)
2 (82)
=((1—n? D) 4o — i/ 2
(a-wr+o(L)+20-no () ) luwlk
< (1= n)lu(®)]3,
where the last inequality holds if m is large enough. O

Full Proof of Theorem 4.7. Recall that we let R* = CM+/R in (16) when o is the ReLU® activation
function and let R = CdR in (18) when ¢ satisfies Assumption 4.3.
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First, we can set R < R and R" < —V?‘O, since R” < /T —=1nvAg. Then from Lemma 4.5 we have
[T (t) — J(0)]]2 < ¥322, thus

Frin (T (1)) 2 Goin (T (0)) = | T (8) = T(0) ]2 = J?;TO - J?%TO - \/??

and then A\, (H (1)) > % fort =0, -, k, where o, (-) denotes the least singular value.

From the updating rule of NGD, we have

w0 1) = w,(0) =0 707, (EO) (7).

where
[J(t)T} _ 0s1(t) O8p, (t) Ohy(t) O, (T)
r ow, ' ow,  Ow,’ < ow, |’
Therefore, for t = 0,--- , k and any r € [m], we have

e (t + 1) — 0, ()]
<l [TOT]. 2| H () 2 /ZE)
< i—ZH 767 J2VI(D

< i—’gn [T®)7] |lrV/I(0

RS
=% Z

p=1

2 no

>

2 j=1

2

L(t) (83)

2

Isp(1)

ow,

oh;(t)
ow

n [B*+1
< — v L(t

nB?
S VI
nB?
S \/m)\() (1 - ’r])t/Q L(0)3

where the last inequality is due to Corollary C.3.

Summing ¢ from O to & yields that

_ OB*/L(0)
= \/EAO ’

where C' is a universal constant.
Now, when R’ < 1, we can deduce that ||w,.(k 4 1)||2 < B, implying that Condition 3 also holds
for t = k + 1. Thus, it remains only to derive the requirement for m.

/ 24 / "
Recall that we need m to satisfy that R = CBTLALO(O) <Rand R <+/T1T—nv)o.

(1) When o is the ReLU? activation function, in Corollary C.3, R’ = CMVR < V1=V,
’ 2/
implying that R < % Then R = CBT;O(O) < R implies that

m=0 ((1 7 M4i;L(O)) |
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From Lemma D.4 for the estimation of L(0), i.e.,

1) £ log (572,

1 &, ¢(md n1 + ng
"““@—w%m<a)%<a »'

(2) When o satisfies Assumption 4.3, we have that
(I —=m)Xo R CB? L(0)
d T Um)o

we can deduce that

RS <R.

From Lemma D.4, we can deduce that

1 d% 5 (md n1 + ng
nhgﬁwﬁm(5%%<5 »'

Proof of Corollary C.3. Similar as before, when R < Rand R* < Y32 we have 0y, (J (t)) >
yeso 3’\0 and then \p,;,, (H (t)) > ’\0 fort=0,---,k.

Let u(t ( > then

( 1) —u(t)
u (w(t) = nJ ()" H () u(w ())) u(w(t))

! u(w(s)) (t)TH >d$

O

ow

(
' <3U(w(t))

(84)

- w
/O —w nJ (t)T H(t) > ds

Ujou(w(t)  du(w(s) oo
s [ (2O S 0 )t () ) ds
(

w
= Il(t) + I2 t),

where the second equality is from the fundamental theorem of calculus and w(s) = sw(t + 1) +
(1—s)w(t) =w(t) —snJ ()T H () u(t).

Note that LI:’U()) = J(t), thus I (t) = nu(t). Plugging this into (84) yields that
u(t+1) = (1 —n)u(t) + L(t). (85)

Therefore, it remains only to bound || I5(¢)||2-

‘/01 <8u$u(t)) - au(aﬁ,(s))’"*’ (&) H <t>1u<w(t>>> ds
1

1T (w(t)) = J(w(s))llzllnd (6)" H (t) " u(w(t))||2ds

<lI O B fallu(w)l [ 17G0(0) - T(w(s)ads
< [ i) - (s ads

VL) [
S [ 1) = TO) )+ 17 (w() = TO)|2)ds
(

12(t)]l2 =

2

(86)

t

1"

R,

3

] >
o

~—

A

>
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where the last inequality follows from the fact that

[wr(s) = w,(0)l2 < sllw, (¢ + 1) = w,(0)]l2 + (1 = 8)[[w, (1) —w,(0)l|l2 < R < R
and Lemma 4.5.
Plugging (85) into the recursion formula (84) yields that
[t +1)13 = [l(1 = n)u(t) + L(t)I3
= (1= m?u@®)3 + L2013 +2((1 = n)u(t), (1))

< (1= n)?[u@®)3 + [L2@0))3 + 201 — n)ut) 2] L2(t)]2
02772(R//)2 CnR//
< |1-n)?+ 7 2(1—=mn) e lu(t)]13,

where C is a universal constant.

Then we can choose R’ such that

(0], < SVEDR. V\LKU)R < Cop/(0) = Co/aD),

where C is a universal constant and C'; is a constant to be determined.
Thus, we can deduce that

Ju(t+ 13 < [(1—n)%+ (Cin)* +2(1 = n)Cin] [u(®)]3
[(1=n) +1n(nCF +2(1 = n)Cr +n = 1)] [u(®)]3
< (1—n)|u®)]3,

where in the last inequality is due to that we can choose C such that nC? 4+ 2(1 —7)Cy +n—1 < 0.

Note that since 1 € (0, 1), the quadratic equation nz? + 2(1 — n)x + n — 1 = 0 has one negative
root and one positive root, denoted as xy and x; respectively. Therefore, the condition C; < x; is
sufficient to satisfy the requirement. The explicit form of z; can be written as:

20—+ VA0 -~ 4 -1 _ VI-n _ VT-7
2n 14+ 2

Thus, Cy = —”27” is sufficient to satisfy that nC? 4+ 2(1 — n)C; +n— 1 < 0.

I =

From this, we can deduce that
R <OV < V1=nvVXo.

Therefore, we can conclude that ||u(t)||3 < (1 — n)!||w(0)||3 holds fort =0, - - , k.

C.4 PROOF OF COROLLARY 4.9

Proof. In the proof of Theorem 4.7, we have proved that Condition 3 holds for all £ € N. Thus, it is
sufficient to prove that Condition 3 can lead to the conclusion in Corollary 4.9.

Setting = 1 in (85) yields that
u(t+1) = Ix(t).

VL) [*
[T2(t)[l2 < o /0 [T (w(t)) = J (w(s))l[2ds. (87)

Since w(s) = sw(t 4+ 1) + (1 — s)w(t), then for any r € [m], we have ||w,(s)]2 < s||w.(t +
Dll2 + (1 = s)[lw: ()2 < B.

We have that
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When o(+) is smooth, we can deduce that for any r € [m],

We know that for any r € [m],

2

B
_ < __—_
e+ 1) = w (02 § =

L(t).
Thus for any s € [0, 1], we have

17 (w(s)) = T (w(t))]3
Isp(w(s)) _ Isp(w(t))

ow, ow,

2 N Hahj(w(s)) _ Ohi(w(t))

ow, ow,

)
< S (B Dllwn (4 1) — w0+ (B + Dlfw ¢4 1) — we (1))

<B! (_32 L(t))Z.

Plugging this into (87), we have

ILa(t) 2 < VX /nJ T(w(s)) |2ds

\/t B*
< VAo VMo

- L(t).

V/mA}

Combining with the fact u(t + 1) = I(t) yields that
cB*

s(t+1) <
t+1 NeoY

holds for ¢ € N, where C'is a universal constant.

L(t)

2

5(t)
h(t)
In the proof above, we only require that R <RandR" = CdR < —V‘?‘U, leading to the requirement

for m that .
d 5 (md ni + na
mQ<)\glog (6>10g< 5 )>

D AUXILIARY LEMMAS

2

Lemma D.1 (Theorem 3.1 in [Kuchibhotla & Chakrabortty| (2022)). If X1, --- , X, are independent
mean zero random variables with || X;|y, < oo forall 1 < i < n and some o > 0, then for any
vector a = (a1, ,a,) € R, the following holds true:

(zm

i > 2eC(a)|bll2VE + QGLZ(a)tl/“HbHB(a)) <2e7' forallt >0,

42
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where b = (a1[| X1y, s anl| Xnllv.) € R,
VBEmVA 2 (e ja)e . ifa < 1,
4e +2(log2)V*, ifa>1.
and for 5(a) = oo when o < 1 and (o) = o/ (o — 1) when o > 1,
e ‘
=gl 05

C(a) := max{/2,2'/*} {

In the following, we will provide some preliminary information about Orlicz norms.

Let f : [0,00) — [0,00) be a non-decreasing function with f(0) = 0. The f-Orlicz norm of a
real-valued random variable X is given by

X
I X :=inf{C >0:E {f <C|>} <1}
If || X ||y, < 00, we say that X is sub-Weibull of order o > 0, where

VYolx) =" —1.
Note that when o > 1, || - ||, is anorm and when 0 < o < 1, || - ||, is a quasi-norm. Moreover,
since (|a| + |6])* < |a|* + |b|® holds for any a,b € R and 0 < a < 1, we can deduce that

[ X+Y|* [X[*+ (Y] (x|« |y|* 2|x | 1/2 2|y | 1/2
Ee e <[Ee TCI® = Eelci®elcl™ < [ EeICT® EeTc1e .

This implies that
X + Yly, <2Y* max{|| X lpo, [V lla} < 270X g + 1Y ]l)-

Furthermore, for p,q > 0, we have ||| X|[;, = |||X|p/q||f/qp. And in the related proofs, we may

frequently use the fact that for real-valued random variable X ~ A(0, 1), we have || X|y, < v6
and || X[|y, = [ X7, <6.

Lemma D.2. If | X||y,,[|Y |y, < oo with a, > 0, then we have || XY ||y < | X |y [[Y [y
where v satisfies that

+

| =

Rl

1
Y
Proof. Without loss of generality, we can assume that || X ||, = [|Y||y, = 1. To prove this, let us

use Young’s inequality, which states that

Pyl
zy < ?+;,f0r:v,y20,p,q> 1.

Letp = a/v,q = 3/, then

X |y
Elexp(|XY")] <E |exp ('; ¥ 'q'ﬂ

o (5) 0 ()]

< |2RUX) | exp(Ylﬁ)}
L p q
2 2
<Z4Z
p q
= 2’

where the first and second inequality follow from Young’s inequality. From this, we have that
XY Mgy < NX Nl ¥l

O
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Lemma D.3 (Bernstein inequality, Theorem 3.1.7 in |Giné & Nickl| (2021)). Let X;, 1 < i < n
be independent centered random variables a.s. bounded by ¢ < oo in absolute value. Set 0% =
1/n> " EX?and S, =1/nY " | X;. Then, forallt >0,

2 2
P<Sn2 Ut+0t>ge—”.
n 3n

Lemma D.4. For 0 < 6§ < 1, with probability at least 1 — §, we have that when m > log” (M)

0= |G, - (e (574)).

Proof. Recall that for p € [ny],

1 & " T 2
55(0) = lm >~ ar (o' (wr(0) @, )wr0(0) o (wr (0) @) 0,1 (0)]3) - f(xp>]

<
[

Then

N RN | 2
L(0) = 5(8,,(0)) + Z Q(hy (0))

p=1 Jj=1

< nil <1m Z ay (0/(wr(0)T:vp)wro(0) - g”(w,,(O)T:vp)|wrl(O)H%)) + nil Z (@)
L <1m Zamwr(ofyj)) Do)
j=1 r=1 j=1

Note that

ar (o' (W, (0) @, o — " (w0 (0) @) [w,1(0)[3) | < 1w, (0) 3o, (0) |

and |ar0(wr(0)Tyj)| S er(o)||%|wr(0)Tyj|~

~

Since H||w,(0)||§“¢1 = O(d) and ||w,(0)7y; |y, lwr(0) @y, = O(1), from Lemma D.2, we
have that

[l (O)[131wr (0) @yl llyp, = O(d), [0 (0) w5, = Od)-

Applying Lemma D.1 yields that for fixed p € [n;] and j € [ns] with probability at least 1 — 2~ ¢,

<d\/+\;%%

‘\}Zar( w0 (0)7 2, )u,0(0) ~ 0 (w,(0)",) [wi (0)]3)

and with probability at least 1 — 2¢ =,

m

|jm 3" 0w, (0)y,))
r=1
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Then taking a union bound for all p € [n1] and j € [ng] with 2(n; + na)e™" = § yields that

L(0) < <d¢%+ J‘%ﬁ)?

d’t3
SdPt+ —
m

= d? log 1 t+ ng + l log3 mt o
) m )
com(22)

since m > log? (madnz),
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