

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST CONVERGENCE OF NATURAL GRADIENT DESCENT FOR OVER-PARAMETERIZED PHYSICS- INFORMED NEURAL NETWORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

In the context of over-parameterization, there is a line of work demonstrating that randomly initialized (stochastic) gradient descent (GD) converges to a globally optimal solution at a linear convergence rate for the quadratic loss function. However, the convergence rate of GD for training two-layer neural networks exhibits poor dependence on the sample size and the Gram matrix, leading to a slow training process. In this paper, we show that for training two-layer ReLU³ Physics-Informed Neural Networks (PINNs), the learning rate can be improved from the smallest eigenvalue of the limiting Gram matrix to the reciprocal of the largest eigenvalue, implying that GD actually enjoys a faster convergence rate. Despite such improvements, the convergence rate is still tied to the least eigenvalue of the Gram matrix, leading to slow convergence. We then develop the positive definiteness of Gram matrices with general smooth activation functions and provide the convergence analysis of natural gradient descent (NGD) in training two-layer PINNs, demonstrating that the maximal learning rate can be $\mathcal{O}(1)$ and at this rate, the convergence rate is independent of the Gram matrix. In particular, for smooth activation functions, the convergence rate of NGD is quadratic. Numerical experiments are conducted to verify our theoretical results.

1 INTRODUCTION

In recent years, neural networks have achieved remarkable breakthroughs in the fields of image recognition He et al. (2016), natural language processing Devlin et al. (2018), reinforcement learning Silver et al. (2016), and so on. Moreover, due to the flexibility and scalability of neural networks, researchers are paying much attention in exploring new methods involving neural networks for handling problems in scientific computing. One long-standing and essential problem in this area is solving partial differential equations (PDEs) numerically. Classical numerical methods, such as finite difference, finite volume and finite elements methods, suffer from the curse of dimensionality when solving high-dimensional PDEs. Due to this drawback, various methods involving neural networks have been proposed for solving different type PDEs Müller & Zeinhofer (2023); Raissi et al. (2019); Yu et al. (2018); Zang et al. (2020); Siegel et al. (2023). Among them, the most representative approach is Physics-Informed Neural Networks (PINNs) Raissi et al. (2019). In the framework of PINNs, one incorporate PDE constraints into the loss function and train the neural network with it. With the use of automatic differentiation, the neural network can be efficiently trained by first-order or second-order methods.

In the applications of neural networks, one inevitable issue is the selection of the optimization methods. First-order methods, such as gradient descent (GD) and stochastic gradient descent (SGD), are widely used in optimizing neural networks as they only calculate the gradient, making them computationally efficient. In addition to first-order methods, there has been significant interest in utilizing second-order optimization methods to accelerate training. These methods have proven to be applicable not only to regression problems, as demonstrated in Martens & Grosse (2015), but also to problems related to PDEs, as shown in Müller & Zeinhofer (2023); Raissi et al. (2019).

As for the convergence aspect of the optimization methods, it has been shown that gradient descent algorithm can even achieve zero training loss under the setting of over-parameterization, which refers

054 to a situation where a model has more parameters than necessary to fit the data Du et al. (2018; 2019);
 055 Allen-Zhu et al. (2019a;b); Arora et al. (2019); Li & Liang (2018); Zou et al. (2020); Cao & Gu
 056 (2019). These works are based on the idea of neural tangent kernel (NTK)Jacot et al. (2018), which
 057 shows that training multi-layer fully-connected neural networks via gradient descent is equivalent
 058 to performing a certain kernel method as the width of every layer goes to infinity. As for the finite
 059 width neural networks, with more refined analysis, it can be shown that the parameters are closed
 060 to the initializations throughout the entire training process when the width is large enough. This
 061 directly leads to the linear convergence for GD. Despite these attractive convergence results, the
 062 learning rate depends on the sample size and the Gram matrix, so it needs to be sufficiently small to
 063 guarantee convergence in practice. However, doing so results in a slow training process. In contrast
 064 to first-order methods, the second-order method natural gradient descent (NGD) has been shown to
 065 enjoy fast convergence for the L^2 regression problems as demonstrated in Zhang et al. (2019); Cai
 066 et al. (2019), and PINN problems as in Müller & Zeinhofer (2023); Guzmán-Cordero et al. (2025).
 067 However, the convergence of NGD in the context of training PINNs is still an open problem. In this
 068 paper, we demonstrate that when training PINNs, NGD indeed enjoys a faster convergence rate.
 069

070 1.1 CONTRIBUTIONS

071 The main contributions of our work are summarized as follows:

- 073 For the PINNs, we simultaneously improve both the learning rate η of gradient descent
 074 and the requirement for the width m . The improvements rely on a new recursion
 075 formula for gradient descent. Specifically, our analysis yields a different step-size criterion
 076 $\eta = \mathcal{O}(1/\lambda_{\max})$, which empirically permits larger practical learning rates than the $\mathcal{O}(\lambda_0)$
 077 requirement in Gao et al. (2023), see Remark 3.8. The requirement for the width m , i.e.
 078 $m = \tilde{\Omega}\left(\frac{(n_1+n_2)^2}{\lambda_0^4 \delta^3}\right)$, can be improved to $m = \tilde{\Omega}\left(\frac{1}{\lambda_0^4} \log\left(\frac{n_1+n_2}{\delta}\right)\right)$, where $\tilde{\Omega}$ indicates
 079 that some terms involving $\log(m)$ are omitted.
- 080 We present a framework for demonstrating the positive definiteness of Gram matrices for
 081 a variety of commonly used smooth activation functions, including the logistic function,
 082 softplus function, hyperbolic tangent function, and others. This conclusion is not only
 083 applicable to the PDE we have considered but can also be naturally extended to other forms
 084 of PDEs.
- 085 We provide the convergence results for natural gradient descent (NGD) in training over-
 086 parameterized two-layer PINNs with ReLU³ activation functions and smooth activation
 087 functions. Due to the distinct optimization dynamics of NGD compared to GD, the learning
 088 rate can be $\mathcal{O}(1)$. Consequently, the convergence rate is independent of n and λ_0 , leading to
 089 faster convergence. Moreover, when the activation function is smooth, NGD can achieve a
 090 quadratic convergence rate.

092 1.2 RELATED WORKS

094 **First-order optimizers.** There are mainly two approaches to studying the optimization of neural
 095 networks and understanding why first-order methods can find a global minimum. One approach
 096 is to analyze the optimization landscape, as demonstrated in Jin et al. (2017); Ge et al. (2015).
 097 It has been shown that gradient descent can find a global minimum in polynomial time if the
 098 optimization landscape possesses certain favorable geometric properties. However, some unrealistic
 099 assumptions in these works make it challenging to generalize the findings to practical neural networks.
 100 Another approach to understand the optimization of neural networks is by analyzing the optimization
 101 dynamics of first-order methods. For the two-layer ReLU neural networks, as shown in Du et al.
 102 (2018), randomly initialized gradient descent converges to a globally optimal solution at a linear rate,
 103 provided that the width m is sufficiently large and no two inputs are parallel. Later, these results were
 104 extended to deep fully-connected feedforward neural networks and ResNet with smooth activation
 105 functions Du et al. (2019). Results for both shallow and deep neural networks depend on the stability
 106 of the Gram matrices throughout the training process, which is crucial for convergence to the global
 107 minimum. In addition to regression and classification problems, Gao et al. (2023) demonstrated the
 108 convergence of the gradient descent for two-layer PINNs through a similar analysis of optimization
 109 dynamics. However, both Du et al. (2018) and Gao et al. (2023) require a sufficiently small learning

108 rate and a large enough network width to achieve convergence. In this work, we conduct a refined
 109 full-batch convergent analysis of the over-parameterized PINN regime for GD and NGD, building
 110 upon Gao et al. (2023). There’re contemporaneous work analysis concentrate on stochastic Jin & Wu
 111 (2025) and non-overparameterized Nießen & Müller (2025) settings.

112 **Second-order optimizers.** Although second-order methods possess better convergence rate, they are
 113 rarely used in training deep neural networks due to the prohibitive computational cost. As a variant of
 114 the Gauss-Newton method, natural gradient descent (NGD) is more efficient in practice. Meanwhile,
 115 as shown in Zhang et al. (2019) and Cai et al. (2019), NGD also enjoys faster convergence rate for the
 116 L^2 regression problems compared to gradient descent. Müller & Zeinhofer (2023) proposed energy
 117 natural gradient descent for PINNs and deep Ritz method, demonstrating experimentally that this
 118 method yields solutions that are more accurate than those obtained through GD, Adam or BFGS.
 119 After observing the ill-conditioned loss landscape of PINNs, Rathore et al. (2024) introduced a novel
 120 second-order optimizer, NysNewtonCG (NNCG), showing that NNCG can significantly improve
 121 the solution returned by Adam+L-BFGS. Moreover, under the assumption that the PL^* -condition
 122 holds, Rathore et al. (2024) demonstrated that the convergence rate of their algorithm is independent
 123 of the condition number, which is similar with our result. However, although the PL^* -condition
 124 holds for over-parameterized neural networks in the context of regression problems Liu et al. (2022),
 125 it remains unclear whether this condition holds for PINNs. De Ryck et al. (2024) showed that
 126 **operator-preconditioning analysis establishes convergence for linearized PINN problems.** In this
 127 paper, we provide the convergence analysis for NGD in training two-layer PINNs with ReLU³
 128 activation functions or smooth activation functions, showing that it indeed converges at a faster rate.
 129

130 1.3 NOTATIONS

131 We denote $[n] = \{1, 2, \dots, n\}$ for $n \in \mathbb{N}$. Given a set S , we denote the uniform distribution on
 132 S by $\text{Unif}\{S\}$. We use $I\{E\}$ to denote the indicator function of the event E . For two positive
 133 functions $f_1(n)$ and $f_2(n)$, we use $f_1(n) = \mathcal{O}(f_2(n))$, $f_2(n) = \Omega(f_1(n))$ or $f_1(n) \lesssim f_2(n)$ to
 134 represent $f_1(n) \leq C f_2(n)$, where C is a universal constant C . A universal constant means a constant
 135 independent of any variables. Throughout the paper, we use boldface to denote vectors. Given
 136 $x_1, \dots, x_d \in \mathbb{R}$, we use (x_1, \dots, x_d) or $[x_1, \dots, x_d]$ to denote a row vector with i -th component x_i
 137 for $i \in [d]$ and then $(x_1, \dots, x_d)^T \in \mathbb{R}^d$ is a column vector.

138 1.4 ORGANIZATION OF THIS PAPER

140 In Section 2, we provide the problem setup for training two-layer PINNs. We then present the
 141 improved convergence results of gradient descent for PINNs in Section 3. In Section 4, we analyze
 142 the convergence of natural gradient descent in training two-layer PINNs with ReLU³ activation
 143 functions and smooth activation functions. In Section 5, we conduct experiments to verify the
 144 theoretical results. The limitations are briefly discussed in Section 6 and we conclude in Section 7.
 145 All the detailed proofs and experiments are provided in the Appendix for readability and brevity.
 146

147 2 PROBLEM SETUP

149 In this section, we consider the same setup as Gao et al. (2023), focusing on the PDE with the
 150 following form.

$$\begin{cases} \frac{\partial u}{\partial x_0}(\mathbf{x}) - \sum_{i=1}^d \frac{\partial^2 u}{\partial x_i^2}(\mathbf{x}) = f(\mathbf{x}), \mathbf{x} \in (0, T) \times \Omega, \\ u(\mathbf{x}) = g(\mathbf{x}), \mathbf{x} \in \{0\} \times \Omega \cup [0, T] \times \partial\Omega, \end{cases} \quad (1)$$

155 where $\Omega \subset \mathbb{R}^d$ is an open and bounded domain, $\mathbf{x} = (x_0, x_1, \dots, x_d)^T \in \mathbb{R}^{d+1}$ and $x_0 \in [0, T]$
 156 is the time variable. In the following, we assume that $\|\mathbf{x}\|_2 \leq 1$ for $\mathbf{x} \in [0, T] \times \bar{\Omega}$ and f, g are
 157 bounded continuous functions.

159 Moreover, we consider a two-layer neural network of the following form.

$$\phi(\mathbf{x}; \mathbf{w}, \mathbf{a}) = \frac{1}{\sqrt{m}} \sum_{r=1}^m a_r \sigma(\mathbf{w}_r^T \tilde{\mathbf{x}}), \quad (2)$$

162 where $\mathbf{w} = (\mathbf{w}_1^T, \dots, \mathbf{w}_m^T)^T \in \mathbb{R}^{m(d+2)}$, $\mathbf{a} = (a_1, \dots, a_m)^T \in \mathbb{R}^m$ and for $r \in [m]$, $\mathbf{w}_r \in \mathbb{R}^{d+2}$
 163 is the weight vector of the first layer, a_r is the output weight and $\sigma(\cdot)$ is the ReLU³ activation function.
 164 Here, $\tilde{\mathbf{x}} = (\mathbf{x}^T, 1)^T \in \mathbb{R}^{d+2}$ is the augmented vector from \mathbf{x} and in the following, we write \mathbf{x} for $\tilde{\mathbf{x}}$
 165 for brevity.

166 Similar to that for the L^2 regression problems, we initialize the first layer vector $\mathbf{w}_r(0) \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$,
 167 output weight $a_r \sim \text{Unif}(\{-1, 1\})$ for $r \in [m]$ and fix the output weights. In the framework of
 168 PINNs, given training samples $\{\mathbf{x}_p\}_{p=1}^{n_1}$ and $\{\mathbf{y}_j\}_{j=1}^{n_2}$ that are from interior and boundary respectively,
 169 we denote $s_p(\mathbf{w})$ and $h_j(\mathbf{w})$ by
 170

$$171 \quad s_p(\mathbf{w}) = \frac{1}{\sqrt{n_1}} \left(\frac{\partial \phi}{\partial x_0}(\mathbf{x}_p; \mathbf{w}) - \sum_{i=1}^d \frac{\partial^2 \phi}{\partial x_i^2}(\mathbf{x}_p; \mathbf{w}) - f(\mathbf{x}_p) \right) \quad (3)$$

174 and

$$175 \quad h_j(\mathbf{w}) = \frac{1}{\sqrt{n_2}} (\phi(\mathbf{y}_j; \mathbf{w}) - g(\mathbf{y}_j)). \quad (4)$$

177 Then the empirical loss function can be written as

$$178 \quad L(\mathbf{w}) = \frac{1}{2} (\|\mathbf{s}(\mathbf{w})\|_2^2 + \|\mathbf{h}(\mathbf{w})\|_2^2), \quad (5)$$

180 where $\mathbf{s}(\mathbf{w}) = (s_1(\mathbf{w}), \dots, s_{n_1}(\mathbf{w}))^T \in \mathbb{R}^{n_1}$ and $\mathbf{h}(\mathbf{w}) = (h_1(\mathbf{w}), \dots, h_{n_2}(\mathbf{w}))^T \in \mathbb{R}^{n_2}$.

182 The gradient descent updates the hidden weights by the following formulations:

$$183 \quad \mathbf{w}_r(k+1) = \mathbf{w}_r(k) - \eta \frac{\partial L(\mathbf{w}(k))}{\partial \mathbf{w}_r} \quad (6)$$

186 for all $r \in [m]$ and $k \in \mathbb{N}$, where $\eta > 0$ is the learning rate. The Gram matrix $\mathbf{H}(\mathbf{w})$ is defined as
 187 $\mathbf{H}(\mathbf{w}) = \mathbf{J} \mathbf{J}^T$, where

$$188 \quad \mathbf{J} := \left(\frac{\partial s_1(\mathbf{w})}{\partial \mathbf{w}}, \dots, \frac{\partial s_{n_1}(\mathbf{w})}{\partial \mathbf{w}}, \frac{\partial h_1(\mathbf{w})}{\partial \mathbf{w}}, \dots, \frac{\partial h_{n_2}(\mathbf{w})}{\partial \mathbf{w}} \right)^T. \quad (7)$$

191 3 IMPROVED RESULTS OF GD FOR TWO-LAYER PINNs

194 To simplify the analysis, we make the following assumptions on the training data.

195 **Assumption 3.1.** For $p \in [n_1]$ and $j \in [n_2]$, $\|\mathbf{x}_p\|_2 \leq \sqrt{2}$, $\|\mathbf{y}_j\|_2 \leq \sqrt{2}$, where all inputs have been
 196 augmented.

197 **Assumption 3.2.** No two samples in $\{\mathbf{x}_p\}_{p=1}^{n_1} \cup \{\mathbf{y}_j\}_{j=1}^{n_2}$ are parallel. This is guaranteed because
 198 augmenting \mathbf{x} with $(\mathbf{x}, 1)$ ensures all samples are distinct.

200 Under Assumption 3.2, Lemma 3.3 in Gao et al. (2023) implies that the Gram matrix $\mathbf{H}^\infty :=$
 201 $\mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\mathbf{H}(\mathbf{w})]$ is strictly positive definite and we let $\lambda_0 = \lambda_{\min}(\mathbf{H}^\infty)$. Similar to the case of
 202 the regression problem in Du et al. (2018), \mathbf{H}^∞ plays an important role in the optimization process.
 203 Specifically, under over-parameterization and random initialization, we have two facts that (1) at
 204 initialization $\|\mathbf{H}(0) - \mathbf{H}^\infty\|_2 = \mathcal{O}(1/\sqrt{m})$ and (2) for any iteration $k \in \mathbb{N}$, $\|\mathbf{H}(k) - \mathbf{H}(0)\|_2 =$
 205 $\mathcal{O}(1/\sqrt{m})$. The following two lemmas can be used to verify these two facts, which are crucial in the
 206 convergence analysis.

207 **Lemma 3.3.** If $m = \Omega\left(\frac{d^4}{\lambda_0^2} \log\left(\frac{n_1+n_2}{\delta}\right)\right)$, we have that with probability at least $1 - \delta$, $\|\mathbf{H}(0) -$
 208 $\mathbf{H}^\infty\|_2 \leq \frac{\lambda_0}{4}$ and $\lambda_{\min}(\mathbf{H}(0)) \geq \frac{3}{4}\lambda_0$.

209 **Remark 3.4.** Under the premise of deriving the same conclusion as our Lemma 3.3, the Lemma
 210 3.5 in Gao et al. (2023) requires that $m = \tilde{\Omega}\left(\frac{(n_1+n_2)^4}{(n_1 n_2)^2 \lambda_0^2} \left(\log\left(\frac{1}{\delta}\right)\right)^7\right)$, where some terms involving
 211 $\log(m)$ are omitted. In contrast, on one hand, our conclusion is independent up to logarithmic factors
 212 in $n_1 + n_2$, and on the other hand, our conclusion exhibits a clear dependence on d . Moreover,
 213 the method in Gao et al. (2023) involves truncating the Gaussian distribution and then applying
 214 Hoeffding's inequality, which is quite complicated. In contrast, we utilize the concentration inequality
 215 for sub-Weibull random variables, which serves as a simple framework for this class of problems.

216 **Lemma 3.5.** Let $R \in (0, 1]$, if $\mathbf{w}_1(0), \dots, \mathbf{w}_m(0)$ are i.i.d. generated from $\mathcal{N}(\mathbf{0}, \mathbf{I})$, then with
 217 probability at least $1 - \delta - n_1 e^{-mR}$, the following holds. For any set of weight vectors $\mathbf{w}_1, \dots, \mathbf{w}_m \in$
 218 \mathbb{R}^{d+1} that satisfy $\|\mathbf{w}_r - \mathbf{w}_r(0)\|_2 < R$ for any $r \in [m]$, then

$$219 \quad \|\mathbf{H}(\mathbf{w}) - \mathbf{H}(0)\|_F < CM^2R, \quad (8)$$

220 where $M = 2(d+2) \log(2m(d+2)/\delta)$ and C is a universal constant.

221 **Remark 3.6.** The Lemma 3.6 in Gao et al. (2023) shows that when $\|\mathbf{w}_r - \mathbf{w}_r(0)\|_2 \leq R =$
 222 $\tilde{\mathcal{O}}\left(\frac{\lambda_0 \delta}{(n_1+n_2)(\log m)^3}\right)$ holds for all $r \in [m]$, then $\|\mathbf{H}(\mathbf{w}) - \mathbf{H}(0)\|_2 \leq \frac{\lambda_0}{4}$. In contrast, our Lemma
 223 3.5 only requires $R = \mathcal{O}\left(\frac{\lambda_0}{d^2(\log(m/\delta))^2}\right)$ to reach same result.

224 For the L^2 regression problem, as shown in Du et al. (2018), the convergence of gradient descent
 225 requires that the learning rate $\eta = \mathcal{O}(\lambda_0/n^2)$, where n is the sample size of the regression problem.
 226 It is evident that this requirement on the learning rate is difficult to satisfy in practical scenarios, since
 227 λ_0 is unknown and n^2 is too large. For PINNs, Gao et al. (2023) follows the methodology of Du
 228 et al. (2018), thus inheriting similarly stringent requirements on the learning rate. By investigating a
 229 new decomposition method for the residual, we arrive at our main result.

230 **Theorem 3.7.** Under Assumption 3.1 and Assumption 3.2, if we set the number of hidden nodes

$$231 \quad m = \Omega\left(\frac{d^8}{\lambda_0^4} \log^6\left(\frac{md}{\delta}\right) \log\left(\frac{n_1+n_2}{\delta}\right)\right)$$

232 and the learning rate $\eta = \mathcal{O}\left(\frac{1}{\|\mathbf{H}^\infty\|_2}\right)$, then with probability at least $1 - \delta$ over the random
 233 initialization, the gradient descent algorithm satisfies

$$234 \quad L(k) \leq \left(1 - \frac{\eta\lambda_0}{2}\right)^k L(0) \quad (9)$$

235 for all $k \in \mathbb{N}$.

236 **Remark 3.8.** It may be confusing that Gao et al. (2023) has used the same method in Du et al.
 237 (2018), yet it only requires $\eta = \mathcal{O}(\lambda_0)$. Actually, it is because that the loss function of PINN has
 238 been normalized. If we let $n_1 = n_2 = n$ and $\tilde{\mathbf{H}}^\infty$ be the Gram matrix induced by unnormalized
 239 loss function of PINN, then $\lambda_{\min}(\mathbf{H}^\infty) = \lambda_{\min}(\tilde{\mathbf{H}}^\infty)/n$, leading to the convergence rate similar
 240 to that of regression problem. At this point, due to the normalization of loss function, $\|\mathbf{H}^\infty\|_2 =$
 241 $\lambda_{\max}(\mathbf{H}^\infty)$ can be bounded by the trace of \mathbf{H}^∞ , which is an explicit constant that is independent of
 242 the sample size n_1, n_2 . As λ_{\min} depends on the sample size, it is expected that our $\eta = \mathcal{O}(1/\lambda_{\max})$
 243 is an improvement over $\eta = \mathcal{O}(\lambda_{\min})$ in Gao et al. (2023). A practical computation for 1D Poisson
 244 equation is $\lambda_{\min} = 3.47 \times 10^{-11}$ and $1/\lambda_{\max} = 1/(1.73 \times 10^4) = 5.78 \times 10^{-5}$, suggesting that
 245 our analysis indeed improves the learning rate requirements.

246 4 CONVERGENCE OF NGD FOR TWO-LAYER PINNS

247 Although we have improved the learning rate of gradient descent for PINNs, it may still be necessary
 248 to set the learning rates to be sufficiently small. Because, although $\text{tr}(\mathbf{H}^\infty)$ is an explicit constant, it
 249 depends on the form of the PDE. However, the loss function of PINNs has a much worse conditioning
 250 due to the appearance of the PDE operator. So the ill-conditioning occurs when we move from
 251 regression to PINNs, brings strict restrictions for the learning rate of gradient descent for PINNs. This
 252 is a central motivation for second-order and natural gradient methods. Moreover, the convergence rate
 253 $1 - \frac{\eta\lambda_0}{2}$ also depends on λ_0 , which depends on the sample size and may be extremely small. Zhang
 254 et al. (2019) and Cai et al. (2019) have provided the convergence results for natural gradient descent
 255 (NGD) in training over-parameterized two-layer neural networks for L^2 regression problems. They
 256 showed that the maximal learning rate can be $\mathcal{O}(1)$ and the convergence rate is independent of λ_0 ,
 257 which result in a faster convergence rate. However, the situation in PINNs is significantly different
 258 from regression due to the presence of derivative terms from the partial differential equations,
 259 which complicates the analysis. Müller & Zeinhofer (2023) and Guzmán-Cordero et al. (2025)
 260 studied the energy natural gradient descent (ENGD) for PINNs with practical Woodbury, momentum,

and randomization techniques, demonstrated highly accurate solutions empirically. A theoretical convergence analysis, however, has not yet been established in these works. We note that the NGD in Zhang et al. (2019) and the ENGD in Müller & Zeinhofer (2023) coincide up to the choice of the Moore–Penrose pseudoinverse or the use of the Woodbury matrix identity; therefore, we do not distinguish between them in this work. In the section, we conduct the convergence analysis of NGD for PINNs and demonstrate that it results in a faster convergence rate for PINNs compared to gradient descent.

In this section, we consider the same setup as described in Section 2. During the training process, we fix the output weight \mathbf{a} and update the hidden weights via NGD. The optimization objective is the empirical loss function presented in (5), which is defined as follows:

$$L(\mathbf{w}) = \frac{1}{2} (\|\mathbf{s}(\mathbf{w})\|_2^2 + \|\mathbf{h}(\mathbf{w})\|_2^2), \quad (10)$$

The NGD gives the following update rule:

$$\mathbf{w}(k+1) = \mathbf{w}(k) - \eta \mathbf{J}(k)^T (\mathbf{J}(k) \mathbf{J}(k)^T)^{-1} \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix}, \quad (11)$$

where

$$\mathbf{J}(k) = (\mathbf{J}_1(k)^T, \dots, \mathbf{J}_{n_1+n_2}(k)^T)^T \in \mathbb{R}^{(n_1+n_2) \times m(d+2)}$$

is the Jacobian matrix for the whole dataset and $\eta > 0$ is the learning rate. Specifically, for $p \in [n_1]$,

$$\mathbf{J}_p(k) = \left[\left(\frac{\partial s_p(k)}{\partial \mathbf{w}_1} \right)^T, \dots, \left(\frac{\partial s_p(k)}{\partial \mathbf{w}_m} \right)^T \right] \in \mathbb{R}^{1 \times m(d+2)} \quad (12)$$

and for $j \in [n_2]$,

$$\mathbf{J}_{n_1+j}(k) = \left[\left(\frac{\partial h_j(k)}{\partial \mathbf{w}_1} \right)^T, \dots, \left(\frac{\partial h_j(k)}{\partial \mathbf{w}_m} \right)^T \right] \in \mathbb{R}^{1 \times m(d+2)}. \quad (13)$$

Remark 4.1. We note that Zhang et al. (2019) and Cai et al. (2019) have independently and concurrently established the convergence of NGD in the context of regression problems. The difference lies in the fact that Zhang et al. (2019) focused on ReLU activation functions, whereas Cai et al. (2019) considered smooth activation functions and consistently set the learning rate to 1. Here, following Zhang et al. (2019), we refer to this approach as NGD. In Cai et al. (2019), the authors derived this method based on NTK kernel regression and termed it the Gram-Gauss-Newton (GGN) method. The extension of NGD convergence from regression to PINNs is challenging because of the complexity of the PDE residual loss.

Remark 4.2. The classical Gauss-Newton method Bonfanti et al. (2024) is given by $\mathbf{w}(k+1) = \mathbf{w}(k) - (\mathbf{J}(k)^T \mathbf{J}(k))^{-1} \mathbf{J}(k)^T \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix}$. Although this formula looks different from the NGD update (11), the two coincide when $\eta = 1$ at the level of the Moore–Penrose pseudoinverse: $\mathbf{J}(k)^+ = (\mathbf{J}(k)^T \mathbf{J}(k))^{-1} \mathbf{J}(k)^T = \mathbf{J}(k)^T (\mathbf{J}(k) \mathbf{J}(k)^T)^{-1}$. However, this equivalence is only algebraic. In practice the two updates behave differently because $\mathbf{J}(k) \in \mathbb{R}^{(n_1+n_2) \times m(d+2)}$ is highly rectangular and never invertible strictly, and different pseudoinverse representations apply in row-dependent or column-dependent cases. The computational cost are also different, as pointed in Guzmán-Cordero et al. (2025) with Woodbury’s Identity. The NGD’s formula (11) in this work, originally adopted from Zhang et al. (2019), also coincides with the energy natural gradient descent (ENGD) proposed in Müller & Zeinhofer (2023); Guzmán-Cordero et al. (2025) once the Moore–Penrose inverse or Woodbury identity is applied. A crucial distinction arises in the over-parameterized regime. The Gauss-Newton Gram matrix $\mathbf{J}(k)^T \mathbf{J}(k) \in \mathbb{R}^{m(d+2) \times m(d+2)}$ becomes extremely high-dimensional and typically singular as m grows, while the NGD $\mathbf{J}(k) \mathbf{J}(k)^T \in \mathbb{R}^{(n_1+n_2) \times (n_1+n_2)}$ won’t. This difference is key for both practical scalability and numerical stability.

For the activation function of the two-layer neural network

$$\phi(\mathbf{x}; \mathbf{w}, \mathbf{a}) = \frac{1}{\sqrt{m}} \sum_{r=1}^m a_r \sigma(\mathbf{w}_r^T \mathbf{x}), \quad (14)$$

324 we consider settings where $\sigma(\cdot)$ is either the ReLU³ activation function or a smooth activation
 325 function satisfying the following assumption.

326 **Assumption 4.3.** There exists a constant $c > 0$ such that $\sup_{z \in \mathbb{R}} |\sigma^{(3)}(z)| \leq c$ and for any $z, z' \in \mathbb{R}$,

$$328 \quad |\sigma^{(k)}(z) - \sigma^{(k)}(z')| \leq c|z - z'|, \quad (15)$$

329 where $k \in \{0, 1, 2, 3\}$. Moreover, $\sigma(\cdot)$ is analytic and is not a polynomial function. We also assume
 330 that for any positive integer $n \geq 2$, $\lim_{x \rightarrow +\infty} \sigma^{(n)}(x)/\phi(x) = c_n \neq 0$, where the function $\phi(\cdot)$ needs
 331

$$332 \quad \lim_{x \rightarrow +\infty} \phi(x) = 0, \quad \lim_{x \rightarrow +\infty} x \cdot \frac{\phi(bx)}{\phi(x)} = 0$$

335 holding for any constant $b > 1$.

336 **Lemma 4.4.** If no two samples in $\{\mathbf{x}_p\}_{p=1}^{n_1} \cup \{\mathbf{y}_j\}_{j=1}^{n_2}$ are parallel, then the Gram matrix \mathbf{H}^∞ is
 337 strictly positive definite for activation functions that satisfy Assumption 4.3, i.e., $\lambda_0 := \lambda_{\min}(\mathbf{H}^\infty) > 0$.

339 **Remark 4.5.** Assumption 4.3 holds for various commonly used activation functions, including
 340 logistic function $\sigma(z) = 1/(1 + e^{-z})$ (with $\phi(z) = e^{-z}$), softplus function $\sigma(z) = \log(1 + e^z)$ (with
 341 $\phi(z) = e^{-z}$), hyperbolic tangent function $\sigma(z) = (e^z - e^{-z})/(e^z + e^{-z})$ (with $\phi(z) = e^{-2z}$), swish
 342 function $\sigma(z) = z/(1 + e^{-z})$ (with $\phi(z) = ze^{-z}$) and others.

343 Unlike the approach for gradient descent, Zhang et al. (2019) focus on the change of the Jacobian
 344 matrix for NGD rather than the Gram matrix. Roughly speaking, they show that when $\|\mathbf{w} - \mathbf{w}(0)\|_2$
 345 is small, then $\|\mathbf{J}(\mathbf{w}) - \mathbf{J}(0)\|_2$ is also proportionately small. However, this approach is not applicable
 346 to PINNs, because the loss function involves derivatives. Roughly speaking, the stability considered in
 347 Zhang et al. (2019) is more global in nature, whereas ours is local. In fact, the PINN loss includes first-
 348 and second-order derivatives of the neural output (see Eq. (3)–(4)), so each Jacobian block $\partial s_p / \partial w_r$
 349 and $\partial h_j / \partial w_r$ contains higher-order derivatives of the activation and of the weights. Consequently,
 350 even a small perturbation in weights may cause large variations in the derivatives, violating the
 351 Lipschitz-type condition required by Zhang et al. (2019). Since the subsequent conclusions require
 352 the boundedness of local weights, we do not use this stability. Moreover, from the Theorem 1 in
 353 Zhang et al. (2019), we can see that this stability imposes additional constraints on the learning rate.
 354 Therefore, we instead focus on the stability of $\mathbf{J}(\mathbf{w})$ with respect to each individual weight vector
 355 \mathbf{w}_r in the following Lemma, which provides a more targeted approach.

356 **Lemma 4.6.** Let $R \in (0, 1]$, if $\mathbf{w}_1(0), \dots, \mathbf{w}_m(0)$ are i.i.d. generated $\mathcal{N}(\mathbf{0}, \mathbf{I})$, then with probability
 357 at least $1 - P(\delta, m, R)$ the following holds. For any set of weight vectors $\mathbf{w}_1, \dots, \mathbf{w}_m \in \mathbb{R}^{d+2}$ that
 358 satisfy for any $r \in [m]$, $\|\mathbf{w}_r - \mathbf{w}_r(0)\|_2 < R$, then

359 (1) when $\sigma(\cdot)$ is the ReLU³ activation function, we have that

$$360 \quad \|\mathbf{J}(\mathbf{w}) - \mathbf{J}(0)\|_2 \leq CM\sqrt{R}, \quad (16)$$

362 where C is a universal constant, $M = 2(d+2) \log(2m(d+2)/\delta)$ and

$$363 \quad P(\delta, m, R) = \delta + n_1 e^{-mR}; \quad (17)$$

365 (2) when $\sigma(\cdot)$ is the smooth activation function satisfies Assumption 4.3, we have that

$$366 \quad \|\mathbf{J}(\mathbf{w}) - \mathbf{J}(0)\|_2 \leq CdR \quad (18)$$

368 for $m \geq \log^2(1/\delta)$, where C is a universal constant and $P(\delta, m, R) = \delta$.

369 With the stability of Jacobian matrix, we can derive the following convergence results.

370 **Theorem 4.7.** Let $L(k) = L(\mathbf{w}(k))$, then the following conclusions hold.

372 (1) When $\sigma(\cdot)$ is the ReLU³ activation function, under Assumption 3.2, we set

$$374 \quad m = \Omega\left(\frac{1}{(1-\eta)^2} \frac{d^8}{\lambda_0^4} \log^6\left(\frac{md}{\delta}\right) \log\left(\frac{n_1+n_2}{\delta}\right)\right)$$

376 and $\eta \in (0, 1)$, then with probability at least $1 - \delta$ over the random initialization for all $k \in \mathbb{N}$

$$377 \quad L(k) \leq (1 - \eta)^k L(0). \quad (19)$$

378 (2) When $\sigma(\cdot)$ is the smooth activation function satisfies Assumption 4.3, under Assumption 3.2, we
 379 set

$$380 \quad 381 \quad m = \Omega \left(\frac{1}{1 - \eta} \frac{d^6}{\lambda_0^3} \log^2 \left(\frac{md}{\delta} \right) \log \left(\frac{n_1 + n_2}{\delta} \right) \right)$$

382 and $\eta \in (0, 1)$, then with probability at least $1 - \delta$ over the random initialization for all $k \in \mathbb{N}$

$$383 \quad 384 \quad L(k) \leq (1 - \eta)^k L(0). \quad (20)$$

385 In Theorem 4.7, the requirements of m with ReLU³ and smooth activation functions exhibit different
 386 dependencies on λ_0 and d . The discrepancy is primarily due to the distinct formulations presented in
 387 (16) and (18) of Lemma 4.5.

388 **Remark 4.8.** We first compare our results with those of NGD for L^2 regression problems. Given
 389 that the convergence results are the same, our focus shifts to examining the necessary conditions
 390 for the width m . As demonstrated in Zhang et al. (2019) and Cai et al. (2019), it is required that
 391 $m = \Omega \left(\frac{n^4}{\lambda_0^4 \delta^3} \right)$ for ReLU activation function and $m = \Omega \left(\max \left\{ \frac{n^4}{\lambda_0^4}, \frac{n^2 d \log(n/\delta)}{\lambda_0^2} \right\} \right)$ for smooth
 392 activation function. Clearly, our result has a worse dependence on d , which is inevitable due to the
 393 involvement of derivatives in the loss function. Moreover, our requirement for m appears to be almost
 394 independent of n , primarily because our loss function has been normalized. With smooth activation
 395 functions, in addition to the dependence on d , Theorem 4.7 (2) only requires that $m = \Omega(\lambda_0^{-3})$.
 396 However, Cai et al. (2019) demands a more stringent condition, requiring that $m = \Omega(\lambda_0^{-4})$.
 397

398 Comparing with our results in Section 3, the requirement for m in Theorem 4.7 (1) is the same
 399 as in Theorem 3.8, when we make η less close to 1. On the other hand, since $\eta = \mathcal{O}(1)$ and the
 400 convergence rate only depends on η , NGD can lead to faster convergence than GD.

401 Note that as η approaches 1, the width m tends to infinity, thus, the convergence results in Theorem
 402 4.7 become vacuous. In fact, when $\eta = 1$, NGD can enjoy a second-order convergence rate even
 403 though m is finite, provided that $\sigma(\cdot)$ satisfies Assumption 4.3.

404 **Corollary 4.9.** Under Assumption 3.2 and Assumption 4.3, set $\eta = 1$ and

$$406 \quad 407 \quad m = \Omega \left(\frac{d^6}{\lambda_0^3} \log^2 \left(\frac{md}{\delta} \right) \log \left(\frac{n_1 + n_2}{\delta} \right) \right),$$

408 then with probability at least $1 - \delta$, we have

$$409 \quad 410 \quad \left\| \begin{pmatrix} \mathbf{s}(t+1) \\ \mathbf{h}(t+1) \end{pmatrix} \right\|_2 \leq \frac{CB^4}{\sqrt{m\lambda_0^3}} \left\| \begin{pmatrix} \mathbf{s}(t) \\ \mathbf{h}(t) \end{pmatrix} \right\|_2^2$$

412 for all $t \in \mathbb{N}$, where C is a universal constant and $B = \sqrt{2(d+2) \log(2m(d+2)/\delta)} + 1$. Moreover,
 413 we can get a second order convergence result for regression problems with smooth activation functions
 414 as follows.

$$415 \quad 416 \quad \|\mathbf{y} - \mathbf{u}(t+1)\|_2 \lesssim \frac{n^{3/2}}{\sqrt{m\lambda_0^3}} \|\mathbf{y} - \mathbf{u}(t)\|_2^2.$$

418 Instead of inducing on the convergence rate of the empirical loss function, as shown in Condition 1,
 419 we perform induction on the movements of the hidden weights as follows.

420 **Condition 1.** At the t -th iteration, we have $\|\mathbf{w}_r(t)\|_2 \leq B$ and

$$422 \quad 423 \quad \|\mathbf{w}_r(t) - \mathbf{w}_r(0)\|_2 \leq \frac{CB^2 \sqrt{L(0)}}{\sqrt{m\lambda_0}} := R'$$

424 for all $r \in [m]$, where C is a universal constant and $B = \sqrt{2(d+2) \log \left(\frac{2m(d+2)}{\delta} \right)} + 1$.

426 With Condition 1, we can directly derive the following convergence rate of the empirical loss function.

428 **Corollary 4.10.** If Condition 1 holds for $t = 0, \dots, k$ and $R' \leq R$ and $R'' \lesssim \sqrt{1 - \eta} \sqrt{\lambda_0}$, then

$$429 \quad 430 \quad L(t) \leq (1 - \eta)^t L(0),$$

431 holds for $t = 0, \dots, k$, where R is the constant in Lemma 4.5 and $R'' = CM\sqrt{R}$ is in (16) when σ
 432 is the ReLU³ activation function, $R'' = CdR$ is in (18) when σ satisfies Assumption 4.3.

432 **5 EXPERIMENTAL RESULTS**

434 We conduct a comparative evaluation of the NGD against existing optimizers for PINN training
 435 with respect to accuracy, computational efficiency, and alignment with theoretical analysis. The
 436 experimental implementations are listed in the Appendix A.

439 Table 1: Relative L^2 -error of Different Optimizers.

	SGD	Adam	L-BFGS	NGD
1D Poisson	1.28e-01 \pm 4.31e-02	6.46e-02 \pm 1.43e-02	2.63e-04 \pm 8.95e-05	1.67e-05 \pm 9.07e-06
2D Poisson	1.45e-01 \pm 7.34e-02	5.32e-03 \pm 9.79e-04	3.17e-03 \pm 8.66e-04	1.12e-04 \pm 6.99e-05
1D Heat	5.43e-01 \pm 9.98e-02	6.91e-03 \pm 1.31e-03	4.98e-03 \pm 1.83e-03	3.42e-04 \pm 7.52e-05
2D Helmholtz	8.48e+00 \pm 6.37e+00	1.06e+00 \pm 8.11e-01	3.35e+00 \pm 1.94e+00	6.67e-03 \pm 1.89e-03
10D Poisson	1.35e-02 \pm 8.17e-03	3.15e-03 \pm 8.93e-04	nan	9.91e-04 \pm 1.47e-04

447 **Comparison to Existing Optimizers.** We report the relative L^2 -error of the NGD optimizer to the
 448 commonly used first order optimizers (the SGD optimizer, the Adam optimizer) and second order
 449 optimizer (the L-BFGS optimizer) in Table 1. Here ‘nan’ means the training loss becomes infinity.
 450 We see that NGD performs best on all five equations.

452 **Learning Rate Study.** We report the behavior of convergence at different learning rates, showing
 453 the strong robustness of the NGD method to hyperparameter selection. Table 2 demonstrates that,
 454 unlike SGD and Adam which demand small learning rates for convergence, the NGD maintains
 455 stable convergence across a wide range of learning rates without notable accuracy deterioration. This
 456 characteristic, which markedly outperforms conventional optimization approaches, clearly illustrates
 457 the strong robustness of the NGD method to hyperparameter selection.

459 Table 2: Relative L^2 -error Comparison Across Different Learning Rates η .

learning rate η	1.0	0.5	0.1	0.05	0.01	0.005	0.001
SGD	nan	nan	nan	nan	1.19e-02	6.91e-02	7.36e-02
Adam	1.01e+00	1.00e+00	1.00e+00	1.01e+00	1.64e-02	3.25e-02	1.49e-02
NGD	1.97e-03	1.18e-03	3.24e-04	1.87e-04	1.12e-04	1.22e-04	1.68e-04

465 **Network Width Study.** A comparative analysis of the model performance is performed with
 466 progressively increasing network widths. Table 3 demonstrates that increasing network width leads
 467 to significant accuracy improvements. This trend validates that wider architectures exhibit enhanced
 468 function approximation capabilities.

471 Table 3: Relative L^2 -error Comparison Across Different Network Width m for NGD.

m	20	40	80	160	320	640	1280	2560
error	1.59e-03	7.21e-04	5.18e-04	3.8e-04	3.08e-04	2.76e-04	1.78e-04	7.05e-05

476 **Fast Convergence Study.** We report the training loss convergence results for different optimizers.
 477 We train SGD and Adam for 10000/20000 epochs with learning rate 1e-3, and the NGD for 100/200
 478 epochs with learning rate 0.1. Figure 1 empirically demonstrates that the NGD converges much faster
 479 than commonly used SGD and Adam optimizers, which is consistent with our theoretical analysis
 480 equation (9) in Theorem 3.7 and equation (20) in Theorem 4.7.

483 **Empirical Convergence Rates Study.** We continue to report the empirical convergence rates of
 484 the NGD in different equations. We compare the empirical training loss curves of the NGD when
 485 $\eta = 0.1$ with the theoretical linear rates in our main Theorems 4.7. The theoretical decay follows
 $L(k) \approx C(1 - \eta)^k$, and the fitted experimental decay is $L(k) \approx \mathcal{O}(k^{-1.55})$ for 1D Poisson equation,

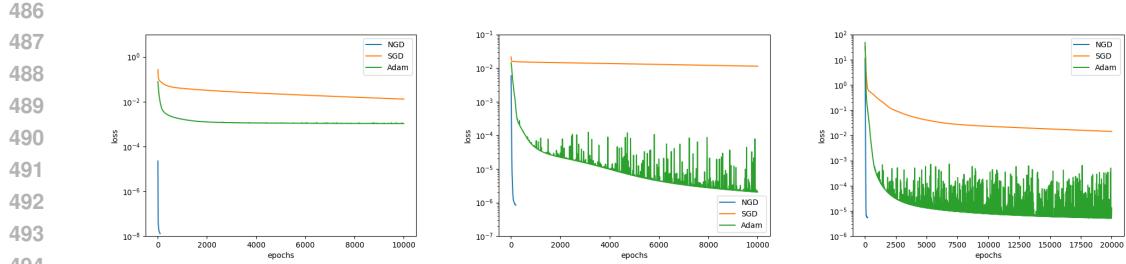


Figure 1: Training Loss Decay Comparison for 1D Poisson (left), 1D Heat (middle) and 2D Poisson (right) Equations.

$\mathcal{O}(k^{-1.92})$ for 1D Heat equation and $\mathcal{O}(k^{-1.13})$ for 2D Poisson equation in Figure 2. For the heat equation, convergence initially exceeds the predicted rate and later slows markedly. This is consistent with known NTK decay and multi-phase behaviors in PINNs. Generally, the empirical loss of NGD roughly follows the predicted linear regime in early iterations, before entering a slower phase usually observed across all optimizers.



Figure 2: The Experimental Training Loss Decay and Theoretical Decay (Theorem 4.7) for 1D Poisson (left), 1D Heat (middle) and 2D Poisson (right) Equations.

6 LIMITATIONS

The computational cost of NGD is mainly on the $(J \cdot J^\top)^{-1}$ with the Jacobian matrix J is of size $n \times p$, where $n = n_1 + n_2$ is the training data size and $p = m(d + 2)$ is the number of trainable parameters. So NGD will be quite expensive for large amount of training data. As a result, several cost-effective variants have been proposed, such as K-FAC Martens & Grosse (2015); Dangel et al. (2024; 2025), ENGD Müller & Zeinhofer (2023); Guzmán-Cordero et al. (2025) and mini-batch NGD. We only proved the convergence results for the full-batch NGD in this paper, and it would be interesting to investigate the convergence of these methods for PINNs in future works. On the other hand, while the over-parameterized assumption enables the use of NTK stability for proving global convergence, the practical guarantee for arbitrary sampled projected gradient descent without assumption on the network size Nießen & Müller (2025) address a different framework, and the NGD analysis without over-parameterized assumption represent an interesting complementary direction.

7 CONCLUSION AND OUTLOOK

In this paper, we have improved the conditions required for the convergence of gradient descent for PINNs, showing that gradient descent actually achieves a better convergence rate. Furthermore, we demonstrate that natural gradient descent can find the global optima of two-layer PINNs with ReLU³ or smooth activation functions for a class of second-order linear PDEs. Compared to gradient descent, natural gradient descent exhibits a faster convergence rate and its maximal learning rate is $\mathcal{O}(1)$. In conclusion, the NGD offers three key advantages: 1) more relaxed learning rate requirements; 2) faster convergence rates independent of λ_0 ; 3) superior empirical performance. Additionally, extending the convergence analysis to deep neural networks, stochastic version of NGD, and studying the generalization error of trained PINNs are important directions for future research.

540
541 ETHICS STATEMENT542
543 We acknowledge that all authors have read and commit to adhering to the ICLR Code of Ethics.544
545 REPRODUCIBILITY STATEMENT546
547 To facilitate reproducibility, we have taken the following steps: (1) Source code and configuration
548 files for all key experiments are provided as supplementary material. (2) All theoretical claims
549 are accompanied by full proofs (in the Appendix) and assumptions are clearly stated. (3) All
550 hyperparameters used, neural network architecture details are provided either in the main text or in
551 the Appendix.552
553 REFERENCES554
555 Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
556 neural networks, going beyond two layers. *Advances in neural information processing systems*, 32,
557 2019a.558
559 Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
560 parameterization. In *International conference on machine learning*, pp. 242–252. PMLR, 2019b.561
562 Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
563 optimization and generalization for overparameterized two-layer neural networks. In *International
Conference on Machine Learning*, pp. 322–332. PMLR, 2019.564
565 Andrea Bonfanti, Giuseppe Bruno, and Cristina Cipriani. The challenges of the nonlinear regime
566 for physics-informed neural networks. *Advances in Neural Information Processing Systems*, 37:
567 41852–41881, 2024.568
569 Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang, and Liwei Wang.
570 Gram-gauss-newton method: Learning overparameterized neural networks for regression problems.
arXiv preprint arXiv:1905.11675, 2019.571
572 Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
573 neural networks. *Advances in neural information processing systems*, 32, 2019.574
575 Felix Dangel, Johannes Müller, and Marius Zeinhofer. Kronecker-factored approximate curvature
576 for physics-informed neural networks. *Advances in Neural Information Processing Systems*, 37:
34582–34636, 2024.577
578 Felix Dangel, Bálint Mucsányi, Tobias Weber, and Runa Eschenhagen. Kronecker-factored approxi-
579 mate curvature (kfac) from scratch. *arXiv preprint arXiv:2507.05127*, 2025.580
581 Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bezenac. An operator precondi-
582 tioning perspective on training in physics-informed machine learning. In *The Twelfth International
Conference on Learning Representations*, 2024.583
584 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
585 bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.586
587 Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
588 minima of deep neural networks. In *International conference on machine learning*, pp. 1675–1685.
PMLR, 2019.589
590 Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
591 over-parameterized neural networks. *arXiv preprint arXiv:1810.02054*, 2018.592
593 Yihang Gao, Yiqi Gu, and Michael Ng. Gradient descent finds the global optima of two-layer physics-
594 informed neural networks. In *International Conference on Machine Learning*, pp. 10676–10707.
PMLR, 2023.

594 Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
 595 gradient for tensor decomposition. In *Conference on learning theory*, pp. 797–842. PMLR, 2015.
 596

597 Evarist Giné and Richard Nickl. *Mathematical foundations of infinite-dimensional statistical models*.
 598 Cambridge university press, 2021.

599 Andrés Guzmán-Cordero, Felix Dangel, Gil Goldshlager, and Marius Zeinhofer. Improving energy
 600 natural gradient descent through woodbury, momentum, and randomization. *Advances in Neural*
 601 *Information Processing Systems*, 2025.

602 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 603 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 604 pp. 770–778, 2016.

605 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
 606 generalization in neural networks. *Advances in neural information processing systems*, 31, 2018.

607 Bangti Jin and Longjun Wu. Convergence of stochastic gradient methods for wide two-layer physics-
 608 informed neural networks. *arXiv preprint arXiv:2508.21571*, 2025.

609 Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
 610 points efficiently. In *International conference on machine learning*, pp. 1724–1732. PMLR, 2017.

611 Arun Kumar Kuchibhotla and Abhishek Chakrabortty. Moving beyond sub-gaussianity in high-
 612 dimensional statistics: Applications in covariance estimation and linear regression. *Information*
 613 *and Inference: A Journal of the IMA*, 11(4):1389–1456, 2022.

614 Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
 615 descent on structured data. *Advances in neural information processing systems*, 31, 2018.

616 Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
 617 non-linear systems and neural networks. *Applied and Computational Harmonic Analysis*, 59:
 618 85–116, 2022.

619 James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
 620 curvature. In *International conference on machine learning*, pp. 2408–2417. PMLR, 2015.

621 Johannes Müller and Marius Zeinhofer. Achieving high accuracy with pinns via energy natural
 622 gradient descent. In *International Conference on Machine Learning*, pp. 25471–25485. PMLR,
 623 2023.

624 Jonas Nießen and Johannes Müller. Non-asymptotic analysis of projected gradient descent for
 625 physics-informed neural networks. *arXiv preprint arXiv:2505.07311*, 2025.

626 Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
 627 deep learning framework for solving forward and inverse problems involving nonlinear partial
 628 differential equations. *Journal of Computational physics*, 378:686–707, 2019.

629 Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
 630 pinns: A loss landscape perspective. In *Forty-first International Conference on Machine Learning*,
 631 2024.

632 Jonathan W Siegel, Qingguo Hong, Xianlin Jin, Wenrui Hao, and Jinchao Xu. Greedy training
 633 algorithms for neural networks and applications to pdes. *Journal of Computational Physics*, 484:
 634 112084, 2023.

635 David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
 636 Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
 637 the game of go with deep neural networks and tree search. *nature*, 529(7587):484–489, 2016.

638 Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational
 639 problems. *Communications in Mathematics and Statistics*, 6(1):1–12, 2018.

640 Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-
 641 dimensional partial differential equations. *Journal of Computational Physics*, 411:109409, 2020.

648 Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent
 649 for over-parameterized neural networks. *Advances in Neural Information Processing Systems*, 32,
 650 2019.

651 Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
 652 parameterized deep relu networks. *Machine learning*, 109:467–492, 2020.

653 A EXPERIMENTAL IMPLEMENTATION

654 In this section, we provide several examples to demonstrate the superiority of the natural gradient
 655 descent(NGD) approach. The configurations used in these examples are listed in Table 4. We report
 656 the relative L^2 -error of the NGD optimizer to the commonly used first order optimizers (the SGD
 657 optimizer, the Adam optimizer) and second order optimizer (the L-BFGS optimizer) in Table 1. The
 658 relative L^2 -error is defined as follows:

$$659 \text{relative } L^2 \text{ error} = \frac{\sqrt{\sum_{i=1}^N |\hat{u}(\mathbf{x}_i) - u_{\text{ref}}(\mathbf{x}_i)|^2}}{\sqrt{\sum_{i=1}^N |u_{\text{ref}}(\mathbf{x}_i)|^2}}, \quad (21)$$

660 where \hat{u} denotes the predicted solution and u_{ref} represents the reference solution. To show the
 661 generalization ability of NGD, we should note that the testing collocation points $\{\mathbf{x}_i\}_{i=1}^N$ are different
 662 from the training samples $\{\mathbf{x}_p\}_{p=1}^{n_1}$ and $\{\mathbf{y}_j\}_{j=1}^{n_2}$.

663 Table 4: Configurations of Different Equations.

	N_f	N_b	batch size	hidden layers	hidden neurons	activation function
1D Poisson	500	2	100	1	128	tanh(·)
2D Poisson	1,000	200	100	1	128	tanh(·)
1D Heat	1,000	200	100	1	128	tanh(·)
2D Helmholtz	1,000	200	100	1	128	tanh(·)
10D Poisson	10,000	1,000	100	1	128	tanh(·)

664 A.1 1D POISSON EQUATION

665 First, we begin with a toy example of the 1D Poisson equation to display the performance of the
 666 NGD method. The equation is defined in the domain $\Omega = [0, \pi]$,

$$667 \begin{cases} -u''(x) = f(x), & x \in \Omega, \\ 668 u(x) = 0, & x \in \partial\Omega. \end{cases} \quad (22)$$

669 The true solution is set as $u(x) = \sin(x)$, which allows us to derive the corresponding force term
 670 $f(x) = \sin(x)$. We randomly sample $N_f = 500$ points in the domain Ω . For the neural network
 671 architecture, we employ a single hidden layer model with 128 units and $\tanh(\cdot)$ activation functions
 672 across all computations. The NGD optimizer is trained for 100 epochs, while the LBFGS optimizer
 673 is run for 1 epoch with a maximum of 500 iterations per epoch. All other optimizers are run for
 674 10,000 epochs for comprehensive comparison. The relative L^2 -error is $1.67e-05$ for the NGD
 675 optimizer. Figure 3 shows the predicted solution for the 1D Poisson equation alongside the reference
 676 solution. The prediction is in excellent agreement with the reference solution, highlighting the
 677 superior performance of the NGD method. Figure 4 depicts the loss decay during the training process,
 678 we can see that the NGD method achieves a quite small loss at the very beginning.

679 A.2 2D POISSON EQUATION

680 We consider a 2D Poisson equation in the domain $\Omega = [0, 1] \times [0, 1]$,

$$681 \begin{cases} -\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = f(x, y), & (x, y) \in \Omega, \\ 682 u(x, y) = 0, & (x, y) \in \partial\Omega. \end{cases} \quad (23)$$

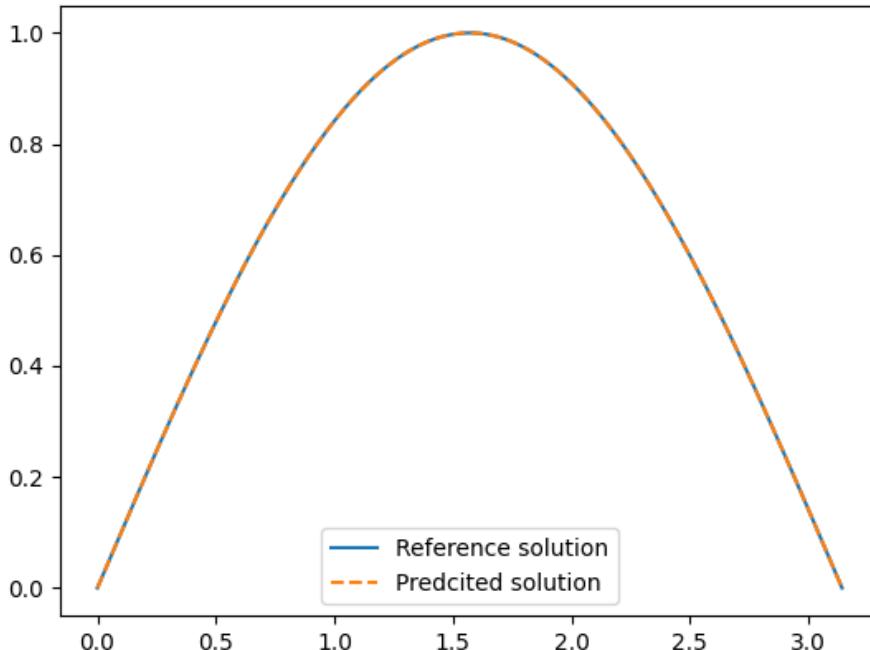


Figure 3: Reference Solution and Predicted Solution for the 1D Poisson Equation.

The true solution is given by $u(x, y) = \sin(\pi x) \sin(\pi y)$, and the force term $f(x, y) = 2\pi^2 \sin(\pi x) \sin(\pi y)$ is consequently derived.

We sample $N_b = 200$ random points on the boundary $\partial\Omega$ and $N_f = 1,000$ random points within the domain Ω . We employ a single hidden layer model with 128 units and $\tanh(\cdot)$ activation functions across all computations. We run the NGD method for 200 epochs, while the L-BFGS method is trained for 1 epoch with a maximum of 5,000 iterations per epoch. All other optimization methods are trained for 20,000 epochs. The resulting relative L^2 -error is $1.12e - 04$. Figure 5 illustrates the prediction of the 2D Poisson equation, along with the exact solution and the absolute error between them. It is clear that the predicted solution closely matches the reference solution, further demonstrating the superior performance of the NGD method. Figure 6 shows the loss decay during training, demonstrating that the NGD method converges significantly faster than other optimization methods.

A.3 1D HEAT EQUATION

We consider the 1D heat equation

$$\begin{cases} \frac{\partial u(t, x)}{\partial t} = \frac{1}{4} \frac{\partial^2 u(t, x)}{\partial x^2}, & (t, x) \in [0, 1]^2, \\ u(0, x) = \sin(\pi x), & x \in [0, 1], \\ u(t, x) = 0, & (t, x) \in [0, 1] \times \{0, 1\}. \end{cases} \quad (24)$$

The reference solution is analytically defined by $u(t, x) = \exp(-\frac{\pi^2 t}{4}) \sin(\pi x)$. We generate $N_b = 200$ random sampling points for the boundary and initial conditions and $N_f = 1,000$ random points in the domain Ω to evaluate the PDE residual. The neural network used for all computations consists of 1 hidden layer, each containing 128 neurons with $\tanh(\cdot)$ activation functions. To train the model, we run the NGD method for 200 epochs and the L-BFGS method for 1 epoch with a maximum of 5,000 iterations per epoch, and other optimizers are trained for 10,000 epochs. The resulting relative L^2 -error is $3.42e - 04$. Figure 7 provides a visual comparison between the predicted and

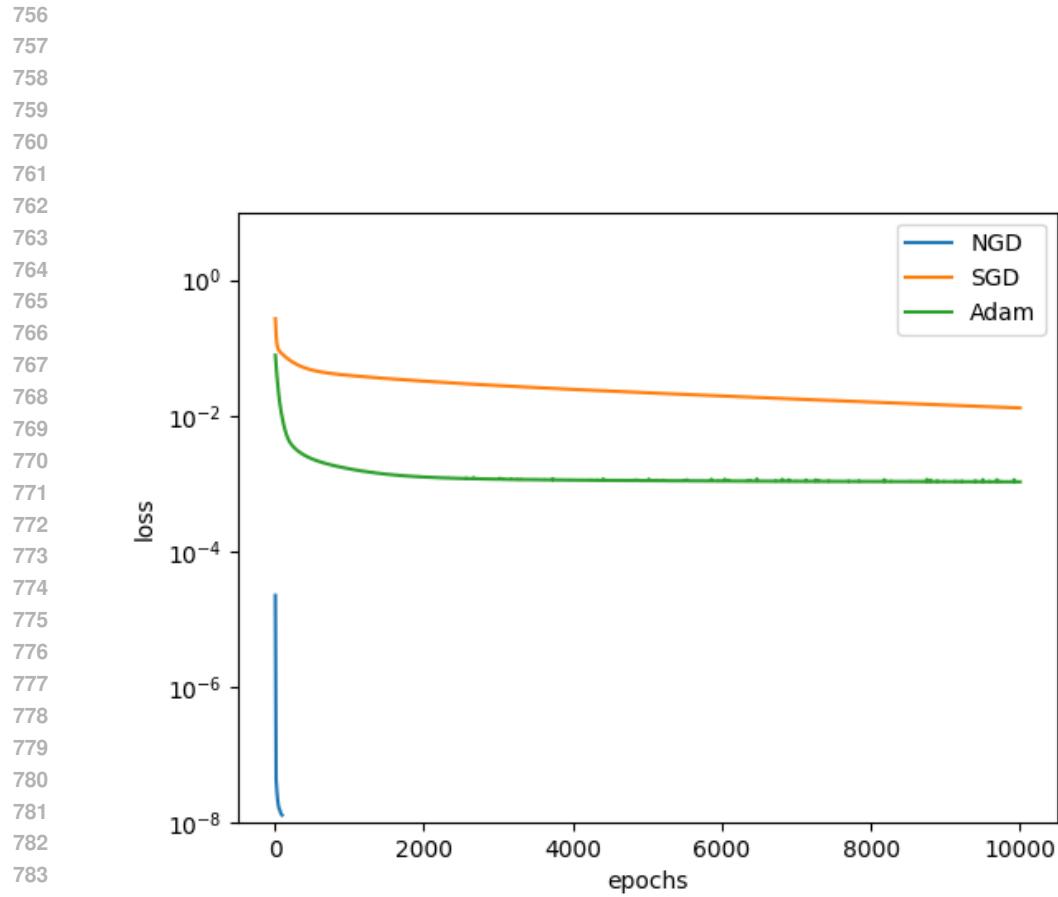


Figure 4: Loss Decay for the 1D Poisson Equation.

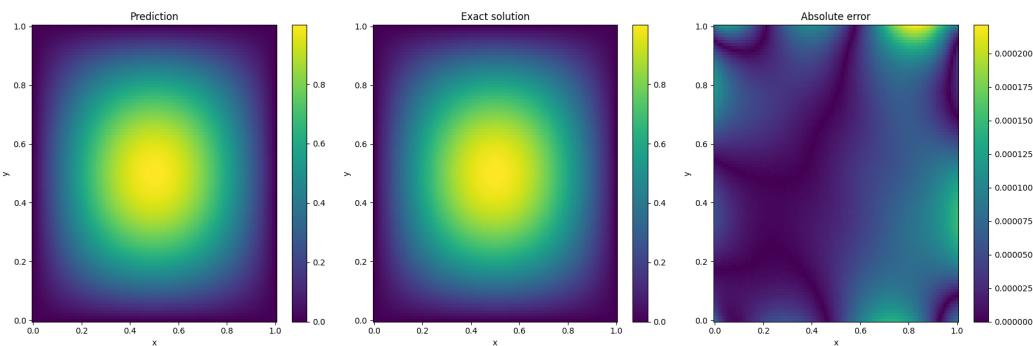


Figure 5: NGD Prediction and Analysis for the 2D Poisson Equation.

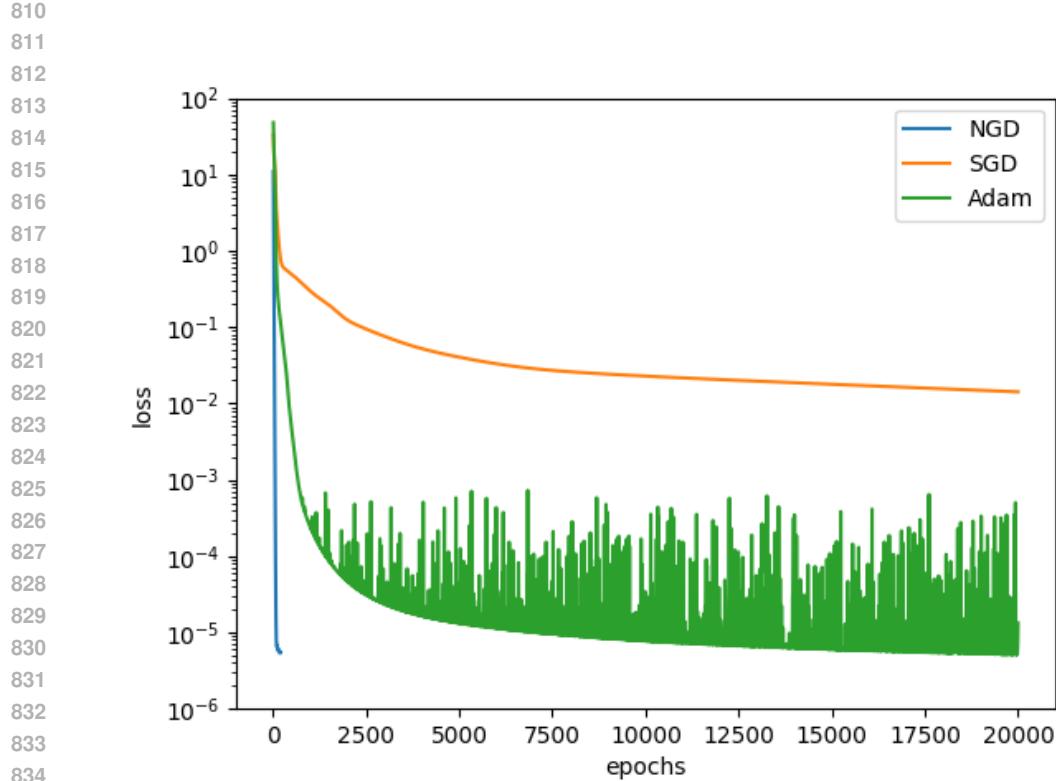


Figure 6: Loss Decay for the 2D Poisson Equation.

exact solutions for the 1D heat equation, along with the corresponding absolute error distribution. The high degree of accuracy in the predicted solution demonstrates the effectiveness of the NGD method, showing its ability to capture the solution with remarkable precision. Figure 8 shows the loss curve over the course of training for the 1D heat equation. Notably, the NGD method rapidly reduces the loss, reaching a low value in the training process, demonstrating its efficiency in optimization.

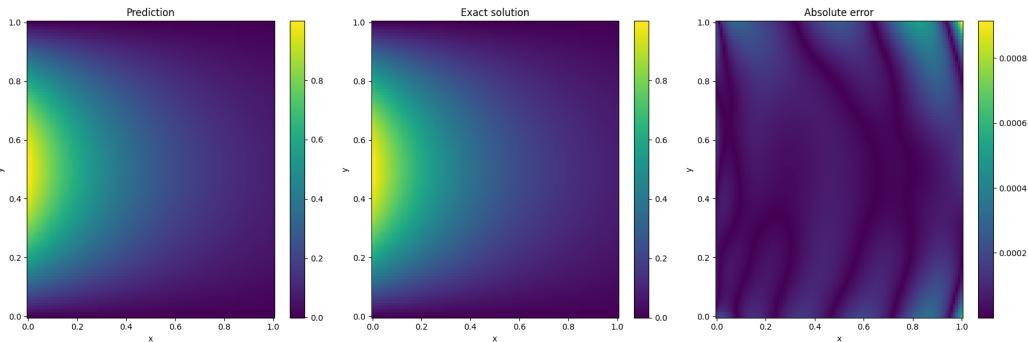


Figure 7: NGD Prediction and Analysis for the 1D Heat Equation.

A.4 2D HELMHOLTZ EQUATION

We deal with the 2D helmholtz equation on the domain $\Omega = [0, 1] \times [0, 1]$ given by

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + k^2 u(x, y) = f(x, y), & (x, y) \in \Omega, \\ u(x, y) = 0, & (x, y) \in \partial\Omega. \end{cases} \quad (25)$$

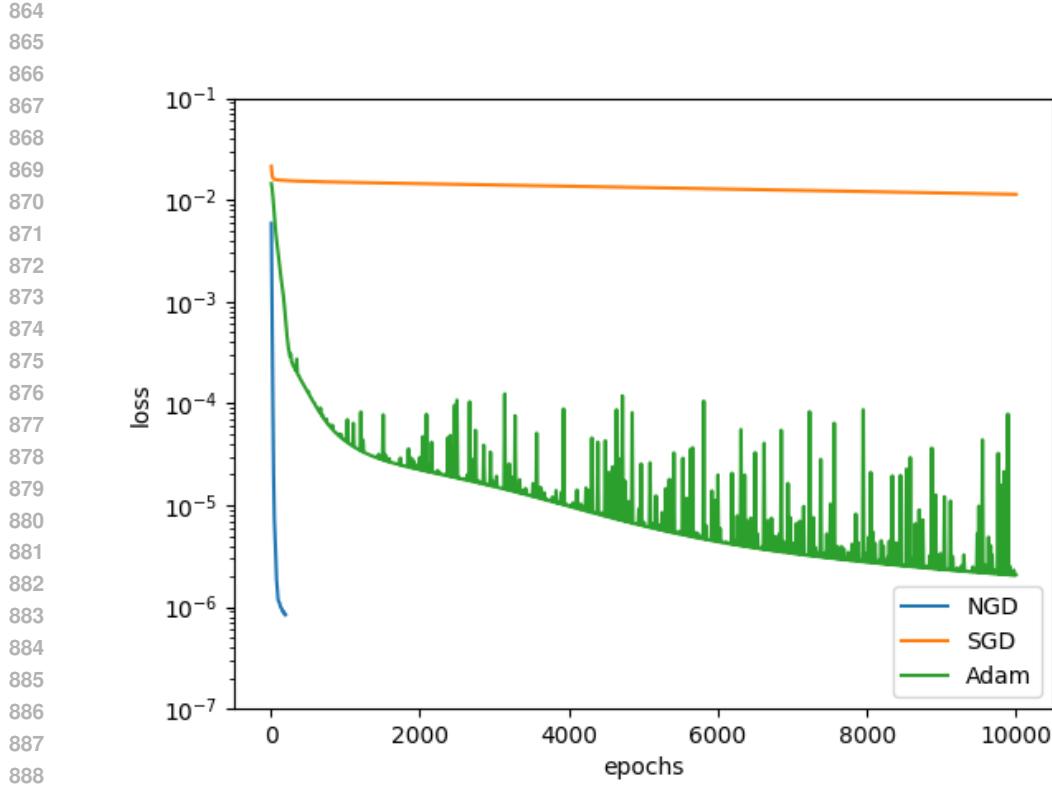


Figure 8: Loss Decay for the 1D Heat Equation.

The reference solution for $k = 4$ is $u(x, y) = \sin(\pi x) \sin(4\pi y)$, and the force term $f(x, y)$ can be easily computed. To evaluate the performance of the NGD approach on the 2D Helmholtz equation, we generate $N_b = 200$ random boundary points on $\partial\Omega$ and $N_f = 1,000$ random points inside the domain Ω . The neural network employed consists of 1 hidden layers with 128 neurons per layer, utilizing $\tanh(\cdot)$ activation functions. Training is carried out for 200 epochs using the NGD method and 1 epoch with a maximum of 5,000 iterations for L-BFGS. All other optimizers are run for 20,000 epochs for comparison. The computed relative L^2 -error is $6.67e - 03$, which is 3 orders of magnitude lower than those of the remaining optimizers. Figure 9 illustrates the predicted solution along with the exact reference solution and the absolute error distribution. The results indicate that the NGD method effectively captures the oscillatory nature of the Helmholtz equation, achieving a high level of accuracy. Figure 10 shows the evolution of the loss function during training for the 2D Helmholtz equation. In particular, the NGD method demonstrates rapid convergence, achieving a low loss value at the end of the training process.

A.5 10D POISSON EQUATION

We conduct experiments to show that the NGD can also perform better than SGD, Adam, and L-BFGS for high-dimensional PDEs, despite that all optimizers become more challenging as the dimensionality of PDEs increases. As an example in higher dimensions, we consider again the Poisson equation in 10 spatial dimensions

$$\begin{cases} -\Delta u = f(x), & x \in \Omega = [0, 1]^{10}, \\ u(x) = \sum_{k=1}^{10} \sin(\pi x_k), & x \in \partial\Omega. \end{cases} \quad (26)$$

We use the manufactured solution

$$u^* : \mathbb{R}^{10} \rightarrow \mathbb{R}, \quad x \rightarrow \sum_{k=1}^{10} \sin(\pi x_k) \quad (27)$$

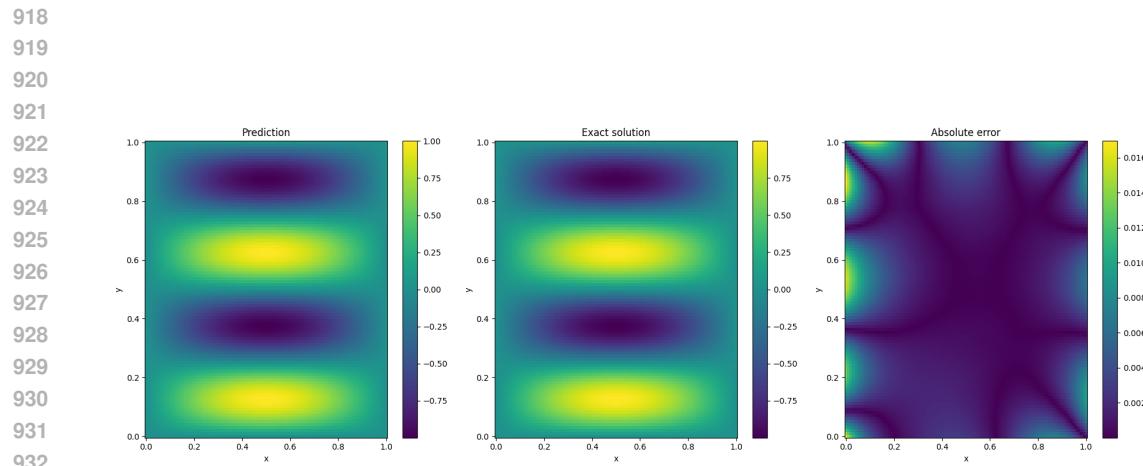


Figure 9: NGD Prediction and Analysis for the 2D Helmholtz Equation.

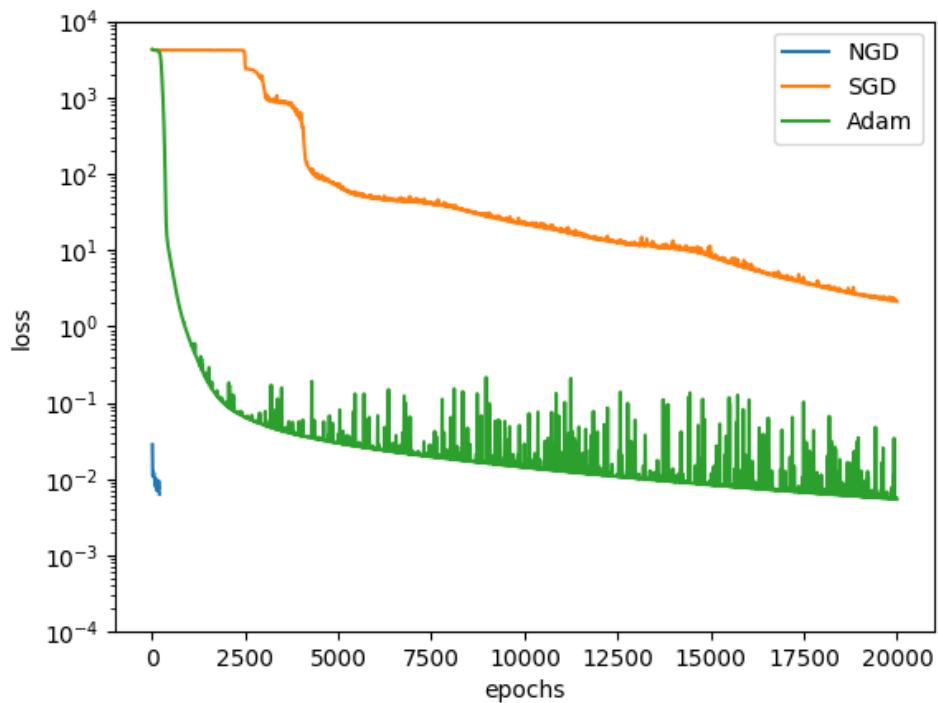


Figure 10: Loss Decay for the 2D Helmholtz Equation.

hence $f = \pi^2 u^*$. We sample $N_b = 1,000$ random points on the boundary $\partial\Omega$ and $N_f = 10,000$ random points within the domain Ω . We employ a single hidden layer model with 128 units and $\tanh(\cdot)$ activation functions across all computations. We run the NGD method for 200 epochs, while the L-BFGS method is trained for 1 epoch with a maximum of 5,000 iterations per epoch. All other optimization methods are trained for 20,000 epochs. The resulting relative L^2 -error is $9.91e-04$. It is clear that the predicted solution closely matches the reference solution, further demonstrating the superior performance of the NGD method.

A.6 TRAINING EFFICIENCY COMPARISON

For training efficiency comparison among different optimizers, we present the computational time, memory usage, and error rates for both the 2D Poisson equation and the 10D Poisson equation. Table 5 and Table 6 demonstrate that training time and memory requirements increase for all four optimizers as the problem dimension grows. Despite this, the NGD method still achieves the lowest error while maintaining comparable computational overhead.

Table 5: Training efficiency comparison for 2D Poisson equation.

Optimizers	lr	Epochs	Training efficiency	Training time	Max memory	Rel. L2 error
SGD	0.001	20,000	0.047 s/epoch	15min49s	14.62 MB	1.45e-01
Adam	0.001	20,000	0.054 s/epoch	18min2s	14.75 MB	5.32e-03
L-BFGS	-	200	0.51 s/epoch	1min41s	41.53 MB	3.17e-03
NGD	0.1	200	3.67 s/epoch	12min13s	14.75 MB	1.12e-04

Table 6: Training efficiency comparison for 10D Poisson equation.

Optimizers	lr	Epochs	Training efficiency	Training time	Max memory	Rel. L2 error
SGD	0.001	20,000	0.92 s/epoch	2h33min	328.11 MB	1.05e-02
Adam	0.001	20,000	0.95 s/epoch	2h39min	328.11 MB	2.31e-03
L-BFGS	-	200	26.1 s/epoch	1h27min	349.17 MB	nan
NGD	0.1	200	37.1 s/epoch	2h4min	328.11 MB	9.91e-04

A.7 NUMERICAL EXAMINATION FOR MULTI-LAYER PINNs

While our convergence proof is based on the two-layer PINNs for simplicity, the extension to practical multi-layer PINNs are missing. The restriction of two-layer is primarily technical: it enables precise control of the NTK evolution and allows us to rigorously establish Jacobian stability (Lemma 4.6) and global convergence (Theorem 4.7). Extending these results to deeper networks is indeed possible but significantly more involved, as it requires layer-wise coupling analysis of the NTK (as in Allen-Zhu et al., 2019). Nevertheless, we report the NGD for different layer PINNs on 2D Poisson equation, to show the NGD can converge as depth increases. We train NGD with learning rate 0.1, and each are trained with 200 epochs. Table 7 shows the convergence trends remain consistent with our theoretical predictions: NGD maintains a small relatively L^2 error for different layers, while the overall convergence slows moderately as depth increases. Especially the NGD’s memory requirements keeps almost the same as layers increased (note that the inverse of JJ^T is independent of the parameters), and the computational burden only increase almost linearly with the total parameters.

Table 7: Training comparison of NGD for different layers on 2D Poisson equation.

Hidden layers	Total parameters	Training efficiency	Training time	Max memory	Rel. L2 error
1	512	3.67 s/epoch	12min13s	14.75 MB	1.12e-04
3	33,280	8.29 s/epoch	27min37s	14.75 MB	3.41e-04
6	82,432	17.53 s/epoch	58min25s	20.17 MB	4.29e-04

1026
1027

A.8 GENERALIZATION LOSS EXAMINATION

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040

While our theoretical analysis focuses on the optimization of the training loss, the behavior of the generalization error after training is not covered by our current convergence guarantees and is beyond the scope of this work. Nevertheless, we provide an empirical study to examine how the number of collocation points affects overfitting for different optimizers in the over-parameterized regime. We consider the 2D Poisson equation and vary the total number of collocation points $N = N_f + N_b$ used to train the physics-informed loss (5). NGD is trained with a learning rate of 0.1 for 200 epochs to ensure stable convergence of the training loss. SGD and Adam are trained for 20,000 epochs with a learning rate of 1e-3, and L-BFGS is run for one epoch with a maximum of 50,000 iterations. To approximate the generalization error, we evaluate the physics-informed loss (5) on a very fine grid with $N_f = 100,000$ interior points and $N_b = 1,000$ boundary points. As shown in Table 8, increasing the number of collocation points consistently reduces the generalization error, bringing it close to the training loss. For the 2D Poisson problem considered here, using approximately $N = 5,000$ samples appears sufficient to mitigate overfitting while maintaining small generalization error across all examined optimizers.

1041
1042
1043
1044
1045
1046
1047
1048

Table 8: Generalization error comparison using different collocation points.

Optimizers	Training loss	$N = 100$	$N = 500$	$N = 1,000$	$N = 5,000$	$N = 20,000$
SGD	2.13e-03	5.80e-02	1.37e-02	1.03e-02	2.59e-03	1.68e-03
Adam	9.71e-06	1.03e-03	4.59e-04	1.24e-04	3.41e-05	1.39e-05
L-BFGS	7.74e-06	9.16e-04	4.31e-05	3.93e-05	1.02e-05	8.65e-06
NGD	2.86e-06	2.51e-04	2.04e-05	1.22e-05	2.78e-06	2.91e-06

1049

B PROOF OF SECTION 3

1050
1051

Before the proofs, we first define the event

1052
1053
1054

$$A_{ir} := \{\exists \mathbf{w} : \|\mathbf{w} - \mathbf{w}_r(0)\|_2 \leq R, I\{\mathbf{w}^T \mathbf{x}_i \geq 0\} \neq I\{\mathbf{w}_r(0)^T \mathbf{x}_i \geq 0\}\} \quad (28)$$

1055
1056
1057

for all $i \in [n]$.

Note that the event happens if and only if $|\mathbf{w}_r(0)^T \mathbf{x}_i| < \|\mathbf{x}_i\|_2 R$, thus by the anti-concentration inequality of Gaussian distribution, we have

1058
1059
1060

$$P(A_{ir}) = P_{z \sim \mathcal{N}(0, \|\mathbf{x}_i\|_2^2)}(|z| < R) = P_{z \sim \mathcal{N}(0, 1)}(|z| < R) \leq \frac{2R}{\sqrt{2\pi}}. \quad (29)$$

1061

Let $S_i = \{r \in [m] : I\{A_{ir}\} = 0\}$ and $S_i^\perp = [m] \setminus S_i$.

1062
1063

Then, we need to recall that

1064
1065
1066
1067

$$\frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r} = \frac{a_r}{\sqrt{mn_1}} \left[\sigma''(\mathbf{w}_r^T \mathbf{x}_p) w_{r0} \mathbf{x}_p + \sigma'(\mathbf{w}_r^T \mathbf{x}_p) \begin{pmatrix} 1 \\ \mathbf{0}_{d+1} \end{pmatrix} - \sigma'''(\mathbf{w}_r^T \mathbf{x}_p) \|\mathbf{w}_{r1}\|_2^2 \mathbf{x}_p - 2\sigma''(\mathbf{w}_r^T \mathbf{x}_p) \begin{pmatrix} 0 \\ \mathbf{w}_{r1} \end{pmatrix} \right] \quad (30)$$

and

1068
1069
1070

$$\frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r} = \frac{a_r}{\sqrt{mn_2}} \sigma'(\mathbf{w}_r^T \mathbf{y}_j) \mathbf{y}_j. \quad (31)$$

1071
1072

B.1 PROOF OF LEMMA 3.3

1073
1074

Proof. In the following, we aim to bound $\|\mathbf{H}(0) - \mathbf{H}^\infty\|_F$, as $\|\mathbf{H}(0) - \mathbf{H}^\infty\|_2 \leq \|\mathbf{H}(0) - \mathbf{H}^\infty\|_F$. Note that the entries of $\mathbf{H}(0) - \mathbf{H}^\infty$ have three forms as follows.

1075
1076
1077

$$\sum_{r=1}^m \left\langle \frac{\partial s_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial s_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}(0)} \left[\sum_{r=1}^m \left\langle \frac{\partial s_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial s_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right], \quad (32)$$

1078
1079

$$\sum_{r=1}^m \left\langle \frac{\partial s_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}(0)} \left[\sum_{r=1}^m \left\langle \frac{\partial s_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right] \quad (33)$$

1080

and

$$\sum_{r=1}^m \left\langle \frac{\partial h_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}} \left[\sum_{r=1}^m \left\langle \frac{\partial h_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right]. \quad (34)$$

1084

For the first form (30), to simplify the analysis, we let

1085

$$\begin{aligned} \mathbf{Z}_r(i) &= \sigma''(\mathbf{w}_r(0)^T \mathbf{x}_i) w_{r0}(0) \mathbf{x}_i + \sigma'(\mathbf{w}_r(0)^T \mathbf{x}_i) \begin{pmatrix} 1 \\ \mathbf{0}_{d+1} \end{pmatrix} \\ &\quad - \sigma'''(\mathbf{w}_r(0)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(0)\|_2^2 \mathbf{x}_p - 2\sigma''(\mathbf{w}_r(0)^T \mathbf{x}_i) \begin{pmatrix} 0 \\ \mathbf{w}_{r1}(0) \end{pmatrix} \end{aligned}$$

1090

and

1091

$$X_r(ij) = \langle \mathbf{Z}_r(i), \mathbf{Z}_r(j) \rangle,$$

1092

then

1093

$$\sum_{r=1}^m \left\langle \frac{\partial s_p(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial s_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}} \left[\sum_{r=1}^m \left\langle \frac{\partial s_p(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial s_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right] = \frac{1}{n_1 m} \sum_{r=1}^m [X_r(ij) - \mathbb{E} X_r(ij)].$$

1094

Note that $|X_r(ij)| \lesssim 1 + \|\mathbf{w}_r(0)\|_2^4$, thus

1095

$$\|X_r(ij)\|_{\psi_{\frac{1}{2}}} \lesssim 1 + \|\|\mathbf{w}_r(0)\|_2^4\|_{\psi_{\frac{1}{2}}} \lesssim 1 + \|\|\mathbf{w}_r(0)\|_2^2\|_{\psi_1}^2 \lesssim d^2.$$

1096

Here, for more details on the Orlicz norm, see the remarks after Lemma D.1.

1097

For the centered random variable, the property of $\psi_{\frac{1}{2}}$ quasi-norm implies that

1098

$$\|X_r(ij) - \mathbb{E}[X_r(ij)]\|_{\psi_{\frac{1}{2}}} \lesssim \|X_r(ij)\|_{\psi_{\frac{1}{2}}} + \|\mathbb{E}[X_r(ij)]\|_{\psi_{\frac{1}{2}}} \lesssim d^2.$$

1099

Therefore, applying Lemma D.1 yields that with probability at least $1 - \delta$,

1100

$$\left| \sum_{r=1}^m \frac{1}{m} [X_r(ij) - \mathbb{E} X_r(ij)] \right| \lesssim \frac{d^2}{\sqrt{m}} \sqrt{\log\left(\frac{1}{\delta}\right)} + \frac{d^2}{m} \left(\log\left(\frac{1}{\delta}\right) \right)^2,$$

1101

which directly yields that

1102

$$\left| \sum_{r=1}^m \left\langle \frac{\partial s_p(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial s_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}(0)} \left[\sum_{r=1}^m \left\langle \frac{\partial s_p(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial s_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right] \right| \lesssim \frac{d^2}{n_1 \sqrt{m}} \sqrt{\log\left(\frac{1}{\delta}\right)} + \frac{d^2}{n_1 m} \left(\log\left(\frac{1}{\delta}\right) \right)^2. \quad (35)$$

1103

Similarly, for the second form (31) and third form (32), we can deduce that

1104

$$\left\| \left\langle \frac{\partial s_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}(0)} \left[\left\langle \frac{\partial s_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right] \right\|_{\psi_{\frac{1}{2}}} \lesssim \frac{d^2}{\sqrt{n_1 n_2} m}$$

1105

and

1106

$$\left\| \left\langle \frac{\partial h_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}(0)} \left[\left\langle \frac{\partial h_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right] \right\|_{\psi_{\frac{1}{2}}} \lesssim \frac{d^2}{n_2 m}.$$

1107

Thus applying Lemma D.1 yields that with probability at least $1 - \delta$,

1108

$$\left| \sum_{r=1}^m \left\langle \frac{\partial s_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}(0)} \left[\sum_{r=1}^m \left\langle \frac{\partial s_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right] \right| \lesssim \frac{d^2}{\sqrt{n_1 n_2} \sqrt{m}} \sqrt{\log\left(\frac{1}{\delta}\right)} + \frac{d^2}{\sqrt{n_1 n_2} m} \log\left(\frac{1}{\delta}\right) \quad (36)$$

1109

and with probability at least $1 - \delta$,

1110

$$\left| \sum_{r=1}^m \left\langle \frac{\partial h_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle - \mathbb{E}_{\mathbf{w}(0)} \left[\sum_{r=1}^m \left\langle \frac{\partial h_i(\mathbf{w}(0))}{\partial \mathbf{w}_r}, \frac{\partial h_j(\mathbf{w}(0))}{\partial \mathbf{w}_r} \right\rangle \right] \right| \lesssim \frac{d^2}{n_2 \sqrt{m}} \sqrt{\log\left(\frac{1}{\delta}\right)} + \frac{d^2}{n_2 m} \log\left(\frac{1}{\delta}\right). \quad (37)$$

1134 Combining the above we can deduce that with probability at least $1 - \delta$,

$$\begin{aligned} & \|\mathbf{H}(0) - \mathbf{H}^\infty\|_2^2 \\ & \leq \|\mathbf{H}(0) - \mathbf{H}^\infty\|_F^2 \\ & \lesssim \frac{d^4}{m} \log\left(\frac{n_1 + n_2}{\delta}\right) + \frac{d^4}{m^2} \left(\log\left(\frac{n_1 + n_2}{\delta}\right)\right)^4 \\ & \lesssim \frac{d^4}{m} \log\left(\frac{n_1 + n_2}{\delta}\right). \end{aligned}$$

1143 Thus when $\sqrt{\frac{d^4}{m} \log\left(\frac{n_1 + n_2}{\delta}\right)} \lesssim \frac{\lambda_0}{4}$, i.e.,

$$m = \Omega\left(\frac{d^4}{\lambda_0^2} \log\left(\frac{n_1 + n_2}{\delta}\right)\right),$$

1148 we have $\lambda_{\min}(\mathbf{H}(0)) \geq \frac{3}{4}\lambda_0$.

□

1151 B.2 PROOF OF LEMMA 3.5

1153 *Proof.* We first reformulate the term $\frac{\partial s_p(k)}{\partial \mathbf{w}_r}$ in (28) as follows.

$$1154 \frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r} = \frac{a_r}{\sqrt{mn_1}} \left[\sigma''(\mathbf{w}_r^T \mathbf{x}_p) \begin{pmatrix} w_{r0}x_{p0} \\ w_{r0}\mathbf{x}_{p1} - 2\mathbf{w}_{r1} \end{pmatrix} + \sigma'(\mathbf{w}_r^T \mathbf{x}_p) \begin{pmatrix} 1 \\ \mathbf{0}_{d+1} \end{pmatrix} - \sigma'''(\mathbf{w}_r^T \mathbf{x}_p) \|\mathbf{w}_{r1}\|_2^2 \mathbf{x}_p \right].$$

1157 It suffices to bound $\|\mathbf{H}(\mathbf{w}) - \mathbf{H}(0)\|_F$, which can in turn allows us to bound each entry of $\mathbf{H}(\mathbf{w}) - \mathbf{H}(0)$.

1159 For $i \in [n_1]$ and $j \in [n_1]$, we have that

$$\begin{aligned} 1161 H_{ij}(\mathbf{w}) &= \sum_{r=1}^m \left\langle \frac{\partial s_i(\mathbf{w})}{\partial \mathbf{w}_r}, \frac{\partial s_j(\mathbf{w})}{\partial \mathbf{w}_r} \right\rangle \\ 1162 &= \frac{1}{n_1 m} \sum_{r=1}^m \left\langle \sigma''(\mathbf{w}_r^T \mathbf{x}_i) \begin{pmatrix} w_{r0}x_{i0} \\ w_{r0}\mathbf{x}_{i1} - 2\mathbf{w}_{r1} \end{pmatrix} + \sigma'(\mathbf{w}_r^T \mathbf{x}_i) \begin{pmatrix} 1 \\ \mathbf{0}_{d+1} \end{pmatrix} - \sigma'''(\mathbf{w}_r^T \mathbf{x}_i) \|\mathbf{w}_{r1}\|_2^2 \mathbf{x}_i, \right. \\ 1163 &\quad \left. \sigma''(\mathbf{w}_r^T \mathbf{x}_j) \begin{pmatrix} w_{r0}x_{j0} \\ w_{r0}\mathbf{x}_{j1} - 2\mathbf{w}_{r1} \end{pmatrix} + \sigma'(\mathbf{w}_r^T \mathbf{x}_j) \begin{pmatrix} 1 \\ \mathbf{0}_{d+1} \end{pmatrix} - \sigma'''(\mathbf{w}_r^T \mathbf{x}_j) \|\mathbf{w}_{r1}\|_2^2 \mathbf{x}_j \right\rangle \end{aligned}$$

1166 After expanding the inner product term, we can find that although it has nine terms, it only consists of
1169 six classes. For simplicity, we use the following six symbols to represent the corresponding classes.
1170

$$\sigma''\sigma'', \sigma''\sigma', \sigma'\sigma', \sigma'''\sigma'', \sigma'''\sigma', \sigma''\sigma'''.$$

1172 For instance, $\sigma''\sigma'$ represents

$$1174 \left\langle \sigma''(\mathbf{w}_r^T \mathbf{x}_i) \begin{pmatrix} w_{r0}x_{i0} \\ w_{r0}\mathbf{x}_{i1} - 2\mathbf{w}_{r1} \end{pmatrix}, \sigma'(\mathbf{w}_r^T \mathbf{x}_j) \begin{pmatrix} 1 \\ \mathbf{0}_{d+1} \end{pmatrix} \right\rangle, \left\langle \sigma'(\mathbf{w}_r^T \mathbf{x}_i) \begin{pmatrix} 1 \\ \mathbf{0}_{d+1} \end{pmatrix}, \sigma''(\mathbf{w}_r^T \mathbf{x}_j) \begin{pmatrix} w_{r0}x_{j0} \\ w_{r0}\mathbf{x}_{j1} - 2\mathbf{w}_{r1} \end{pmatrix} \right\rangle.$$

1176 In fact, when bounding the corresponding terms for $H_{ij}(\mathbf{w}) - H_{ij}(0)$, the first four classes can
1177 be grouped into one category. They are of the form $f_1(\mathbf{w})f_2(\mathbf{w})f_3(\mathbf{w})f_4(\mathbf{w})$, where for each i
1178 ($1 \leq i \leq 4$), $f_i(\mathbf{w})$ is Lipschitz continuous with respect to $\|\cdot\|_2$ and $|f_i(\mathbf{w})| \lesssim \|\mathbf{w}\|_2$ (Note that
1179 $\sigma'(\cdot) = (\sigma''(\cdot))^2$). On the other hand, when $\|\mathbf{w}_1 - \mathbf{w}_2\|_2 \leq R \leq 1$, we can deduce that

$$1180 |f_1(\mathbf{w}_1)f_2(\mathbf{w}_1)f_3(\mathbf{w}_1)f_4(\mathbf{w}_1) - f_1(\mathbf{w}_2)f_2(\mathbf{w}_2)f_3(\mathbf{w}_2)f_4(\mathbf{w}_2)| \lesssim R(\|\mathbf{w}_1\|_2^3 + 1).$$

1182 Thus, for the terms in $H_{ij}(\mathbf{w}) - H_{ij}(0)$ that belong to the first four classes, we can deduce that they
1183 are less than $CR(\|\mathbf{w}_r(0)\|_2^3 + 1)$, where C is a universal constant.

1184 For the classes $\sigma'''\sigma''$ and $\sigma'''\sigma'$, they are both involving σ''' that is not Lipschitz continuous. To
1185 make it precise, we write the class $\sigma'''\sigma''$ explicitly as follows.

$$1187 \sigma''(\mathbf{w}_r^T \mathbf{x}_i) \sigma'''(\mathbf{w}_r^T \mathbf{x}_j) \|\mathbf{w}_{r1}\|_2^2 \begin{pmatrix} w_{r0}x_{i0} \\ w_{r0}\mathbf{x}_{i1} - 2\mathbf{w}_{r1} \end{pmatrix}^T \mathbf{x}_j.$$

1188 Note that when $\|\mathbf{w}_r - \mathbf{w}_r(0)\|_2 < R$, we have that
 1189

$$1190 |\sigma'''(\mathbf{w}_r^T \mathbf{x}_j) - \sigma'''(\mathbf{w}_r(0)^T \mathbf{x}_j)| = |I\{\mathbf{w}_r^T \mathbf{x}_j \geq 0\} - I\{\mathbf{w}_r(0)^T \mathbf{x}_j \geq 0\}| \leq I\{A_{jr}\},$$

1191 where the event A_{jr} has been defined in (36).
 1192

1193 Thus, we can deduce that for the terms in $H_{ij}(\mathbf{w}) - H_{ij}(0)$ that belong to the classes $\sigma''' \sigma''$ and
 1194 $\sigma''' \sigma'$, they are less than

$$1195 C \left[(I\{A_{ir}\} + I\{A_{jr}\})(\|\mathbf{w}_r(0)\|_2^3 + 1) + R(\|\mathbf{w}_r(0)\|_2^3 + 1) \right],$$

1196 where C is a universal constant.
 1197

1198 Similarly, for the last class $\sigma''' \sigma'''$ that are of the form
 1199

$$1200 \sigma'''(\mathbf{w}_r^T \mathbf{x}_i) \sigma'''(\mathbf{w}_r^T \mathbf{x}_j) \|\mathbf{w}_{r1}\|_2^4 \mathbf{x}_i^T \mathbf{x}_j,$$

1201 we can deduce that
 1202

$$1203 |\sigma'''(\mathbf{w}_r^T \mathbf{x}_i) \sigma'''(\mathbf{w}_r^T \mathbf{x}_j) \|\mathbf{w}_{r1}\|_2^4 \mathbf{x}_i^T \mathbf{x}_j - \sigma'''(\mathbf{w}_r(0)^T \mathbf{x}_i) \sigma'''(\mathbf{w}_r(0)^T \mathbf{x}_j) \|\mathbf{w}_{r1}(0)\|_2^4 \mathbf{x}_i^T \mathbf{x}_j| \\ 1204 \lesssim I\{A_{ir} \vee A_{jr}\} \|\mathbf{w}_r(0)\|_2^4 + R(\|\mathbf{w}_r(0)\|_2^3 + 1).$$

1205 Combining the upper bounds for the terms in the six classes, we have that
 1206

$$1207 |H_{ij}(\mathbf{w}) - H_{ij}(0)| \lesssim \frac{1}{n_1} \left[\frac{1}{m} \left(R \sum_{r=1}^m \|\mathbf{w}_r(0)\|_2^3 \right) + \frac{1}{m} \sum_{r=1}^m (I\{A_{ir}\} + I\{A_{jr}\})(\|\mathbf{w}_r(0)\|_2^4 + \|\mathbf{w}_r(0)\|_2^3 + 1) + R \right] \\ 1208 \lesssim \frac{1}{n_1} \left[\frac{1}{m} \left(R \sum_{r=1}^m \|\mathbf{w}_r(0)\|_2^4 \right) + \frac{1}{m} \sum_{r=1}^m (I\{A_{ir}\} + I\{A_{jr}\})(\|\mathbf{w}_r(0)\|_2^4 + 1) + R \right], \\ 1209 \quad (38)$$

1210 where the last inequality follows from that $\|\mathbf{w}_r(0)\|_2^3 \lesssim \|\mathbf{w}_r(0)\|_2^4 + 1$ due to Young's inequality for
 1211 products.
 1212

1213 Now, we focus on the term $\frac{1}{m} \sum_{r=1}^m I\{A_{ir}\} \|\mathbf{w}_r(0)\|_2^4$.
 1214

1215 Since
 1216

$$1217 P \left(|w_{ri}(0)|^2 \geq 2 \log \left(\frac{2}{\delta} \right) \right) \leq \delta$$

1218 and then
 1219

$$1220 P \left(\|\mathbf{w}_r(0)\|_2^2 \geq 2(d+2) \log \left(\frac{2(d+2)}{\delta} \right) \right) \leq \delta.$$

1221 This implies that
 1222

$$1223 P \left(\exists r \in [m], \|\mathbf{w}_r(0)\|_2^2 \geq 2(d+2) \log \left(\frac{2m(d+2)}{\delta} \right) \right) \leq \delta. \quad (39)$$

1224 Let $M = 2(d+2) \log \left(\frac{2m(d+2)}{\delta} \right)$, then
 1225

$$1226 \frac{1}{m} \sum_{r=1}^m I\{A_{ir}\} \|\mathbf{w}_r(0)\|_2^4 \\ 1227 = \frac{1}{m} \sum_{r=1}^m I\{A_{ir}\} \|\mathbf{w}_r(0)\|_2^4 I\{\|\mathbf{w}_r(0)\|_2^2 \leq M\} + \frac{1}{m} \sum_{r=1}^m I\{A_{ir}\} \|\mathbf{w}_r(0)\|_2^4 I\{\|\mathbf{w}_r(0)\|_2^2 > M\} \\ 1228 \leq \frac{M^2}{m} \sum_{r=1}^m I\{A_{ir}\} + \frac{1}{m} \sum_{r=1}^m \|\mathbf{w}_r(0)\|_2^4 I\{\|\mathbf{w}_r(0)\|_2^2 > M\}.$$

1229 Applying Bernstein's inequality for the first term yields that with probability at least $1 - e^{-mR}$,
 1230

$$1231 \frac{1}{m} \sum_{r=1}^m I\{A_{ir}\} \leq 4R.$$

Moreover, from (39), we have that with probability at least $1 - \delta$, the second term $I\{\|\mathbf{w}_r(0)\|_2^2 > M\} = 0$ holds for all $r \in [m]$.

Thus with probability at least $1 - \delta - n_1 e^{-mR}$, we have that for any $i \in [n_1]$ and $j \in [n_1]$,

$$\begin{aligned} |H_{ij}(\mathbf{w}) - H_{ij}(0)| &\lesssim \frac{1}{n_1} [RM^2 + RM^2 + R] \\ &\lesssim \frac{1}{n_1} M^2 R. \end{aligned}$$

For $i \in [n_1], j \in [n_1 + 2, n_2]$ and $i \in [n_1 + 1, n_2], j \in [n_2]$, from the form of $\frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r}$, i.e.,

$$\frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r} = \frac{a_r}{\sqrt{n_2 m}} \sigma'(\mathbf{w}_r^T \mathbf{y}_j) \mathbf{y}_j,$$

we can obtain similar results for the terms $\left\langle \frac{\partial s_i}{\partial \mathbf{w}}, \frac{\partial h_j}{\partial \mathbf{w}} \right\rangle$ and $\left\langle \frac{\partial h_i}{\partial \mathbf{w}}, \frac{\partial h_j}{\partial \mathbf{w}} \right\rangle$.

With all results above, we have that with probability at least $1 - \delta - n_1 e^{-mR}$,

$$\|\mathbf{H}(\mathbf{w}) - \mathbf{H}(0)\|_F \lesssim M^2 R.$$

□

B.3 PROOF OF LEMMA B.1

Indeed, the stringent requirement of the learning rate in Du et al. (2018) stems from an inadequate decomposition method for the residual. Specifically, in Gao et al. (2023), the decomposition for the residual in the $(k + 1)$ -th iteration is same as the one in Du et al. (2018), i.e.,

$$\begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} = \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} + \left[\begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} - \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right], \quad (40)$$

which leads to the requirements that $\eta = \mathcal{O}(\lambda_0)$ and $m = \text{Poly}(n_1, n_2, 1/\delta)$. Thus, it requires a new approach to achieve the improvements for η and m . In fact, we can derive the following recursion formula.

Lemma B.1. *For all $k \in \mathbb{N}$, we have*

$$\begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} = (\mathbf{I} - \eta \mathbf{H}(k)) \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} + \mathbf{I}_1(k), \quad (41)$$

where

$$\mathbf{I}_1(k) = (I_1^1(k), \dots, I_1^{n_1+n_2}(k))^T \in \mathbb{R}^{n_1+n_2}$$

and for $p \in [n_1]$,

$$I_1^p(k) = s_p(k+1) - s_p(k) - \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle, \quad (42)$$

for $j \in [n_2]$,

$$I_1^{n_1+j}(k) = h_j(k+1) - h_j(k) - \left\langle \frac{\partial h_j(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle. \quad (43)$$

In the recursion formula (39), $\mathbf{I}_1(k)$ serves as a residual term. From the proof, we can see that $\|\mathbf{I}_1(k)\|_2 = \mathcal{O}(1/\sqrt{m})$ and thus, as m becomes large enough, only the term $\mathbf{I} - \eta \mathbf{H}(k)$ is significant. This observation is the reason for the requirement of η .

Proof. First, we have

$$\begin{aligned} s_p(k+1) - s_p(k) &= \left[s_p(k+1) - s_p(k) - \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle \right] + \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle \\ &:= I_1^p(k) + I_2^p(k). \end{aligned} \quad (44)$$

For the second term $I_2^p(k)$, from the updating rule of gradient descent, we have that

$$\begin{aligned}
I_2^p(k) &= \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle \\
&= \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}}, -\eta \frac{\partial L(k)}{\partial \mathbf{w}} \right\rangle \\
&= -\sum_{r=1}^m \eta \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}_r}, \frac{\partial L(k)}{\partial \mathbf{w}_r} \right\rangle \\
&= -\sum_{r=1}^m \eta \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}_r}, \sum_{t=1}^{n_1} s_t(k) \frac{\partial s_t(k)}{\partial \mathbf{w}_r} + \sum_{j=1}^{n_2} h_j(k) \frac{\partial h_j(k)}{\partial \mathbf{w}_r} \right\rangle \\
&= -\eta \left[\sum_{t=1}^{n_1} \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}_r}, \frac{\partial s_t(k)}{\partial \mathbf{w}_r} \right\rangle s_t(k) + \sum_{j=1}^{n_2} \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}_r}, \frac{\partial h_j(k)}{\partial \mathbf{w}_r} \right\rangle h_j(k) \right] \\
&= -\eta [\mathbf{H}(k)]_p \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix},
\end{aligned} \tag{45}$$

where $[\mathbf{H}(k)]_p$ denotes the p -row of $\mathbf{H}(k)$.

Similarly, for $h(k)$, we have

$$\begin{aligned}
h_j(k+1) - h_j(k) &= \left[h_j(k+1) - h_j(k) - \left\langle \frac{\partial h_j(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle \right] + \left\langle \frac{\partial h_j(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle \\
&:= I_1^{n_1+j}(k) + I_2^{n_1+j}(k)
\end{aligned} \tag{46}$$

and

$$I_2^{n_1+j}(k) = -\eta[\mathbf{H}(k)]_{n_1+j} \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix}. \quad (47)$$

Combining (42), (43), (44) and (45) yields that

$$\begin{aligned} \begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} - \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} &= \mathbf{I}_1(k) + \mathbf{I}_2(k) \\ &= \mathbf{I}_1(k) - \eta \mathbf{H}(k) \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix}. \end{aligned}$$

A simple transformation directly leads to

$$\begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} = (\mathbf{I} - \eta \mathbf{H}(k)) \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} + \mathbf{I}_1(k),$$

which is exactly (39), the new recursion formula we need to prove.

B.4 PROOF OF THEOREM 3.7

Similar to Du et al. (2018) and Gao et al. (2023), we prove Theorem 3.7 by induction. Our induction hypothesis is the following convergence rate of the empirical loss and upper bounds for the weights.

Condition 2. At the t -th iteration, we have that for each $r \in [m]$, $\|\mathbf{w}_r(t)\|_2 < B$ and

$$L(t) \leq \left(1 - \frac{\eta\lambda_0}{2}\right)^t L(0), \quad (48)$$

where $B = \sqrt{2(d+2) \log\left(\frac{2m(d+2)}{\delta}\right)} + 1$ and $L(k)$ is an abbreviation of $L(\mathbf{w}(k))$.

From the update formula of gradient descent, we can directly derive the following corollary, which indicates that under over-parameterization, the weights are closed to their initializations.

1350 **Corollary B.2.** *If Condition 2 holds for $t = 0, \dots, k$, then we have for every $r \in [m]$,*

$$1352 \quad \|\mathbf{w}_r(k+1) - \mathbf{w}_r(0)\|_2 \leq \frac{CB^2\sqrt{L(0)}}{\sqrt{m}\lambda_0} := R', \quad (49)$$

1354 where C is a universal constant.

1355 **Proof Sketch:** Assume that Condition 2 holds for $t = 0, \dots, k$, it suffices to demonstrate that
1356 Condition 2 also holds for $t = k+1$.
1357

1358 From the recursion formula (40), we have that

$$1359 \quad \begin{aligned} & \left\| \begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} \right\|_2^2 \\ 1360 &= \left\| (\mathbf{I} - \eta \mathbf{H}(k)) \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} + \mathbf{I}_1(k) \right\|_2^2 \\ 1362 &\leq \|\mathbf{I} - \eta \mathbf{H}(k)\|_2^2 \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2^2 + \|\mathbf{I}_1(k)\|_2^2 + 2 \|\mathbf{I} - \eta \mathbf{H}(k)\|_2 \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2 \|\mathbf{I}_1(k)\|_2, \end{aligned} \quad (50)$$

1366 where the inequality follows from the Cauchy's inequality.
1367

1368 Combining Corollary B.2 with Lemma 3.5, we can deduce that when m is large enough, we have
1369 $\|\mathbf{H}(k) - \mathbf{H}(0)\|_2 \leq \lambda_0/4$. Thus, $\lambda_{\min}(\mathbf{H}(k)) \geq \lambda_0/2$ and $\mathbf{I} - \eta \mathbf{H}(k)$ is positive definite
1370 when $\eta = \mathcal{O}(1/\|\mathbf{H}^\infty\|_2)$. On the other hand, with Corollary B.2, we can derive that $\|\mathbf{I}_1(k)\|_2 =$
1371 $\mathcal{O}(\eta\sqrt{L(k)}/\sqrt{m})$. Plugging these results into (48), we have

$$1372 \quad \begin{aligned} & \left\| \begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} \right\|_2^2 \\ 1373 &= \left(\left(1 - \frac{\eta\lambda_0}{2} \right)^2 + \mathcal{O}\left(\frac{\eta^2}{m}\right) + \mathcal{O}\left(\frac{\eta}{\sqrt{m}}\right) \right) \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2^2 \\ 1375 &\leq \left(1 - \frac{\eta\lambda_0}{2} \right) \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2^2, \end{aligned} \quad (51)$$

1380 where the last inequality holds when m is large enough.
1381

1382 Now we come to prove Theorem 3.7.
1383

1384 *Proof.* Corollary B.2 implies that when m is large enough, we have $\|\mathbf{w}_r(k+1) - \mathbf{w}_r(0)\|_2 \leq 1$ and
1385 then $\|\mathbf{w}_r(k+1)\|_2 \leq B$. Thus, in induction, we only need to prove that (46) also holds for $t = k+1$,
1386 which relies on the recursion formula (49).
1387

1388 Recall that the recursion formula is
1389

$$\begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} = (\mathbf{I} - \eta \mathbf{H}(k)) \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} + \mathbf{I}_1(k).$$

1390 From Corollary B.2 and Lemma 3.5, taking $CM^2R < \frac{\lambda_0}{4}$ in (8) and $R' \leq R$ in (47) yields that
1391 $\lambda_{\min}(\mathbf{H}(k)) \geq \lambda_{\min}(\mathbf{H}(0)) - \frac{\lambda_0}{4} \geq \frac{\lambda_0}{2}$ and
1392

$$1393 \quad \|\mathbf{H}(k)\|_2 \leq \|\mathbf{H}(0)\|_2 + \frac{\lambda_0}{4} \leq \|\mathbf{H}^\infty\|_2 + \frac{\lambda_0}{2} \leq \frac{3}{2} \|\mathbf{H}^\infty\|_2.$$

1395 Therefore, if we take $\eta \leq \frac{2}{3} \frac{1}{\|\mathbf{H}^\infty\|_2}$, then $\mathbf{I} - \eta \mathbf{H}(k)$ is positive definite and $\|\mathbf{I} - \eta \mathbf{H}(k)\|_2 \leq 1 - \frac{\eta\lambda_0}{2}$.
1396

1397 Combining these facts with the recursion formula, we have that
1398

$$1399 \quad \begin{aligned} & \left\| \begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} \right\|_2^2 \\ 1400 &= \left\| (\mathbf{I} - \eta \mathbf{H}(k)) \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2^2 + \|\mathbf{I}_1(k)\|_2^2 + 2 \left\langle (\mathbf{I} - \eta \mathbf{H}(k)) \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix}, \mathbf{I}_1(k) \right\rangle \\ 1401 &\leq \left(1 - \frac{\eta\lambda_0}{2} \right)^2 \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2^2 + \|\mathbf{I}_1(k)\|_2^2 + 2 \left(1 - \frac{\eta\lambda_0}{2} \right) \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2 \|\mathbf{I}_1(k)\|_2. \end{aligned} \quad (52)$$

1404 Thus, it remains only to bound $\|\mathbf{I}_1(k)\|_2$.
 1405

1406 For $\mathbf{I}_1(k)$, recall that $\mathbf{I}_1(k) = (I_1^1(k), \dots, I_1^{n_1}(k), I_1^{n_1+1}(k), \dots, I_1^{n_1+n_2}(k))^T \in \mathbb{R}^{n_1+n_2}$ and for
 1407 $p \in [n_1]$,

$$1408 \quad I_1^p(k) = s_p(k+1) - s_p(k) - \left\langle \frac{\partial s_p(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle,$$

1410 for $j \in [n_2]$,

$$1412 \quad I_1^{n_1+j}(k) = h_j(k+1) - h_j(k) - \left\langle \frac{\partial h_j(k)}{\partial \mathbf{w}}, \mathbf{w}(k+1) - \mathbf{w}(k) \right\rangle.$$

1414 Recall that

$$1416 \quad s_p(k) = \frac{1}{\sqrt{n_1}} \left(\frac{1}{\sqrt{m}} \left(\sum_{r=1}^m a_r \sigma'(\mathbf{w}_r(k)^T \mathbf{x}_p) w_{r0}(k) - a_r \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k)\|_2^2 \right) - f(x_p) \right)$$

1419 and

$$1420 \quad \frac{\partial s_p(k)}{\partial \mathbf{w}_r} = \frac{a_r}{\sqrt{n_1 m}} \left[\sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) w_{r0}(k) \mathbf{x}_p + \sigma'(\mathbf{w}_r(k)^T \mathbf{x}_p) \begin{pmatrix} 1 \\ \mathbf{0}_{d+2} \end{pmatrix} - \sigma'''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k)\|_2^2 \mathbf{x}_p \right. \\ 1421 \quad \left. - 2\sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \begin{pmatrix} 0 \\ \mathbf{w}_{r1}(k) \end{pmatrix} \right].$$

1425 Define $\chi_{pr}^1(k) := \sigma'(\mathbf{w}_r(k)^T \mathbf{x}_p) w_{r0}(k)$ and $\chi_{pr}^2(k) := \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k)\|_2^2$, i.e., $\chi_{pr}^1(k)$ and
 1426 $\chi_{pr}^2(k)$ are related to the operators $\frac{\partial u}{\partial t}$ and Δu respectively.

1427 Then define

$$1430 \quad \hat{\chi}_{pr}^1(k) = \chi_{pr}^1(k+1) - \chi_{pr}^1(k) - \left\langle \frac{\partial \chi_{pr}^1(k)}{\partial \mathbf{w}_r}, \mathbf{w}_r(k+1) - \mathbf{w}_r(k) \right\rangle$$

1433 and

$$1434 \quad \hat{\chi}_{pr}^2(k) = \chi_{pr}^2(k+1) - \chi_{pr}^2(k) - \left\langle \frac{\partial \chi_{pr}^2(k)}{\partial \mathbf{w}_r}, \mathbf{w}_r(k+1) - \mathbf{w}_r(k) \right\rangle.$$

1436 At this time, we have

$$1438 \quad I_1^p(k) = \frac{1}{\sqrt{n_1 m}} \sum_{r=1}^m a_r [\hat{\chi}_{pr}^1(k) - \hat{\chi}_{pr}^2(k)].$$

1440 The purpose of defining $\hat{\chi}_{pr}^1(k)$ and $\hat{\chi}_{pr}^2(k)$ in this way is to enable us to handle the terms related to
 1441 the operators $\frac{\partial u}{\partial t}$ and Δu separately.

1442 We first recall some definitions. For $p \in [n_1]$,

$$1444 \quad A_{p,r} = \{\exists \mathbf{w} : \|\mathbf{w} - \mathbf{w}_r(0)\|_2 \leq R, I\{\mathbf{w}^T \mathbf{x}_p \geq 0\} \neq I\{\mathbf{w}_r(0)^T \mathbf{x}_p \geq 0\}\}$$

1446 and $S_p = \{r \in [m] : I\{A_{p,r} = 0\}\}, S_p^\perp = [n_1] \setminus S_p$.

1447 In the following, we are going to show that $|\hat{\chi}_{pr}^1(k)| = \mathcal{O}(\|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2)$ for every $r \in [m]$
 1448 and $|\hat{\chi}_{pr}^2(k)| = \mathcal{O}(\|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2)$ for $r \in S_p$, $|\hat{\chi}_{pr}^2(k)| = \mathcal{O}(\|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2)$ for
 1449 $r \in S_p^\perp$. Thus, we can prove that $\|\mathbf{I}_1(k)\|_2 = \mathcal{O}\left(\frac{\sqrt{L(k)}}{\sqrt{m}}\right)$. Then combining with (69) leads to the
 1450 conclusion.

1452 For $\hat{\chi}_{pr}^1(k)$, from its definition, we have that

$$1455 \quad \hat{\chi}_{pr}^1(k) = \sigma'(\mathbf{w}_r(k+1)^T \mathbf{x}_p) w_{r0}(k+1) - \sigma'(\mathbf{w}_r(k)^T \mathbf{x}_p) w_{r0}(k) \\ 1456 \quad - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) w_{r0}(k) - (w_{r0}(k+1) - w_{r0}(k)) \sigma'(\mathbf{w}_r(k)^T \mathbf{x}_p) \\ 1457 \quad = (\sigma'(\mathbf{w}_r(k+1)^T \mathbf{x}_p) - \sigma'(\mathbf{w}_r(k)^T \mathbf{x}_p)) w_{r0}(k+1) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) w_{r0}(k).$$

1458 From the mean value theorem, we can deduce that there exists $\zeta(k) \in \mathbb{R}$ such that
 1459
 1460 $\sigma'(\mathbf{w}_r(k+1)^T \mathbf{x}_p) - \sigma'(\mathbf{w}_r(k)^T \mathbf{x}_p) = \sigma''(\zeta(k)) \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle$
 1461 and
 1462 $|\sigma''(\zeta(k)) - \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p)| \leq |\zeta(k) - \mathbf{w}_r(k)^T \mathbf{x}_p|$
 1463 $\leq \sqrt{2} \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2.$

1464 Then, for $\hat{\chi}_{pr}^1(k)$, we can rewrite it as follows.
 1465
 1466 $\hat{\chi}_{pr}^1(k) = \sigma''(\zeta(k)) \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle w_{r0}(k+1) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) w_{r0}(k)$
 1467 $= \left[\left(\sigma''(\zeta(k)) - \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \right) \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle w_{r0}(k+1) \right]$
 1468 $+ \left[\langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) (w_{r0}(k+1) - w_{r0}(k)) \right].$
 1469
 1470

1471 This implies that
 1472

$$|\hat{\chi}_{pr}^1(k)| \lesssim B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2.$$

1473 For $\hat{\chi}_{pr}^2(k)$, we write it as follows explicitly.
 1474

$$\begin{aligned} \hat{\chi}_{pr}^2(k) &= \sigma''(\mathbf{w}_r(k+1)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k+1)\|_2^2 - \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k)\|_2^2 \\ &\quad - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma'''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k)\|_2^2 \\ &\quad - 2 \langle \mathbf{w}_{r1}(k+1) - \mathbf{w}_{r1}(k), \mathbf{w}_{r1}(k) \rangle \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p). \end{aligned} \quad (53)$$

1475 Note that for the term $\sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k)\|_2^2$, we can rewrite it as follows.
 1476
 1477

$$\begin{aligned} \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k)\|_2^2 &= \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k) - \mathbf{w}_{r1}(k+1) + \mathbf{w}_{r1}(k+1)\|_2^2 \\ &= \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) [\|\mathbf{w}_{r1}(k) - \mathbf{w}_{r1}(k+1)\|_2^2 + \|\mathbf{w}_{r1}(k+1)\|_2^2 - 2 \langle \mathbf{w}_{r1}(k+1) - \mathbf{w}_{r1}(k), \mathbf{w}_{r1}(k+1) \rangle], \end{aligned} \quad (54)$$

1478 where the first term $\sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k) - \mathbf{w}_{r1}(k+1)\|_2^2 = \mathcal{O}(B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2)$.
 1479
 1480

1481 Plugging (52) into (51) yields that
 1482

$$\begin{aligned} \hat{\chi}_{pr}^2(k) &= [\sigma''(\mathbf{w}_r(k+1)^T \mathbf{x}_p) - \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p)] \|\mathbf{w}_{r1}(k+1)\|_2^2 \\ &\quad - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma'''(\mathbf{w}_r(k)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(k)\|_2^2 \\ &\quad + 2 \langle \mathbf{w}_{r1}(k+1) - \mathbf{w}_{r1}(k), \mathbf{w}_{r1}(k+1) - \mathbf{w}_{r1}(k) \rangle \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) + \mathcal{O}(B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2) \\ &= [\sigma''(\mathbf{w}_r(k+1)^T \mathbf{x}_p) - \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma'''(\mathbf{w}_r(k)^T \mathbf{x}_p)] \|\mathbf{w}_{r1}(k+1)\|_2^2 \\ &\quad + \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma'''(\mathbf{w}_r(k)^T \mathbf{x}_p) (\|\mathbf{w}_{r1}(k+1)\|_2^2 - \|\mathbf{w}_{r1}(k)\|_2^2) \\ &\quad + \mathcal{O}(B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2) \\ &= [\sigma''(\mathbf{w}_r(k+1)^T \mathbf{x}_p) - \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma'''(\mathbf{w}_r(k)^T \mathbf{x}_p)] \|\mathbf{w}_{r1}(k+1)\|_2^2 \\ &\quad + \mathcal{O}(B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2). \end{aligned} \quad (55)$$

1483 Thus, we only need to consider the term
 1484

$$\sigma''(\mathbf{w}_r(k+1)^T \mathbf{x}_p) - \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma'''(\mathbf{w}_r(k)^T \mathbf{x}_p).$$

1485 For $r \in S_p$, since $\|\mathbf{w}_r(k+1) - \mathbf{w}_r(0)\|_2 \leq R$, $\|\mathbf{w}_r(k) - \mathbf{w}_r(0)\|_2 \leq R$, we have that $I\{\mathbf{w}_r(k+1)^T \mathbf{x}_p \geq 0\} = I\{\mathbf{w}_r(k)^T \mathbf{x}_p \geq 0\}$, which yields that
 1486

$$\begin{aligned} \sigma''(\mathbf{w}_r(k+1)^T \mathbf{x}_p) - \sigma''(\mathbf{w}_r(k)^T \mathbf{x}_p) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle \sigma'''(\mathbf{w}_r(k)^T \mathbf{x}_p) &= [(\mathbf{w}_r(k+1)^T \mathbf{x}_p) I\{\mathbf{w}_r(k+1)^T \mathbf{x}_p \geq 0\} - (\mathbf{w}_r(k)^T \mathbf{x}_p) I\{\mathbf{w}_r(k)^T \mathbf{x}_p \geq 0\}] \\ &\quad - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle I\{\mathbf{w}_r(k)^T \mathbf{x}_p \geq 0\} \\ &= [(\mathbf{w}_r(k+1)^T \mathbf{x}_p) I\{\mathbf{w}_r(k)^T \mathbf{x}_p \geq 0\} - (\mathbf{w}_r(k)^T \mathbf{x}_p) I\{\mathbf{w}_r(k)^T \mathbf{x}_p \geq 0\}] \\ &\quad - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{x}_p \rangle I\{\mathbf{w}_r(k)^T \mathbf{x}_p \geq 0\} \\ &= 0. \end{aligned} \quad (56)$$

1512 For $r \in S_p^\perp$, the Lipschitz continuity of σ'' implies that
 1513

1517 Combining (53), (54) and (55), we can deduce that for $r \in S_p$,

$$|\hat{\chi}_{pr}^2(k)| \lesssim B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2$$

1520 and for $r \in S_p^\perp$,
 1521

$$|\hat{\chi}_{nr}^2(k)| \lesssim B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2 + B^2 \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2.$$

1525 With the estimations for $\hat{\chi}_{pr}^1(k)$ and $\hat{\chi}_{pr}^2(k)$, we have

$$\begin{aligned}
|I_1^p(k)| &\leq \frac{1}{\sqrt{n_1 m}} \sum_{r=1}^m (|\hat{\chi}_{pr}^1(k)| + |\hat{\chi}_{pr}^2(k)|) \\
&\lesssim \frac{1}{\sqrt{n_1 m}} \sum_{r=1}^m B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2 + \frac{1}{\sqrt{n_1 m}} \sum_{r \in S_p^\perp} B^2 \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2.
\end{aligned} \tag{58}$$

1534 For $j \in [n_2]$, we consider $I_1^{n_1+j}(k)$, which can be written as follows.

$$\begin{aligned}
1535 \\
1536 \quad I_1^{n_1+j}(k) &= h_j(k+1) - h_j(k) - \left\langle \mathbf{w}(k+1) - \mathbf{w}(k), \frac{\partial h_j(k)}{\partial \mathbf{w}} \right\rangle \\
1537 \\
1538 \quad &= \sum_{r=1}^m \frac{a_r}{\sqrt{n_2 m}} \left[\sigma(\mathbf{w}_r(k+1)^T \mathbf{y}_j) - \sigma(\mathbf{w}_r(k)^T \mathbf{y}_j) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{y}_j \rangle \sigma'(\mathbf{w}_r(k)^T \mathbf{y}_j) \right]. \\
1539 \\
1540
\end{aligned}$$

From the mean value theorem, we have that there exists $\zeta(k) \in \mathbb{R}$ such that

$$\sigma(\mathbf{w}_r(k+1)^T \mathbf{y}_i) - \sigma(\mathbf{w}_r(k)^T \mathbf{y}_i) = \sigma'(\zeta(k)) \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{y}_i \rangle$$

1545 and

$$|\sigma'(\zeta(k)) - \sigma'(\mathbf{w}_r(k)^T \mathbf{y}_j)| \leq 2B|\zeta(k) - \mathbf{w}_r(k)^T \mathbf{y}_j| \leq 2\sqrt{2B}\|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2.$$

1550 Thus

$$\begin{aligned}
& |\sigma(\mathbf{w}_r(k+1)^T \mathbf{y}_j) - \sigma(\mathbf{w}_r(k)^T \mathbf{y}_j) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{y}_j \rangle \sigma'(\mathbf{w}_r(k)^T \mathbf{y}_j)| \\
&= |\sigma'(\zeta(k)) \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{y}_j \rangle - \sigma(\mathbf{w}_r(k)^T \mathbf{y}_j) - \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{y}_j \rangle \sigma'(\mathbf{w}_r(k)^T \mathbf{y}_j)| \\
&= |(\sigma'(\zeta(k)) - \sigma'(\mathbf{w}_r(k)^T \mathbf{y}_j)) \langle \mathbf{w}_r(k+1) - \mathbf{w}_r(k), \mathbf{y}_j \rangle| \\
&\lesssim B \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2.
\end{aligned}$$

Therefore, for $i \in [n_2]$

$$|I_1^{n_1+j}(k)| \lesssim \frac{B}{\sqrt{n_2 m}} \sum_{r=1}^m \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2. \quad (59)$$

1563 From the updating rule of gradient descent, we can deduce that for every $r \in [m]$

$$\| \mathbf{w}_r(k+1) - \mathbf{w}_r(k) \|_2 = \left\| -\eta \frac{\partial L(k)}{\partial \mathbf{w}_r} \right\| \lesssim \frac{\eta B^2}{\sqrt{\gamma}} \sqrt{L(k)}. \quad (60)$$

1566 Plugging (58) into (57) and (56), we can deduce that
1567

$$\begin{aligned}
1568 \quad |I_1^p(k)| &\lesssim \frac{B}{\sqrt{n_1 m}} \sum_{r=1}^m \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2 + \frac{B^2}{\sqrt{n_1 m}} \sum_{r \in S_p^\perp} \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2 \\
1569 \\
1570 \\
1571 \quad &\lesssim \frac{B}{\sqrt{n_1 m}} \sum_{r=1}^m \frac{\eta^2 B^4}{m} L(k) + \frac{B^2}{\sqrt{n_1 m}} \sum_{r \in S_p^\perp} \frac{\eta B^2}{\sqrt{m}} \sqrt{L(k)} \\
1572 \\
1573 \\
1574 \quad &= \frac{\eta^2 B^5 L(k)}{\sqrt{n_1 m}} + \frac{\eta B^4 \sqrt{L(k)}}{\sqrt{n_1}} \frac{1}{m} \sum_{r=1}^m I\{r \in S_p^\perp\} \\
1575 \\
1576 \\
1577 \quad &\leq \frac{\eta^2 B^5 \sqrt{L(0)} \sqrt{L(k)}}{\sqrt{n_1 m}} + \frac{\eta B^4 \sqrt{L(k)}}{\sqrt{n_1}} \frac{1}{m} \sum_{r=1}^m I\{r \in S_p^\perp\} \\
1578 \\
1579
\end{aligned} \tag{61}$$

1580 and

$$\begin{aligned}
1581 \quad |I_1^{n_1+j}(k)| &\lesssim \frac{B}{\sqrt{n_2 m}} \sum_{r=1}^m \|\mathbf{w}_r(k+1) - \mathbf{w}_r(k)\|_2^2 \\
1582 \\
1583 \\
1584 \quad &\lesssim \frac{B}{\sqrt{n_2 m}} \sum_{r=1}^m \frac{\eta^2 B^4}{m} L(k) \\
1585 \\
1586 \quad &\leq \frac{\eta^2 B^5 \sqrt{L(0)} \sqrt{L(k)}}{\sqrt{n_2 m}}. \\
1587 \\
1588
\end{aligned} \tag{62}$$

1589 Note that

$$P(A_{p,r}) \leq \frac{2R}{\sqrt{2\pi}}, \quad S_p = \{r \in [m] : I\{A_{p,r}\} = 0\}.$$

1590 Thus, from Bernstein's inequality, we have that with probability at least $1 - e^{-mR}$,
1591

$$\frac{1}{m} \sum_{r=1}^m I\{r \in S_p^\perp\} = \frac{1}{m} \sum_{r=1}^m I\{A_{pr}\} \lesssim 4R.$$

1592 Then the inequality holds for all $p \in [n_1]$ with probability at least $1 - n_1 e^{-mR}$. Plugging this into
1593 (59), we can conclude that for every $p \in [n_1]$

$$|I_1^p(k)| \lesssim \frac{\eta^2 B^5 \sqrt{L(0)} \sqrt{L(k)}}{\sqrt{n_1 m}} + \frac{\eta B^4 \sqrt{L(k)}}{\sqrt{n_1}} R. \tag{63}$$

1601 Combining (60) and (61), we have that

$$\begin{aligned}
1602 \quad \|\mathbf{I}_1(k)\|_2 &= \sqrt{\sum_{p=1}^{n_1} |I_1^p(k)|^2 + \sum_{j=1}^{n_2} |I_1^{n_1+j}(k)|^2} \\
1603 \\
1604 \\
1605 \quad &\lesssim \frac{\eta^2 B^5 \sqrt{L(0)} \sqrt{L(k)}}{\sqrt{m}} + \eta B^4 \sqrt{L(k)} R. \\
1606 \\
1607 \\
1608
\end{aligned}$$

1609 Plugging this into (50) yields that

$$\begin{aligned}
1610 \quad &\left\| \begin{pmatrix} \mathbf{s}(k+1) \\ \mathbf{h}(k+1) \end{pmatrix} \right\|_2^2 \\
1611 \\
1612 \\
1613 \quad &\leq \left(1 - \frac{\eta \lambda_0}{2}\right)^2 \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2^2 + \|\mathbf{I}_1(k)\|_2^2 + 2 \left(1 - \frac{\eta \lambda_0}{2}\right) \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2 \|\mathbf{I}_1(k)\|_2 \\
1614 \\
1615 \\
1616 \quad &\leq \left[\left(1 - \frac{\eta \lambda_0}{2}\right)^2 + C^2 \left(\frac{\eta^2 B^5 \sqrt{L(0)}}{\sqrt{m}} + \eta B^4 R \right)^2 + 2C \left(\frac{\eta^2 B^5 \sqrt{L(0)}}{\sqrt{m}} + \eta B^4 R \right) \right] \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2^2 \\
1617 \\
1618 \\
1619 \quad &\leq \left(1 - \frac{\eta \lambda_0}{2}\right) \left\| \begin{pmatrix} \mathbf{s}(k) \\ \mathbf{h}(k) \end{pmatrix} \right\|_2^2,
\end{aligned}$$

1620 where C is a universal constant and the last inequality requires that
1621

$$1622 \frac{\eta^2 B^5 \sqrt{L(0)}}{\sqrt{m}} \lesssim \eta \lambda_0, \quad \eta B^4 R \lesssim \eta \lambda_0.$$

1623 Recall that we also require $CM^2R < \frac{\lambda_0}{4}$ for R in (8) and
1624

$$1625 R' = \frac{CB^2 \sqrt{L(0)}}{\sqrt{m} \lambda_0} < R$$

1626 for R' in (47) to make sure $\|\mathbf{H}(k) - \mathbf{H}(0)\|_2 \leq \frac{\lambda_0}{4}$.
1627

1628 Finally, with $R = \mathcal{O}(\frac{\lambda_0}{M^2})$ and the upper bound of $L(0)$, m needs to satisfies that
1629

$$1630 m = \Omega\left(\frac{M^4 B^4 L(0)}{\lambda_0^4}\right) = \Omega\left(\frac{d^8}{\lambda_0^4} \log^6\left(\frac{md}{\delta}\right) \log\left(\frac{n_1 + n_2}{\delta}\right)\right).$$

1631 \square
1632

1633 C PROOF OF SECTION 4

1634 C.1 PROOF OF LEMMA 4.4

1635 *Proof.* Recall that
1636

$$1637 \mathbf{H}(\mathbf{w}) = \mathbf{D}^T \mathbf{D}, \quad \mathbf{D} = \left[\frac{\partial s_1(\mathbf{w})}{\partial \mathbf{w}}, \dots, \frac{\partial s_{n_1}(\mathbf{w})}{\partial \mathbf{w}}, \frac{\partial h_1(\mathbf{w})}{\partial \mathbf{w}}, \dots, \frac{\partial h_{n_2}(\mathbf{w})}{\partial \mathbf{w}} \right],$$

1638 and $\mathbf{H}^\infty = \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \mathbf{H}(\mathbf{w})$.
1639

1640 We denote $\varphi(\mathbf{x}; \mathbf{w}) = \sigma'(\mathbf{w}^T \mathbf{x}) w_0 - \sigma''(\mathbf{w}^T \mathbf{x}) \|\mathbf{w}_1\|_2^2$, where $\mathbf{w} = (w_0, \mathbf{w}_1^T)^T$, $w_0 \in \mathbb{R}$, $\mathbf{w}_1 \in \mathbb{R}^d$,
1641 then

$$1642 \frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r} = \frac{1}{\sqrt{n_1}} \frac{a_r}{\sqrt{m}} \frac{\partial \varphi(\mathbf{x}_p; \mathbf{w}_r)}{\partial \mathbf{w}_r}.$$

1643 Similarly, we denote $\psi(\mathbf{y}; \mathbf{w}) = \sigma(\mathbf{w}^T \mathbf{y})$, then
1644

$$1645 \frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r} = \frac{1}{\sqrt{n_2}} \frac{a_r}{\sqrt{m}} \frac{\partial \psi(\mathbf{y}_j; \mathbf{w}_r)}{\partial \mathbf{w}_r}.$$

1646 With the notations, we can deduce that
1647

$$1648 H_{p,j}^\infty = \begin{cases} \frac{1}{n_1} \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left\langle \frac{\partial \varphi(\mathbf{x}_p; \mathbf{w})}{\partial \mathbf{w}}, \frac{\partial \varphi(\mathbf{x}_j; \mathbf{w})}{\partial \mathbf{w}} \right\rangle, & 1 \leq p \leq n_1, 1 \leq j \leq n_1, \\ \frac{1}{\sqrt{n_1 n_2}} \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left\langle \frac{\partial \varphi(\mathbf{x}_p; \mathbf{w})}{\partial \mathbf{w}}, \frac{\partial \psi(\mathbf{y}_j; \mathbf{w})}{\partial \mathbf{w}} \right\rangle, & 1 \leq p \leq n_1, n_1 + 1 \leq j \leq n_1 + n_2, \\ \frac{1}{n_2} \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left\langle \frac{\partial \psi(\mathbf{y}_p; \mathbf{w})}{\partial \mathbf{w}}, \frac{\partial \psi(\mathbf{y}_j; \mathbf{w})}{\partial \mathbf{w}} \right\rangle, & n_1 + 1 \leq p \leq n_1 + n_2, n_1 + 1 \leq j \leq n_1 + n_2, \end{cases}$$

1648 where $H_{p,j}^\infty$ is the (p, j) -th entry of \mathbf{H}^∞ .
1649

1650 The proof of this lemma requires tools from functional analysis. Let \mathcal{H} be a Hilbert space of integrable
1651 $(d+2)$ -dimensional vector fields on \mathbb{R}^{d+2} , i.e., $f \in \mathcal{H}$ if $\mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\|f(\mathbf{w})\|_2^2] < \infty$. The inner
1652 product for any two elements f, g in \mathcal{H} is $\mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} [\langle f(\mathbf{w}), g(\mathbf{w}) \rangle]$. Thus, proving \mathbf{H}^∞ is strictly
1653 positive definite is equivalent to show that
1654

$$1655 \frac{\partial \varphi(\mathbf{x}_1; \mathbf{w})}{\partial \mathbf{w}}, \dots, \frac{\partial \varphi(\mathbf{x}_{n_1}; \mathbf{w})}{\partial \mathbf{w}}, \frac{\partial \psi(\mathbf{y}_1; \mathbf{w})}{\partial \mathbf{w}}, \dots, \frac{\partial \psi(\mathbf{y}_{n_2}; \mathbf{w})}{\partial \mathbf{w}} \in \mathcal{H}$$

1656 are linearly independent. Suppose that there are $\alpha_1, \dots, \alpha_{n_1}, \beta_1, \dots, \beta_{n_2} \in \mathbb{R}$ such that
1657

$$1658 \alpha_1 \frac{\partial \varphi(\mathbf{x}_1; \mathbf{w})}{\partial \mathbf{w}} + \dots + \alpha_{n_1} \frac{\partial \varphi(\mathbf{x}_{n_1}; \mathbf{w})}{\partial \mathbf{w}} + \beta_1 \frac{\partial \psi(\mathbf{y}_1; \mathbf{w})}{\partial \mathbf{w}} + \dots + \beta_{n_2} \frac{\partial \psi(\mathbf{y}_{n_2}; \mathbf{w})}{\partial \mathbf{w}} = 0 \text{ in } \mathcal{H}.$$

1674 This implies that

$$1676 \quad \alpha_1 \frac{\partial \varphi(\mathbf{x}_1; \mathbf{w})}{\partial \mathbf{w}} + \cdots + \alpha_{n_1} \frac{\partial \varphi(\mathbf{x}_{n_1}; \mathbf{w})}{\partial \mathbf{w}} + \beta_1 \frac{\partial \psi(\mathbf{y}_1; \mathbf{w})}{\partial \mathbf{w}} + \cdots + \beta_{n_2} \frac{\partial \psi(\mathbf{y}_{n_2}; \mathbf{w})}{\partial \mathbf{w}} = 0 \quad (64)$$

1678 holds for all $\mathbf{w} \in \mathbb{R}^{d+1}$, as $\sigma(\cdot)$ is smooth.

1679 First, we compute the derivatives of φ and ψ with respect to \mathbf{w} . For the k -th derivative of $\psi(\mathbf{y}; \mathbf{w})$
1680 with respect to \mathbf{w} , we have

$$1681 \quad \frac{\partial^k \psi(\mathbf{y}; \mathbf{w})}{\partial \mathbf{w}^k} = \sigma^{(k)}(\mathbf{w}^T \mathbf{y}) \mathbf{y}^{\otimes(k)},$$

1683 where \otimes denotes the tensor product.

1684 For $\varphi(\mathbf{x}; \mathbf{w})$, let $\varphi_0(\mathbf{x}; \mathbf{w}) = \sigma'(\mathbf{w}^T \mathbf{x}) w_0$ and $\varphi_i(\mathbf{x}; \mathbf{w}) = \sigma''(\mathbf{w}^T \mathbf{x}) w_i^2$ for $1 \leq i \leq d$. Then

$$1686 \quad \varphi(\mathbf{x}; \mathbf{w}) = \varphi_0(\mathbf{x}; \mathbf{w}) - \sum_{i=1}^d \varphi_i(\mathbf{x}; \mathbf{w}).$$

1689 For the k -th derivative of $\varphi_0(\mathbf{x}; \mathbf{w})$ with respect to \mathbf{w} , analogous to the Leibniz rule for the k -th
1690 derivative of the product of two scalar functions, we have

$$1692 \quad \frac{\partial^k \varphi_0(\mathbf{x}; \mathbf{w})}{\partial \mathbf{w}^k} = \sigma^{(k+1)}(\mathbf{w}^T \mathbf{x}) w_0 \mathbf{x}^{\otimes(k)} + \sum_{i=1}^k \mathbf{x}^{\otimes(i-1)} \otimes \mathbf{e}_0 \otimes \mathbf{x}^{\otimes(k-i)} \sigma^{(k)}(\mathbf{w}^T \mathbf{x}) \\ 1693 \quad = \sigma^{(k+1)}(\mathbf{w}^T \mathbf{x}) w_0 \mathbf{x}^{\otimes(k)} + \sigma^{(k)}(\mathbf{w}^T \mathbf{x}) \sum_{i=1}^k \mathbf{e}_0^{(i)} \otimes \mathbf{x}^{\otimes(k)}, \quad (65)$$

1698 where $\mathbf{e}_0 = (1, 0, \dots, 0)^T \in \mathbb{R}^{d+1}$ and in the second equality, $\mathbf{e}_0^{(i)}$ denotes that \mathbf{e}_0 is placed at the
1699 i -th position.

1700 Similarly, for $\varphi_i(\mathbf{x}; \mathbf{w})$ where $1 \leq i \leq d$, taking $i = 1$ as example, we have

$$1702 \quad \frac{\partial^k \varphi_1(\mathbf{x}; \mathbf{w})}{\partial \mathbf{w}^k} = \sigma^{(k+2)}(\mathbf{w}^T \mathbf{x}) w_1^2 \mathbf{x}^{\otimes(k)} + 2k w_1 \sigma^{(k+1)}(\mathbf{w}^T \mathbf{x}) \sum_{i=1}^k \mathbf{e}_1^{(i)} \otimes \mathbf{x}^{\otimes(k-1)} \\ 1703 \quad + k(k-1) \sigma^{(k)}(\mathbf{w}^T \mathbf{x}) \sum_{1 \leq i < j \leq k} \mathbf{e}_1^{(i)} \otimes \mathbf{e}_1^{(j)} \otimes \mathbf{x}^{\otimes(k-2)}, \quad (66)$$

1707 where $\mathbf{e}_i \in \mathbb{R}^{d+1}$ is a vector with the $(i+1)$ -th component equal to 1 and all other components equal
1708 to 0, and $\mathbf{e}_1^{(i)}$ indicates that \mathbf{e}_1 is placed at the i -th position.

1710 By combining the derivatives of $\varphi_0(\mathbf{x}; \mathbf{w}), \dots, \varphi_d(\mathbf{x}; \mathbf{w})$ from equations (65) and (66), we can
1711 compute the k -th derivative of $w_0 \sigma'(\mathbf{w}^T \mathbf{x}) - \sum_{i=1}^d w_i^2 \sigma''(\mathbf{w}^T \mathbf{x})$ as follows:

$$1714 \quad \frac{\partial^k \varphi(\mathbf{x}; \mathbf{w})}{\partial \mathbf{w}^k} = \frac{\partial^k \varphi_0(\mathbf{x}; \mathbf{w})}{\partial \mathbf{w}^k} - \sum_{i=1}^d \frac{\partial^k \varphi_i(\mathbf{x}; \mathbf{w})}{\partial \mathbf{w}^k} \\ 1715 \quad = w_0 \sigma^{(k+1)}(\mathbf{w}^T \mathbf{x}) \mathbf{x}^{\otimes(k)} + \sigma^{(k)}(\mathbf{w}^T \mathbf{x}) \sum_{i=1}^k \mathbf{e}_0^{(i)} \otimes \mathbf{x}^{\otimes(k)} \\ 1717 \quad - \sum_{t=1}^d \left[w_t^2 \sigma^{(k+2)}(\mathbf{w}^T \mathbf{x}) \mathbf{x}^{\otimes(k)} + 2k w_t \sigma^{(k+1)}(\mathbf{w}^T \mathbf{x}) \sum_{i=1}^k \mathbf{e}_t^{(i)} \otimes \mathbf{x}^{\otimes(k-1)} \right. \\ 1719 \quad \left. + k(k-1) \sigma^{(k)}(\mathbf{w}^T \mathbf{x}) \sum_{1 \leq i < j \leq k} \mathbf{e}_t^{(i)} \otimes \mathbf{e}_t^{(j)} \otimes \mathbf{x}^{\otimes(k-2)} \right]. \quad (67)$$

1726 Note that when any two points in $\{\mathbf{x}_1, \dots, \mathbf{x}_{n_1}, \mathbf{y}_1, \dots, \mathbf{y}_{n_2}\}$ are non-parallel, the tensors

$$1727 \quad \mathbf{x}_1^{\otimes(n_1+n_2)}, \dots, \mathbf{x}_{n_1}^{\otimes(n_1+n_2)}, \mathbf{y}_1^{\otimes(n_1+n_2)}, \dots, \mathbf{y}_{n_2}^{\otimes(n_1+n_2)}$$

1728 are linearly independent (see Lemma G.6 in Du et al. (2019)). This observation motivates us to take
 1729 the $(k-1)$ -th derivative of both sides of equation (64) with respect to \mathbf{w} , yielding
 1730

$$1731 \alpha_1 \frac{\partial^k \varphi(\mathbf{x}_1; \mathbf{w})}{\partial \mathbf{w}^k} + \cdots + \alpha_{n_1} \frac{\partial^k \varphi(\mathbf{x}_{n_1}; \mathbf{w})}{\partial \mathbf{w}^k} + \beta_1 \frac{\partial^k \psi(\mathbf{y}_1; \mathbf{w})}{\partial \mathbf{w}^k} + \cdots + \beta_{n_2} \frac{\partial^k \psi(\mathbf{y}_{n_2}; \mathbf{w})}{\partial \mathbf{w}^k} = 0. \quad (68)$$

1733 Since this equation holds for all $\mathbf{w} \in \mathbb{R}^{d+1}$, we specifically consider $\mathbf{w} = (w_0, \mathbf{0}_d)$, where w_0 is to
 1734 be determined. Under this condition, equation (68) becomes
 1735

$$1736 1737 w_0 \sum_{p=1}^{n_1} \alpha_p \left[\sigma^{(k+1)}(w_0 x_p^0) \mathbf{x}_p^{\otimes(k)} \right] + \sum_{p=1}^{n_1} \alpha_p \left[\sigma^{(k)}(w_0 x_p^0) \mathbf{z}_p \right] + \sum_{j=1}^{n_2} \beta_j \left[\sigma^{(k)}(w_0 y_j^0) \mathbf{y}_j^{\otimes(k)} \right] = 0, \quad (69)$$

1739 where the tensor \mathbf{z}_p is defined as
 1740

$$1741 1742 \mathbf{z}_p = \sum_{i=1}^k \mathbf{e}_0^{(i)} \otimes \mathbf{x}_p^{\otimes(k)} - k(k-1) \sum_{t=1}^d \sum_{1 \leq i < j \leq k} \mathbf{e}_t^{(i)} \otimes \mathbf{e}_t^{(j)} \otimes \mathbf{x}_p^{\otimes(k-2)}. \quad (70)$$

1745 By assumption, for any positive integer $n \geq 0$ we have $\lim_{x \rightarrow +\infty} \frac{\sigma^{(n)}(x)}{\phi(x)} = c_n \neq 0$. We first consider
 1746 the case where all input components satisfy $x_1^0 = \cdots = x_{n_1}^0 = y_1^0 = \cdots = y_{n_2}^0 = a > 0$. Under this
 1747 condition, equation (69) simplifies to:
 1748

$$1750 1751 w_0 \sigma^{(k+1)}(w_0 a) \left[\sum_{p=1}^{n_1} \alpha_p \mathbf{x}_p^{\otimes(k)} \right] + \sigma^{(k)}(w_0 a) \left[\sum_{p=1}^{n_1} \alpha_p \mathbf{z}_p \right] + \sigma^{(k)}(w_0 a) \left[\sum_{j=1}^{n_2} \beta_j \mathbf{y}_j^{\otimes(k)} \right] = 0. \quad (71)$$

1753 Dividing both sides of equation (71) by $\phi(w_0 a)$ yields
 1754

$$1755 1756 w_0 \frac{\sigma^{(k+1)}(w_0 a)}{\phi(w_0 a)} \left[\sum_{p=1}^{n_1} \alpha_p \mathbf{x}_p^{\otimes(k)} \right] + \frac{\sigma^{(k)}(w_0 a)}{\phi(w_0 a)} \left[\sum_{p=1}^{n_1} \alpha_p \mathbf{z}_p \right] + \frac{\sigma^{(k)}(w_0 a)}{\phi(w_0 a)} \left[\sum_{j=1}^{n_2} \beta_j \mathbf{y}_j^{\otimes(k)} \right] = 0. \quad (72)$$

1759 Now taking the limit as w_0 tends to positive infinity, we observe that $\frac{\sigma^{(k)}(w_0 a)}{\phi(w_0 a)}$ converges to a non-zero
 1760 constant, while $w_0 \frac{\sigma^{(k+1)}(w_0 a)}{\phi(w_0 a)}$ diverges to infinity. This asymptotic behavior leads to the following
 1761 conclusions:
 1762

$$1763 1764 \sum_{p=1}^{n_1} \alpha_p \mathbf{x}_p^{\otimes(k)} = 0, \sum_{p=1}^{n_1} \alpha_p \mathbf{z}_p + \sum_{j=1}^{n_2} \beta_j \mathbf{y}_j^{\otimes(k)} = 0. \quad (73)$$

1766 By the linear independence of the tensor products (established earlier), we can deduce that $\alpha_p = 0$
 1767 for all $p = 1, \dots, n_1$, which subsequently implies $\sum_{j=1}^{n_2} \beta_j \mathbf{y}_j^{\otimes(k)} = 0$ and thus $\beta_j = 0$ for all
 1768 $j = 1, \dots, n_2$.
 1769

1770 When our previous assumption does not hold—that is, when $x_1^0, \dots, x_{n_1}^0, y_1^0, \dots, y_{n_2}^0$ are not necessarily all equal—we proceed as follows:
 1771

1772 Case 1: All elements are strictly positive.
 1773

1774 Let $b = \min\{x_1^0, \dots, x_{n_1}^0, y_1^0, \dots, y_{n_2}^0\}$. Dividing both sides of (68) by $\phi(w_0 b)$, we observe that for
 1775 any $x > b$,

$$1776 1777 \lim_{w_0 \rightarrow +\infty} \frac{\sigma^{(n)}(w_0 x)}{\phi(w_0 b)} = 0.$$

1778 Thus, the problem reduces to the previously considered case where all inputs are equal (to b). Due
 1779 to linear independence, the coefficients α_p and β_j corresponding to the minimal b must vanish.
 1780 Repeating this process iteratively, we conclude that all α_p and β_j must be zero.
 1781

Case 2: Some elements are zero.

1782 Since the \mathbf{x}_p are interior points (and thus non-zero), any zero-valued inputs must correspond to
 1783 boundary or initial conditions. Let us assume without loss of generality that $y_1^0, \dots, y_{n_2}^0$ are all zero.
 1784

1785 1. If $\sigma^{(k)}(0) = 0$, then following our previous method, we can conclude that the coefficients
 1786 corresponding to non-zero inputs vanish. Returning to equation (68), we have

$$1787 \sum_{j=1}^{n_2} \beta_j \sigma^{(k)}(\mathbf{w}^T \mathbf{y}_j) \mathbf{y}_j^{\otimes(k)} = 0. \quad (74)$$

1790 By the independence of $\mathbf{y}_1, \dots, \mathbf{y}_{n_2}$, we can deduce that $\beta_j \sigma^{(k)}(\mathbf{w}^T \mathbf{y}_j) = 0$ holds for all $j \in [n_2]$.
 1791 From the assumption, we can select \mathbf{w} such that $\sigma^{(k)}(\mathbf{w}^T \mathbf{y}_j) \neq 0$, and consequently, $\beta_j = 0$ holds
 1792 for all $j \in [n_2]$.
 1793

1794 2. If $\sigma^{(k)}(0) \neq 0$, let b be the smallest strictly positive value among $x_1^0, \dots, x_{n_1}^0, y_1^0, \dots, y_{n_2}^0$. Divide
 1795 (71) by $\phi(w_0 b/2)$. Since all other positive terms decay to zero as $w_0 \rightarrow +\infty$, we obtain:

$$1796 \lim_{w_0 \rightarrow \infty} \sum_{j=1}^{n_2} \beta_j \sigma^{(k)}(0) \mathbf{y}_j^{\otimes(k)} / \phi(w_0 b/2) = 0. \quad (75)$$

1799 1800 This implies that $\sum_{j=1}^{n_2} \beta_j \mathbf{y}_j^{\otimes(k)} = 0$. By linear independence, all $\beta_j = 0$. \square
 1801

1802 **Remark C.1.** The key point in the proof lies in the fact that the order of the PDE in the interior is
 1803 higher than that of the initial and boundary conditions, allowing for a natural extension to broader
 1804 classes of PDEs. For general PDEs, we may focus solely on the interior and boundary, assuming the
 1805 interior is of second order and the boundary is of first order. Suppose the second-order interior term
 1806 is taken at x_0 , i.e., it has the form $\frac{\partial^2 u}{\partial x_0^2}$, and the first-order boundary term is also taken at x_0 . Since we
 1807 can translate the coordinates, without loss of generality, we can assume that all x_0 -components are
 1808 positive.

1809 1810 For the interior, taking the k -th derivative of $w_0^2 \sigma^{(2)}(\mathbf{w}^T \mathbf{x})$ yields that

$$1811 \begin{aligned} 1812 w_0^2 \sigma^{(k+2)}(\mathbf{w}^T \mathbf{x}) \mathbf{x}^{\otimes(k)} &+ 2k w_0 \sigma^{(k+1)}(\mathbf{w}^T \mathbf{x}) \sum_{i=1}^k \mathbf{e}_1^{(i)} \otimes \mathbf{x}^{\otimes(k-1)} \\ 1813 &+ k(k-1) \sigma^{(k)}(\mathbf{w}^T \mathbf{x}) \sum_{1 \leq i < j \leq k} \mathbf{e}_0^{(i)} \otimes \mathbf{e}_0^{(j)} \otimes \mathbf{x}^{\otimes(k-2)}. \end{aligned}$$

1817 1818 For the boundary, taking the k -th derivative of $w_0 \sigma^{(1)}(\mathbf{w}^T \mathbf{x})$ yields that

$$1819 \sigma^{(k+1)}(\mathbf{w}^T \mathbf{x}) w_0 \mathbf{x}^{\otimes(k)} + \sigma^{(k)}(\mathbf{w}^T \mathbf{x}) \sum_{i=1}^k \mathbf{e}_0^{(i)} \otimes \mathbf{x}^{\otimes(k)}.$$

1822 1823 As before, we set $\mathbf{w} = (w_0, \mathbf{0})$. Then, the equation (69) becomes

$$1824 \begin{aligned} 1825 w_0^2 \sum_{p=1}^{n_1} \alpha_p \left[\sigma^{(k+1)}(w_0 x_p^0) \mathbf{x}_p^{\otimes(k)} \right] &+ w_0 \sum_{p=1}^{n_1} \alpha_p \left[\sigma^{(k)}(w_0 x_p^0) \mathbf{z}_p^0 \right] + \sum_{p=1}^{n_1} \alpha_p \left[\sigma^{(k)}(w_0 x_p^0) \mathbf{z}_p^1 \right] \\ 1826 &+ w_0 \sum_{j=1}^{n_2} \beta_j \left[\sigma^{(k)}(w_0 y_j^0) \mathbf{y}_j^{\otimes(k)} \right] + \sum_{j=1}^{n_2} \beta_j \left[\sigma^{(k)}(w_0 y_j^0) \mathbf{z}_j^2 \right] = 0, \end{aligned}$$

1830 1831 where $\mathbf{z}_p^0, \mathbf{z}_p^1, \mathbf{z}_j^2$ are tensors of similar form \mathbf{z}_p in (70), whose explicit definitions are omitted for
 1832 simplicity. Dividing both sides by $w_0 \phi(w_0 x_p^0)$ reduces it to the form considered earlier. We can
 1833 therefore conclude that the Gram matrix is strictly positive definite. Indeed, since the orders of the
 1834 interior and boundary terms in the partial differential equation differ, we can relax the conditions in
 1835 Lemma 4.4 to simply requiring that no two samples in $\{\mathbf{x}_p\}_{p=1}^{n_1}$ are parallel and no two samples in
 1836 $\{\mathbf{y}_j\}_{j=1}^{n_2}$ are parallel. In brief, we can set $k = n_1 - 1$ and $k = n_2 - 1$ in equation (68), and then use
 1837 the method described above.

1836 **Remark C.2.** For the activation functions $\sin(x)$ and $\cos(x)$, in equation (69), we may assume that
 1837 $\sigma^{(k+1)}(x) = \sin(x)$, $\sigma^{(k)}(x) = -\cos(x)$. Dividing both sides of equation (69) by w_0 and letting
 1838 $w_0 \rightarrow +\infty$, we can obtain

$$1839 \lim_{w_0 \rightarrow +\infty} \sum_{p=1}^{n_1} \alpha_p \left[\sin(w_0 x_p^0) \mathbf{x}_p^{\otimes(k)} \right] = 0.$$

1842 We express the general form of the components of the tensor above as

$$1844 \sum_{p=1}^{n_1} \alpha_p c_p \sin(w_0 x_p^0) = \sum_{i=1}^n a_i \sin(w_0 b_i),$$

1847 where the $b_i > 0$ are distinct and c_p denotes the components of the tensor $\mathbf{x}_p^{\otimes(k)}$. For simplicity, we
 1848 denote w_0 as x . To prove that $\sum_{p=1}^{n_1} \alpha_p \mathbf{x}_p^{\otimes(k)} = 0$, we need to show that any component of this tensor
 1849 is zero, i.e., its general form satisfies $\sum_{p=1}^{n_1} \alpha_p c_p = 0$. This is equivalent to proving $\sum_{i=1}^n a_i = 0$.

1852 Let $f(x) = \sum_{i=1}^n a_i \sin(b_i x)$, note that dividing both sides of equation (69) by w_0 yields that $f(x) =$
 1854 $\mathcal{O}(1/x)$. Thus, we can consider the average energy of $f^2(x)$ over the interval $[T, T+L]$, i.e.,

$$1856 \frac{1}{L} \int_T^{T+L} f^2(x) dx.$$

1858 Expanding this, we obtain

$$1860 \frac{1}{L} \int_T^{T+L} \left(\sum_{i=1}^n a_i \sin(b_i x) \right)^2 dx \\ 1861 = \frac{1}{L} \int_T^{T+L} \left[\sum_{i=1}^n a_i^2 \sin^2(b_i x) + \sum_{i \neq j} a_i a_j \sin(b_i x) \sin(b_j x) \right] dx \\ 1862 \\ 1863 = \frac{1}{2} \sum_{i=1}^n a_i^2 - \frac{1}{L} \sum_{i=1}^n \frac{\sin(2b_i(T+L)) - \sin(2b_i T)}{4b_i} \\ 1864 \\ 1865 + \frac{1}{L} \sum_{i \neq j} a_i a_j \frac{\sin((b_i - b_j)(T+L)) - \sin((b_i - b_j)T)}{2(b_i - b_j)} \\ 1866 \\ 1867 - \frac{1}{L} \sum_{i \neq j} a_i a_j \frac{\sin((b_i + b_j)(T+L)) - \sin((b_i + b_j)T)}{2(b_i + b_j)}.$$

1874 Taking the limits $L \rightarrow +\infty$ and $T \rightarrow +\infty$ in the above equation, the right-hand side tends to $\frac{1}{2} \sum_{i=1}^n a_i^2$.

1876 Regarding the left-hand side, recall that $f(x) = \mathcal{O}(1/x)$, thus for any $\epsilon > 0$, there exists T_0 such that
 1877 for all $x > T_0$, $|f(x)| < \epsilon$. Therefore, for $T > T_0$ and any L , we have

$$1879 \frac{1}{L} \int_T^{T+L} f^2(x) dx \leq \epsilon^2.$$

1881 By the arbitrariness of ϵ , we can deduce that

$$1883 \lim_{T,L \rightarrow +\infty} \frac{1}{L} \int_T^{T+L} f^2(x) dx = 0.$$

1885 Hence, we can deduce that $\frac{1}{2} \sum_{i=1}^n a_i^2 = 0$, which implies that $\sum_{i=1}^n a_i = 0$, i.e., $\sum_{p=1}^{n_1} \alpha_p c_p = 0$. Finally,
 1886 we obtain

$$1889 \sum_{p=1}^{n_1} \alpha_p \mathbf{x}_p^{\otimes(k)} = 0.$$

1890 Applying the same approach as before, we conclude that $\alpha_p = 0$ for all $p \in [n_1]$ and $\beta_j = 0$ for all
 1891 $j \in [n_2]$.
 1892

1893 **C.2 PROOF OF LEMMA 4.6**
 1894

1895 *Proof.* Recall that

$$\begin{aligned} \frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r} &= \frac{a_r}{\sqrt{n_1 m}} \left[\sigma''(\mathbf{w}_r^T \mathbf{x}_p) w_{r0} \mathbf{x}_p + \sigma'(\mathbf{w}_r^T \mathbf{x}_p) \begin{pmatrix} 1 \\ \mathbf{0}_{d+1} \end{pmatrix} - \sigma'''(\mathbf{w}_r^T \mathbf{x}_p) \|\mathbf{w}_{r1}\|_2^2 \mathbf{x}_p \right. \\ &\quad \left. - 2\sigma''(\mathbf{w}_r^T \mathbf{x}_p) \begin{pmatrix} 0 \\ \mathbf{w}_{r1} \end{pmatrix} \right] \end{aligned}$$

1901 and

$$\frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r} = \frac{a_r}{\sqrt{n_2 m}} \sigma'(\mathbf{w}_r^T \mathbf{y}_j) \mathbf{y}_j.$$

1904 (1) When $\sigma(\cdot)$ is the ReLU³ activation function.

1905 From the form of $\frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r}$, we can deduce that

$$\begin{aligned} &\left\| \frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r} - \frac{\partial s_p(0)}{\partial \mathbf{w}_r} \right\|_2 \\ &\lesssim \frac{1}{\sqrt{n_1 m}} [R(\|\mathbf{w}_r(0)\|_2 + 1) + |I\{\mathbf{w}_r^T \mathbf{x}_p \geq 0\} - I\{\mathbf{w}_r(0)^T \mathbf{x}_p \geq 0\}|(\|\mathbf{w}_r(0)\|_2^2 + 1)] \quad (76) \\ &\leq \frac{1}{\sqrt{n_1 m}} [R(\|\mathbf{w}_r(0)\|_2 + 1) + I\{A_{pr}\}(\|\mathbf{w}_r(0)\|_2^2 + 1)], \end{aligned}$$

1914 where the second inequality follows from the fact $\|\mathbf{w} - \mathbf{w}_r(0)\|_2 < R \leq 1$ and the definition of A_{pr}
 1915 in (28).

1916 Similarly, we have that

$$\left\| \frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r} - \frac{\partial h_j(0)}{\partial \mathbf{w}_r} \right\|_2 \lesssim \frac{1}{\sqrt{n_2 m}} R(\|\mathbf{w}_r(0)\|_2 + 1). \quad (77)$$

1920 Combining the above equations, we can deduce that

$$\begin{aligned} &\|\mathbf{J}(\mathbf{w}) - \mathbf{J}(0)\|_2^2 \\ &\leq \|\mathbf{J}(\mathbf{w}) - \mathbf{J}(0)\|_F^2 \\ &= \sum_{i=1}^{n_1+n_2} \|\mathbf{J}_i(\mathbf{w}) - \mathbf{J}_i(0)\|_2^2 \\ &= \sum_{r=1}^m \left(\sum_{p=1}^{n_1} \left\| \frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r} - \frac{\partial s_p(0)}{\partial \mathbf{w}_r} \right\|_2^2 + \sum_{j=1}^{n_2} \left\| \frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r} - \frac{\partial h_j(0)}{\partial \mathbf{w}_r} \right\|_2^2 \right) \\ &\lesssim \sum_{r=1}^m \left(\sum_{p=1}^{n_1} \frac{1}{n_1 m} (R(\|\mathbf{w}_r(0)\|_2 + 1) + I\{A_{pr}\}(\|\mathbf{w}_r(0)\|_2^2 + 1))^2 + \sum_{j=1}^{n_2} \frac{1}{n_2 m} (R\|\mathbf{w}_r(0)\|_2 + R)^2 \right) \\ &\lesssim \frac{R^2}{m} \sum_{r=1}^m (\|\mathbf{w}_r(0)\|_2^2 + 1) + \frac{1}{n_1 m} \sum_{p=1}^{n_1} \sum_{r=1}^m I\{A_{pr}\}(\|\mathbf{w}_r(0)\|_2^4 + 1) \\ &= \frac{R^2}{m} \sum_{r=1}^m (\|\mathbf{w}_r(0)\|_2^2 + 1) \\ &\quad + \frac{1}{n_1 m} \sum_{p=1}^{n_1} \sum_{r=1}^m I\{A_{pr}\} (\|\mathbf{w}_r(0)\|_2^4 I\{\|\mathbf{w}_r(0)\|_2^2 \leq M\} + \|\mathbf{w}_r(0)\|_2^4 I\{\|\mathbf{w}_r(0)\|_2^2 > M\} + 1) \\ &\lesssim \frac{R^2}{m} \sum_{r=1}^m (\|\mathbf{w}_r(0)\|_2^2 + 1) + \frac{M^2}{n_1 m} \sum_{p=1}^{n_1} \sum_{r=1}^m I\{A_{pr}\} + \frac{1}{m} \sum_{r=1}^m \|\mathbf{w}_r(0)\|_2^4 I\{\|\mathbf{w}_r(0)\|_2^2 > M\}, \end{aligned}$$

1944 where $M = 2(d+2) \log(2m(d+2)/\delta)$. Note that from (39), we have
 1945

$$1946 P \left(\exists r \in [m], \|\mathbf{w}_r(0)\|_2^2 \geq 2(d+2) \log \left(\frac{2m(d+2)}{\delta} \right) \right) \leq \delta.$$

1948 On the other hand, applying Bernstein's inequality yields that with probability at least $1 - n_1 e^{-mR}$,
 1949

$$1950 \frac{1}{m} \sum_{r=1}^m I\{A_{pr}\} < 4R$$

1953 holds for all $p \in [n_1]$.
 1954

1955 Therefore, we have that

$$1956 \|\mathbf{J}(\mathbf{w}) - \mathbf{J}(0)\|_2^2 \lesssim MR^2 + R^2 + M^2R \lesssim M^2R$$

1957 holds with probability at least $1 - \delta - n_1 e^{-mR}$.
 1958

1959 (2) Note that when σ satisfies Assumption 4.3, σ' , σ'' and σ''' are all Lipschitz continuous and
 1960 bounded. Thus, we can obtain that

$$1961 \left\| \frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r} - \frac{\partial s_p(0)}{\partial \mathbf{w}_r} \right\|_2 \lesssim \frac{1}{\sqrt{n_1 m}} R(\|\mathbf{w}_r(0)\|_2^2 + \|\mathbf{w}_r(0)\|_2 + 1) \lesssim \frac{1}{\sqrt{n_1 m}} R(\|\mathbf{w}_r(0)\|_2^2 + 1), \quad (78)$$

1964 where the second inequality is from Young's inequality.
 1965

1966 Similarly, we have

$$1967 \left\| \frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r} - \frac{\partial h_j(0)}{\partial \mathbf{w}_r} \right\|_2 \lesssim \frac{1}{\sqrt{n_2 m}} R(\|\mathbf{w}_r(0)\|_2 + 1). \quad (79)$$

1970 Combining the above equations yields that
 1971

$$1972 \|\mathbf{J}(\mathbf{w}) - \mathbf{J}(0)\|_2^2 \\ 1973 \leq \sum_{r=1}^m \left(\sum_{p=1}^{n_1} \left\| \frac{\partial s_p(\mathbf{w})}{\partial \mathbf{w}_r} - \frac{\partial s_p(0)}{\partial \mathbf{w}_r} \right\|_2^2 + \sum_{j=1}^{n_2} \left\| \frac{\partial h_j(\mathbf{w})}{\partial \mathbf{w}_r} - \frac{\partial h_j(0)}{\partial \mathbf{w}_r} \right\|_2^2 \right) \\ 1974 \lesssim \sum_{r=1}^m \left(\sum_{p=1}^{n_1} \frac{1}{n_1 m} (R\|\mathbf{w}_r(0)\|_2^2 + R)^2 + \sum_{j=1}^{n_2} \frac{1}{n_2 m} (R\|\mathbf{w}_r(0)\|_2 + R)^2 \right) \\ 1975 \lesssim \frac{R^2}{m} \sum_{r=1}^m (\|\mathbf{w}_r(0)\|_2^4 + 1) \\ 1976 \lesssim R^2 \left[d^2 + \frac{d^2}{\sqrt{m}} \sqrt{\log \left(\frac{1}{\delta} \right)} + \frac{d^2}{m} \left(\log \left(\frac{1}{\delta} \right) \right)^2 \right],$$

1986 where the last inequality follows from the fact that $\|\|\mathbf{w}_r(0)\|_2^4\|_{\psi_{\frac{1}{2}}} \lesssim d^2$ and Lemma D.1. \square
 1987

1988 C.3 PROOF OF THEOREM 4.7

1990 For the sake of completeness in the proof, we restate Condition 1 and Corollary 4.11 from the main
 1991 text, and label them as Condition 3 and Corollary C.3, respectively.

1992 **Condition 3.** At the t -th iteration, we have $\|\mathbf{w}_r(t)\|_2 \leq B$ and
 1993

$$1994 \|\mathbf{w}_r(t) - \mathbf{w}_r(0)\|_2 \leq \frac{CB^2 \sqrt{L(0)}}{\sqrt{m} \lambda_0} := R'$$

1995 for all $r \in [m]$, where C is a universal constant and $B = \sqrt{2(d+2) \log \left(\frac{2m(d+2)}{\delta} \right)} + 1$.
 1996

1998 **Corollary C.3.** If Condition 3 holds for $t = 0, \dots, k$ and $R' \leq R$ and $R'' \lesssim \sqrt{1-\eta}\sqrt{\lambda_0}$, then
 1999

$$2000 \quad L(t) \leq (1-\eta)^t L(0),$$

2001 holds for $t = 0, \dots, k$, where R is the constant in Lemma 4.5 and $R'' = CM\sqrt{R}$ in (16) when σ is
 2002 the ReLU³ activation function, $R'' = CdR$ in (18) when σ satisfies Assumption 4.3.
 2003

2004 Thanks to Corollary C.3, it is sufficient to prove that Condition 3 also holds for $t = k + 1$. For
 2005 readability, we defer the proof of Corollary C.3 to the end of this section. In the following, we
 2006 are going to show that the Condition 3 also holds for $t = k + 1$, thus combining Condition 3 and
 2007 Corollary C.3 leads to Theorem 4.7.
 2008

2009 Sketch Proof of Theorem 4.7. First, let $\mathbf{u}(t) = \begin{pmatrix} \mathbf{s}(t) \\ \mathbf{h}(t) \end{pmatrix}$, then from the updating formula of NGD
 2010 (11), we have
 2011

$$\begin{aligned} 2012 \quad & \mathbf{u}(t+1) - \mathbf{u}(t) \\ 2013 \quad &= \mathbf{u}(\mathbf{w}(t) - \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t))) - \mathbf{u}(\mathbf{w}(t)) \\ 2014 \quad &= - \int_0^1 \left\langle \frac{\partial \mathbf{u}(\mathbf{w}(s))}{\partial \mathbf{w}}, \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t)) \right\rangle ds \\ 2015 \quad &= - \int_0^1 \left\langle \frac{\partial \mathbf{u}(\mathbf{w}(t))}{\partial \mathbf{w}}, \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t)) \right\rangle ds \\ 2016 \quad &+ \int_0^1 \left\langle \frac{\partial \mathbf{u}(\mathbf{w}(t))}{\partial \mathbf{w}} - \frac{\partial \mathbf{u}(\mathbf{w}(s))}{\partial \mathbf{w}}, \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(t) \right\rangle ds \\ 2017 \quad &:= \mathbf{I}_1(t) + \mathbf{I}_2(t), \end{aligned} \tag{80}$$

2018 where the second equality is from the fundamental theorem of calculus and $\mathbf{w}(s) = s\mathbf{w}(t+1) +$
 2019 $(1-s)\mathbf{w}(t) = \mathbf{w}(t) - s\eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(t)$.
 2020

2021 In the proof, we assume that Condition 3 holds for $t = 0, \dots, k$. Then from Corollary C.3, to prove
 2022 Theorem 4.7, it suffices to demonstrate that this condition also holds for $t = k + 1$. Here, we primarily
 2023 explain the process from Condition 3 to Corollary C.3, while other content is placed in the following
 2024 full proof of Theorem 4.7.
 2025

2026 Note that $\frac{\partial \mathbf{u}(\mathbf{w}(t))}{\partial \mathbf{w}} = \mathbf{J}(t)$, thus $\mathbf{I}_1(t) = \eta \mathbf{u}(t)$. Plugging this into (80) yields that
 2027

$$2028 \quad \mathbf{u}(t+1) = (1-\eta)\mathbf{u}(t) + \mathbf{I}_2(t). \tag{81}$$

2029 From the above equation, we can see the difference between NGD and GD. Recall that the iteration
 2030 formula for GD is
 2031

$$2032 \quad \mathbf{u}(t+1) = (1 - \eta \mathbf{H}(t))\mathbf{u}(t) + \mathbf{I}_1(t).$$

2033 Precisely because of this, the convergence rate of GD is inevitably influenced by λ_0 , whereas that of
 2034 NGD is not.
 2035

2036 From the stability of the Jacobian matrix, we can deduce that $\|\mathbf{I}_2(t)\|_2 = \mathcal{O}(\eta \|\mathbf{u}(t)\|_2 / \sqrt{m})$.
 2037 Plugging this into (81) yields that
 2038

$$\begin{aligned} 2039 \quad & \|\mathbf{u}(t+1)\|_2^2 \\ 2040 \quad & \leq \|(1-\eta)\mathbf{u}(t)\|_2^2 + \|\mathbf{I}_2(t)\|_2^2 + 2(1-\eta)\|\mathbf{u}(t)\|_2 \|\mathbf{I}_2(t)\|_2 \\ 2041 \quad &= \left((1-\eta)^2 + \mathcal{O}\left(\frac{\eta^2}{m}\right) + 2(1-\eta)\mathcal{O}\left(\frac{\eta}{\sqrt{m}}\right) \right) \|\mathbf{u}(t)\|_2^2 \\ 2042 \quad &\leq (1-\eta)\|\mathbf{u}(t)\|_2^2, \end{aligned} \tag{82}$$

2043 where the last inequality holds if m is large enough. \square
 2044

2045 Full Proof of Theorem 4.7. Recall that we let $R'' = CM\sqrt{R}$ in (16) when σ is the ReLU³ activation
 2046 function and let $R'' = CdR$ in (18) when σ satisfies Assumption 4.3.
 2047

2052 First, we can set $R' \leq R$ and $R'' \leq \frac{\sqrt{3\lambda_0}}{6}$, since $R'' \lesssim \sqrt{1-\eta}\sqrt{\lambda_0}$. Then from Lemma 4.5 we have
 2053 $\|\mathbf{J}(t) - \mathbf{J}(0)\|_2 \leq \frac{\sqrt{3\lambda_0}}{6}$, thus
 2054

$$2055 \quad \sigma_{min}(\mathbf{J}(t)) \geq \sigma_{min}(\mathbf{J}(0)) - \|\mathbf{J}(t) - \mathbf{J}(0)\|_2 \geq \frac{\sqrt{3\lambda_0}}{2} - \frac{\sqrt{3\lambda_0}}{6} = \frac{\sqrt{3\lambda_0}}{3}$$

2057 and then $\lambda_{min}(\mathbf{H}(t)) \geq \frac{\lambda_0}{3}$ for $t = 0, \dots, k$, where $\sigma_{min}(\cdot)$ denotes the least singular value.
 2058

2059 From the updating rule of NGD, we have

$$2060 \quad \mathbf{w}_r(t+1) = \mathbf{w}_r(t) - \eta [\mathbf{J}(t)^T]_r (\mathbf{H}(t))^{-1} \begin{pmatrix} \mathbf{s}(t) \\ \mathbf{h}(t) \end{pmatrix},$$

2062 where

$$2063 \quad [\mathbf{J}(t)^T]_r = \left[\frac{\partial s_1(t)}{\partial \mathbf{w}_r}, \dots, \frac{\partial s_{n_1}(t)}{\partial \mathbf{w}_r}, \frac{\partial h_1(t)}{\partial \mathbf{w}_r}, \dots, \frac{\partial h_{n_2}(t)}{\partial \mathbf{w}_r} \right].$$

2065 Therefore, for $t = 0, \dots, k$ and any $r \in [m]$, we have

$$\begin{aligned} 2066 \quad & \|\mathbf{w}_r(t+1) - \mathbf{w}_r(t)\|_2 \\ 2067 \quad & \leq \eta \|\mathbf{J}(t)^T\|_r \|\mathbf{H}(t)^{-1}\|_2 \sqrt{L(t)} \\ 2068 \quad & \leq \frac{3\eta}{\lambda_0} \|\mathbf{J}(t)^T\|_r \sqrt{L(t)} \\ 2069 \quad & \leq \frac{3\eta}{\lambda_0} \|\mathbf{J}(t)^T\|_F \sqrt{L(t)} \\ 2070 \quad & = \frac{3\eta}{\lambda_0} \sqrt{\sum_{p=1}^{n_1} \left\| \frac{\partial s_p(t)}{\partial \mathbf{w}_r} \right\|_2^2 + \sum_{j=1}^{n_2} \left\| \frac{\partial h_j(t)}{\partial \mathbf{w}_r} \right\|_2^2} \sqrt{L(t)} \\ 2071 \quad & \lesssim \frac{\eta}{\lambda_0} \sqrt{\frac{B^4+1}{m}} \sqrt{L(t)} \\ 2072 \quad & \lesssim \frac{\eta B^2}{\sqrt{m\lambda_0}} \sqrt{L(t)} \\ 2073 \quad & \leq \frac{\eta B^2}{\sqrt{m\lambda_0}} (1-\eta)^{t/2} \sqrt{L(0)}, \end{aligned} \tag{83}$$

2084 where the last inequality is due to Corollary C.3.

2085 Summing t from 0 to k yields that

$$\begin{aligned} 2086 \quad & \|\mathbf{w}_r(k+1) - \mathbf{w}_r(0)\|_2 \\ 2087 \quad & \leq \sum_{t=0}^k \|\mathbf{w}_r(t+1) - \mathbf{w}_r(t)\|_2 \\ 2088 \quad & \leq C \frac{\eta B^2}{\sqrt{m\lambda_0}} \sum_{t=0}^k (1-\eta)^{t/2} \sqrt{L(0)} \\ 2089 \quad & \leq \frac{CB^2 \sqrt{L(0)}}{\sqrt{m\lambda_0}}, \end{aligned}$$

2096 where C is a universal constant.

2097 Now, when $R' \leq 1$, we can deduce that $\|\mathbf{w}_r(k+1)\|_2 \leq B$, implying that Condition 3 also holds
 2098 for $t = k+1$. Thus, it remains only to derive the requirement for m .
 2099

2100 Recall that we need m to satisfy that $R' = \frac{CB^2 \sqrt{L(0)}}{\sqrt{m\lambda_0}} \leq R$ and $R'' \lesssim \sqrt{1-\eta}\sqrt{\lambda_0}$.
 2101

2102 (1) When σ is the ReLU³ activation function, in Corollary C.3, $R'' = CM\sqrt{R} \lesssim \sqrt{1-\eta}\sqrt{\lambda_0}$,
 2103 implying that $R \lesssim \frac{(1-\eta)\lambda_0}{M^2}$. Then $R' = \frac{CB^2 \sqrt{L(0)}}{\sqrt{m\lambda_0}} \leq R$ implies that
 2104

$$2105 \quad m = \Omega \left(\frac{1}{(1-\eta)^2} \frac{M^4 B^4 L(0)}{\lambda_0^4} \right).$$

2106 From Lemma D.4 for the estimation of $L(0)$, i.e.,
 2107

$$2108 \quad 2109 \quad L(0) \lesssim d^2 \log \left(\frac{n_1 + n_2}{\delta} \right),$$

2110 we can deduce that
 2111

$$2112 \quad 2113 \quad m = \Omega \left(\frac{1}{(1-\eta)^2} \frac{d^8}{\lambda_0^4} \log^6 \left(\frac{md}{\delta} \right) \log \left(\frac{n_1 + n_2}{\delta} \right) \right).$$

2114 (2) When σ satisfies Assumption 4.3, we have that
 2115

$$2116 \quad 2117 \quad R \lesssim \frac{\sqrt{(1-\eta)\lambda_0}}{d}, R' = \frac{CB^2\sqrt{L(0)}}{\sqrt{m}\lambda_0} \leq R.$$

2118 From Lemma D.4, we can deduce that
 2119

$$2120 \quad 2121 \quad m = \Omega \left(\frac{1}{1-\eta} \frac{d^6}{\lambda_0^3} \log^2 \left(\frac{md}{\delta} \right) \log \left(\frac{n_1 + n_2}{\delta} \right) \right).$$

2122 \square

2123 *Proof of Corollary C.3.* Similar as before, when $R' \leq R$ and $R'' \leq \frac{\sqrt{3\lambda_0}}{6}$, we have $\sigma_{\min}(\mathbf{J}(t)) \geq$
 2124 $\frac{\sqrt{3\lambda_0}}{3}$ and then $\lambda_{\min}(\mathbf{H}(t)) \geq \frac{\lambda_0}{3}$ for $t = 0, \dots, k$.
 2125

2126 Let $\mathbf{u}(t) = \begin{pmatrix} \mathbf{s}(t) \\ \mathbf{h}(t) \end{pmatrix}$, then
 2127

$$2128 \quad \begin{aligned} & \mathbf{u}(t+1) - \mathbf{u}(t) \\ &= \mathbf{u}(\mathbf{w}(t) - \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t))) - \mathbf{u}(\mathbf{w}(t)) \\ &= - \int_0^1 \left\langle \frac{\partial \mathbf{u}(\mathbf{w}(s))}{\partial \mathbf{w}}, \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t)) \right\rangle ds \\ &= - \int_0^1 \left\langle \frac{\partial \mathbf{u}(\mathbf{w}(t))}{\partial \mathbf{w}}, \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t)) \right\rangle ds \\ & \quad + \int_0^1 \left\langle \frac{\partial \mathbf{u}(\mathbf{w}(t))}{\partial \mathbf{w}} - \frac{\partial \mathbf{u}(\mathbf{w}(s))}{\partial \mathbf{w}}, \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t)) \right\rangle ds \\ &:= \mathbf{I}_1(t) + \mathbf{I}_2(t), \end{aligned} \tag{84}$$

2129 where the second equality is from the fundamental theorem of calculus and $\mathbf{w}(s) = s\mathbf{w}(t+1) +$
 2130 $(1-s)\mathbf{w}(t) = \mathbf{w}(t) - s\eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(t)$.
 2131

2132 Note that $\frac{\partial \mathbf{u}(\mathbf{w}(t))}{\partial \mathbf{w}} = \mathbf{J}(t)$, thus $\mathbf{I}_1(t) = \eta \mathbf{u}(t)$. Plugging this into (84) yields that
 2133

$$2134 \quad \mathbf{u}(t+1) = (1-\eta)\mathbf{u}(t) + \mathbf{I}_2(t). \tag{85}$$

2135 Therefore, it remains only to bound $\|\mathbf{I}_2(t)\|_2$.
 2136

$$2137 \quad \begin{aligned} \|\mathbf{I}_2(t)\|_2 &= \left\| \int_0^1 \left\langle \frac{\partial \mathbf{u}(\mathbf{w}(t))}{\partial \mathbf{w}} - \frac{\partial \mathbf{u}(\mathbf{w}(s))}{\partial \mathbf{w}}, \eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t)) \right\rangle ds \right\|_2 \\ &\leq \int_0^1 \|\mathbf{J}(\mathbf{w}(t)) - \mathbf{J}(\mathbf{w}(s))\|_2 \|\eta \mathbf{J}(t)^T \mathbf{H}(t)^{-1} \mathbf{u}(\mathbf{w}(t))\|_2 ds \\ &\leq \eta \|\mathbf{J}(t)^T \mathbf{H}(t)^{-1}\|_2 \|\mathbf{u}(\mathbf{w}(t))\|_2 \int_0^1 \|\mathbf{J}(\mathbf{w}(t)) - \mathbf{J}(\mathbf{w}(s))\|_2 ds \\ &\lesssim \frac{\eta \sqrt{L(t)}}{\sqrt{\lambda_0}} \int_0^1 \|\mathbf{J}(\mathbf{w}(t)) - \mathbf{J}(\mathbf{w}(s))\|_2 ds \\ &\lesssim \frac{\eta \sqrt{L(t)}}{\sqrt{\lambda_0}} \int_0^1 (\|\mathbf{J}(\mathbf{w}(t)) - \mathbf{J}(0)\|_2 + \|\mathbf{J}(\mathbf{w}(s)) - \mathbf{J}(0)\|_2) ds \\ &\lesssim \frac{\eta \sqrt{L(t)}}{\sqrt{\lambda_0}} R'', \end{aligned} \tag{86}$$

2160 where the last inequality follows from the fact that
 2161

$$2162 \|\mathbf{w}_r(s) - \mathbf{w}_r(0)\|_2 \leq s\|\mathbf{w}_r(t+1) - \mathbf{w}_r(0)\|_2 + (1-s)\|\mathbf{w}_r(t) - \mathbf{w}_r(0)\|_2 \leq R' \leq R$$

2163 and Lemma 4.5.
 2164

2165 Plugging (85) into the recursion formula (84) yields that
 2166

$$\begin{aligned} 2167 \|\mathbf{u}(t+1)\|_2^2 &= \|(1-\eta)\mathbf{u}(t) + \mathbf{I}_2(t)\|_2^2 \\ 2168 &= (1-\eta)^2\|\mathbf{u}(t)\|_2^2 + \|\mathbf{I}_2(t)\|_2^2 + 2\langle(1-\eta)\mathbf{u}(t), \mathbf{I}_2(t)\rangle \\ 2169 &\leq (1-\eta)^2\|\mathbf{u}(t)\|_2^2 + \|\mathbf{I}_2(t)\|_2^2 + 2(1-\eta)\|\mathbf{u}(t)\|_2\|\mathbf{I}_2(t)\|_2 \\ 2170 &\leq \left[(1-\eta)^2 + \frac{C^2\eta^2(R'')^2}{\lambda_0} + 2(1-\eta)\frac{C\eta R''}{\sqrt{\lambda_0}}\right]\|\mathbf{u}(t)\|_2^2, \\ 2171 &2172 \end{aligned}$$

2173 where C is a universal constant.
 2174

2175 Then we can choose R'' such that
 2176

$$2177 \|\mathbf{I}_2(t)\|_2 \leq \frac{C\eta\sqrt{L(t)}R''}{\sqrt{\lambda_0}} \leq C_1\eta\sqrt{L(t)} = C_1\eta\sqrt{\mathbf{u}(t)},$$

2179 where C is a universal constant and C_1 is a constant to be determined.
 2180

2181 Thus, we can deduce that
 2182

$$\begin{aligned} 2183 \|\mathbf{u}(t+1)\|_2^2 &\leq [(1-\eta)^2 + (C_1\eta)^2 + 2(1-\eta)C_1\eta]\|\mathbf{u}(t)\|_2^2 \\ 2184 &= [(1-\eta) + \eta(\eta C_1^2 + 2(1-\eta)C_1 + \eta - 1)]\|\mathbf{u}(t)\|_2^2 \\ 2185 &\leq (1-\eta)\|\mathbf{u}(t)\|_2^2, \end{aligned}$$

2186 where in the last inequality is due to that we can choose C_1 such that $\eta C_1^2 + 2(1-\eta)C_1 + \eta - 1 \leq 0$.
 2187

2188 Note that since $\eta \in (0, 1)$, the quadratic equation $\eta x^2 + 2(1-\eta)x + \eta - 1 = 0$ has one negative
 2189 root and one positive root, denoted as x_0 and x_1 respectively. Therefore, the condition $C_1 \leq x_1$ is
 2190 sufficient to satisfy the requirement. The explicit form of x_1 can be written as:

$$2191 x_1 = \frac{2(\eta-1) + \sqrt{4(1-\eta)^2 - 4\eta(\eta-1)}}{2\eta} = \frac{\sqrt{1-\eta}}{1+\sqrt{1-\eta}} \geq \frac{\sqrt{1-\eta}}{2}.$$

2194 Thus, $C_1 = \frac{\sqrt{1-\eta}}{2}$ is sufficient to satisfy that $\eta C_1^2 + 2(1-\eta)C_1 + \eta - 1 \leq 0$.
 2195

2196 From this, we can deduce that
 2197

$$R'' \lesssim C_1\sqrt{\lambda_0} \lesssim \sqrt{1-\eta}\sqrt{\lambda_0}.$$

2199 Therefore, we can conclude that $\|\mathbf{u}(t)\|_2^2 \leq (1-\eta)^t\|\mathbf{u}(0)\|_2^2$ holds for $t = 0, \dots, k$.
 2200

2201 \square
 2202

2203 C.4 PROOF OF COROLLARY 4.9

2204 *Proof.* In the proof of Theorem 4.7, we have proved that Condition 3 holds for all $t \in \mathbb{N}$. Thus, it is
 2205 sufficient to prove that Condition 3 can lead to the conclusion in Corollary 4.9.
 2206

2207 Setting $\eta = 1$ in (85) yields that
 2208

$$\mathbf{u}(t+1) = \mathbf{I}_2(t).$$

2209 We have that
 2210

$$2211 \|\mathbf{I}_2(t)\|_2 \lesssim \frac{\sqrt{L(t)}}{\sqrt{\lambda_0}} \int_0^1 \|\mathbf{J}(\mathbf{w}(t)) - \mathbf{J}(\mathbf{w}(s))\|_2 ds. \quad (87)$$

2212 Since $\mathbf{w}(s) = s\mathbf{w}(t+1) + (1-s)\mathbf{w}(t)$, then for any $r \in [m]$, we have $\|\mathbf{w}_r(s)\|_2 \leq s\|\mathbf{w}_r(t+1)\|_2 + (1-s)\|\mathbf{w}_r(t)\|_2 \leq B$.
 2213

2214 When $\sigma(\cdot)$ is smooth, we can deduce that for any $r \in [m]$,
 2215
 2216 $\left\| \frac{\partial s_p(\mathbf{w}(s))}{\partial \mathbf{w}_r} - \frac{\partial s_p(\mathbf{w}(t))}{\partial \mathbf{w}_r} \right\|_2 \lesssim \frac{1}{\sqrt{n_1 m}} (B^2 + 1) \|\mathbf{w}_r(s) - \mathbf{w}_r(t)\|_2 \leq \frac{1}{\sqrt{n_1 m}} (B^2 + 1) \|\mathbf{w}_r(t+1) - \mathbf{w}_r(t)\|_2$
 2217 and
 2218
 2219 $\left\| \frac{\partial h_j(\mathbf{w}(s))}{\partial \mathbf{w}_r} - \frac{\partial h_j(\mathbf{w}(t))}{\partial \mathbf{w}_r} \right\|_2 \lesssim \frac{1}{\sqrt{n_1 m}} (B + 1) \|\mathbf{w}_r(s) - \mathbf{w}_r(t)\|_2 \leq \frac{1}{\sqrt{n_1 m}} (B + 1) \|\mathbf{w}_r(t+1) - \mathbf{w}_r(t)\|_2.$
 2220

2221 We know that for any $r \in [m]$,
 2222
 2223

$$\|\mathbf{w}_r(t+1) - \mathbf{w}_r(t)\|_2 \lesssim \frac{B^2}{\sqrt{m} \lambda_0} \sqrt{L(t)}.$$

2224 Thus for any $s \in [0, 1]$, we have
 2225
 2226

$$\begin{aligned} & \|\mathbf{J}(\mathbf{w}(s)) - \mathbf{J}(\mathbf{w}(t))\|_2^2 \\ & \leq \sum_{r=1}^m \left(\sum_{p=1}^{n_1} \left\| \frac{\partial s_p(\mathbf{w}(s))}{\partial \mathbf{w}_r} - \frac{\partial s_p(\mathbf{w}(t))}{\partial \mathbf{w}_r} \right\|_2^2 + \left\| \frac{\partial h_j(\mathbf{w}(s))}{\partial \mathbf{w}_r} - \frac{\partial h_j(\mathbf{w}(t))}{\partial \mathbf{w}_r} \right\|_2^2 \right) \\ & \lesssim \frac{1}{m} \sum_{r=1}^m ((B^4 + 1) \|\mathbf{w}_r(t+1) - \mathbf{w}_r(t)\|_2^2 + (B^2 + 1) \|\mathbf{w}_r(t+1) - \mathbf{w}_r(t)\|_2^2) \\ & \lesssim B^4 \left(\frac{B^2}{\sqrt{m} \lambda_0} \sqrt{L(t)} \right)^2. \end{aligned}$$

2238 Plugging this into (87), we have
 2239

$$\begin{aligned} \|\mathbf{I}_2(t)\|_2 & \lesssim \frac{\sqrt{L(t)}}{\sqrt{\lambda_0}} \int_0^1 \|\mathbf{J}(\mathbf{w}(t)) - \mathbf{J}(\mathbf{w}(s))\|_2 ds \\ & \lesssim \frac{\sqrt{L(t)}}{\sqrt{\lambda_0}} \frac{B^4}{\sqrt{m} \lambda_0} \sqrt{L(t)} \\ & = \frac{B^4}{\sqrt{m} \lambda_0^3} L(t). \end{aligned}$$

2248 Combining with the fact $\mathbf{u}(t+1) = \mathbf{I}_2(t)$ yields that
 2249

$$\left\| \begin{pmatrix} \mathbf{s}(t+1) \\ \mathbf{h}(t+1) \end{pmatrix} \right\|_2 \leq \frac{CB^4}{\sqrt{m} \lambda_0^3} \left\| \begin{pmatrix} \mathbf{s}(t) \\ \mathbf{h}(t) \end{pmatrix} \right\|_2$$

2252 holds for $t \in \mathbb{N}$, where C is a universal constant.
 2253

2254 In the proof above, we only require that $R' \leq R$ and $R'' = CdR \leq \frac{\sqrt{3\lambda_0}}{6}$, leading to the requirement
 2255 for m that

$$m = \Omega \left(\frac{d^6}{\lambda_0^3} \log^2 \left(\frac{md}{\delta} \right) \log \left(\frac{n_1 + n_2}{\delta} \right) \right).$$

2258 \square
 2259
 2260

D AUXILIARY LEMMAS

2262
 2263 **Lemma D.1** (Theorem 3.1 in Kuchibhotla & Chakrabortty (2022)). *If X_1, \dots, X_n are independent
 2264 mean zero random variables with $\|X_i\|_{\psi_\alpha} < \infty$ for all $1 \leq i \leq n$ and some $\alpha > 0$, then for any
 2265 vector $a = (a_1, \dots, a_n) \in \mathbb{R}^n$, the following holds true:*

$$2266 P \left(\left| \sum_{i=1}^n a_i X_i \right| \geq 2eC(\alpha) \|b\|_2 \sqrt{t} + 2eL_n^*(\alpha) t^{1/\alpha} \|b\|_{\beta(\alpha)} \right) \leq 2e^{-t}, \text{ for all } t \geq 0,$$

where $b = (a_1\|X_1\|_{\psi_\alpha}, \dots, a_n\|X_n\|_{\psi_\alpha}) \in \mathbb{R}^n$,

$$C(\alpha) := \max\{\sqrt{2}, 2^{1/\alpha}\} \begin{cases} \sqrt{8}(2\pi)^{1/4}e^{1/24}(e^{2/e}/\alpha)^{1/\alpha}, & \text{if } \alpha < 1, \\ 4e + 2(\log 2)^{1/\alpha}, & \text{if } \alpha \geq 1. \end{cases}$$

and for $\beta(\alpha) = \infty$ when $\alpha \leq 1$ and $\beta(\alpha) = \alpha/(\alpha - 1)$ when $\alpha > 1$,

$$L_n^*(\alpha) := \frac{4^{1/\alpha}}{\sqrt{2}} \times \begin{cases} C(\alpha), & \text{if } \alpha < 1, \\ 4e, & \text{if } \alpha \geq 1. \end{cases}$$

2277 In the following, we will provide some preliminary information about Orlicz norms.

2279 Let $f : [0, \infty) \rightarrow [0, \infty)$ be a non-decreasing function with $f(0) = 0$. The f -Orlicz norm of a
 2280 real-valued random variable X is given by

$$\|X\|_f := \inf\{C > 0 : \mathbb{E} \left[f\left(\frac{|X|}{C}\right) \right] \leq 1\}.$$

If $\|X\|_{\psi_\alpha} < \infty$, we say that X is sub-Weibull of order $\alpha > 0$, where

$$\psi_\alpha(x) := e^{x^\alpha} - 1.$$

2286 Note that when $\alpha \geq 1$, $\|\cdot\|_{\psi_\alpha}$ is a norm and when $0 < \alpha < 1$, $\|\cdot\|_{\psi_\alpha}$ is a quasi-norm. Moreover,
 2287 since $(|a| + |b|)^\alpha \leq |a|^\alpha + |b|^\alpha$ holds for any $a, b \in \mathbb{R}$ and $0 < \alpha < 1$, we can deduce that

$$\mathbb{E} e^{\frac{|X+Y|^\alpha}{|C|^\alpha}} \leq \mathbb{E} e^{\frac{|X|^\alpha + |Y|^\alpha}{|C|^\alpha}} = \mathbb{E} e^{\frac{|X|^\alpha}{|C|^\alpha}} e^{\frac{|Y|^\alpha}{|C|^\alpha}} \leq \left(\mathbb{E} e^{\frac{2|X|^\alpha}{|C|^\alpha}} \right)^{1/2} \left(\mathbb{E} e^{\frac{2|Y|^\alpha}{|C|^\alpha}} \right)^{1/2}.$$

2291 This implies that

$$\|X + Y\|_{\psi_\alpha} \leq 2^{1/\alpha} \max\{\|X\|_{\psi_\alpha}, \|Y\|_{\psi_\alpha}\} \leq 2^{1/\alpha}(\|X\|_{\psi_\alpha} + \|Y\|_{\psi_\alpha}).$$

Furthermore, for $p, q > 0$, we have $\|X\|_{\psi_p} = \|X^{p/q}\|_{\psi_q}^{q/p}$. And in the related proofs, we may frequently use the fact that for real-valued random variable $X \sim \mathcal{N}(0, 1)$, we have $\|X\|_{\psi_2} \leq \sqrt{6}$ and $\|X^2\|_{\psi_1} = \|X\|_{\psi_2}^2 \leq 6$.

Lemma D.2. If $\|X\|_{\psi_\alpha}, \|Y\|_{\psi_\beta} < \infty$ with $\alpha, \beta > 0$, then we have $\|XY\|_{\psi_\gamma} \leq \|X\|_{\psi_\alpha} \|Y\|_{\psi_\beta}$, where γ satisfies that

$$\frac{1}{\gamma} = \frac{1}{\alpha} + \frac{1}{\beta}.$$

Proof. Without loss of generality, we can assume that $\|X\|_{\psi_\alpha} = \|Y\|_{\psi_\beta} = 1$. To prove this, let us use Young's inequality, which states that

$$xy \leq \frac{x^p}{p} + \frac{y^q}{q}, \text{ for } x, y \geq 0, p, q > 1.$$

2307 Let $n \equiv \alpha/\gamma$, $a \equiv \beta/\gamma$, then

$$\begin{aligned}
\mathbb{E}[\exp(|XY|^\gamma)] &\leq \mathbb{E}\left[\exp\left(\frac{|X|^{\gamma p}}{p} + \frac{|Y|^{\gamma q}}{q}\right)\right] \\
&= \mathbb{E}\left[\exp\left(\frac{|X|^\alpha}{p}\right)\exp\left(\frac{|Y|^\beta}{q}\right)\right] \\
&\leq \mathbb{E}\left[\frac{\exp(|X|^\alpha)}{p} + \frac{\exp(|Y|^\beta)}{q}\right] \\
&\leq \frac{2}{p} + \frac{2}{q} \\
&= 2,
\end{aligned}$$

where the first and second inequality follow from Young's inequality. From this, we have that $\|XY\|_{\psi_\gamma} \leq \|X\|_{\psi_\alpha} \|Y\|_{\psi_\beta}$.

□

Lemma D.3 (Bernstein inequality, Theorem 3.1.7 in Giné & Nickl (2021)). *Let X_i , $1 \leq i \leq n$ be independent centered random variables a.s. bounded by $c < \infty$ in absolute value. Set $\sigma^2 = 1/n \sum_{i=1}^n \mathbb{E} X_i^2$ and $S_n = 1/n \sum_{i=1}^n X_i$. Then, for all $t \geq 0$,*

$$P \left(S_n \geq \sqrt{\frac{2\sigma^2 t}{n}} + \frac{ct}{3n} \right) \leq e^{-u}.$$

Lemma D.4. *For $0 < \delta < 1$, with probability at least $1 - \delta$, we have that when $m \geq \log^2 \left(\frac{n_1 + n_2}{\delta} \right)$,*

$$L(0) = \left\| \begin{pmatrix} \mathbf{s}(0) \\ \mathbf{h}(0) \end{pmatrix} \right\|_2^2 = \mathcal{O} \left(d^2 \log \left(\frac{n_1 + n_2}{\delta} \right) \right).$$

Proof. Recall that for $p \in [n_1]$,

$$s_p(0) = \frac{1}{\sqrt{n_1}} \left[\frac{1}{\sqrt{m}} \sum_{r=1}^m a_r \left(\sigma'(\mathbf{w}_r(0)^T \mathbf{x}_p) w_{r0}(0) - \sigma''(\mathbf{w}_r(0)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(0)\|_2^2 \right) - f(x_p) \right]$$

and for $j \in [n_2]$,

$$h_j(0) = \frac{1}{\sqrt{n_2}} \left[\frac{1}{\sqrt{m}} \sum_{r=1}^m a_r \sigma(\mathbf{w}_r(0)^T \mathbf{y}_j) - g(\mathbf{y}_j) \right].$$

Then

$$\begin{aligned} L(0) &= \sum_{p=1}^{n_1} \frac{1}{2} (s_p(0))^2 + \sum_{j=1}^{n_2} \frac{1}{2} (h_j(0))^2 \\ &\leq \frac{1}{n_1} \sum_{p=1}^{n_1} \left(\frac{1}{\sqrt{m}} \sum_{r=1}^m a_r \left(\sigma'(\mathbf{w}_r(0)^T \mathbf{x}_p) w_{r0}(0) - \sigma''(\mathbf{w}_r(0)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(0)\|_2^2 \right) \right)^2 + \frac{1}{n_1} \sum_{p=1}^{n_1} f^2(x_p) \\ &\quad + \frac{1}{n_2} \sum_{j=1}^{n_2} \left(\frac{1}{\sqrt{m}} \sum_{r=1}^m a_r \sigma(\mathbf{w}_r(0)^T \mathbf{y}_j) \right)^2 + \frac{1}{n_2} \sum_{j=1}^{n_2} g^2(\mathbf{y}_j). \end{aligned}$$

Note that

$$\left| a_r \left(\sigma'(\mathbf{w}_r(0)^T \mathbf{x}_p) w_{r0} - \sigma''(\mathbf{w}_r(0)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(0)\|_2^2 \right) \right| \lesssim \|\mathbf{w}_r(0)\|_2^2 |\mathbf{w}_r(0)^T \mathbf{x}_p|$$

and $|a_r \sigma(\mathbf{w}_r(0)^T \mathbf{y}_j)| \lesssim \|\mathbf{w}_r(0)\|_2^2 |\mathbf{w}_r(0)^T \mathbf{y}_j|$.

Since $\|\|\mathbf{w}_r(0)\|_2^2\|_{\psi_1} = \mathcal{O}(d)$ and $\|\mathbf{w}_r(0)^T \mathbf{y}_j\|_{\psi_2}, \|\mathbf{w}_r(0)^T \mathbf{x}_p\|_{\psi_2} = \mathcal{O}(1)$, from Lemma D.2, we have that

$$\|\|\mathbf{w}_r(0)\|_2^2 |\mathbf{w}_r(0)^T \mathbf{x}_p|\|_{\psi_{\frac{2}{3}}} = \mathcal{O}(d), |\mathbf{w}_r(0)^T \mathbf{y}_j|_{\psi_{\frac{2}{3}}} = \mathcal{O}(d).$$

Applying Lemma D.1 yields that for fixed $p \in [n_1]$ and $j \in [n_2]$ with probability at least $1 - 2e^{-t}$,

$$\left| \frac{1}{\sqrt{m}} \sum_{r=1}^m a_r \left(\sigma'(\mathbf{w}_r(0)^T \mathbf{x}_p) w_{r0}(0) - \sigma''(\mathbf{w}_r(0)^T \mathbf{x}_p) \|\mathbf{w}_{r1}(0)\|_2^2 \right) \right| \lesssim d\sqrt{t} + \frac{d}{\sqrt{m}} t^{\frac{3}{2}}$$

and with probability at least $1 - 2e^{-t}$,

$$\left| \frac{1}{\sqrt{m}} \sum_{r=1}^m a_r \sigma(\mathbf{w}_r(0)^T \mathbf{y}_j) \right| \lesssim d\sqrt{t} + \frac{d}{\sqrt{m}} t^{\frac{3}{2}}.$$

2376 Then taking a union bound for all $p \in [n_1]$ and $j \in [n_2]$ with $2(n_1 + n_2)e^{-t} = \delta$ yields that
 2377

$$\begin{aligned}
 2378 \quad L(0) &\lesssim \left(d\sqrt{t} + \frac{d}{\sqrt{m}} t^{\frac{3}{2}} \right)^2 \\
 2379 &\lesssim d^2 t + \frac{d^2 t^3}{m} \\
 2380 &= d^2 \left(\log \left(\frac{n_1 + n_2}{\delta} \right) + \frac{1}{m} \log^3 \left(\frac{n_1 + n_2}{\delta} \right) \right) \\
 2381 &\lesssim d^2 \log \left(\frac{n_1 + n_2}{\delta} \right),
 \end{aligned}$$

2382 since $m \geq \log^2 \left(\frac{n_1 + n_2}{\delta} \right)$.
 2383

□

2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429