
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAST CONVERGENCE OF NATURAL GRADIENT
DESCENT FOR OVER-PARAMETERIZED PHYSICS-
INFORMED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In the context of over-parameterization, there is a line of work demonstrating
that randomly initialized (stochastic) gradient descent (GD) converges to a glob-
ally optimal solution at a linear convergence rate for the quadratic loss function.
However, the convergence rate of GD for training two-layer neural networks ex-
hibits poor dependence on the sample size and the Gram matrix, leading to a
slow training process. In this paper, we show that for training two-layer ReLU3

Physics-Informed Neural Networks (PINNs), the learning rate can be improved
from the smallest eigenvalue of the limiting Gram matrix to the reciprocal of the
largest eigenvalue, implying that GD actually enjoys a faster convergence rate.
Despite such improvements, the convergence rate is still tied to the least eigenvalue
of the Gram matrix, leading to slow convergence. We then develop the positive
definiteness of Gram matrices with general smooth activation functions and provide
the convergence analysis of natural gradient descent (NGD) in training two-layer
PINNs, demonstrating that the maximal learning rate can be O(1) and at this
rate, the convergence rate is independent of the Gram matrix. In particular, for
smooth activation functions, the convergence rate of NGD is quadratic. Numerical
experiments are conducted to verify our theoretical results.

1 INTRODUCTION

In recent years, neural networks have achieved remarkable breakthroughs in the fields of image
recognition He et al. (2016), natural language processing Devlin et al. (2018), reinforcement learning
Silver et al. (2016), and so on. Moreover, due to the flexibility and scalability of neural networks,
researchers are paying much attention in exploring new methods involving neural networks for
handling problems in scientific computing. One long-standing and essential problem in this area
is solving partial differential equations (PDEs) numerically. Classical numerical methods, such as
finite difference, finite volume and finite elements methods, suffer from the curse of dimensionality
when solving high-dimensional PDEs. Due to this drawback, various methods involving neural
networks have been proposed for solving different type PDEs Müller & Zeinhofer (2023); Raissi et al.
(2019); Yu et al. (2018); Zang et al. (2020); Siegel et al. (2023). Among them, the most representative
approach is Physics-Informed Neural Networks (PINNs) Raissi et al. (2019). In the framework of
PINNs, one incorporate PDE constraints into the loss function and train the neural network with it.
With the use of automatic differentiation, the neural network can be efficiently trained by first-order
or second-order methods.

In the applications of neural networks, one inevitable issue is the selection of the optimization
methods. First-order methods, such as gradient descent (GD) and stochastic gradient descent (SGD),
are widely used in optimizing neural networks as they only calculate the gradient, making them
computationally efficient. In addition to first-order methods, there has been significant interest in
utilizing second-order optimization methods to accelerate training. These methods have proven to be
applicable not only to regression problems, as demonstrated in Martens & Grosse (2015), but also to
problems related to PDEs, as shown in Müller & Zeinhofer (2023); Raissi et al. (2019).

As for the convergence aspect of the optimization methods, it has been shown that gradient descent
algorithm can even achieve zero training loss under the setting of over-parameterization, which refers

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

to a situation where a model has more parameters than necessary to fit the data Du et al. (2018; 2019);
Allen-Zhu et al. (2019a;b); Arora et al. (2019); Li & Liang (2018); Zou et al. (2020); Cao & Gu
(2019). These works are based on the idea of neural tangent kernel (NTK)Jacot et al. (2018), which
shows that training multi-layer fully-connected neural networks via gradient descent is equivalent
to performing a certain kernel method as the width of every layer goes to infinity. As for the finite
width neural networks, with more refined analysis, it can be shown that the parameters are closed
to the initializations throughout the entire training process when the width is large enough. This
directly leads to the linear convergence for GD. Despite these attractive convergence results, the
learning rate depends on the sample size and the Gram matrix, so it needs to be sufficiently small to
guarantee convergence in practice. However, doing so results in a slow training process. In contrast
to first-order methods, the second-order method natural gradient descent (NGD) has been shown to
enjoy fast convergence for the L2 regression problems as demonstrated in Zhang et al. (2019); Cai
et al. (2019), and PINN problems as in Müller & Zeinhofer (2023); Guzmán-Cordero et al. (2025).
However, the convergence of NGD in the context of training PINNs is still an open problem. In this
paper, we demonstrate that when training PINNs, NGD indeed enjoys a faster convergence rate.

1.1 CONTRIBUTIONS

The main contributions of our work are summarized as follows:

• For the PINNs, we simultaneously improve both the learning rate η of gradient descent
and the requirement for the width m. The improvements rely on a new recursion for-
mula for gradient descent. Specifically, our analysis yields a different step-size criterion
η = O(1/λmax), which empirically permits larger practical learning rates than the O(λ0)
requirement in Gao et al. (2023), see Remark 3.8. The requirement for the width m, i.e.
m = Ω̃

(
(n1+n2)

2

λ4
0δ

3

)
, can be improved to m = Ω̃

(
1
λ4
0
(log(n1+n2

δ))
)

, where Ω̃ indicates
that some terms involving log(m) are omitted.

• We present a framework for demonstrating the positive definiteness of Gram matrices for
a variety of commonly used smooth activation functions, including the logistic function,
softplus function, hyperbolic tangent function, and others. This conclusion is not only
applicable to the PDE we have considered but can also be naturally extended to other forms
of PDEs.

• We provide the convergence results for natural gradient descent (NGD) in training over-
parameterized two-layer PINNs with ReLU3 activation functions and smooth activation
functions. Due to the distinct optimization dynamics of NGD compared to GD, the learning
rate can be O(1). Consequently, the convergence rate is independent of n and λ0, leading to
faster convergence. Moreover, when the activation function is smooth, NGD can achieve a
quadratic convergence rate.

1.2 RELATED WORKS

First-order optimizers. There are mainly two approaches to studying the optimization of neural
networks and understanding why first-order methods can find a global minimum. One approach
is to analyze the optimization landscape, as demonstrated in Jin et al. (2017); Ge et al. (2015).
It has been shown that gradient descent can find a global minimum in polynomial time if the
optimization landscape possesses certain favorable geometric properties. However, some unrealistic
assumptions in these works make it challenging to generalize the findings to practical neural networks.
Another approach to understand the optimization of neural networks is by analyzing the optimization
dynamics of first-order methods. For the two-layer ReLU neural networks, as shown in Du et al.
(2018), randomly initialized gradient descent converges to a globally optimal solution at a linear rate,
provided that the width m is sufficiently large and no two inputs are parallel. Later, these results were
extended to deep fully-connected feedforward neural networks and ResNet with smooth activation
functions Du et al. (2019). Results for both shallow and deep neural networks depend on the stability
of the Gram matrices throughout the training process, which is crucial for convergence to the global
minimum. In addition to regression and classification problems, Gao et al. (2023) demonstrated the
convergence of the gradient descent for two-layer PINNs through a similar analysis of optimization
dynamics. However, both Du et al. (2018) and Gao et al. (2023) require a sufficiently small learning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

rate and a large enough network width to achieve convergence. In this work, we conduct a refined
full-batch convergent analysis of the over-parameterized PINN regime for GD and NGD, building
upon Gao et al. (2023). There’re contemporaneous work analysis concentrate on stochastic Jin & Wu
(2025) and non-overparameterized Nießen & Müller (2025) settings.

Second-order optimizers. Although second-order methods possess better convergence rate, they are
rarely used in training deep neural networks due to the prohibitive computational cost. As a variant of
the Gauss-Newton method, natural gradient descent (NGD) is more efficient in practice. Meanwhile,
as shown in Zhang et al. (2019) and Cai et al. (2019), NGD also enjoys faster convergence rate for the
L2 regression problems compared to gradient descent. Müller & Zeinhofer (2023) proposed energy
natural gradient descent for PINNs and deep Ritz method, demonstrating experimentally that this
method yields solutions that are more accurate than those obtained through GD, Adam or BFGS.
After observing the ill-conditioned loss landscape of PINNs, Rathore et al. (2024) introduced a novel
second-order optimizer, NysNewtonCG (NNCG), showing that NNCG can significantly improve
the solution returned by Adam+L-BFGS. Moreover, under the assumption that the PŁ⋆-condition
holds, Rathore et al. (2024) demonstrated that the convergence rate of their algorithm is independent
of the condition number, which is similar with our result. However, although the PŁ⋆-condition
holds for over-parameterized neural networks in the context of regression problems Liu et al. (2022),
it remains unclear whether this condition holds for PINNs. De Ryck et al. (2024) showed that
operator-preconditioning analysis establishes convergence for linearized PINN problems. In this
paper, we provide the convergence analysis for NGD in training two-layer PINNs with ReLU3

activation functions or smooth activation functions, showing that it indeed converges at a faster rate.

1.3 NOTATIONS

We denote [n] = {1, 2, · · · , n} for n ∈ N. Given a set S, we denote the uniform distribution on
S by Unif{S}. We use I{E} to denote the indicator function of the event E. For two positive
functions f1(n) and f2(n), we use f1(n) = O(f2(n)), f2(n) = Ω(f1(n)) or f1(n) ≲ f2(n) to
represent f1(n) ≤ Cf2(n), where C is a universal constant C. A universal constant means a constant
independent of any variables. Throughout the paper, we use boldface to denote vectors. Given
x1, · · · , xd ∈ R, we use (x1, · · · , xd) or [x1, · · · , xd] to denote a row vector with i-th component xi
for i ∈ [d] and then (x1, · · · , xd)T ∈ Rd is a column vector.

1.4 ORGANIZATION OF THIS PAPER

In Section 2, we provide the problem setup for training two-layer PINNs. We then present the
improved convergence results of gradient descent for PINNs in Section 3. In Section 4, we analyze
the convergence of natural gradient descent in training two-layer PINNs with ReLU3 activation
functions and smooth activation functions. In Section 5, we conduct experiments to verify the
theoretical results. The limitations are briefly discussed in Section 6 and we conclude in Section 7.
All the detailed proofs and experiments are provided in the Appendix for readability and brevity.

2 PROBLEM SETUP

In this section, we consider the same setup as Gao et al. (2023), focusing on the PDE with the
following form. 

∂u

∂x0
(x)−

d∑
i=1

∂2u

∂x2i
(x) = f(x), x ∈ (0, T)× Ω,

u(x) = g(x), x ∈ {0} × Ω ∪ [0, T]× ∂Ω,

(1)

where Ω ⊂ Rd is an open and bounded domain, x = (x0, x1, · · · , xd)T ∈ Rd+1 and x0 ∈ [0, T]
is the time variable. In the following, we assume that ∥x∥2 ≤ 1 for x ∈ [0, T] × Ω̄ and f, g are
bounded continuous functions.

Moreover, we consider a two-layer neural network of the following form.

ϕ(x;w,a) =
1√
m

m∑
r=1

arσ(w
T
r x̃), (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where w = (wT
1 , · · · ,wT

m)T ∈ Rm(d+2), a = (a1, · · · , am)T ∈ Rm and for r ∈ [m], wr ∈ Rd+2

is the weight vector of the first layer, ar is the output weight and σ(·) is the ReLU3 activation function.
Here, x̃ = (xT , 1)T ∈ Rd+2 is the augmented vector from x and in the following, we write x for x̃
for brevity.

Similar to that for the L2 regression problems, we initialize the first layer vector wr(0) ∼ N (0, I),
output weight ar ∼ Unif({−1, 1}) for r ∈ [m] and fix the output weights. In the framework of
PINNs, given training samples {xp}n1

p=1 and {yj}n2
j=1 that are from interior and boundary respectively,

we denote sp(w) and hj(w) by

sp(w) =
1

√
n1

(
∂ϕ

∂x0
(xp;w)−

d∑
i=1

∂2ϕ

∂x2i
(xp;w)− f(xp)

)
(3)

and
hj(w) =

1
√
n2

(ϕ(yj ;w)− g(yj)). (4)

Then the empirical loss function can be written as

L(w) =
1

2

(
∥s(w)∥22 + ∥h(w)∥22

)
, (5)

where s(w) = (s1(w), · · · , sn1
(w))T ∈ Rn1 and h(w) = (h1(w), · · · , hn2

(w))T ∈ Rn2 .

The gradient descent updates the hidden weights by the following formulations:

wr(k + 1) = wr(k)− η
∂L(w(k))

∂wr

(6)

for all r ∈ [m] and k ∈ N, where η > 0 is the learning rate. The Gram matrix H(w) is defined as
H(w) = JJT , where

J :=

(
∂s1(w)

∂w
, · · · , ∂sn1

(w)

∂w
,
∂h1(w)

∂w
, · · · , ∂hn2

(w)

∂w

)T
. (7)

3 IMPROVED RESULTS OF GD FOR TWO-LAYER PINNS

To simplify the analysis, we make the following assumptions on the training data.

Assumption 3.1. For p ∈ [n1] and j ∈ [n2], ∥xp∥2 ≤
√
2, ∥yj∥2 ≤

√
2, where all inputs have been

augmented.
Assumption 3.2. No two samples in {xp}n1

p=1 ∪ {yj}n2
j=1 are parallel. This is guaranteed because

augmenting x with (x, 1) ensures all samples are distinct.

Under Assumption 3.2, Lemma 3.3 in Gao et al. (2023) implies that the Gram matrix H∞ :=
Ew∼N (0,I)[H(w)] is strictly positive definite and we let λ0 = λmin(H

∞). Similar to the case of
the regression problem in Du et al. (2018), H∞ plays an important role in the optimization process.
Specifically, under over-parameterization and random initialization, we have two facts that (1) at
initialization ∥H(0)−H∞∥2 = O(1/

√
m) and (2) for any iteration k ∈ N, ∥H(k)−H(0)∥2 =

O(1/
√
m). The following two lemmas can be used to verify these two facts, which are crucial in the

convergence analysis.

Lemma 3.3. If m = Ω
(
d4

λ2
0
log
(
n1+n2

δ

))
, we have that with probability at least 1− δ, ∥H(0)−

H∞∥2 ≤ λ0

4 and λmin(H(0)) ≥ 3
4λ0.

Remark 3.4. Under the premise of deriving the same conclusion as our Lemma 3.3, the Lemma
3.5 in Gao et al. (2023) requires that m = Ω̃

(
(n1+n2)

4

(n1n2)2λ2
0

(
log(1δ)

)7)
, where some terms involving

log(m) are omitted. In contrast, on one hand, our conclusion is independent up to logarithmic factors
in n1 + n2, and on the other hand, our conclusion exhibits a clear dependence on d. Moreover,
the method in Gao et al. (2023) involves truncating the Gaussian distribution and then applying
Hoeffding’s inequality, which is quite complicated. In contrast, we utilize the concentration inequality
for sub-Weibull random variables, which serves as a simple framework for this class of problems.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Lemma 3.5. Let R ∈ (0, 1], if w1(0), · · · ,wm(0) are i.i.d. generated from N (0, I), then with
probability at least 1−δ−n1e−mR, the following holds. For any set of weight vectors w1, · · · ,wm ∈
Rd+1 that satisfy ∥wr −wr(0)∥2 < R for any r ∈ [m], then

∥H(w)−H(0)∥F < CM2R, (8)

where M = 2(d+ 2) log(2m(d+ 2)/δ) and C is a universal constant.

Remark 3.6. The Lemma 3.6 in Gao et al. (2023) shows that when ∥wr − wr(0)∥2 ≤ R =

Õ
(

λ0δ
(n1+n2)(logm)3

)
holds for all r ∈ [m], then ∥H(w)−H(0)∥2 ≤ λ0

4 . In contrast, our Lemma

3.5 only requires R = O
(

λ0

d2(log(m/δ)2

)
to reach same result.

For the L2 regression problem, as shown in Du et al. (2018), the convergence of gradient descent
requires that the learning rate η = O(λ0/n

2), where n is the sample size of the regression problem.
It is evident that this requirement on the learning rate is difficult to satisfy in practical scenarios, since
λ0 is unknown and n2 is too large . For PINNs, Gao et al. (2023) follows the methodology of Du
et al. (2018), thus inheriting similarly stringent requirements on the learning rate. By investigating a
new decomposition method for the residual, we arrive at our main result.
Theorem 3.7. Under Assumption 3.1 and Assumption 3.2, if we set the number of hidden nodes

m = Ω

(
d8

λ40
log6

(
md

δ

)
log

(
n1 + n2

δ

))
and the learning rate η = O

(
1

∥H∞∥2

)
, then with probability at least 1 − δ over the random

initialization, the gradient descent algorithm satisfies

L(k) ≤
(
1− ηλ0

2

)k
L(0) (9)

for all k ∈ N.

Remark 3.8. It may be confusing that Gao et al. (2023) has used the same method in Du et al.
(2018), yet it only requires η = O(λ0). Actually, it is because that the loss function of PINN has
been normalized. If we let n1 = n2 = n and H̃∞ be the Gram matrix induced by unnormalized
loss function of PINN, then λmin(H∞) = λmin(H̃

∞)/n, leading to the convergence rate similar
to that of regression problem. At this point, due to the normalization of loss function, ∥H∞∥2 =
λmax(H

∞) can be bounded by the trace of H∞, which is an explicit constant that is independent of
the sample size n1, n2. As λmin depends on the sample size, it is expected that our η = O(1/λmax)
is an improvement over η = O(λmin) in Gao et al. (2023). A practical computation for 1D Poisson
equation is λmin = 3.47 × 10−11 and 1/λmax = 1/(1.73 × 104) = 5.78 × 10−5, suggesting that
our analysis indeed improves the learning rate requirements.

4 CONVERGENCE OF NGD FOR TWO-LAYER PINNS

Although we have improved the learning rate of gradient descent for PINNs, it may still be necessary
to set the learning rates to be sufficiently small. Because, although tr(H∞) is an explicit constant, it
depends on the form of the PDE. However, the loss function of PINNs has a much worse conditioning
due to the appearance of the PDE operator. So the ill-conditioning occurs when we move from
regression to PINNs, brings strict restrictions for the learning rate of gradient descent for PINNs. This
is a central motivation for second-order and natural gradient methods. Moreover, the convergence rate
1− ηλ0

2 also depends on λ0, which depends on the sample size and may be extremely small. Zhang
et al. (2019) and Cai et al. (2019) have provided the convergence results for natural gradient descent
(NGD) in training over-parameterized two-layer neural networks for L2 regression problems. They
showed that the maximal learning rate can be O(1) and the convergence rate is independent of λ0,
which result in a faster convergence rate. However, the situation in PINNs is significantly different
from regression due to the presence of derivative terms from the partial differential equations,
which complicates the analysis. Müller & Zeinhofer (2023) and Guzmán-Cordero et al. (2025)
studied the energy natural gradient descent (ENGD) for PINNs with practical Woodbury, momentum,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and randomization techniques, demonstrated highly accurate solutions empirically. A theoretical
convergence analysis, however, has not yet been established in these works. We note that the NGD
in Zhang et al. (2019) and the ENGD in Müller & Zeinhofer (2023) coincide up to the choice of
the Moore–Penrose pseudoinverse or the use of the Woodbury matrix identity; therefore, we do not
distinguish between them in this work. In the section, we conduct the convergence analysis of NGD
for PINNs and demonstrate that it results in a faster convergence rate for PINNs compared to gradient
descent.

In this section, we consider the same setup as described in Section 2. During the training process, we
fix the output weight a and update the hidden weights via NGD. The optimization objective is the
empirical loss function presented in (5), which is defined as follows:

L(w) =
1

2

(
∥s(w)∥22 + ∥h(w)∥22

)
, (10)

The NGD gives the following update rule:

w(k + 1) = w(k)− ηJ(k)T
(
J(k)J(k)T

)−1
(
s(k)
h(k)

)
, (11)

where
J(k) =

(
J1(k)

T , · · · ,Jn1+n2
(k)T

)T ∈ R(n1+n2)×m(d+2)

is the Jacobian matrix for the whole dataset and η > 0 is the learning rate. Specifically, for p ∈ [n1],

Jp(k) =

[(
∂sp(k)

∂w1

)T
, · · · ,

(
∂sp(k)

∂wm

)T]
∈ R1×m(d+2) (12)

and for j ∈ [n2],

Jn1+j(k) =

[(
∂hj(k)

∂w1

)T
, · · · ,

(
∂hj(k)

∂wm

)T]
∈ R1×m(d+2). (13)

Remark 4.1. We note that Zhang et al. (2019) and Cai et al. (2019) have independently and
concurrently established the convergence of NGD in the context of regression problems. The
difference lies in the fact that Zhang et al. (2019) focused on ReLU activation functions, whereas Cai
et al. (2019) considered smooth activation functions and consistently set the learning rate to 1. Here,
following Zhang et al. (2019), we refer to this approach as NGD. In Cai et al. (2019), the authors
derived this method based on NTK kernel regression and termed it the Gram-Gauss-Newton (GGN)
method. The extension of NGD convergence from regression to PINNs is challenging because of the
complexity of the PDE residual loss.
Remark 4.2. The classical Gauss-Newton method Bonfanti et al. (2024) is given by w(k + 1) =

w(k) −
(
J(k)TJ(k)

)−1
J(k)T

(
s(k)
h(k)

)
. Although this formula looks different from the NGD

update (11), the two coincide when η = 1 at the level of the Moore–Penrose pseudoinverse: J(k)+ =(
J(k)TJ(k)

)−1
J(k)T = J(k)T

(
J(k)J(k)T

)−1
. However, this equivalence is only algebraic. In

practice the two updates behave differently because J(k) ∈ R(n1+n2)×m(d+2) is highly rectangular
and never invertible strictly, and different pseudoinverse representations apply in row-dependent or
column-dependent cases. The computational cost are also different, as pointed in Guzmán-Cordero
et al. (2025) with Woodbury’s Identity. The NGD’s formula (11) in this work, originally adopted
from Zhang et al. (2019), also coincides with the energy natural gradient descent (ENGD) proposed
in Müller & Zeinhofer (2023); Guzmán-Cordero et al. (2025) once the Moore–Penrose inverse or
Woodbury identity is applied. A crucial distinction arises in the over-parameterized regime. The
Gauss-Newton Gram matrix J(k)TJ(k) ∈ Rm(d+2)×m(d+2) becomes extremely high-dimensional
and typically singular as m grows, while the NGD J(k)J(k)T ∈ R(n1+n2)×(n1+n2) won’t. This
difference is key for both practical scalability and numerical stability.

For the activation function of the two-layer neural network

ϕ(x;w,a) =
1√
m

m∑
r=1

arσ(w
T
r x), (14)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

we consider settings where σ(·) is either the ReLU3 activation function or a smooth activation
function satisfying the following assumption.

Assumption 4.3. There exists a constant c > 0 such that supz∈R |σ(3)(z)| ≤ c and for any z, z
′ ∈ R,

|σ(k)(z)− σ(k)(z
′
)| ≤ c|z − z

′
|, (15)

where k ∈ {0, 1, 2, 3}. Moreover, σ(·) is analytic and is not a polynomial function. We also assume
that for any positive integer n ≥ 2, lim

x→+∞
σ(n)(x)/ϕ(x) = cn ̸= 0, where the function ϕ(·) needs

lim
x→+∞

ϕ(x) = 0, lim
x→+∞

x · ϕ(bx)
ϕ(x)

= 0

holding for any constant b > 1.
Lemma 4.4. If no two samples in {xp}n1

p=1 ∪ {yj}n2
j=1 are parallel, then the Gram matrix H∞ is

strictly positive definite for activation functions that satisfy Assumption 4.3, i.e., λ0 := λmin(H
∞) >

0.
Remark 4.5. Assumption 4.3 holds for various commonly used activation functions, including
logistic function σ(z) = 1/(1+ e−z) (with ϕ(z) = e−z), softplus function σ(z) = log(1+ ez) (with
ϕ(z) = e−z), hyperbolic tangent function σ(z) = (ez− e−z)/(ez+ e−z) (with ϕ(z) = e−2z), swish
function σ(z) = z/(1 + e−z) (with ϕ(z) = ze−z) and others.

Unlike the approach for gradient descent, Zhang et al. (2019) focus on the change of the Jacobian
matrix for NGD rather than the Gram matrix. Roughly speaking, they show that when ∥w −w(0)∥2
is small, then ∥J(w)−J(0)∥2 is also proportionately small. However, this approach is not applicable
to PINNs, because the loss function involves derivatives. Roughly speaking, the stability considered in
Zhang et al. (2019) is more global in nature, whereas ours is local. In fact, the PINN loss includes first-
and second-order derivatives of the neural output (see Eq. (3)–(4)), so each Jacobian block ∂sp/∂wr
and ∂hj/∂wr contains higher-order derivatives of the activation and of the weights. Consequently,
even a small perturbation in weights may cause large variations in the derivatives, violating the
Lipschitz-type condition required by Zhang et al. (2019). Since the subsequent conclusions require
the boundedness of local weights, we do not use this stability. Moreover, from the Theorem 1 in
Zhang et al. (2019), we can see that this stability imposes additional constraints on the learning rate.
Therefore, we instead focus on the stability of J(w) with respect to each individual weight vector
wr in the following Lemma, which provides a more targeted approach.
Lemma 4.6. LetR ∈ (0, 1], if w1(0), · · · ,wm(0) are i.i.d. generated N (0, I), then with probability
at least 1− P (δ,m,R) the following holds. For any set of weight vectors w1, · · · ,wm ∈ Rd+2 that
satisfy for any r ∈ [m], ∥wr −wr(0)∥2 < R, then

(1) when σ(·) is the ReLU3 activation function, we have that

∥J(w)− J(0)∥2 ≤ CM
√
R, (16)

where C is a universal constant, M = 2(d+ 2) log(2m(d+ 2)/δ) and

P (δ,m,R) = δ + n1e
−mR; (17)

(2) when σ(·) is the smooth activation function satisfies Assumption 4.3, we have that

∥J(w)− J(0)∥2 ≤ CdR (18)

for m ≥ log2(1/δ), where C is a universal constant and P (δ,m,R) = δ.

With the stability of Jacobian matrix, we can derive the following convergence results.
Theorem 4.7. Let L(k) = L(w(k)), then the following conclusions hold.

(1) When σ(·) is the ReLU3 activation function, under Assumption 3.2, we set

m = Ω

(
1

(1− η)2
d8

λ40
log6

(
md

δ

)
log

(
n1 + n2

δ

))
and η ∈ (0, 1), then with probability at least 1− δ over the random initialization for all k ∈ N

L(k) ≤ (1− η)kL(0). (19)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(2) When σ(·) is the smooth activation function satisfies Assumption 4.3, under Assumption 3.2, we
set

m = Ω

(
1

1− η

d6

λ30
log2

(
md

δ

)
log

(
n1 + n2

δ

))
and η ∈ (0, 1), then with probability at least 1− δ over the random initialization for all k ∈ N

L(k) ≤ (1− η)kL(0). (20)

In Theorem 4.7, the requirements of m with ReLU3 and smooth activation functions exhibit different
dependencies on λ0 and d. The discrepancy is primarily due to the distinct formulations presented in
(16) and (18) of Lemma 4.5.
Remark 4.8. We first compare our results with those of NGD for L2 regression problems. Given
that the convergence results are the same, our focus shifts to examining the necessary conditions
for the width m. As demonstrated in Zhang et al. (2019) and Cai et al. (2019), it is required that
m = Ω

(
n4

λ4
0δ

3

)
for ReLU activation function and m = Ω

(
max

{
n4

λ4
0
, n

2d log(n/δ)
λ2
0

})
for smooth

activation function. Clearly, our result has a worse dependence on d, which is inevitable due to the
involvement of derivatives in the loss function. Moreover, our requirement for m appears to be almost
independent of n, primarily because our loss function has been normalized. With smooth activation
functions, in addition to the dependence on d, Theorem 4.7 (2) only requires that m = Ω(λ−3

0).
However, Cai et al. (2019) demands a more stringent condition, requiring that m = Ω(λ−4

0).

Comparing with our results in Section 3, the requirement for m in Theorem 4.7 (1) is the same
as in Theorem 3.8, when we make η less close to 1. On the other hand, since η = O(1) and the
convergence rate only depends on η, NGD can lead to faster convergence than GD.

Note that as η approaches 1, the width m tends to infinity, thus, the convergence results in Theorem
4.7 become vacuous. In fact, when η = 1, NGD can enjoy a second-order convergence rate even
though m is finite, provided that σ(·) satisfies Assumption 4.3.
Corollary 4.9. Under Assumption 3.2 and Assumption 4.3, set η = 1 and

m = Ω

(
d6

λ30
log2

(
md

δ

)
log

(
n1 + n2

δ

))
,

then with probability at least 1− δ, we have∥∥∥∥(s(t+ 1)
h(t+ 1)

)∥∥∥∥
2

≤ CB4√
mλ30

∥∥∥∥(s(t)h(t)

)∥∥∥∥2
2

for all t ∈ N, where C is a universal constant andB =
√

2(d+ 2) log(2m(d+ 2)/δ)+1. Moreover,
we can get a second order convergence result for regression problems with smooth activation functions
as follows.

∥y − u(t+ 1)∥2 ≲
n3/2√
mλ30

∥y − u(t)∥22.

Instead of inducing on the convergence rate of the empirical loss function, as shown in Condition 1,
we perform induction on the movements of the hidden weights as follows.
Condition 1. At the t-th iteration, we have ∥wr(t)∥2 ≤ B and

∥wr(t)−wr(0)∥2 ≤
CB2

√
L(0)√

mλ0
:= R

′

for all r ∈ [m], where C is a universal constant and B =

√
2(d+ 2) log

(
2m(d+2)

δ

)
+ 1.

With Condition 1, we can directly derive the following convergence rate of the empirical loss function.

Corollary 4.10. If Condition 1 holds for t = 0, · · · , k and R
′ ≤ R and R

′′
≲

√
1− η

√
λ0, then

L(t) ≤ (1− η)tL(0),

holds for t = 0, · · · , k, where R is the constant in Lemma 4.5 and R
′′
= CM

√
R is in (16) when σ

is the ReLU3 activation function, R
′′
= CdR is in (18) when σ satisfies Assumption 4.3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL RESULTS

We conduct a comparative evaluation of the NGD against existing optimizers for PINN training
with respect to accuracy, computational efficiency, and alignment with theoretical analysis. The
experimental implementations are listed in the Appendix A.

Table 1: Relative L2-error of Different Optimizers.
SGD Adam L-BFGS NGD

1D Poisson 1.28e-01 ± 4.31e-02 6.46e-02 ± 1.43e-02 2.63e-04 ± 8.95e-05 1.67e-05 ± 9.07e-06

2D Poisson 1.45e-01 ± 7.34e-02 5.32e-03 ± 9.79e-04 3.17e-03 ± 8.66e-04 1.12e-04 ± 6.99e-05

1D Heat 5.43e-01 ± 9.98e-02 6.91e-03 ± 1.31e-03 4.98e-03 ± 1.83e-03 3.42e-04 ± 7.52e-05

2D Helmholtz 8.48e+00 ± 6.37e+00 1.06e+00 ± 8.11e-01 3.35e+00 ± 1.94e+00 6.67e-03 ± 1.89e-03

10D Poisson 1.35e-02 ± 8.17e-03 3.15e-03 ± 8.93e-04 nan 9.91e-04 ± 1.47e-04

Comparison to Existing Optimizers. We report the relative L2-error of the NGD optimizer to the
commonly used first order optimizers (the SGD optimizer, the Adam optimizer) and second order
optimizer (the L-BFGS optimizer) in Table 1. Here ‘nan’ means the training loss becomes infinity.
We see that NGD performs best on all five equations.

Learning Rate Study. We report the behavior of convergence at different learning rates, showing
the strong robustness of the NGD method to hyperparameter selection. Table 2 demonstrates that,
unlike SGD and Adam which demand small learning rates for convergence, the NGD maintains
stable convergence across a wide range of learning rates without notable accuracy deterioration. This
characteristic, which markedly outperforms conventional optimization approaches, clearly illustrates
the strong robustness of the NGD method to hyperparameter selection.

Table 2: Relative L2-error Comparison Across Different Learning Rates η.
learning rate η 1.0 0.5 0.1 0.05 0.01 0.005 0.001

SGD nan nan nan nan 1.19e-02 6.91e-02 7.36e-02
Adam 1.01e+00 1.00e+00 1.00e+00 1.01e+00 1.64e-02 3.25e-02 1.49e-02
NGD 1.97e-03 1.18e-03 3.24e-04 1.87e-04 1.12e-04 1.22e-04 1.68e-04

Network Width Study. A comparative analysis of the model performance is performed with
progressively increasing network widths. Table 3 demonstrates that increasing network width leads
to significant accuracy improvements. This trend validates that wider architectures exhibit enhanced
function approximation capabilities.

Table 3: Relative L2-error Comparison Across Different Network Width m for NGD.
m 20 40 80 160 320 640 1280 2560

error 1.59-03 7.21e-04 5.18e-04 3.8e-04 3.08e-04 2.76e-04 1.78e-04 7.05e-05

Fast Convergence Study. We report the training loss convergence results for different optimizers.
We train SGD and Adam for 10000/20000 epochs with learning rate 1e-3, and the NGD for 100/200
epochs with learning rate 0.1. Figure 1 empirically demonstrates that the NGD converges much faster
than commonly used SGD and Adam optimizers, which is consistent with our theoretical analysis
equation (9) in Theorem 3.7 and equation (20) in Theorem 4.7.

Empirical Convergence Rates Study. We continue to report the empirical convergence rates of
the NGD in different equations. We compare the empirical training loss curves of the NGD when
η = 0.1 with the theoretical linear rates in our main Theorems 4.7. The theoretical decay follows
L(k) ≈ C(1− η)k, and the fitted experimental decay is L(k) ≈ O(k−1.55) for 1D Poisson equation,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 1: Training Loss Decay Comparison for 1D Poisson (left), 1D Heat (middle) and 2D Poisson
(right) Equations.

O(k−1.92) for 1D Heat equation and O(k−1.13) for 2D Poisson equation in Figure 2. For the heat
equation, convergence initially exceeds the predicted rate and later slows markedly. This is consistent
with known NTK decay and multi-phase behaviors in PINNs. Generally, the empirical loss of NGD
roughly follows the predicted linear regime in early iterations, before entering a slower phase usually
observed across all optimizers.

Figure 2: The Experimantal Training Loss Decay and Theoretical Decay (Theorem 4.7) for 1D
Poisson (left), 1D Heat (middle) and 2D Poisson (right) Equations.

6 LIMITATIONS

The computational cost of NGD is mainly on the (J · J⊤)−1 with the Jacobian matrix J is of size
n × p, where n = n1 + n2 is the training data size and p = m(d + 2) is the number of trainable
parameters. So NGD will be quite expensive for large amount of training data.As a result, several
cost-effective variants have been proposed, such as K-FAC Martens & Grosse (2015); Dangel et al.
(2024; 2025), ENGD Müller & Zeinhofer (2023); Guzmán-Cordero et al. (2025) and mini-batch
NGD. We only proved the convergence results for the full-batch NGD in this paper, and it would
be interesting to investigate the convergence of these methods for PINNs in future works. On the
other hand, while the over-parameterized assumption enables the use of NTK stability for proving
global convergence, the practical guarantee for arbitrary sampled projected gradient descent without
assumption on the network size Nießen & Müller (2025) address a different framework, and the NGD
analysis without over-parameterized assumption represent an interesting complementary direction.

7 CONCLUSION AND OUTLOOK

In this paper, we have improved the conditions required for the convergence of gradient descent for
PINNs, showing that gradient descent actually achieves a better convergence rate. Furthermore, we
demonstrate that natural gradient descent can find the global optima of two-layer PINNs with ReLU3

or smooth activation functions for a class of second-order linear PDEs. Compared to gradient descent,
natural gradient descent exhibits a faster convergence rate and its maximal learning rate is O(1).
In conclusion, the NGD offers three key advantages: 1) more relaxed learning rate requirements;
2) faster convergence rates independent of λ0; 3) superior empirical performance. Additionally,
extending the convergence analysis to deep neural networks, stochastic version of NGD, and studying
the generalization error of trained PINNs are important directions for future research.

10

Ye Li
高亮

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We acknowledge that all authors have read and commit to adhering to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have taken the following steps: (1) Source code and configuration
files for all key experiments are provided as supplementary material. (2) All theoretical claims
are accompanied by full proofs (in the Appendix) and assumptions are clearly stated. (3) All
hyperparameters used, neural network architecture details are provided either in the main text or in
the Appendix.

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. Advances in neural information processing systems, 32,
2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019b.

Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks. In International
Conference on Machine Learning, pp. 322–332. PMLR, 2019.

Andrea Bonfanti, Giuseppe Bruno, and Cristina Cipriani. The challenges of the nonlinear regime
for physics-informed neural networks. Advances in Neural Information Processing Systems, 37:
41852–41881, 2024.

Tianle Cai, Ruiqi Gao, Jikai Hou, Siyu Chen, Dong Wang, Di He, Zhihua Zhang, and Liwei Wang.
Gram-gauss-newton method: Learning overparameterized neural networks for regression problems.
arXiv preprint arXiv:1905.11675, 2019.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and deep
neural networks. Advances in neural information processing systems, 32, 2019.

Felix Dangel, Johannes Müller, and Marius Zeinhofer. Kronecker-factored approximate curvature
for physics-informed neural networks. Advances in Neural Information Processing Systems, 37:
34582–34636, 2024.

Felix Dangel, Bálint Mucsányi, Tobias Weber, and Runa Eschenhagen. Kronecker-factored approxi-
mate curvature (kfac) from scratch. arXiv preprint arXiv:2507.05127, 2025.

Tim De Ryck, Florent Bonnet, Siddhartha Mishra, and Emmanuel de Bezenac. An operator precondi-
tioning perspective on training in physics-informed machine learning. In The Twelfth International
Conference on Learning Representations, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–1685.
PMLR, 2019.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Yihang Gao, Yiqi Gu, and Michael Ng. Gradient descent finds the global optima of two-layer physics-
informed neural networks. In International Conference on Machine Learning, pp. 10676–10707.
PMLR, 2023.

11

Ye Li
高亮

Ye Li
高亮

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points—online stochastic
gradient for tensor decomposition. In Conference on learning theory, pp. 797–842. PMLR, 2015.

Evarist Giné and Richard Nickl. Mathematical foundations of infinite-dimensional statistical models.
Cambridge university press, 2021.

Andrés Guzmán-Cordero, Felix Dangel, Gil Goldshlager, and Marius Zeinhofer. Improving energy
natural gradient descent through woodbury, momentum, and randomization. Advances in Neural
Information Processing Systems, 2025.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31, 2018.

Bangti Jin and Longjun Wu. Convergence of stochastic gradient methods for wide two-layer physics-
informed neural networks. arXiv preprint arXiv:2508.21571, 2025.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International conference on machine learning, pp. 1724–1732. PMLR, 2017.

Arun Kumar Kuchibhotla and Abhishek Chakrabortty. Moving beyond sub-gaussianity in high-
dimensional statistics: Applications in covariance estimation and linear regression. Information
and Inference: A Journal of the IMA, 11(4):1389–1456, 2022.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in neural information processing systems, 31, 2018.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-parameterized
non-linear systems and neural networks. Applied and Computational Harmonic Analysis, 59:
85–116, 2022.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

Johannes Müller and Marius Zeinhofer. Achieving high accuracy with pinns via energy natural
gradient descent. In International Conference on Machine Learning, pp. 25471–25485. PMLR,
2023.

Jonas Nießen and Johannes Müller. Non-asymptotic analysis of projected gradient descent for
physics-informed neural networks. arXiv preprint arXiv:2505.07311, 2025.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Pratik Rathore, Weimu Lei, Zachary Frangella, Lu Lu, and Madeleine Udell. Challenges in training
pinns: A loss landscape perspective. In Forty-first International Conference on Machine Learning,
2024.

Jonathan W Siegel, Qingguo Hong, Xianlin Jin, Wenrui Hao, and Jinchao Xu. Greedy training
algorithms for neural networks and applications to pdes. Journal of Computational Physics, 484:
112084, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Bing Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving variational
problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-
dimensional partial differential equations. Journal of Computational Physics, 411:109409, 2020.

12

Ye Li
高亮

Ye Li
高亮

Ye Li
高亮

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient descent
for over-parameterized neural networks. Advances in Neural Information Processing Systems, 32,
2019.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine learning, 109:467–492, 2020.

A EXPERIMENTAL IMPLEMENTATION

In this section, we provide several examples to demonstrate the superiority of the natural gradient
descent(NGD) approach. The configurations used in these examples are listed in Table 4. We report
the relative L2-error of the NGD optimizer to the commonly used first order optimizers (the SGD
optimizer, the Adam optimizer) and second order optimizer (the L-BFGS optimizer) in Table 1. The
relative L2-error is defined as follows:

relative L2 error =

√∑N
i=1 |û(xi)− uref(xi)|2√∑N

i=1 |uref(xi)|2
, (21)

where û denotes the predicted solution and uref represents the reference solution. To show the
generalization ability of NGD, we should note that the testing collocation points {xi}Ni=1 are different
from the training samples {xp}n1

p=1 and {yj}n2
j=1.

Table 4: Configurations of Different Equations.
Nf Nb batch size hidden layers hidden neurons activation function

1D Poisson 500 2 100 1 128 tanh(·)
2D Poisson 1,000 200 100 1 128 tanh(·)

1D Heat 1,000 200 100 1 128 tanh(·)
2D Helmholtz 1,000 200 100 1 128 tanh(·)
10D Poisson 10,000 1,000 100 1 128 tanh(·)

A.1 1D POISSON EQUATION

First, we begin with a toy example of the 1D Poisson equation to display the performance of the
NGD method. The equation is defined in the domain Ω = [0, π],{

−u′′(x) = f(x), x ∈ Ω,
u(x) = 0, x ∈ ∂Ω.

(22)

The true solution is set as u(x) = sin(x), which allows us to derive the corresponding force term
f(x) = sin(x). We randomly sample Nf = 500 points in the domain Ω. For the neural network
architecture, we employ a single hidden layer model with 128 units and tanh(·) activation functions
across all computations. The NGD optimizer is trained for 100 epochs, while the LBFGS optimizer
is run for 1 epoch with a maximum of 500 iterations per epoch. All other optimizers are run for
10, 000 epochs for comprehensive comparison. The relative L2-error is 1.67e − 05 for the NGD
optimizer. Figure 3 shows the predicted solution for the 1D Poisson equation alongside the reference
solution. The prediction is in excellent agreement with the reference solution, highlighting the
superior performance of the NGD method. Figure 4 depicts the loss decay during the training process,
we can see that the NGD method achieves a quite small loss at the very beginning.

A.2 2D POISSON EQUATION

We consider a 2D Poisson equation in the domain Ω = [0, 1]× [0, 1],{
−∂2u
∂x2 − ∂2u

∂y2 = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω.
(23)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 3: Reference Solution and Predicted Solution for the 1D Poisson Equation.

The true solution is given by u(x, y) = sin(πx) sin(πy), and the force term f(x, y) =
2π2 sin(πx) sin(πy) is consequently derived.

We sample Nb = 200 random points on the boundary ∂Ω and Nf = 1, 000 random points within the
domain Ω. We employ a single hidden layer model with 128 units and tanh(·) activation functions
across all computations. We run the NGD method for 200 epochs, while the L-BFGS method is
trained for 1 epoch with a maximum of 5, 000 iterations per epoch. All other optimization methods
are trained for 20, 000 epochs. The resulting relative L2-error is 1.12e − 04. Figure 5 illustrates
the prediction of the 2D Poisson equation, along with the exact solution and the absolute error
between them. It is clear that the predicted solution closely matches the reference solution, further
demonstrating the superior performance of the NGD method. Figure 6 shows the loss decay during
training, demonstrating that the NGD method converges significantly faster than other optimization
methods.

A.3 1D HEAT EQUATION

We consider the 1D heat equation
∂u(t,x)
∂t = 1

4
∂2u(t,x)
∂x2 , (t, x) ∈ [0, 1]

2
,

u(0, x) = sin(πx), x ∈ [0, 1] ,
u(t, x) = 0, (t, x) ∈ [0, 1]× {0, 1}.

(24)

The reference solution is analytically defined by u(t, x) = exp(−π2t
4) sin(πx). We generate Nb =

200 random sampling points for the boundary and initial conditions and Nf = 1, 000 random points
in the domain Ω to evaluate the PDE residual. The neural network used for all computations consists
of 1 hidden layer, each containing 128 neurons with tanh(·) activation functions. To train the model,
we run the NGD method for 200 epochs and the L-BFGS method for 1 epoch with a maximum
of 5, 000 iterations per epoch, and other optimizers are trained for 10, 000 epochs. The resulting
relative L2-error is 3.42e − 04. Figure 7 provides a visual comparison between the predicted and

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 4: Loss Decay for the 1D Poisson Equation.

Figure 5: NGD Prediction and Analysis for the 2D Poisson Equation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 6: Loss Decay for the 2D Poisson Equation.

exact solutions for the 1D heat equation, along with the corresponding absolute error distribution.
The high degree of accuracy in the predicted solution demonstrates the effectiveness of the NGD
method, showing its ability to capture the solution with remarkable precision. Figure 8 shows the loss
curve over the course of training for the 1D heat equation. Notably, the NGD method rapidly reduces
the loss, reaching a low value in the training process, demonstrating its efficiency in optimization.

Figure 7: NGD Prediction and Analysis for the 1D Heat Equation.

A.4 2D HELMHOLTZ EQUATION

We deal with the 2D helmholtz equation on the domain Ω = [0, 1]× [0, 1] given by{
∂2u
∂x2 + ∂2u

∂y2 + k2u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = 0, (x, y) ∈ ∂Ω.
(25)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Loss Decay for the 1D Heat Equation.

The reference solution for k = 4 is u(x, y) = sin(πx) sin(4πy), and the force term f(x, y) can be
easily computed. To evaluate the performance of the NGD approach on the 2D Helmholtz equation,
we generate Nb = 200 random boundary points on ∂Ω and Nf = 1, 000 random points inside the
domain Ω. The neural network employed consists of 1 hidden layers with 128 neurons per layer,
utilizing tanh(·) activation functions. Training is carried out for 200 epochs using the NGD method
and 1 epoch with a maximum of 5, 000 iterations for L-BFGS. All other optimizers are run for 20, 000
epochs for comparison. The computed relative L2-error is 6.67e−03, which is 3 orders of magnitude
lower than those of the remaining optimizers. Figure 9 illustrates the predicted solution along with
the exact reference solution and the absolute error distribution. The results indicate that the NGD
method effectively captures the oscillatory nature of the Helmholtz equation, achieving a high level
of accuracy. Figure 10 shows the evolution of the loss function during training for the 2D Helmholtz
equation. In particular, the NGD method demonstrates rapid convergence, achieving a low loss value
at the end of the training process.

A.5 10D POISSON EQUATION

We conduct experiments to show that the NGD can also perform better than SGD, Adam, and
L-BFGS for high-dimensional PDEs, despite that all optimizers become more challenging as the
dimensionality of PDEs increases. As an example in higher dimensions, we consider again the
Poisson equation in 10 spatial dimensions{

−∆u = f(x), x ∈ Ω = [0, 1]10,

u(x) =
∑10
k=1 sin(πxk), x ∈ ∂Ω.

(26)

We use the manufactured solution

u∗ : R10 → R, x→
10∑
k=1

sin(πxk) (27)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: NGD Prediction and Analysis for the 2D Helmholtz Equation.

Figure 10: Loss Decay for the 2D Helmholtz Equation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

hence f = π2u∗. We sample Nb = 1, 000 random points on the boundary ∂Ω and Nf = 10, 000
random points within the domain Ω. We employ a single hidden layer model with 128 units and
tanh(·) activation functions across all computations We run the NGD method for 200 epochs, while
the L-BFGS method is trained for 1 epoch with a maximum of 5, 000 iterations per epoch. All other
optimization methods are trained for 20, 000 epochs. The resulting relative L2-error is 9.91e− 04. It
is clear that the predicted solution closely matches the reference solution, further demonstrating the
superior performance of the NGD method.

A.6 TRAINING EFFICIENCY COMPARISON

For training efficiency comparison among different optimizers, we present the computational time,
memory usage, and error rates for both the 2D Poisson equation and the 10D Poisson equation.
Table 5 and Table 6 demonstrate that training time and memory requirements increase for all four
optimizers as the problem dimension grows. Despite this, the NGD method still achieves the lowest
error while maintaining comparable computational overhead.

Table 5: Training efficiency comparison for 2D Poisson equation.
Optimizers lr Epochs Training efficiency Training time Max memory Rel. L2 error

SGD 0.001 20,000 0.047 s/epoch 15min49s 14.62 MB 1.45e-01
Adam 0.001 20,000 0.054 s/epoch 18min2s 14.75 MB 5.32e-03

L-BFGS - 200 0.51 s/epoch 1min41s 41.53 MB 3.17e-03
NGD 0.1 200 3.67 s/epoch 12min13s 14.75 MB 1.12e-04

Table 6: Training efficiency comparison for 10D Poisson equation.
Optimizers lr Epochs Training efficiency Training time Max memory Rel. L2 error

SGD 0.001 20,000 0.92 s/epoch 2h33min 328.11 MB 1.05e-02
Adam 0.001 20,000 0.95 s/epoch 2h39min 328.11 MB 2.31e-03

L-BFGS - 200 26.1 s/epoch 1h27min 349.17 MB nan
NGD 0.1 200 37.1 s/epoch 2h4min 328.11 MB 9.91e-04

A.7 NUMERICAL EXAMINATION FOR MULTI-LAYER PINNS

While our convergence proof is based on the two-layer PINNs for simplicity, the extension to
practical multi-layer PINNs are missing. The restriction of two-layer is primarily technical: it
enables precise control of the NTK evolution and allows us to rigorously establish Jacobian stability
(Lemma 4.6) and global convergence (Theorem 4.7). Extending these results to deeper networks is
indeed possible but significantly more involved, as it requires layer-wise coupling analysis of the
NTK (as in Allen-Zhu et al., 2019). Nevertheless, we report the NGD for different layer PINNs
on 2D Poisson equation, to show the NGD can converge as depth increases. We train NGD with
learning rate 0.1, and each are trained with 200 epochs. Table 7 shows the convergence trends remain
consistent with our theoretical predictions: NGD maintains a small relatively L2 error for different
layers, while the overall convergence slows moderately as depth increases. Especially the NGD’s
memory requirements keeps almost the same as layers increased (note that the inverse of JJT is
independent of the parameters), and the computational burden only increase almost linearly with the
total parameters.

Table 7: Training comparison of NGD for different layers on 2D Poisson equation.
Hidden layers Total parameters Training efficiency Training time Max memory Rel. L2 error

1 512 3.67 s/epoch 12min13s 14.75 MB 1.12e-04
3 33, 280 8.29 s/epoch 27min37s 14.75 MB 3.41e-04
6 82, 432 17.53 s/epoch 58min25s 20.17 MB 4.29e-04

19

Ye Li
高亮

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.8 GENERALIZATION LOSS EXAMINATION

While our theoretical analysis focuses on the optimization of the training loss, the behavior of the
generalization error after training is not covered by our current convergence guarantees and is beyond
the scope of this work. Nevertheless, we provide an empirical study to examine how the number of
collocation points affects overfitting for different optimizers in the over-parameterized regime. We
consider the 2D Poisson equation and vary the total number of collocation points N = Nf + Nb
used to train the physics-informed loss (5). NGD is trained with a learning rate of 0.1 for 200 epochs
to ensure stable convergence of the training loss. SGD and Adam are trained for 20,000 epochs
with a learning rate of 1e-3, and L-BFGS is run for one epoch with a maximum of 50,000 iterations.
To approximate the generalization error, we evaluate the physics-informed loss (5) on a very fine
grid with Nf = 100, 000 interior points and Nb = 1, 000 boundary points. As shown in Table 8,
increasing the number of collocation points consistently reduces the generalization error, bringing
it close to the training loss. For the 2D Poisson problem considered here, using approximately
N = 5, 000 samples appears sufficient to mitigate overfitting while maintaining small generalization
error across all examined optimizers.

Table 8: Generalization error comparison using different collocation points.
Optimizers Training loss N = 100 N = 500 N = 1, 000 N = 5, 000 N = 20, 000

SGD 2.13e-03 5.80e-02 1.37e-02 1.03e-02 2.59e-03 1.68e-03
Adam 9.71e-06 1.03e-03 4.59e-04 1.24e-04 3.41e-05 1.39e-05

L-BFGS 7.74e-06 9.16e-04 4.31e-05 3.93e-05 1.02e-05 8.65e-06
NGD 2.86e-06 2.51e-04 2.04e-05 1.22e-05 2.78e-06 2.91e-06

B PROOF OF SECTION 3

Before the proofs, we first define the event

Air := {∃w : ∥w −wr(0)∥2 ≤ R, I{wTxi ≥ 0} ≠ I{wr(0)
Txi ≥ 0}} (28)

for all i ∈ [n].

Note that the event happens if and only if |wr(0)
Txi| < ∥xi∥2R, thus by the anti-concentration

inequality of Gaussian distribution, we have

P (Air) = Pz∼N (0,∥xi∥2
2)
(|z| < R) = Pz∼N (0,1) (|z| < R) ≤ 2R√

2π
. (29)

Let Si = {r ∈ [m] : I{Air} = 0} and S⊥
i = [m]\Si.

Then, we need to recall that

∂sp(w)

∂wr
=

ar√
mn1

[
σ

′′
(wT

r xp)wr0xp + σ
′
(wT

r xp)

(
1

0d+1

)
− σ

′′′
(wT

r xp)∥wr1∥22xp − 2σ
′′
(wT

r xp)

(
0

wr1

)]
(30)

and
∂hj(w)

∂wr
=

ar√
mn2

σ
′
(wT

r yj)yj . (31)

B.1 PROOF OF LEMMA 3.3

Proof. In the following, we aim to bound ∥H(0)−H∞∥F , as ∥H(0)−H∞∥2 ≤ ∥H(0)−H∞∥F .
Note that the entries of H(0)−H∞ have three forms as follows.

m∑
r=1

〈
∂si(w(0)

∂wr
,
∂sj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂si(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉]
, (32)

m∑
r=1

〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]
(33)

20

Ye Li
高亮

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

and
m∑
r=1

〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew

[
m∑
r=1

〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]
. (34)

For the first form (30), to simplify the analysis, we let

Zr(i) = σ
′′
(wr(0)

Txi)wr0(0)xi + σ
′
(wr(0)

Txi)

(
1

0d+1

)
− σ

′′′
(wr(0)

Txp)∥wr1(0)∥22xp − 2σ
′′
(wr(0)

Txi)

(
0

wr1(0)

)
and

Xr(ij) = ⟨Zr(i),Zr(j)⟩,
then
m∑
r=1

〈
∂sp(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉
−Ew

[
m∑
r=1

〈
∂sp(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉]
=

1

n1m

m∑
r=1

[Xr(ij)− EXr(ij)] .

Note that |Xr(ij)| ≲ 1 + ∥wr(0)∥42, thus

∥Xr(ij)∥ψ 1
2

≲ 1 +
∥∥∥wr(0)∥42

∥∥
ψ 1

2

≲ 1 +
∥∥∥wr(0)∥22

∥∥2
ψ1

≲ d2.

Here, for more details on the Orlicz norm, see the remarks after Lemma D.1.

For the centered random variable, the property of ψ 1
2

quasi-norm implies that

∥Xr(ij)− E[Xr(ij)]∥ψ 1
2

≲ ∥Xr(ij)∥ψ 1
2

+ ∥E[Xr(ij)]∥ψ 1
2

≲ d2.

Therefore, applying Lemma D.1 yields that with probability at least 1− δ,∣∣∣∣∣
m∑
r=1

1

m
[Xr(ij)− EXr(ij)]

∣∣∣∣∣ ≲ d2√
m

√
log

(
1

δ

)
+
d2

m

(
log

(
1

δ

))2

,

which directly yields that∣∣∣∣∣
m∑
r=1

〈
∂sp(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂sp(w(0))

∂wr
,
∂sj(w(0))

∂wr

〉]∣∣∣∣∣ ≲ d2

n1
√
m

√
log

(
1

δ

)
+

d2

n1m

(
log

(
1

δ

))2

.

(35)

Similarly, for the second form (31) and third form (32), we can deduce that∥∥∥∥〈∂si(w(0)

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]∥∥∥∥
ψ 1

2

≲
d2

√
n1n2m

and ∥∥∥∥〈∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]∥∥∥∥
ψ 1

2

≲
d2

n2m
.

Thus applying Lemma D.1 yields that with probability at least 1− δ,∣∣∣∣∣
m∑
r=1

〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂si(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]∣∣∣∣∣ ≲ d2
√
n1n2

√
m

√
log

(
1

δ

)
+

d2
√
n1n2m

log

(
1

δ

)
(36)

and with probability at least 1− δ,∣∣∣∣∣
m∑
r=1

〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉
− Ew(0)

[
m∑
r=1

〈
∂hi(w(0))

∂wr
,
∂hj(w(0))

∂wr

〉]∣∣∣∣∣ ≲ d2

n2
√
m

√
log

(
1

δ

)
+

d2

n2m
log

(
1

δ

)
.

(37)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Combining the above we can deduce that with probability at least 1− δ,

∥H(0)−H∞∥22
≤ ∥H(0)−H∞∥2F

≲
d4

m
log

(
n1 + n2

δ

)
+
d4

m2

(
log

(
n1 + n2

δ

))4

≲
d4

m
log

(
n1 + n2

δ

)
.

Thus when
√

d4

m log
(
n1+n2

δ

)
≲ λ0

4 , i.e.,

m = Ω

(
d4

λ20
log

(
n1 + n2

δ

))
,

we have λmin(H(0)) ≥ 3
4λ0.

B.2 PROOF OF LEMMA 3.5

Proof. We first reformulate the term ∂sp(k)
∂wr

in (28) as follows.

∂sp(w)

∂wr
=

ar√
mn1

[
σ

′′
(wT

r xp)

(
wr0xp0

wr0xp1 − 2wr1

)
+ σ

′
(wT

r xp)

(
1

0d+1

)
− σ

′′′
(wT

r xp)∥wr1∥22xp
]
.

It suffices to bound ∥H(w)−H(0)∥F , which can in turn allows us to bound each entry of H(w)−
H(0).

For i ∈ [n1] and j ∈ [n1], we have that

Hij(w) =

m∑
r=1

〈
∂si(w)

∂wr
,
∂sj(w)

∂wr

〉

=
1

n1m

m∑
r=1

〈
σ

′′
(wT

r xi)

(
wr0xi0

wr0xi1 − 2wr1

)
+ σ

′
(wT

r xi)

(
1

0d+1

)
− σ

′′′
(wT

r xi)∥wr1∥22xi,

σ
′′
(wT

r xj)

(
wr0xj0

wr0xj1 − 2wr1

)
+ σ

′
(wT

r xj)

(
1

0d+1

)
− σ

′′′
(wT

r xj)∥wr1∥22xj
〉

After expanding the inner product term, we can find that although it has nine terms, it only consists of
six classes. For simplicity, we use the following six symbols to represent the corresponding classes.

σ
′′
σ

′′
, σ

′′
σ

′
, σ

′
σ

′
, σ

′′′
σ

′′
, σ

′′′
σ

′
, σ

′′′
σ

′′′
.

For instance, σ
′′
σ

′
represents〈

σ
′′
(wT

r xi)

(
wr0xi0

wr0xi1 − 2wr1

)
, σ

′
(wT

r xj)

(
1

0d+1

)〉
,

〈
σ

′
(wT

r xi)

(
1

0d+1

)
, σ

′′
(wT

r xj)

(
wr0xj0

wr0xj1 − 2wr1

)〉
.

In fact, when bounding the corresponding terms for Hij(w) − Hij(0), the first four classes can
be grouped into one category. They are of the form f1(w)f2(w)f3(w)f4(w), where for each i
(1 ≤ i ≤ 4), fi(w) is Lipschitz continuous with respect to ∥ · ∥2 and |fi(w)| ≲ ∥w∥2 (Note that
σ

′
(·) = (σ

′′
(·))2). On the other hand, when ∥w1 −w2∥2 ≤ R ≤ 1, we can deduce that

|f1(w1)f2(w1)f3(w1)f4(w1)− f1(w2)f2(w2)f3(w2)f4(w2)| ≲ R(∥w1∥32 + 1).

Thus, for the terms in Hij(w)−Hij(0) that belong to the first four classes, we can deduce that they
are less than CR(∥wr(0)∥32 + 1), where C is a universal constant.

For the classes σ
′′′
σ

′′
and σ

′′′
σ

′
, they are both involving σ

′′′
that is not Lipschitz continuous. To

make it precise, we write the class σ
′′′
σ

′′
explicitly as follows.

σ
′′
(wT

r xi)σ
′′′
(wT

r xj)∥wr1∥22
(

wr0xi0
wr0xi1 − 2wr1

)T
xj .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Note that when ∥wr −wr(0)∥2 < R, we have that

|σ
′′′
(wT

r xj)− σ
′′′
(wr(0)

Txj)| = |I{wT
r xj ≥ 0} − I{wr(0)

Txj ≥ 0}| ≤ I{Ajr},
where the event Ajr has been defined in (36).

Thus, we can deduce that for the terms in Hij(w) −Hij(0) that belong to the classes σ
′′′
σ

′′
and

σ
′′′
σ

′
, they are less than

C
[
(I{Air}+ I{Ajr})(∥wr(0)∥32 + 1) +R(∥wr(0)∥32 + 1)

]
,

where C is a universal constant.

Similarly, for the last class σ
′′′
σ

′′′
that are of the form

σ
′′′
(wT

r xi)σ
′′′
(wT

r xj)∥wr1∥42xTi xj ,
we can deduce that

|σ
′′′
(wT

r xi)σ
′′′
(wT

r xj)∥wr1∥42xTi xj − σ
′′′
(wr(0)

Txi)σ
′′′
(wr(0)

Txj)∥wr1(0)∥42xTi xj |
≲ I{Air ∨Ajr}∥wr(0)∥42 +R(∥wr(0)∥32 + 1).

Combining the upper bounds for the terms in the six classes, we have that

|Hij(w)−Hij(0)| ≲
1

n1

[
1

m

(
R

m∑
r=1

∥wr(0)∥32

)
+

1

m

m∑
r=1

(I{Air}+ I{Ajr})(∥wr(0)∥42 + ∥wr(0)∥32 + 1) +R

]

≲
1

n1

[
1

m

(
R

m∑
r=1

∥wr(0)∥42

)
+

1

m

m∑
r=1

(I{Air}+ I{Ajr})(∥wr(0)∥42 + 1) +R

]
,

(38)
where the last inequality follows from that ∥wr(0)∥32 ≲ ∥wr(0)∥42 + 1 due to Young’s inequality for
products.

Now, we focus on the term 1
m

m∑
r=1

I{Air}∥wr(0)∥42.

Since

P

(
|wri(0)|2 ≥ 2 log

(
2

δ

))
≤ δ

and then

P

(
∥wr(0)∥22 ≥ 2(d+ 2) log

(
2(d+ 2)

δ

))
≤ δ.

This implies that

P

(
∃r ∈ [m], ∥wr(0)∥22 ≥ 2(d+ 2) log

(
2m(d+ 2)

δ

))
≤ δ. (39)

Let M = 2(d+ 2) log
(

2m(d+2)
δ

)
, then

1

m

m∑
r=1

I{Air}∥wr(0)∥42

=
1

m

m∑
r=1

I{Air}∥wr(0)∥42I{∥wr(0)∥22 ≤M}+ 1

m

m∑
r=1

I{Air}∥wr(0)∥42I{∥wr(0)∥22 > M}

≤ M2

m

m∑
r=1

I{Air}+
1

m

m∑
r=1

∥wr(0)∥42I{∥wr(0)∥22 > M}.

Applying Bernstein’s inequality for the first term yields that with probability at least 1− e−mR,

1

m

m∑
r=1

I{Air} ≤ 4R.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Moreover, from (39), we have that with probability at least 1− δ, the second term I{∥wr(0)∥22 >
M} = 0 holds for all r ∈ [m].

Thus with probability at least 1− δ − n1e
−mR, we have that for any i ∈ [n1] and j ∈ [n1],

|Hij(w)−Hij(0)| ≲
1

n1

[
RM2 +RM2 +R

]
≲

1

n1
M2R.

For i ∈ [n1], j ∈ [n1 + 2, n2] and i ∈ [n1 + 1, n2], j ∈ [n2], from the form of ∂hj(w)
∂wr

, i.e.,

∂hj(w)

∂wr
=

ar√
n2m

σ
′
(wT

r yj)yj ,

we can obtain similar results for the terms
〈
∂si
∂w ,

∂hj

∂w

〉
and

〈
∂hi

∂w ,
∂hj

∂w

〉
.

With all results above, we have that with probability at least 1− δ − n1e
−mR,

∥H(w)−H(0)∥F ≲M2R.

B.3 PROOF OF LEMMA B.1

Indeed, the stringent requirement of the learning rate in Du et al. (2018) stems from an inadequate
decomposition method for the residual. Specifically, in Gao et al. (2023), the decomposition for the
residual in the (k + 1)-th iteration is same as the one in Du et al. (2018), i.e.,(

s(k + 1)
h(k + 1)

)
=

(
s(k)
h(k)

)
+

[(
s(k + 1)
h(k + 1)

)
−
(
s(k)
h(k)

)]
, (40)

which leads to the requirements that η = O(λ0) and m = Poly(n1, n2, 1/δ). Thus, it requires a new
approach to achieve the improvements for η and m. In fact, we can derive the following recursion
formula.
Lemma B.1. For all k ∈ N, we have(

s(k + 1)
h(k + 1)

)
= (I − ηH(k))

(
s(k)
h(k)

)
+ I1(k), (41)

where
I1(k) = (I11 (k), · · · , I

n1+n2
1 (k))T ∈ Rn1+n2

and for p ∈ [n1],

Ip1 (k) = sp(k + 1)− sp(k)−
〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉
, (42)

for j ∈ [n2],

In1+j
1 (k) = hj(k + 1)− hj(k)−

〈
∂hj(k)

∂w
,w(k + 1)−w(k)

〉
. (43)

In the recursion formula (39), I1(k) serves as a residual term. From the proof, we can see that
∥I1(k)∥2 = O(1/

√
m) and thus, asm becomes large enough, only the term I−ηH(k) is significant.

This observation is the reason for the requirement of η.

Proof. First, we have

sp(k + 1)− sp(k) =

[
sp(k + 1)− sp(k)−

〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉]
+

〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉
:= Ip1 (k) + Ip2 (k).

(44)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

For the second term Ip2 (k), from the updating rule of gradient descent, we have that

Ip2 (k) =

〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉
=

〈
∂sp(k)

∂w
,−η ∂L(k)

∂w

〉
= −

m∑
r=1

η

〈
∂sp(k)

∂wr
,
∂L(k)

∂wr

〉

= −
m∑
r=1

η

〈
∂sp(k)

∂wr
,

n1∑
t=1

st(k)
∂st(k)

∂wr
+

n2∑
j=1

hj(k)
∂hj(k)

∂wr

〉

= −η

 n1∑
t=1

〈
∂sp(k)

∂wr
,
∂st(k)

∂wr

〉
st(k) +

n2∑
j=1

〈
∂sp(k)

∂wr
,
∂hj(k)

∂wr

〉
hj(k)


= −η[H(k)]p

(
s(k)
h(k)

)
,

(45)

where [H(k)]p denotes the p-row of H(k).

Similarly, for h(k), we have

hj(k + 1)− hj(k) =

[
hj(k + 1)− hj(k)−

〈
∂hj(k)

∂w
,w(k + 1)−w(k)

〉]
+

〈
∂hj(k)

∂w
,w(k + 1)−w(k)

〉
:= In1+j

1 (k) + In1+j
2 (k)

(46)
and

In1+j
2 (k) = −η[H(k)]n1+j

(
s(k)
h(k)

)
. (47)

Combining (42), (43), (44) and (45) yields that(
s(k + 1)
h(k + 1)

)
−
(
s(k)
h(k)

)
= I1(k) + I2(k)

= I1(k)− ηH(k)

(
s(k)
h(k)

)
.

A simple transformation directly leads to(
s(k + 1)
h(k + 1)

)
= (I − ηH(k))

(
s(k)
h(k)

)
+ I1(k),

which is exactly (39), the new recursion formula we need to prove.

B.4 PROOF OF THEOREM 3.7

Similar to Du et al. (2018) and Gao et al. (2023), we prove Theorem 3.7 by induction. Our induction
hypothesis is the following convergence rate of the empirical loss and upper bounds for the weights.
Condition 2. At the t-th iteration, we have that for each r ∈ [m], ∥wr(t)∥2 ≤ B and

L(t) ≤
(
1− ηλ0

2

)t
L(0), (48)

where B =

√
2(d+ 2) log

(
2m(d+2)

δ

)
+ 1 and L(k) is an abbreviation of L(w(k)).

From the update formula of gradient descent, we can directly derive the following corollary, which
indicates that under over-parameterization, the weights are closed to their initializations.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Corollary B.2. If Condition 2 holds for t = 0, · · · , k, then we have for every r ∈ [m],

∥wr(k + 1)−wr(0)∥2 ≤
CB2

√
L(0)√

mλ0
:= R

′
, (49)

where C is a universal constant.

Proof Sketch: Assume that Condition 2 holds for t = 0, · · · , k, it suffices to demonstrate that
Condition 2 also holds for t = k + 1.

From the recursion formula (40), we have that∥∥∥∥(s(k + 1)
h(k + 1)

)∥∥∥∥2
2

=

∥∥∥∥(I − ηH(k))

(
s(k)
h(k)

)
+ I1(k)

∥∥∥∥2
2

≤ ∥I − ηH(k)∥22

∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

+ ∥I1(k)∥22 + 2 ∥I − ηH(k)∥2

∥∥∥∥(s(k)h(k)

)∥∥∥∥
2

∥I1(k)∥2 ,

(50)

where the inequality follows from the Cauchy’s inequality.

Combining Corollary B.2 with Lemma 3.5, we can deduce that when m is large enough, we have
∥H(k) − H(0)∥2 ≤ λ0/4. Thus, λmin(H(k)) ≥ λ0/2 and I − ηH(k) is positive definite
when η = O(1/∥H∞∥2). On the other hand, with Corollary B.2, we can derive that ∥I1(k)∥2 =

O(η
√
L(k)/

√
m). Plugging these results into (48), we have∥∥∥∥(s(k + 1)

h(k + 1)

)∥∥∥∥2
2

=

((
1− ηλ0

2

)2

+O
(
η2

m

)
+O

(
η√
m

))∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

≤
(
1− ηλ0

2

)∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

,

(51)

where the last inequality holds when m is large enough.

Now we come to prove Theorem 3.7.

Proof. Corollary B.2 implies that when m is large enough, we have ∥wr(k+ 1)−wr(0)∥2 ≤ 1 and
then ∥wr(k+1)∥2 ≤ B. Thus, in induction, we only need to prove that (46) also holds for t = k+1,
which relies on the recursion formula (49).

Recall that the recursion formula is(
s(k + 1)
h(k + 1)

)
= (I − ηH(k))

(
s(k)
h(k)

)
+ I1(k).

From Corollary B.2 and Lemma 3.5, taking CM2R < λ0

4 in (8) and R
′ ≤ R in (47) yields that

λmin(H(k)) ≥ λmin(H(0))− λ0

4 ≥ λ0

2 and

∥H(k)∥2 ≤ ∥H(0)∥2 +
λ0
4

≤ ∥H∞∥2 +
λ0
2

≤ 3

2
∥H∞∥2.

Therefore, if we take η ≤ 2
3

1
∥H∞∥2

, then I−ηH(k) is positive definite and ∥I−ηH(k)∥2 ≤ 1− ηλ0

2 .

Combining these facts with the recursion formula, we have that∥∥∥∥(s(k + 1)
h(k + 1)

)∥∥∥∥2
2

=

∥∥∥∥(I − ηH(k))

(
s(k)
h(k)

)∥∥∥∥2
2

+ ∥I1(k)∥22 + 2

〈
(I − ηH(k))

(
s(k)
h(k)

)
, I1(k)

〉
≤
(
1− ηλ0

2

)2 ∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

+ ∥I1(k)∥22 + 2

(
1− ηλ0

2

)∥∥∥∥(s(k)h(k)

)∥∥∥∥
2

∥I1(k)∥2.

(52)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Thus, it remains only to bound ∥I1(k)∥2.

For I1(k), recall that I1(k) = (I11 (k), · · · , I
n1
1 (k), In1+1

1 (k), · · · , In1+n2
1 (k))T ∈ Rn1+n2 and for

p ∈ [n1],

Ip1 (k) = sp(k + 1)− sp(k)−
〈
∂sp(k)

∂w
,w(k + 1)−w(k)

〉
,

for j ∈ [n2],

In1+j
1 (k) = hj(k + 1)− hj(k)−

〈
∂hj(k)

∂w
,w(k + 1)−w(k)

〉
.

Recall that

sp(k) =
1

√
n1

(
1√
m

(
m∑
r=1

arσ
′
(wr(k)

Txp)wr0(k)− arσ
′′
(wr(k)

Txp)∥wr1(k)∥22

)
− f(xp)

)
and

∂sp(k)

∂wr
=

ar√
n1m

[
σ

′′
(wr(k)

Txp)wr0(k)xp + σ
′
(wr(k)

Txp)

(
1

0d+2

)
− σ

′′′
(wr(k)

Txp)∥wr1(k)∥22xp

−2σ
′′
(wr(k)

Txp)

(
0

wr1(k)

)]
.

Define χ1
pr(k) := σ

′
(wr(k)

Txp)wr0(k) and χ2
pr(k) := σ

′′
(wr(k)

Txp)∥wr1(k)∥22, i.e., χ1
pr(k) and

χ2
pr(k) are related to the operators ∂u

∂t and ∆u respectively.

Then define

χ̂1
pr(k) = χ1

pr(k + 1)− χ1
pr(k)−

〈
∂χ1

pr(k)

∂wr
,wr(k + 1)−wr(k)

〉
and

χ̂2
pr(k) = χ2

pr(k + 1)− χ2
pr(k)−

〈
∂χ2

pr(k)

∂wr
,wr(k + 1)−wr(k)

〉
.

At this time, we have

Ip1 (k) =
1

√
n1m

m∑
r=1

ar
[
χ̂1
pr(k)− χ̂2

pr(k)
]
.

The purpose of defining χ̂1
pr(k) and χ̂1

pr(k) in this way is to enable us to handle the terms related to
the operators ∂u

∂t and ∆u separately.

We first recall some definitions. For p ∈ [n1],

Ap,r = {∃w : ∥w −wr(0)∥2 ≤ R, I{wTxp ≥ 0} ≠ I{wr(0)
Txp ≥ 0}}

and Sp = {r ∈ [m] : I{Ap,r = 0}}, S⊥
p = [n1]\Sp.

In the following, we are going to show that |χ̂1
pr(k)| = O(∥wr(k+1)−wr(k)∥22) for every r ∈ [m]

and |χ̂2
pr(k)| = O(∥wr(k + 1)−wr(k)∥22) for r ∈ Sp, |χ̂2

pr(k)| = O(∥wr(k + 1)−wr(k)∥2) for

r ∈ S⊥
p . Thus, we can prove that ∥I1(k)∥2 = O

(√
L(k)√
m

)
. Then combining with (69) leads to the

conclusion.

For χ̂1
pr(k), from its definition, we have that

χ̂1
pr(k) = σ

′
(wr(k + 1)Txp)wr0(k + 1)− σ

′
(wr(k)

Txp)wr0(k)

− ⟨wr(k + 1)−wr(k),xp⟩σ
′′
(wr(k)

Txp)wr0(k)− (wr0(k + 1)− wr0(k))σ
′
(wr(k)

Txp)

= (σ
′
(wr(k + 1)Txp)− σ

′
(wr(k)

Txp))wr0(k + 1)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′
(wr(k)

Txp)wr0(k).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

From the mean value theorem, we can deduce that there exists ζ(k) ∈ R such that

σ
′
(wr(k + 1)Txp)− σ

′
(wr(k)

Txp) = σ
′′
(ζ(k))⟨wr(k + 1)−wr(k),xp⟩

and
|σ

′′
(ζ(k))− σ

′′
(wr(k)

Txp)| ≤ |ζ(k)−wr(k)
Txp|

≤
√
2∥wr(k + 1)−wr(k)∥2.

Then, for χ̂1
pr(k), we can rewrite it as follows.

χ̂1
pr(k) = σ

′′
(ζ(k))⟨wr(k + 1)−wr(k),xp⟩wr0(k + 1)− ⟨wr(k + 1)−wr(k),xp⟩σ

′′
(wr(k)

Txp)wr0(k)

=
[(
σ

′′
(ζ(k))− σ

′′
(wr(k)

Txp)
)
⟨wr(k + 1)−wr(k),xp⟩wr0(k + 1)

]
+
[
⟨wr(k + 1)−wr(k),xp⟩σ

′′
(wr(k)

Txp)(wr0(k + 1)− wr0(k))
]
.

This implies that
|χ̂1
pr(k)| ≲ B∥wr(k + 1)−wr(k)∥22.

For χ̂2
pr(k), we write it as follows explicitly.

χ̂2
pr(k) = σ

′′
(wr(k + 1)Txp)∥wr1(k + 1)∥22 − σ

′′
(wr(k)

Txp)∥wr1(k)∥22
− ⟨wr(k + 1)−wr(k),xp⟩σ

′′′
(wr(k)

Txp)∥wr1(k)∥22
− 2⟨wr1(k + 1)−wr1(k),wr1(k)⟩σ

′′
(wr(k)

Txp).

(53)

Note that for the term σ
′′
(wr(k)

Twp)∥wr1(k)∥22, we can rewrite it as follows.

σ
′′
(wr(k)

Txp)∥wr1(k)∥22
= σ

′′
(wr(k)

Txp)∥wr1(k)−wr1(k + 1) +wr1(k + 1)∥22
= σ

′′
(wr(k)

Txp)[∥wr1(k)−wr1(k + 1)∥22 + ∥wr1(k + 1)∥22 − 2⟨wr1(k + 1)−wr1(k),wr1(k + 1)⟩],
(54)

where the first term σ
′′
(wr(k)

Txp)∥wr1(k)−wr1(k + 1)∥22 = O(B∥wr(k + 1)−wr(k)∥22).
Plugging (52) into (51) yields that

χ̂2
pr(k) = [σ

′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)]∥wr1(k + 1)∥22
− ⟨wr(k + 1)−wr(k),xp⟩σ

′′′
(wr(k)

Txp)∥wr1(k)∥22
+ 2⟨wr1(k + 1)−wr1(k),wr1(k + 1)−wr1(k)⟩σ

′′
(wr(k)

Txp) +O(B∥wr(k + 1)−wr(k)∥22)

= [σ
′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp)]∥wr1(k + 1)∥22
+ ⟨wr(k + 1)−wr(k),xp⟩σ

′′′
(wr(k)

Txp)(∥wr1(k + 1)∥22 − ∥wr1(k)∥22)
+O(B∥wr(k + 1)−wr(k)∥22)

=
[
σ

′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp)
]
∥wr1(k + 1)∥22

+O(B∥wr(k + 1)−wr(k)∥22).
(55)

Thus, we only need to consider the term

σ
′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp).

For r ∈ Sp, since ∥wr(k + 1) −wr(0)∥2 ≤ R, ∥wr(k) −wr(0)∥2 ≤ R, we have that I{wr(k +
1)Txp ≥ 0} = I{wr(k)

Txp ≥ 0}, which yields that

σ
′′
(wr(k + 1)Txp)− σ

′′
(wr(k)

Txp)− ⟨wr(k + 1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp)

= [(wr(k + 1)Txp)I{wr(k + 1)Txp ≥ 0} − (wr(k)
Txp)I{wr(k)

Txp ≥ 0}]
− ⟨wr(k + 1)−wr(k),xp⟩I{wr(k)

Txp ≥ 0}
= [(wr(k + 1)Txp)I{wr(k)

Txp ≥ 0} − (wr(k)
Txp)I{wr(k)

Txp ≥ 0}]
− ⟨wr(k + 1)−wr(k),xp⟩I{wr(k)

Txp ≥ 0}
= 0.

(56)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

For r ∈ S⊥
p , the Lipschitz continuity of σ

′′
implies that

σ
′′
(wr(k+1)Txp)−σ

′′
(wr(k)

Txp)−⟨wr(k+1)−wr(k),xp⟩σ
′′′
(wr(k)

Txp) = O(∥wr(k+1)−wr(k)∥2).
(57)

Combining (53), (54) and (55), we can deduce that for r ∈ Sp,

|χ̂2
pr(k)| ≲ B∥wr(k + 1)−wr(k)∥22

and for r ∈ S⊥
p ,

|χ̂2
pr(k)| ≲ B∥wr(k + 1)−wr(k)∥22 +B2∥wr(k + 1)−wr(k)∥2.

With the estimations for χ̂1
pr(k) and χ̂2

pr(k), we have

|Ip1 (k)| ≤
1

√
n1m

m∑
r=1

(|χ̂1
pr(k)|+ |χ̂2

pr(k)|)

≲
1

√
n1m

m∑
r=1

B∥wr(k + 1)−wr(k)∥22 +
1

√
n1m

∑
r∈S⊥

p

B2∥wr(k + 1)−wr(k)∥2.
(58)

For j ∈ [n2], we consider In1+j
1 (k), which can be written as follows.

In1+j
1 (k) = hj(k + 1)− hj(k)−

〈
w(k + 1)−w(k),

∂hj(k)

∂w

〉
=

m∑
r=1

ar√
n2m

[
σ(wr(k + 1)Tyj)− σ(wr(k)

Tyj)− ⟨wr(k + 1)−wr(k),yj⟩σ
′
(wr(k)

Tyj)
]
.

From the mean value theorem, we have that there exists ζ(k) ∈ R such that

σ(wr(k + 1)Tyj)− σ(wr(k)
Tyj) = σ

′
(ζ(k))⟨wr(k + 1)−wr(k),yj⟩

and

|σ
′
(ζ(k))− σ

′
(wr(k)

Tyj)| ≤ 2B|ζ(k)−wr(k)
Tyj |

≤ 2
√
2B∥wr(k + 1)−wr(k)∥2.

Thus,

|σ(wr(k + 1)Tyj)− σ(wr(k)
Tyj)− ⟨wr(k + 1)−wr(k),yj⟩σ

′
(wr(k)

Tyj)|

= |σ
′
(ζ(k))⟨wr(k + 1)−wr(k),yj⟩ − σ(wr(k)

Tyj)− ⟨wr(k + 1)−wr(k),yj⟩σ
′
(wr(k)

Tyj)|

= |(σ
′
(ζ(k))− σ

′
(wr(k)

Tyj))⟨wr(k + 1)−wr(k),yj⟩|
≲ B∥wr(k + 1)−wr(k)∥2.

Therefore, for j ∈ [n2],

|In1+j
1 (k)| ≲ B

√
n2m

m∑
r=1

∥wr(k + 1)−wr(k)∥22. (59)

From the updating rule of gradient descent, we can deduce that for every r ∈ [m],

∥wr(k + 1)−wr(k)∥2 =

∥∥∥∥−η ∂L(k)∂wr

∥∥∥∥
2

≲
ηB2

√
m

√
L(k). (60)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Plugging (58) into (57) and (56), we can deduce that

|Ip1 (k)| ≲
B

√
n1m

m∑
r=1

∥wr(k + 1)−wr(k)∥22 +
B2

√
n1m

∑
r∈S⊥

p

∥wr(k + 1)−wr(k)∥2

≲
B

√
n1m

m∑
r=1

η2B4

m
L(k) +

B2

√
n1m

∑
r∈S⊥

p

ηB2

√
m

√
L(k)

=
η2B5L(k)
√
n1m

+
ηB4

√
L(k)

√
n1

1

m

m∑
r=1

I{r ∈ S⊥
p }

≤
η2B5

√
L(0)

√
L(k)

√
n1m

+
ηB4

√
L(k)

√
n1

1

m

m∑
r=1

I{r ∈ S⊥
p }

(61)

and

|In1+j
1 (k)| ≲ B

√
n2m

m∑
r=1

∥wr(k + 1)−wr(k)∥22

≲
B

√
n2m

m∑
r=1

η2B4

m
L(k)

≤
η2B5

√
L(0)

√
L(k)

√
n2m

.

(62)

Note that
P (Ap,r) ≤

2R√
2π
, Sp = {r ∈ [m] : I{Ap,r} = 0}.

Thus, from Bernstein’s inequality, we have that with probability at least 1− e−mR,

1

m

m∑
r=1

I{r ∈ S⊥
p } =

1

m

m∑
r=1

I{Apr} ≲ 4R.

Then the inequality holds for all p ∈ [n1] with probability at least 1− n1e
−mR. Plugging this into

(59), we can conclude that for every p ∈ [n1]

|Ip1 (k)| ≲
η2B5

√
L(0)

√
L(k)

√
n1m

+
ηB4

√
L(k)

√
n1

R. (63)

Combining (60) and (61), we have that

∥I1(k)∥2 =

√√√√ n1∑
p=1

|Ip1 (k)|2 +
n2∑
j=1

|In1+j
1 (k)|2

≲
η2B5

√
L(0)

√
L(k)√

m
+ ηB4

√
L(k)R.

Plugging this into (50) yields that∥∥∥∥(s(k + 1)
h(k + 1)

)∥∥∥∥2
2

≤
(
1− ηλ0

2

)2 ∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

+ ∥I1(k)∥22 + 2

(
1− ηλ0

2

)∥∥∥∥(s(k)h(k)

)∥∥∥∥
2

∥I1(k)∥2

≤

(1− ηλ0
2

)2

+ C2

(
η2B5

√
L(0)√

m
+ ηB4R

)2

+ 2C

(
η2B5

√
L(0)√

m
+ ηB4R

)∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

≤
(
1− ηλ0

2

)∥∥∥∥(s(k)h(k)

)∥∥∥∥2
2

,

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

where C is a universal constant and the last inequality requires that

η2B5
√
L(0)√

m
≲ ηλ0, ηB

4R ≲ ηλ0.

Recall that we also require CM2R < λ0

4 for R in (8) and

R
′
=
CB2

√
L(0)√

mλ0
< R

for R
′

in (47) to make sure ∥H(k)−H(0)∥2 ≤ λ0

4 .

Finally, with R = O(λ0

M2) and the upper bound of L(0), m needs to satisfies that

m = Ω

(
M4B4L(0)

λ40

)
= Ω

(
d8

λ40
log6

(
md

δ

)
log

(
n1 + n2

δ

))
.

C PROOF OF SECTION 4

C.1 PROOF OF LEMMA 4.4

Proof. Recall that

H(w) = DTD, D =

[
∂s1(w)

∂w
, · · · , ∂sn1

(w)

∂w
,
∂h1(w)

∂w
, · · · , ∂hn2

(w)

∂w

]
,

and H∞ = Ew∼N (0,I)H(w).

We denote φ(x;w) = σ
′
(wTx)w0 − σ

′′
(wTx)∥w1∥22, where w = (w0,w

T
1)
T , w0 ∈ R,w1 ∈ Rd,

then
∂sp(w)

∂wr
=

1√
n1

ar√
m

∂φ(xp;wr)

∂wr
.

Similarly, we denote ψ(y;w) = σ(wTy), then

∂hj(w)

∂wr
=

1√
n2

ar√
m

∂ψ(yj ,wr)

∂wr
.

With the notations, we can deduce that

H∞
p,j =



1

n1
Ew∼N (0,I)

〈
∂φ(xp;w)

∂w
,
∂φ(xj ;w)

∂w

〉
, 1 ≤ p ≤ n1, 1 ≤ j ≤ n1,

1
√
n1n2

Ew∼N (0,I)

〈
∂φ(xp;w)

∂w
,
∂ψ(yj ;w)

∂w

〉
, 1 ≤ p ≤ n1, n1 + 1 ≤ j ≤ n1 + n2,

1

n2
Ew∼N (0,I)

〈
∂ψ(yp;w)

∂w
,
∂ψ(yj ;w)

∂w

〉
, n1 + 1 ≤ p ≤ n1 + n2, n1 + 1 ≤ j ≤ n1 + n2,

where H∞
p,j is the (p, j)-th entry of H∞.

The proof of this lemma requires tools from functional analysis. Let H be a Hilbert space of integrable
(d + 2)-dimensional vector fields on Rd+2, i.e., f ∈ H if Ew∼N (0,I)[∥f(w)∥22] < ∞. The inner
product for any two elements f, g in H is Ew∼N (0,I)[⟨f(w), g(w)⟩]. Thus, proving H∞ is strictly
positive definite is equivalent to show that

∂φ(x1;w)

∂w
, · · · , ∂φ(xn1 ;w)

∂w
,
∂ψ(y1;w)

∂w
, · · · , ∂ψ(yn2 ;w)

∂w
∈ H

are linearly independent. Suppose that there are α1, · · · , αn1
, β1, · · · , βn2

∈ R such that

α1
∂φ(x1;w)

∂w
+ · · ·+ αn1

∂φ(xn1
;w)

∂w
+ β1

∂ψ(y1;w)

∂w
+ · · ·+ βn2

∂ψ(yn2
;w)

∂w
= 0 inH.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

This implies that

α1
∂φ(x1;w)

∂w
+ · · ·+ αn1

∂φ(xn1
;w)

∂w
+ β1

∂ψ(y1;w)

∂w
+ · · ·+ βn2

∂ψ(yn2
;w)

∂w
= 0 (64)

holds for all w ∈ Rd+1, as σ(·) is smooth.

First, we compute the derivatives of φ and ψ with respect to w. For the k-th derivative of ψ(y;w)
with respect to w, we have

∂kψ(y;w)

∂wk
= σ(k)(wTy)y⊗(k),

where ⊗ denotes the tensor product.

For φ(x;w), let φ0(x;w) = σ
′
(wTx)w0 and φi(x;w) = σ

′′
(wTx)w2

i for 1 ≤ i ≤ d. Then

φ(x;w) = φ0(x;w)−
d∑
i=1

φi(x;w).

For the k-th derivative of φ0(x;w) with respect to w, analogous to the Leibniz rule for the k-th
derivative of the product of two scalar functions, we have

∂kφ0(x;w)

∂wk
= σ(k+1)(wTx)w0x

⊗(k) +

k∑
i=1

x⊗(i−1) ⊗ e0 ⊗ x⊗(k−i)σ(k)(wTx)

= σ(k+1)(wTx)w0x
⊗(k) + σ(k)(wTx)

k∑
i=1

e
(i)
0 ⊗ x⊗(k),

(65)

where e0 = (1, 0, · · · , 0)T ∈ Rd+1 and in the second equality, e(i)0 denotes that e0 is placed at the
i-th position.

Similarly, for φi(x;w) where 1 ≤ i ≤ d, taking i = 1 as example, we have

∂kφ1(x;w)

∂wk
= σ(k+2)(wTx)w2

1x
⊗(k) + 2kw1σ

(k+1)(wTx)

k∑
i=1

e
(i)
1 ⊗ x⊗(k−1)

+ k(k − 1)σ(k)(wTx)
∑

1≤i<j≤k

e
(i)
1 ⊗ e

(j)
1 ⊗ x⊗(k−2),

(66)

where ei ∈ Rd+1 is a vector with the (i+1)-th component equal to 1 and all other components equal
to 0, and e

(i)
1 indicates that e1 is placed at the i-th position.

By combining the derivatives of φ0(x;w), · · · , φd(x;w) from equations (65) and (66), we can

compute the k-th derivative of w0σ
′
(wTx)−

d∑
i=1

w2
i σ

′′
(wTx) as follows:

∂kφ(x;w)

∂wk
=
∂kφ0(x;w)

∂wk
−

d∑
i=1

∂kφi(x;w)

∂wk

= w0σ
(k+1)(wTx)x⊗(k) + σ(k)(wTx)

k∑
i=1

e
(i)
0 ⊗ x⊗(k)

−
d∑
t=1

[
w2
t σ

(k+2)(wTx)x⊗(k) + 2kwtσ
(k+1)(wTx)

k∑
i=1

e
(i)
t ⊗ x⊗(k−1)

+k(k − 1)σ(k)(wTx)
∑

1≤i<j≤k

e
(i)
t ⊗ e

(j)
t ⊗ x⊗(k−2)

 .

(67)

Note that when any two points in {x1, · · · ,xn1 ,y1, · · · ,yn2} are non-parallel, the tensors

x
⊗(n1+n2)
1 , · · · ,x⊗(n1+n2)

n1
,y

⊗(n1+n2)
1 , · · · ,y⊗(n1+n2)

n2

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

are linearly independent (see Lemma G.6 in Du et al. (2019)). This observation motivates us to take
the (k − 1)-th derivative of both sides of equation (64) with respect to w, yielding

α1
∂kφ(x1;w)

∂wk
+ · · ·+ αn1

∂kφ(xn1 ;w)

∂wk
+ β1

∂kψ(y1;w)

∂wk
+ · · ·+ βn2

∂kψ(yn2 ;w)

∂wk
= 0. (68)

Since this equation holds for all w ∈ Rd+1, we specifically consider w = (w0,0d), where w0 is to
be determined. Under this condition, equation (68) becomes

w0

n1∑
p=1

αp

[
σ(k+1)(w0x

0
p)x

⊗(k)
p

]
+

n1∑
p=1

αp

[
σ(k)(w0x

0
p)zp

]
+

n2∑
j=1

βj

[
σ(k)(w0y

0
j)y

⊗(k)
j

]
= 0,

(69)
where the tensor zp is defined as

zp =

k∑
i=1

e
(i)
0 ⊗ x⊗(k)

p − k(k − 1)

d∑
t=1

∑
1≤i<j≤k

e
(i)
t ⊗ e

(j)
t ⊗ x⊗(k−2)

p . (70)

By assumption, for any positive integer n ≥ 0 we have lim
x→+∞

σ(n)(x)
ϕ(x) = cn ̸= 0. We first consider

the case where all input components satisfy x01 = · · · = x0n1
= y01 = · · · = y0n2

= a > 0. Under this
condition, equation (69) simplifies to:

w0σ
(k+1)(w0a)

[
n1∑
p=1

αpx
⊗(k)
p

]
+ σ(k)(w0a)

[
n1∑
p=1

αpzp

]
+ σ(k)(w0a)

 n2∑
j=1

βjy
⊗(k)
j

 = 0. (71)

Dividing both sides of equation (71) by ϕ(w0a) yields

w0
σ(k+1)(w0a)

ϕ(w0a)

[
n1∑
p=1

αpx
⊗(k)
p

]
+
σ(k)(w0a)

ϕ(w0a)

[
n1∑
p=1

αpzp

]
+
σ(k)(w0a)

ϕ(w0a)

 n2∑
j=1

βjy
⊗(k)
j

 = 0. (72)

Now taking the limit asw0 tends to positive infinity, we observe that σ
(k)(w0a)
ϕ(w0a)

converges to a non-zero

constant, while w0
σ(k+1)(w0a)
ϕ(w0a)

diverges to infinity. This asymptotic behavior leads to the following
conclusions:

n1∑
p=1

αpx
⊗(k)
p = 0,

n1∑
p=1

αpzp +

n2∑
j=1

βjy
⊗(k)
j = 0. (73)

By the linear independence of the tensor products (established earlier), we can deduce that αp = 0

for all p = 1, · · · , n1, which subsequently implies
n2∑
j=1

βjy
⊗(k)
j = 0 and thus βj = 0 for all

j = 1, · · · , n2.

When our previous assumption does not hold—that is, when x01, · · · , x0n1
, y01 , · · · , y0n2

are not neces-
sarily all equal—we proceed as follows:

Case 1: All elements are strictly positive.

Let b = min{x01, · · · , x0n1
, y01 , · · · , y0n2

}. Dividing both sides of (68) by ϕ(w0b), we observe that for
any x > b,

lim
w0→+∞

σ(n)(w0x)

ϕ(w0b)
= 0.

Thus, the problem reduces to the previously considered case where all inputs are equal (to b). Due
to linear independence, the coefficients αp and βj corresponding to the minimal b must vanish.
Repeating this process iteratively, we conclude that all αp and βj must be zero.

Case 2: Some elements are zero.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Since the xp are interior points (and thus non-zero), any zero-valued inputs must correspond to
boundary or initial conditions. Let us assume without loss of generality that y01 , · · · , y0n2

are all zero.

1. If σ(k)(0) = 0, , then following our previous method, we can conclude that the coefficients
corresponding to non-zero inputs vanish. Returning to equation (68), we have

n2∑
j=1

βjσ
(k)(wTyj)y

⊗(k)
j = 0. (74)

By the independence of y1, · · · ,yn2
, we can deduce that βjσ(k)(wTyj) = 0 holds for all j ∈ [n2].

From the assumption, we can select w such that σ(k)(wTyj) ̸= 0, and consequently, βj = 0 holds
for all j ∈ [n2].

2. If σ(k)(0) ̸= 0, let b be the smallest strictly positive value among x01, · · · , x0n1
, y01 , · · · , y0n2

. Divide
(71) by ϕ(w0b/2). Since all other positive terms decay to zero as w0 → +∞, we obtain:

lim
w0→∞

n2∑
j=1

βjσ
(k)(0)y

⊗(k)
j /ϕ(w0b/2) = 0. (75)

This implies that
n2∑
j=1

βjy
⊗(k)
j = 0. By linear independence, all βj = 0.

Remark C.1. The key point in the proof lies in the fact that the order of the PDE in the interior is
higher than that of the initial and boundary conditions, allowing for a natural extension to broader
classes of PDEs. For general PDEs, we may focus solely on the interior and boundary, assuming the
interior is of second order and the boundary is of first order. Suppose the second-order interior term
is taken at x0, i.e., it has the form ∂2u

∂x2
0

, and the first-order boundary term is also taken at x0. Since we
can translate the coordinates, without loss of generality, we can assume that all x0-components are
positive.

For the interior, taking the k-th derivative of w2
0σ

(2)(wTx) yields that

w2
0σ

(k+2)(wTx)x⊗(k) + 2kw0σ
(k+1)(wTx)

k∑
i=1

e
(i)
1 ⊗ x⊗(k−1)

+ k(k − 1)σ(k)(wTx)
∑

1≤i<j≤k

e
(i)
0 ⊗ e

(j)
0 ⊗ x⊗(k−2).

For the boundary, taking the k-th derivative of w0σ
(1)(wTx) yields that

σ(k+1)(wTx)w0x
⊗(k) + σ(k)(wTx)

k∑
i=1

e
(i)
0 ⊗ x⊗(k).

As before, we set w = (w0,0). Then, the equation (69) becomes

w2
0

n1∑
p=1

αp

[
σ(k+1)(w0x

0
p)x

⊗(k)
p

]
+ w0

n1∑
p=1

αp

[
σ(k)(w0x

0
p)z

0
p

]
+

n1∑
p=1

αp

[
σ(k)(w0x

0
p)z

1
p

]
+ w0

n2∑
j=1

βj

[
σ(k)(w0y

0
j)y

⊗(k)
j

]
+

n2∑
j=1

βj

[
σ(k)(w0y

0
j)z

2
j

]
= 0,

where z0
p, z

1
p, z

2
j are tensors of similar form zp in (70), whose explicit definitions are omitted for

simplicity. Dividing both sides by w0ϕ(w0x
0
p) reduces it to the form considered earlier. We can

therefore conclude that the Gram matrix is strictly positive definite. Indeed, since the orders of the
interior and boundary terms in the partial differential equation differ, we can relax the conditions in
Lemma 4.4 to simply requiring that no two samples in {xp}n1

p=1 are parallel and no two samples in
{yj}n2

j=1 are parallel. In brief, we can set k = n1 − 1 and k = n2 − 1 in equation (68), and then use
the method described above.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Remark C.2. For the activation functions sin(x) and cos(x), in equation (69), we may assume that
σ(k+1)(x) = sin(x), σ(k)(x) = − cos(x). Dividing both sides of equation (69) by w0 and letting
w0 → +∞, we can obtain

lim
w0→+∞

n1∑
p=1

αp

[
sin(w0x

0
p)x

⊗(k)
p

]
= 0.

We express the general form of the components of the tensor above as
n1∑
p=1

αpcp sin(w0x
0
p) =

n∑
i=1

ai sin(w0bi),

where the bi > 0 are distinct and cp denotes the components of the tensor x⊗(k)
p . For simplicity, we

denote w0 as x. To prove that
n1∑
p=1

αpx
⊗(k)
p = 0, we need to show that any component of this tensor

is zero, i.e., its general form satisfies
n1∑
p=1

αpcp = 0. This is equivalent to proving
n∑
i=1

ai = 0.

Let f(x) =
n∑
i=1

ai sin(bix), note that dividing both sides of equation (69) by w0 yields that f(x) =

O(1/x). Thus, we can consider the average energy of f2(x) over the interval [T, T + L], i.e.,

1

L

∫ T+L

T

f2(x)dx.

Expanding this, we obtain

1

L

∫ T+L

T

(
n∑
i=1

ai sin(bix)

)2

dx

=
1

L

∫ T+L

T

 n∑
i=1

a2i sin
2(bix) +

∑
i ̸=j

aiaj sin(bix) sin(bjx)

 dx
=

1

2

n∑
i=1

a2i −
1

L

n∑
i=1

sin(2bi(T + L))− sin(2biT)

4bi

+
1

L

∑
i ̸=j

aiaj
sin((bi − bj)(T + L))− sin((bi − bj)T)

2(bi − bj)

− 1

L

∑
i ̸=j

aiaj
sin((bi + bj)(T + L))− sin((bi + bj)T)

2(bi + bj)
.

Taking the limits L→ +∞ and T → +∞ in the above equation, the right-hand side tends to 1
2

n∑
i=1

a2i .

Regarding the left-hand side, recall that f(x) = O(1/x), thus for any ϵ > 0, there exists T0 such that
for all x > T0, |f(x)| < ϵ. Therefore, for T > T0 and any L, we have

1

L

∫ T+L

T

f2(x)dx ≤ ϵ2.

By the arbitrariness of ϵ, we can deduce that

lim
T,L→+∞

1

L

∫ T+L

T

f2(x)dx = 0.

Hence, we can deduce that 1
2

n∑
i=1

a2i = 0, which implies that
n∑
i=1

ai = 0, i.e.,
n1∑
p=1

αpcp = 0. Finally,

we obtain
n1∑
p=1

αpx
⊗(k)
p = 0.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Applying the same approach as before, we conclude that αp = 0 for all p ∈ [n1]and βj = 0 for all
j ∈ [n2].

C.2 PROOF OF LEMMA 4.6

Proof. Recall that
∂sp(w)

∂wr
=

ar√
n1m

[
σ

′′
(wT

r xp)wr0xp + σ
′
(wT

r xp)

(
1

0d+1

)
− σ

′′′
(wT

r xp)∥wr1∥22xp

−2σ
′′
(wT

r xp)

(
0

wr1

)]
and

∂hj(w)

∂wr
=

ar√
n2m

σ
′
(wT

r yj)yj .

(1) When σ(·) is the ReLU3 activation function.

From the form of ∂sp(w)
∂wr

, we can deduce that∥∥∥∥∂sp(w)

∂wr
− ∂sp(0)

∂wr

∥∥∥∥
2

≲
1

√
n1m

[
R(∥wr(0)∥2 + 1) + |I{wT

r xp ≥ 0} − I{wr(0)
Txp ≥ 0}|(∥wr(0)∥22 + 1)

]
≤ 1

√
n1m

[
R(∥wr(0)∥2 + 1) + I{Apr}(∥wr(0)∥22 + 1)

]
,

(76)

where the second inequality follows from the fact ∥w −wr(0)∥2 < R ≤ 1 and the definition of Apr
in (28).

Similarly, we have that∥∥∥∥∂hj(w)

∂wr
− ∂hj(0)

∂wr

∥∥∥∥
2

≲
1

√
n2m

R(∥wr(0)∥2 + 1). (77)

Combining the above equations, we can deduce that

∥J(w)− J(0)∥22
≤ ∥J(w)− J(0)∥2F

=

n1+n2∑
i=1

∥Ji(w)− Ji(0)∥22

=

m∑
r=1

 n1∑
p=1

∥∥∥∥∂sp(w)

∂wr
− ∂sp(0)

∂wr

∥∥∥∥2
2

+

n2∑
j=1

∥∥∥∥∂hj(w)

∂wr
− ∂hj(0)

∂wr

∥∥∥∥2
2


≲

m∑
r=1

 n1∑
p=1

1

n1m

(
R(∥wr(0)∥2 + 1) + I{Apr}(∥wr(0)∥22 + 1)

)2
+

n2∑
j=1

1

n2m
(R∥wr(0)∥2 +R)2


≲
R2

m

m∑
r=1

(∥wr(0)∥22 + 1) +
1

n1m

n1∑
p=1

m∑
r=1

I{Apr}(∥wr(0)∥42 + 1)

=
R2

m

m∑
r=1

(∥wr(0)∥22 + 1)

+
1

n1m

n1∑
p=1

m∑
r=1

I{Apr}
(
∥wr(0)∥42I{∥wr(0)∥22 ≤M}+ ∥wr(0)∥42I{∥wr(0)∥22 > M}+ 1

)
≲
R2

m

m∑
r=1

(∥wr(0)∥22 + 1) +
M2

n1m

n1∑
p=1

m∑
r=1

I{Apr}+
1

m

m∑
r=1

∥wr(0)∥42I{∥wr(0)∥22 > M},

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

where M = 2(d+ 2) log(2m(d+ 2)/δ). Note that from (39), we have

P

(
∃r ∈ [m], ∥wr(0)∥22 ≥ 2(d+ 2) log

(
2m(d+ 2)

δ

))
≤ δ.

On the other hand, applying Bernstein’s inequality yields that with probability at least 1− n1e
−mR,

1

m

m∑
r=1

I{Apr} < 4R

holds for all p ∈ [n1].

Therefore, we have that

∥J(w)− J(0)∥22 ≲MR2 +R2 +M2R ≲M2R

holds with probability at least 1− δ − n1e
−mR.

(2) Note that when σ satisfies Assumption 4.3, σ
′
, σ

′′
and σ

′′′
are all Lipschitz continuous and

bounded. Thus, we can obtain that∥∥∥∥∂sp(w)

∂wr
− ∂sp(0)

∂wr

∥∥∥∥
2

≲
1

√
n1m

R(∥wr(0)∥22+∥wr(0)∥2+1) ≲
1

√
n1m

R(∥wr(0)∥22+1), (78)

where the second inequality is from Young’s inequality.

Similarly, we have ∥∥∥∥∂hj(w)

∂wr
− ∂hj(0)

∂wr

∥∥∥∥
2

≲
1

√
n2m

R(∥wr(0)∥2 + 1). (79)

Combining the above equations yields that

∥J(w)− J(0)∥22

≤
m∑
r=1

 n1∑
p=1

∥∥∥∥∂sp(w)

∂wr
− ∂sp(0)

∂wr

∥∥∥∥2
2

+

n2∑
j=1

∥∥∥∥∂hj(w)

∂wr
− ∂hj(0)

∂wr

∥∥∥∥2
2


≲

m∑
r=1

 n1∑
p=1

1

n1m
(R∥wr(0)∥22 +R)2 +

n2∑
j=1

1

n2m
(R∥wr(0)∥2 +R)2


≲
R2

m

m∑
r=1

(∥wr(0)∥42 + 1)

≲ R2

[
d2 +

d2√
m

√
log

(
1

δ

)
+
d2

m

(
log

(
1

δ

))2
]
,

where the last inequality follows from the fact that
∥∥∥wr(0)∥42

∥∥
ψ 1

2

≲ d2 and Lemma D.1.

C.3 PROOF OF THEOREM 4.7

For the sake of completeness in the proof, we restate Condition 1 and Corollary 4.11 from the main
text, and label them as Condition 3 and Corollary C.3, respectively.

Condition 3. At the t-th iteration, we have ∥wr(t)∥2 ≤ B and

∥wr(t)−wr(0)∥2 ≤
CB2

√
L(0)√

mλ0
:= R

′

for all r ∈ [m], where C is a universal constant and B =

√
2(d+ 2) log

(
2m(d+2)

δ

)
+ 1.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Corollary C.3. If Condition 3 holds for t = 0, · · · , k and R
′ ≤ R and R

′′
≲

√
1− η

√
λ0, then

L(t) ≤ (1− η)tL(0),

holds for t = 0, · · · , k, where R is the constant in Lemma 4.5 and R
′′
= CM

√
R in (16) when σ is

the ReLU3 activation function, R
′′
= CdR in (18) when σ satisfies Assumption 4.3.

Thanks to Corollary C.3, it is sufficient to prove that Condition 3 also holds for t = k + 1. For
readability, we defer the proof of Corollary C.3 to the end of this section. In the following, we
are going to show that the Condition 3 also holds for t = k + 1, thus combining Condition 3 and
Corollary C.3 leads to Theorem 4.7.

Sketch Proof of Theorem 4.7. First, let u(t) =

(
s(t)
h(t)

)
, then from the updating formula of NGD

(11), we have
u(t+ 1)− u(t)

= u
(
w(t)− ηJ(t)TH(t)−1u(w(t))

)
− u(w(t))

= −
∫ 1

0

〈
∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

= −
∫ 1

0

〈
∂u(w(t))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

+

∫ 1

0

〈
∂u(w(t))

∂w
− ∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(t)

〉
ds

:= I1(t) + I2(t),

(80)

where the second equality is from the fundamental theorem of calculus and w(s) = sw(t + 1) +
(1− s)w(t) = w(t)− sηJ(t)TH(t)−1u(t).

In the proof, we assume that Condition 3 holds for t = 0, · · · , k. Then from Corollary C.3, to prove
Theorem 4.7, it suffices to demonstrate that this condition also holds for t = k+1. Here, we primarily
explain the process from Condition 3 to Corollary C.3, while other content is placed in the following
full proof of Theorem 4.7.

Note that ∂u(w(t))
∂w = J(t), thus I1(t) = ηu(t). Plugging this into (80) yields that

u(t+ 1) = (1− η)u(t) + I2(t). (81)

From the above equation, we can see the difference between NGD and GD. Recall that the iteration
formula for GD is

u(t+ 1) = (1− ηH(t))u(t) + I1(t).

Precisely because of this, the convergence rate of GD is inevitably influenced by λ0 , whereas that of
NGD is not.

From the stability of the Jacobian matrix, we can deduce that ∥I2(t)∥2 = O(η∥u(t)∥2/
√
m).

Plugging this into (81) yields that

∥u(t+ 1)∥22
≤ ∥(1− η)u(t)∥22 + ∥I2(t)∥22 + 2(1− η)∥u(t)∥2∥I2(t)∥2

=

(
(1− η)2 +O

(
η2

m

)
+ 2(1− η)O

(
η√
m

))
∥u(t)∥22

≤ (1− η)∥u(t)∥22,

(82)

where the last inequality holds if m is large enough.

Full Proof of Theorem 4.7. Recall that we letR
′′
= CM

√
R in (16) when σ is the ReLU3 activation

function and let R
′′
= CdR in (18) when σ satisfies Assumption 4.3.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

First, we can set R
′ ≤ R and R

′′ ≤
√
3λ0

6 , since R
′′
≲

√
1− η

√
λ0. Then from Lemma 4.5 we have

∥J(t)− J(0)∥2 ≤
√
3λ0

6 , thus

σmin(J(t)) ≥ σmin(J(0))− ∥J(t)− J(0)∥2 ≥
√
3λ0
2

−
√
3λ0
6

=

√
3λ0
3

and then λmin(H(t)) ≥ λ0

3 for t = 0, · · · , k, where σmin(·) denotes the least singular value.

From the updating rule of NGD, we have

wr(t+ 1) = wr(t)− η
[
J(t)T

]
r
(H(t))−1

(
s(t)
h(t)

)
,

where [
J(t)T

]
r
=

[
∂s1(t)

∂wr
, · · · , ∂sn1(t)

∂wr
,
∂h1(t)

∂wr
, · · · , ∂hn2(t)

∂wr

]
.

Therefore, for t = 0, · · · , k and any r ∈ [m], we have
∥wr(t+ 1)−wr(t)∥2
≤ η∥

[
J(t)T

]
r
∥2∥H(t)−1∥2

√
L(t)

≤ 3η

λ0
∥
[
J(t)T

]
r
∥2
√
L(t)

≤ 3η

λ0
∥
[
J(t)T

]
r
∥F
√
L(t)

=
3η

λ0

√√√√ n1∑
p=1

∥∥∥∥∂sp(t)∂wr

∥∥∥∥2
2

+

n2∑
j=1

∥∥∥∥∂hj(t)∂wr

∥∥∥∥2
2

√
L(t)

≲
η

λ0

√
B4 + 1

m

√
L(t)

≲
ηB2

√
mλ0

√
L(t)

≤ ηB2

√
mλ0

(1− η)t/2
√
L(0),

(83)

where the last inequality is due to Corollary C.3.

Summing t from 0 to k yields that
∥wr(k + 1)−wr(0)∥2

≤
k∑
t=0

∥wr(t+ 1)−wr(t)∥2

≤ C
ηB2

√
mλ0

k∑
t=0

(1− η)t/2
√
L(0)

≤
CB2

√
L(0)√

mλ0
,

where C is a universal constant.

Now, when R
′ ≤ 1, we can deduce that ∥wr(k + 1)∥2 ≤ B, implying that Condition 3 also holds

for t = k + 1. Thus, it remains only to derive the requirement for m.

Recall that we need m to satisfy that R
′
=

CB2
√
L(0)√

mλ0
≤ R and R

′′
≲

√
1− η

√
λ0.

(1) When σ is the ReLU3 activation function, in Corollary C.3, R
′′
= CM

√
R ≲

√
1− η

√
λ0,

implying that R ≲ (1−η)λ0

M2 . Then R
′
=

CB2
√
L(0)√

mλ0
≤ R implies that

m = Ω

(
1

(1− η)2
M4B4L(0)

λ40

)
.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

From Lemma D.4 for the estimation of L(0), i.e.,

L(0) ≲ d2 log

(
n1 + n2

δ

)
,

we can deduce that

m = Ω

(
1

(1− η)2
d8

λ40
log6

(
md

δ

)
log

(
n1 + n2

δ

))
.

(2) When σ satisfies Assumption 4.3, we have that

R ≲

√
(1− η)λ0
d

,R
′
=
CB2

√
L(0)√

mλ0
≤ R.

From Lemma D.4, we can deduce that

m = Ω

(
1

1− η

d6

λ30
log2

(
md

δ

)
log

(
n1 + n2

δ

))
.

Proof of Corollary C.3. Similar as before, when R
′ ≤ R and R

′′ ≤
√
3λ0

6 , we have σmin(J(t)) ≥√
3λ0

3 and then λmin(H(t)) ≥ λ0

3 for t = 0, · · · , k.

Let u(t) =
(
s(t)
h(t)

)
, then

u(t+ 1)− u(t)

= u
(
w(t)− ηJ(t)TH(t)−1u(w(t))

)
− u(w(t))

= −
∫ 1

0

〈
∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

= −
∫ 1

0

〈
∂u(w(t))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

+

∫ 1

0

〈
∂u(w(t))

∂w
− ∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

:= I1(t) + I2(t),

(84)

where the second equality is from the fundamental theorem of calculus and w(s) = sw(t + 1) +
(1− s)w(t) = w(t)− sηJ(t)TH(t)−1u(t).

Note that ∂u(w(t))
∂w = J(t), thus I1(t) = ηu(t). Plugging this into (84) yields that

u(t+ 1) = (1− η)u(t) + I2(t). (85)

Therefore, it remains only to bound ∥I2(t)∥2.

∥I2(t)∥2 =

∥∥∥∥∫ 1

0

〈
∂u(w(t))

∂w
− ∂u(w(s))

∂w
, ηJ(t)TH(t)−1u(w(t))

〉
ds

∥∥∥∥
2

≤
∫ 1

0

∥J(w(t))− J(w(s))∥2∥ηJ(t)TH(t)−1u(w(t))∥2ds

≤ η∥J(t)TH(t)−1∥2∥u(w(t))∥2
∫ 1

0

∥J(w(t))− J(w(s))∥2ds

≲
η
√
L(t)√
λ0

∫ 1

0

∥J(w(t))− J(w(s))∥2ds

≲
η
√
L(t)√
λ0

∫ 1

0

(∥J(w(t))− J(0)∥2 + ∥J(w(s))− J(0)∥2)ds

≲
η
√
L(t)√
λ0

R
′′
,

(86)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

where the last inequality follows from the fact that

∥wr(s)−wr(0)∥2 ≤ s∥wr(t+ 1)−wr(0)∥2 + (1− s)∥wr(t)−wr(0)∥2 ≤ R
′
≤ R

and Lemma 4.5.

Plugging (85) into the recursion formula (84) yields that

∥u(t+ 1)∥22 = ∥(1− η)u(t) + I2(t)∥22
= (1− η)2∥u(t)∥22 + ∥I2(t)∥22 + 2⟨(1− η)u(t), I2(t)⟩
≤ (1− η)2∥u(t)∥22 + ∥I2(t)∥22 + 2(1− η)∥u(t)∥2∥I2(t)∥2

≤

[
(1− η)2 +

C2η2(R
′′
)2

λ0
+ 2(1− η)

CηR
′′

√
λ0

]
∥u(t)∥22,

where C is a universal constant.

Then we can choose R
′′

such that

∥I2(t)∥2 ≤
Cη
√
L(t)R

′′

√
λ0

≤ C1η
√
L(t) = C1η

√
u(t),

where C is a universal constant and C1 is a constant to be determined.

Thus, we can deduce that

∥u(t+ 1)∥22 ≤
[
(1− η)2 + (C1η)

2 + 2(1− η)C1η
]
∥u(t)∥22

=
[
(1− η) + η(ηC2

1 + 2(1− η)C1 + η − 1)
]
∥u(t)∥22

≤ (1− η)∥u(t)∥22,

where in the last inequality is due to that we can choose C1 such that ηC2
1 +2(1− η)C1 + η− 1 ≤ 0.

Note that since η ∈ (0, 1), the quadratic equation ηx2 + 2(1 − η)x + η − 1 = 0 has one negative
root and one positive root, denoted as x0 and x1 respectively. Therefore, the condition C1 ≤ x1 is
sufficient to satisfy the requirement. The explicit form of x1 can be written as:

x1 =
2(η − 1) +

√
4(1− η)2 − 4η(η − 1)

2η
=

√
1− η

1 +
√
1− η

≥
√
1− η

2
.

Thus, C1 =
√
1−η
2 is sufficient to satisfy that ηC2

1 + 2(1− η)C1 + η − 1 ≤ 0.

From this, we can deduce that

R
′′
≲ C1

√
λ0 ≲

√
1− η

√
λ0.

Therefore, we can conclude that ∥u(t)∥22 ≤ (1− η)t∥u(0)∥22 holds for t = 0, · · · , k.

C.4 PROOF OF COROLLARY 4.9

Proof. In the proof of Theorem 4.7, we have proved that Condition 3 holds for all t ∈ N. Thus, it is
sufficient to prove that Condition 3 can lead to the conclusion in Corollary 4.9.

Setting η = 1 in (85) yields that
u(t+ 1) = I2(t).

We have that

∥I2(t)∥2 ≲

√
L(t)√
λ0

∫ 1

0

∥J(w(t))− J(w(s))∥2ds. (87)

Since w(s) = sw(t + 1) + (1 − s)w(t), then for any r ∈ [m], we have ∥wr(s)∥2 ≤ s∥wr(t +
1)∥2 + (1− s)∥wr(t)∥2 ≤ B.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

When σ(·) is smooth, we can deduce that for any r ∈ [m],∥∥∥∥∂sp(w(s))

∂wr
− ∂sp(w(t))

∂wr

∥∥∥∥
2

≲
1

√
n1m

(B2+1)∥wr(s)−wr(t)∥2 ≤ 1
√
n1m

(B2+1)∥wr(t+1)−wr(t)∥2

and∥∥∥∥∂hj(w(s))

∂wr
− ∂hj(w(t))

∂wr

∥∥∥∥
2

≲
1

√
n1m

(B+1)∥wr(s)−wr(t)∥2 ≤ 1
√
n1m

(B+1)∥wr(t+1)−wr(t)∥2.

We know that for any r ∈ [m],

∥wr(t+ 1)−wr(t)∥2 ≲
B2

√
mλ0

√
L(t).

Thus for any s ∈ [0, 1], we have

∥J(w(s))− J(w(t))∥22

≤
m∑
r=1

(
n1∑
p=1

∥∥∥∥∂sp(w(s))

∂wr
− ∂sp(w(t))

∂wr

∥∥∥∥2
2

+

∥∥∥∥∂hj(w(s))

∂wr
− ∂hj(w(t))

∂wr

∥∥∥∥2
2

)

≲
1

m

m∑
r=1

(
(B4 + 1)∥wr(t+ 1)−wr(t)∥22 + (B2 + 1)∥wr(t+ 1)−wr(t)∥22

)
≲ B4

(
B2

√
mλ0

√
L(t)

)2

.

Plugging this into (87), we have

∥I2(t)∥2 ≲

√
L(t)√
λ0

∫ 1

0

∥J(w(t))− J(w(s))∥2ds

≲

√
L(t)√
λ0

B4

√
mλ0

√
L(t)

=
B4√
mλ30

L(t).

Combining with the fact u(t+ 1) = I2(t) yields that∥∥∥∥(s(t+ 1)
h(t+ 1)

)∥∥∥∥
2

≤ CB4√
mλ30

∥∥∥∥(s(t)h(t)

)∥∥∥∥2
2

holds for t ∈ N, where C is a universal constant.

In the proof above, we only require that R
′ ≤ R and R

′′
= CdR ≤

√
3λ0

6 , leading to the requirement
for m that

m = Ω

(
d6

λ30
log2

(
md

δ

)
log

(
n1 + n2

δ

))
.

D AUXILIARY LEMMAS

Lemma D.1 (Theorem 3.1 in Kuchibhotla & Chakrabortty (2022)). If X1, · · · , Xn are independent
mean zero random variables with ∥Xi∥ψα

< ∞ for all 1 ≤ i ≤ n and some α > 0, then for any
vector a = (a1, · · · , an) ∈ Rn, the following holds true:

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ 2eC(α)∥b∥2
√
t+ 2eL∗

n(α)t
1/α∥b∥β(α)

)
≤ 2e−t, for all t ≥ 0,

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

where b = (a1∥X1∥ψα
, · · · , an∥Xn∥ψα

) ∈ Rn,

C(α) := max{
√
2, 21/α}

{√
8(2π)1/4e1/24(e2/e/α)1/α, if α < 1,

4e+ 2(log 2)1/α, if α ≥ 1.

and for β(α) = ∞ when α ≤ 1 and β(α) = α/(α− 1) when α > 1,

L∗
n(α) :=

41/α√
2

×
{
C(α), if α < 1,

4e, if α ≥ 1.

In the following, we will provide some preliminary information about Orlicz norms.

Let f : [0,∞) → [0,∞) be a non-decreasing function with f(0) = 0. The f -Orlicz norm of a
real-valued random variable X is given by

∥X∥f := inf{C > 0 : E
[
f

(
|X|
C

)]
≤ 1}.

If ∥X∥ψα
<∞, we say that X is sub-Weibull of order α > 0, where

ψα(x) := ex
α

− 1.

Note that when α ≥ 1, ∥ · ∥ψα
is a norm and when 0 < α < 1, ∥ · ∥ψα

is a quasi-norm. Moreover,
since (|a|+ |b|)α ≤ |a|α + |b|α holds for any a, b ∈ R and 0 < α < 1, we can deduce that

Ee
|X+Y |α

|C|α ≤ Ee
|X|α+|Y |α

|C|α = Ee
|X|α
|C|α e

|Y |α
|C|α ≤

(
Ee

2|X|α
|C|α

)1/2(
Ee

2|Y |α
|C|α

)1/2

.

This implies that

∥X + Y ∥ψα
≤ 21/αmax{∥X∥ψα

, ∥Y ∥ψα
} ≤ 21/α(∥X∥ψα

+ ∥Y ∥ψα
).

Furthermore, for p, q > 0, we have ∥|X|∥ψp = ∥|X|p/q∥q/pψq
. And in the related proofs, we may

frequently use the fact that for real-valued random variable X ∼ N (0, 1), we have ∥X∥ψ2
≤

√
6

and ∥X2∥ψ1 = ∥X∥2ψ2
≤ 6.

Lemma D.2. If ∥X∥ψα , ∥Y ∥ψβ
< ∞ with α, β > 0, then we have ∥XY ∥ψγ ≤ ∥X∥ψα∥Y ∥ψβ

,
where γ satisfies that

1

γ
=

1

α
+

1

β
.

Proof. Without loss of generality, we can assume that ∥X∥ψα = ∥Y ∥ψβ
= 1. To prove this, let us

use Young’s inequality, which states that

xy ≤ xp

p
+
yq

q
, for x, y ≥ 0, p, q > 1.

Let p = α/γ, q = β/γ, then

E[exp(|XY |γ)] ≤ E
[
exp

(
|X|γp

p
+

|Y |γq

q

)]
= E

[
exp

(
|X|α

p

)
exp

(
|Y |β

q

)]
≤ E

[
exp(|X|α)

p
+

exp(|Y |β)
q

]
≤ 2

p
+

2

q

= 2,

where the first and second inequality follow from Young’s inequality. From this, we have that
∥XY ∥ψγ

≤ ∥X∥ψα
∥Y ∥ψβ

.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Lemma D.3 (Bernstein inequality, Theorem 3.1.7 in Giné & Nickl (2021)). Let Xi, 1 ≤ i ≤ n
be independent centered random variables a.s. bounded by c < ∞ in absolute value. Set σ2 =
1/n

∑n
i=1 EX2

i and Sn = 1/n
∑n
i=1Xi. Then, for all t ≥ 0,

P

(
Sn ≥

√
2σ2t

n
+
ct

3n

)
≤ e−u.

Lemma D.4. For 0 < δ < 1, with probability at least 1− δ, we have that when m ≥ log2
(
n1+n2

δ

)
,

L(0) =

∥∥∥∥(s(0)h(0)

)∥∥∥∥2
2

= O
(
d2 log

(
n1 + n2

δ

))
.

Proof. Recall that for p ∈ [n1],

sp(0) =
1

√
n1

[
1√
m

m∑
r=1

ar

(
σ

′
(wr(0)

Txp)wr0(0)− σ
′′
(wr(0)

Txp)∥wr1(0)∥22
)
− f(xp)

]

and for j ∈ [n2],

hj(0) =
1

√
n2

[
1√
m

m∑
r=1

arσ(wr(0)
Tyj)− g(yj)

]
.

Then

L(0) =

n1∑
p=1

1

2
(sp(0))

2 +

n2∑
j=1

1

2
(hj(0))

2

≤ 1

n1

n1∑
p=1

(
1√
m

m∑
r=1

ar

(
σ

′
(wr(0)

Txp)wr0(0)− σ
′′
(wr(0)

Txp)∥wr1(0)∥22
))2

+
1

n1

n1∑
p=1

f2(xp)

+
1

n2

n2∑
j=1

(
1√
m

m∑
r=1

arσ(wr(0)
Tyj)

)2

+
1

n2

n2∑
j=1

g2(yj).

Note that∣∣∣ar (σ′
(wr(0)

Txp)wr0 − σ
′′
(wr(0)

Txp)∥wr1(0)∥22
)∣∣∣ ≲ ∥wr(0)∥22|wr(0)

Txp|

and
∣∣arσ(wr(0)

Tyj)
∣∣ ≲ ∥wr(0)∥22|wr(0)

Tyj |.

Since
∥∥∥wr(0)∥22

∥∥
ψ1

= O(d) and ∥wr(0)
Tyj∥ψ2

, ∥wr(0)
Txp∥ψ2

= O(1), from Lemma D.2, we
have that

∥∥wr(0)∥22|wr(0)
Txp|∥ψ 2

3

= O(d), |wr(0)
Tyj |∥ψ 2

3

= O(d).

Applying Lemma D.1 yields that for fixed p ∈ [n1] and j ∈ [n2] with probability at least 1− 2e−t,∣∣∣∣∣ 1√
m

m∑
r=1

ar

(
σ

′
(wr(0)

Txp)wr0(0)− σ
′′
(wr(0)

Txp)∥wr1(0)∥22
)∣∣∣∣∣ ≲ d

√
t+

d√
m
t
3
2

and with probability at least 1− 2e−t,∣∣∣∣∣ 1√
m

m∑
r=1

arσ(wr(0)
Tyj)

∣∣∣∣∣ ≲ d
√
t+

d√
m
t
3
2 .

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Then taking a union bound for all p ∈ [n1] and j ∈ [n2] with 2(n1 + n2)e
−t = δ yields that

L(0) ≲

(
d
√
t+

d√
m
t
3
2

)2

≲ d2t+
d2t3

m

= d2
(
log

(
n1 + n2

δ

)
+

1

m
log3

(
n1 + n2

δ

))
≲ d2 log

(
n1 + n2

δ

)
,

since m ≥ log2
(
n1+n2

δ

)
.

45

	Introduction
	Contributions
	Related Works
	Notations
	Organization of this Paper

	Problem Setup
	Improved Results of GD for Two-Layer PINNs
	Convergence of NGD for Two-Layer PINNs
	Experimental Results
	Limitations
	Conclusion and Outlook
	Experimental implementation
	1D Poisson Equation
	2D Poisson Equation
	1D Heat Equation
	2D Helmholtz Equation
	10D Poisson Equation
	Training Efficiency Comparison
	Numerical Examination for Multi-layer PINNs
	Generalization loss examination

	Proof of Section 3
	Proof of Lemma 3.3
	Proof of Lemma 3.5
	Proof of Lemma B.1
	Proof of Theorem 3.7

	Proof of Section 4
	Proof of Lemma 4.4
	Proof of Lemma 4.6
	Proof of Theorem 4.7
	Proof of Corollary 4.9

	Auxiliary Lemmas

