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Figure 1: Overview of OmniEarth-Bench. Our benchmark spans six Earth science spheres and
cross-sphere scenarios, encompassing 100 sub-tasks derived from 33 sensor types.

Abstract

Existing benchmarks for Earth science multimodal learning exhibit critical limita-2

tions in systematic coverage of geosystem components and cross-sphere interac-3

tions, often constrained to isolated subsystems (only in Human-activities sphere4

or atmosphere) with limited evaluation dimensions (≤ 16 tasks). To address these5

gaps, we introduce OmniEarth-Bench, the first comprehensive multimodal bench-6

mark spanning all six Earth science spheres (atmosphere, lithosphere, Oceansphere,7

cryosphere, biosphere and Human-activities sphere) and cross-spheres with one8

hundred expert-curated evaluation dimensions. Leveraging observational data from9

satellite sensors and in-situ measurements, OmniEarth-Bench integrates 29,77910

annotations across four tiers: perception, general reasoning, expert-knowledge de-11

ductive reasoning and chain-of-thought (CoT) reasoning. This involves the efforts12

of 2–5 experts per sphere to establish authoritative evaluation dimensions and cu-13

rate relevant observational datasets, 40 crowd-sourcing annotators to assist experts14

for annotations, and finally, OmniEarth-Bench is validated via hybrid expert-crowd15

workflows to reduce label ambiguity. Experiments on 9 state-of-the-art MLLMs16
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reveal that even the most advanced models struggle with our benchmarks, where17

none of them reach 35% accuracy. Especially, in some cross-spheres tasks, the18

performance of leading models like GPT-4o drops to 0.0%. OmniEarth-Bench sets19

a new standard for geosystem-aware AI, advancing both scientific discovery and20

practical applications in environmental monitoring and disaster prediction. The21

dataset, source code, and trained models were released at OmniEarth-Bench.22

1 Introduction23

Earth scientists address critical environmental and societal challenges through modeling Earth’s24

interconnected systems [1]: the atmosphere, lithosphere, hydrosphere, cryosphere, biosphere, and25

human activities [2]. By analyzing cross-system interactions, researchers derive impactful findings26

such as flood prediction [3], a complex task requiring multi-domain expertise (e.g., atmospheric27

precipitation, biospheric soil moisture, and lithospheric runoff). These discoveries are systematically28

validated in high-impact journals including Nature and Science [4, 5, 6, 7, 8, 9].29

Existing MLLMs (e.g., GPT-4o [10], Gemini [11] and Claude [12]) excel at considerable tasks and30

have motivated benchmarks that explicitly test core skills. These benchmarks span diverse evaluation31

dimensions and explicitly include: Visual understanding [13, 14], Vision–language alignment [15, 16],32

Long-context modeling [17, 18], Chain-of-Thought (CoT) reasoning [19, 20], Scientific knowledge33

reasoning [17, 21] and so on [22, 23, 24]. In Earth science, existing multimodal benchmarks34

often focus on visual question answering using remote sensing data, covering a variety of satellite35

observation modalities and resolutions [25, 26, 27]. However, these existing benchmarks mainly36

focus on the human-activities sphere, with few or no multimodal benchmarks for other spheres.37

Moreover, while the semantic information in the observation data of the human-activities sphere is38

well-defined (e.g., buildings, roads and ships), other Earth systems lack precise scientific information39

formulation. This presents a new challenge: How to establish scientific information definitions40

across multi-sphere Earth observations for effectively evaluating multimodal models?41

Figure 2: Dimensions Categories of L4
dimensions. Our benchmark spans 6
spheres and cross-sphere, across 100 typi-
cal subtasks (L4 dimensions).

To address this challenge, we introduce OmniEarth-42

Bench to evaluate the scientific information processing43

capabilities of multimodal models across six Earth sci-44

ence spheres and cross-sphere scenarios. Considering45

the professional expertise required for analyzing Earth46

observation data, we have established four tasks: basic47

perception tasks, general reasoning tasks, specialized48

scientific reasoning tasks, and specialized scientific CoT49

reasoning tasks. The basic perception tasks are designed50

to assess the model’s ability to perceive and recognize51

fundamental features and patterns in the Earth observa-52

tion data. The general reasoning tasks evaluate the abil-53

ity to draw logical conclusions based on the perceived54

information. The specialized scientific reasoning tasks55

aim to assess the ability to interpret scientific knowledge56

related to observational data. The specialized scien-57

tific CoT reasoning tasks evaluate the ability to perform58

step-by-step analysis of the observation data and derive59

accurate conclusions based on scientific knowledge.60

Fig. 1 shows the typical examples across 6 spheres and cross-spheres. We engaged 2–5 experts (PhD61

holders or candidates) per sphere to identify representative real-world tasks, establish authoritative62

evaluation dimensions, and curate relevant observational datasets (either existing datasets or original63

data sourced from satellites like MODIS [28]). After defining these dimensions, we enlisted 4064

crowd-sourcing annotators (undergraduate and master’s students, 5–10 per sphere) to assist experts65

in annotation, followed by rigorous cross-validation to ensure quality. Ultimately, OmniEarth-66

Bench comprises 100 sub-dimensions (L-4 tasks) across seven categories (atmosphere, lithosphere,67

Oceansphere, cryosphere, biosphere, Human-activities sphere, and cross-sphere). As illustrated in68

Fig. 2, OmniEarth-Bench substantially surpasses existing benchmarks in comprehensiveness and69

coverage. Tab. 2 summarizes its quantitative and qualitative advantages. The key contributions are:70
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• Comprehensive Evaluation Across All Six Spheres. OmniEarth-Bench is the first bench-71

mark to extensively cover all Earth science spheres, offering 58 practical and comprehensive72

evaluation dimensions that significantly surpass prior benchmarks.73

• Pioneering Cross-Sphere Evaluation Dimensions. To address complex real-world sce-74

narios, OmniEarth-Bench introduces cross-sphere evaluation capabilities for societally75

important tasks such as disaster prediction and ecological forecasting.76

• CoT-Based Reasoning Evaluations in Earth Science. OmniEarth-Bench establishes, for77

the first time, CoT-based evaluations tailored for complex Earth science reasoning tasks,78

addressing scenarios where previous benchmarks showed near-zero accuracy, and explores79

how CoT strategies might enhance reasoning capabilities in the Earth domain.80

2 Related Work81

Earth Multimodal Benchmark. Recent advancements in large multimodal models (MLLMs) have82

accelerated progress in Earth sciences [29, 30], leading to the development of several evaluation83

benchmarks [25, 26, 31, 32]. Current benchmarks primarily target the Human-activities sphere and84

atmosphere. In the Human-activities sphere, remote sensing-based benchmarks include RSIEval [33],85

featuring 100 human-annotated captions and 936 VQA pairs; VRSBench [25], containing 29,61486

images, 52,472 object references, and 123,221 QA pairs; and XLRS-Bench, which offers the87

largest dataset to date with an average resolution of 8500×8500. Atmospheric benchmarks include88

WeatherQA [31], designed specifically to evaluate severe weather predictions in two dimensions;89

ClimateIQA [32], built from climate reanalysis data for extreme weather event detection across four90

question types; and CLLMate [34], focused on weather and climate event forecasting using numerical91

meteorological data and textual event descriptions. However, these benchmarks exhibit notable92

limitations: 1) They typically address isolated spheres, neglecting cross-sphere interactions essential93

to real-world Earth science challenges. 2) They offer limited evaluation dimensions, with atmospheric94

benchmarks assessing fewer than four question types, and even the most extensive Human-activities95

sphere benchmark covering only 16 dimensions. Overall, comprehensive benchmarks addressing all96

six spheres and evaluating cross-sphere capabilities are still lacking in Earth sciences.97

General Multimodal Benchmark. Large-scale vision-language models (VLMs) have shown great98

promise in multimodal tasks such as scene understanding and visual sentiment analysis, prompting99

the development of diverse benchmarks to quantitatively assess their capabilities. However, earlier100

benchmarks mostly targeted specific domains with limited evaluation tasks (e.g., visual ground-101

ing [35, 36] or visual question answering (VQA) [37, 38, 39, 40, 41]). Recent efforts aim for more102

comprehensive assessments: MME [15] evaluates 14 perceptual and cognitive tasks; MMBench [13]103

offers over 3,000 questions spanning 20 skill dimensions like object localization and social reasoning;104

Seed-Bench [16] scales up further with 19,000 questions; MMT-Bench [24] integrates real-world105

scenarios like autonomous driving; and MME-Realworld [18] includes five real-world contexts106

with high-resolution imagery. Multimodal benchmarks focusing on scientific disciplines have also107

emerged. HLE [42] covers numerous academic disciplines with 2,500 questions; MMMU-Pro [43]108

evaluates multidisciplinary visual-textual integration skills at scale. Recently, multimodal chain-of-109

thought (CoT) benchmarks were developed: MME-CoT [19] includes 1,130 questions annotated with110

3,865 reasoning steps; and ZeroBench [20] provides 100 handpicked questions and 334 simpler sub-111

questions. Despite these advancements, two critical limitations remain: 1) Earth sciences have been112

largely neglected, with only SuperGPQA featuring a minimal number (100) of geophysics-related113

textual questions, and multimodal CoT benchmarks lacking Earth science content entirely. 2) Existing114

benchmarks overlook the importance of observational data, a distinctive strength of Earth sciences115

(e.g., satellite imagery, climate data grids, seismic signals). In summary, current general-domain116

benchmarks fail to sufficiently evaluate multimodal models in Earth sciences, particularly concerning117

observational data and CoT reasoning scenarios.118

3 OmniEarth-Bench119

OmniEarth-Bench stands out from existing multimodal understanding benchmarks with three key120

features: i) It is the first benchmark based on Earth observational data to comprehensively cover all six121

Earth spheres, with evaluation dimensions grounded in real-world needs and rigorously validated by122

domain experts. ii) It firstly introduces the cross-sphere evaluation dimensions in geoscience, enabling123
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Figure 3: Pipeline of OmniEarth-Bench. Our pipeline comprises 4 stages—Source Screening, Task
Formulation, Expert Annotation, and Quality Control—all led by experts. The first two stages are
exclusively conducted by experts, while crowdsourcing annotators assist in the latter two stages.

MLLMs to be tested on realistic, interdisciplinary Earth science cross-sphere tasks. iii) It firstly124

establishes the Chain-of-Thought (CoT) reasoning benchmark for geoscience, using expert-reviewed125

human annotations and cross-validation to assess CoT effectiveness in complex scientific reasoning.126

3.1 Pipeline of Benchmark127

Table 1: Data source of different spheres, including open-source datasets,
satellite websites and other observation data sources. We only exhibit the
L1 and L2 dimensions.

L1 dimensons L2 deminesons Data Source Annotations Volume

Cross-sphere
Global Flood Forecasting GFF [3] 873
Bird Species Prediction SatBird [44] 2,253
Carbon Flux Monitoring CarbonSense [45] 330

Human-activities sphere
Urban Construction UBCv1 [46], BHdataset [47] 3,161

Land Use WHU-OHS [48] 2,990
Surface Disaster Assessment XView [49] 3,851

Biosphere

Species Distribution Prediction TreeSatAI [50], Penguin [51] 2,819OAM-TCD [52], TaxaBench [53]
Vegetation Monitoring GLASS [54], MODIS [28] 900

Environmental Pollution Monitoring ROSID [55] 246
Human Footprint Assessment HFP [56], MODIS [28] 600

Crop Growth Monitoring MOPAD [57] 1,656

Atmosphere

SEVIR Weather SEVIR [58] 893
Typhoon Events DigitalTyphoon [59] 5,082

Short-term meteorological events ERA5 [60] 140
Medium-term meteorological events ERA5 [60] 160

Seasonal meteorological events ERA5 [60] 60
Interannual climate change ERA5 [60] 60

Lithosphere Earthquake monitoring and prediction STRAD [61] 1,500
Geological exploration imaging TGS-Salt [62] 631

Oceansphere
Marine Debris and Oil Pollution MADOS [63] 221

Marine Extreme Events ERASSTv5 [64] 583
Marine Phenomenon Detection COMS [65], M4Fog [66] 570

Cryosphere Sea ice forecast G02202 (SIC) [67], NSIDC-0079 [68] 200PIOMAS [69],GIOMAS [70]

Glacier analysis CryoSat-2 [71] 30IceBridge [72], ICESat-2 [73]

Source Screening.128

Our Benchmark129

comprises not only130

publicly available131

open-source datasets132

but also a significant133

portion of data man-134

ually extracted by135

experts from satellite136

imagery and raw137

observational sources.138

For example, Vegeta-139

tion Monitoring uses140

satellite imagery from141

MODIS and expert-142

curated data from the143

Global Land Surface144

Satellite (GLASS),145

including Leaf Area146

Index, Fractional147

Vegetation Cover and148

Peak Vegetation Cov-149

erage Area. Moreover,150

for the Eddy data in oceansphere, the chlorophyll (CHL) data used in this study were obtained151

by applying the OCI empirical algorithm to Level-2 data acquired by the Geostationary Ocean152

Color Imager I (GOCI) aboard the Oceanography and Meteorology Satellite (COMS). After careful153

selection and integration, we compiled a comprehensive dataset covering 33 different data modalities154

across all Earth spheres. Tab.1 is a summary of the data sources used for each Earth sphere, with155

detailed data organization and construction procedures presented in the appendix.156

Task Formulation. As shown in Fig.3, OmniEarth-Bench defines tasks across four hierarchical levels157

(L1–L4): L1 covers the seven domains based on established geophysical spheres: atmosphere, litho-158

sphere, oceansphere, cryosphere, biosphere, Human-activities sphere and cross-sphere. L2 includes159

expert-approved, representative scenarios within each sphere, selected based on their scientific and160

practical value (e.g., earthquake prediction). Tab.1 illustrates representative scenarios covered by the161

L1 and L2 levels. Detailed descriptions of the L3 and L4 dimensions for each sphere are provided in162

the appendix. L3 comprises four core abilities: Perception, General Reasoning, Scientific-Knowledge163

Reasoning and CoT Reasoning. Perception and General Reasoning align with previous works such as164

MMBench [13] and XLRS-Bench [26], where Perception focuses on sensory inputs and Reasoning165
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soil water content in the top layer of the soil on 2 consecutive dates, measured in cubic meters per cubic meter (m^3/m^3).  Images 7–8: the snow depth water 
equivalent on 2 consecutive dates, measured in meters (m).  Images 9–10: Total precipitation sum (mm).  Image 11: Sentinel-1 data (vv/vh bands). Each data 
source includes two timestamps: ten days before the disaster and one day prior to the disaster.  Will flooding occur in the region on the next date shown?  
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GloFAS dis24              ERA5 Temperature     Volumetric Soil Water Content  Snow Depth Water Equivalent      Total Precipitation Sum              Sentinel-1(vv+vh)
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sampling rate). Output a 
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signal-to-noise ratios.  
(A) 5.6 (B) 4.3 (C) 3.6
(D) 3.0 (E) Unable to decide

Task Dimensions

Atmosphere
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Image sequence shows convective 
system evolution. Identify the 
convective system's rotation center 
in the sequence?  
(A) Southwest (B) West (C) South      
(D) North
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L1: Atmosphere
 L2: SEVIR Weather
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Text：
Judge the El Niño-Southern 
Oscillation (ENSO) event 
that occurred. If the 
Niño3.4 index is greater 
than 0.5 and less than 1.4, 
it is a weak/moderate El 
Niño…….
(A) Not an obvious event   
(B) Weak/Moderate El Niño
(C) Strong El Niño          
(D) Weak/Moderate La Niña
(E) Strong La Niña  

Cryosphere Biosphere Human-activities sphere

Text：
MODIS 500m natural color image: estimate fractional 
vegetation cover (FVC) in the area?  
(A) 0–0.25 (B) 0.25–0.5 (C) 0.5–0.75 (D) 0.75–1
(E) Unable to decide  

L1: Biosphere 
L2: Surface Disaster Assessment
L3: Scientific-Knowledge 
Reasoning
L4: Vegetation Cover Degree

Task Dimensions
Text：
How many destroyed buildings are 
there in the whole picture based on 
two pre disaster and post disaster 
images? Only require fully 
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(A)1 (B) 2 (C) 3 (D) 4
(E) Unable to decide 

Task Dimensions
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 L2: Earthquake 
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 L4: Earthquake 
magnitude estimation

Task Dimensions

Task Dimensions

L1: Hydrosphere   
 L2: Extreme Event    
 L3: Perception    
 L4: ENSO Identification

Task Dimensions

L1: Geosphere 
L2: Surface Disaster Assessment
L3: General Reasoning
L4: Building damage prediction

Text：
As a pan-Arctic researcher, 
analyze sea ice extent using sea 
ice concentration data. Estimate 
extent (10⁶ km²):  
(A) 8.93 (B) 3.72 (C) -1.2      
(D) 5.4 (E) Unable to decide 

L1: Cryosphere
L2: Sea ice forecast
L3: Scientific-Knowledge 
Reasoning
L4: Sea Ice Extent Estimation

Post-Disaster

Pre-Disaster

Figure 4: Examples of OmniEarth-Bench. OmniEarth-Bench comprises 100 unique L4 tasks, each
with distinct questions, answers, and images. Spanning diverse data sources, timeframes, and natural
variables, all tasks are jointly defined by domain experts across spheres.

on inference. Scientific-Knowledge Reasoning addresses complex reasoning tasks requiring deep166

domain expertise in Earth sciences. CoT Reasoning evaluates the effectiveness of chain-of-thought167

processes within Earth science scenarios. L4 provides further granularity by subdividing tasks168

based on the L1–L3 dimensions. Each L4 category is verified by domain experts to ensure practical169

relevance. Examples include fractional vegetation cover estimation in the biosphere and earthquake170

magnitude estimation in the lithosphere. Achieving robust general intelligence in Earth sciences171

requires MLLMs to perform effectively across all hierarchical levels. OmniEarth-Bench provides the172

first comprehensive framework designed for such an evaluation.173

Expert Annotations. For each of the six Earth spheres, we enlisted 2–5 domain experts (Ph.D.174

holders or candidates) and 5–10 crowd-sourcing annotators (undergraduate and master’s students).175

(1) For each sphere, evaluation dimensions were collaboratively defined by domain experts and176

MLLM specialists, ensuring high practical value and complexity. Cross-sphere tasks involved experts177

from multiple domains. This approach addresses the limitations observed when crowd-sourcing178

annotators proposed overly simplistic tasks—for example, “Estimated Maximum Precipitation Level”179

in atmosphere, which GPT-4o solved with 97.7% accuracy. Expert-led design ensures meaningful180

evaluation. (2) Experts were also responsible for defining data sources. Attempts to delegate this to181

annotators led to issues such as low sample difficulty and data scarcity. For complex tasks, annotators182

struggled with downloading and aligning data (e.g., MODIS and GLASS from NASA). Thus, experts183

curated and organized datasets, with annotators assisting.184

Quality Control. To ensure data integrity and task relevance, the quality control process involved185

two main steps. Cross-Validation: Annotator outputs were systematically compared against expert-186

provided annotation examples. Any discrepancies were flagged and reviewed by domain experts to187

ensure annotation correctness, especially for complex tasks involving multi-source or challenging188

data. Final Quality Assessment: MLLM specialists conducted thorough reviews to confirm that189

annotations adhered to expert standards and maintained consistency across all tasks and Earth spheres.190

High-quality annotations were approved and incorporated into the dataset, while annotations that191

did not meet quality standards underwent iterative refinement through a feedback loop involving192

annotators and expert supervision. This cyclical process ensured continuous improvement and193

maintained the overall reliability of the dataset.194
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Table 2: Comparison between existing vision-language benchmarks and our benchmark. ✓✗ rep-
resents semi-automated, i.e., machine generation followed by human verification.

Dataset Spheres Cross-Sphere Observation Data Source VQA and Visual Grounding CoT
Data Volume Volume Dimensions Volume Expert Annotation Volume Average key step annotation

ScienceQA [17] q q q - 21,000 127 q q q
Seed-Bench [16] q q q - 19,242 12 q q q
MME [15] q q q - 2,374 14 ¥ q q
MMBench [13] q q q - 3,217 20 ¥ q q
MME-Realworld [18] q q q - 29,429 43 ¥ q q
ZeroBench [20] q q q - q q q 100 q
MME-CoT [19] q q q - q q q 1,130 3.2

VRSBench [25] Human-activities sphere q ¥ 2 175,703 12 ✓✗ q q
XLRS-Bench [26] Human-activities sphere q ¥ 6 45,008 16 ¥ q q
RSIEval [33] Human-activities sphere q ¥ 1 933 1 q q q
UrBench [27] Human-activities sphere q ¥ 6 11,600 11 q q q
WeatherQA [31] Atmosphere q ¥ 1 8,000 2 q q q
ClimateIQA [34] Atmosphere q ¥ 2 254,040 4 q q q
CLLMate [34] Atmosphere q ¥ 2 7,747 1 q q q

OmniEarth-Bench 6 Spheres ¥ ¥ 33 29,779 100 ¥ 610 5.8

3.2 Task Dimensions195

OmniEarth-Bench defines tasks across four hierarchical levels (L1–L4), comprising 7 L1 dimensions,196

23 L2 dimensions, 4 L3 dimensions, and 103 expert-defined L4 subtasks with real-world applicability.197

One representative L4 subtask from each L1 sphere is illustrated in Fig 4. Detailed descriptions of198

the L3 and L4 dimensions are provided in the appendix.199

Cross-sphere. Cross-sphere tasks in Earth science carry high practical and societal importance [4,200

5, 6, 9]. To evaluate MLLMs, we select three representative L2 scenarios from socially impactful201

applications, including Global Flood Forecasting (L2), Bird Species Prediction (L2) and Carbon202

Flux Monitoring (L2). Due to their reliance on expert knowledge and complex reasoning, all are203

categorized as Scientific-Knowledge Reasoning (L3). Their L4 dimensions are collaboratively204

defined by experts from the relevant spheres. Despite the complexity of cross-sphere scenarios, we205

successfully collaborated with domain experts to construct 6 high-value subtasks (L4 dimensions) .206

Lithosphere. We firstly construct an MLLM benchmark for the lithosphere based on observational207

data, comprising 7 practical subtasks (L4 dimensions) . We define two representative L2 scenarios208

within the lithosphere: Seismic Monitoring and Prediction (L2) and Geophysical Exploration (L2).209

Seismic monitoring and prediction [74], a critical domain in geosciences, aims to uncover Earth’s210

internal dynamics and earthquake nucleation mechanisms, forming a theoretical basis for early211

warning and disaster mitigation. Geophysical exploration imaging [75], by analyzing subsurface212

responses to physical fields such as seismic waves, electromagnetic fields, and gravity/magnetic213

anomalies, enables high-resolution geological modeling essential for understanding subsurface214

structures, hydrocarbon exploration, and geological hazard assessment.215

Human-activities sphere. The Human-activities sphere leverages remote sensing and mapping216

technologies across three key scenarios: Urban Construction (L2), Land Use (L2), and Surface217

Disaster Assessment (L2). Urban construction supports planning and socio-economic analysis;218

land use classification underpins environmental monitoring and resource management; and disaster219

assessment enables rapid post-event response and risk mitigation. OmniEarth-Bench spans all four220

L3 capability dimensions in the Human-activities sphere—Perception, General Reasoning, Scientific-221

Knowledge Reasoning, and CoT Reasoning—with 29 subtasks (L4 dimensions), surpassing all222

existing benchmarks in this domain [25, 26].223

Atmosphere. The atmosphere is a key domain in Earth sciences with high practical value and224

extensive research interest [76, 77]. While existing benchmarks target specific atmospheric sub-225

scenarios [31, 32, 34], they lack comprehensive domain-wide coverage. OmniEarth-Bench addresses226

this gap by defining evaluation dimensions across six representative scenarios using data from227

ERA5 [60], SEVIR [58], and Typhoon [59] datasets: Short-term Weather Events (L2), Medium-term228

Weather Events (L2), Seasonal Weather Events (L2), Interannual Climate Variation (L2), Typhoon229

Event (L2), and SEVIR Weather (L2). For example, the Typhoon Event dimension serves as a230

flagship benchmark for atmospheric machine learning, supporting operational hazard forecasting231

and advancing research on tropical cyclone intensity and structure. These six scenarios (L2) span232

30 expert-designed subtasks (L4 dimensions) with strong real-world relevance, substantially233

surpassing existing atmospheric benchmarks. Full task details are provided in the appendix.234

Oceansphere. We build a multi-layer MLLM benchmark for the oceansphere based primarily235

on satellite and analysis data products, featuring 9 practical L4 subtasks. This domain includes236

three representative L2 scenarios: Marine Oil Spills and Debris Monitoring (L2), Extreme Oceanic237
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Events Warning (L2), and Ocean Phenomena Detection (L2). The Marine Oil Spills and Debris238

Monitoring [78] scenario uses multi-source remote sensing and in situ water quality data to track239

the spatial distribution and temporal dynamics of oil contamination and floating debris, supporting240

environmental management and emergency response. The Extreme Oceanic Events Warning [79, 80]241

scenario targets the detection and prediction of major climate modes such as El Niño–Southern242

Oscillation (ENSO) and the Indian Ocean Dipole (IOD), aiming to mitigate their societal and243

economic impacts. The Ocean Phenomena Detection scenario [81, 82] involves identifying ocean244

features like eddies and marine fog, which are key for maritime safety and ecological studies.245

Cryosphere. We conduct a MLLM benchmark for the cryosphere primarily based on sea ice246

reanalysis data, glacial imagery, and graphical plots, incorporating 8 practical L4 subtasks. We247

identify two representative L2 scenarios within the cryosphere: Sea Ice Forecasting (L2) and Glacier248

Analysis (L2). SSea ice forecasting focuses on predicting the dynamic changes of sea ice in polar249

regions. Arctic sea ice is crucial for understanding global climate change [83, 84]. Its continuous250

decline over the last few decades has made sea ice forecasting significant for navigating through the251

Arctic Ocean during melting seasons. Moreover, the loss of the Antarctic sea ice would greatly impact252

the global sea level. Glacier analysis [85, 86], aims to study the glacial movements and changes of253

glaciers over time.254

Biosphere. We present a biosphere-focused MLLM benchmark built on observational data and255

retrieval products, featuring 16 practical L4 subtasks. It includes four representative L2 scenarios:256

Vegetation Monitoring (L2), Human Footprint Assessment (L2), Environmental Pollution Monitoring257

(L2), Species Distribution Prediction (L2) and Crop Growth Monitoring (L2). Vegetation Monitoring258

[87] evaluates plant and ecosystem health to support function assessment, carbon accounting, and259

climate response. Human Footprint Assessment [88] quantifies human impact on nature, informing260

sustainability and biodiversity strategies. Environmental Pollution Monitoring [89] identifies pollution261

events and their extent, guiding environmental policy and mitigation. Species Distribution is a key262

concern in the biosphere, as it guides biodiversity conservation and supports modeling species range263

shifts under climate and land-use change. Crop Growth Monitoring [90] assesses crop health for264

precision agriculture and sustainable farming.265

3.3 Statistics and Analyses266

Table 3: Main statistics in
OmniEarth-Bench

Statistic Number

Total questions 29,779
- Cross-sphere 3,456
- Human-activities sphere 9,362
- Biosphere 6,221
- Atmosphere 6,395
- Lithosphere 2,131
- Oceansphere 1,374
- Cryosphere 230

Multiple-choice questions 27,082
Visual grounding questions 2,697

Single-image questions 24,108
Multi-image questions 5,671

Maximum question length 213
Average question length 48.2

CoT
- Total key step annotation 3,473
- Average key step annotation 5.8
- Average key step length 14.8
- Maximum question length 101
- Average question length 50.2

Overview Statistics. OmniEarth-Bench includes 100 expert-267

defined, high-value evaluation dimensions and 29,779 sam-268

ples annotated by both experts and crowdsourced contrib-269

utors. As shown in Tab. 2, it offers clear advantages over270

existing benchmarks. Uniquely built on observational Earth271

science data—rather than exam-style datasets—OmniEarth-272

Bench spans all six spheres and cross-sphere scenarios. Con-273

sistency metrics are reported in Tab. 3, with additional274

details and dimension-specific indicators provided in the275

appendix.276

Observational Data vs. Exam-questions Data. Unlike277

subject-based benchmarks like ScienceQA [17], which rely278

on exam questions or online learning problems followed by279

manual filtering, our approach takes a fundamentally differ-280

ent path. While such methods could theoretically span all281

six Earth spheres, they face two key limitations: (1) Bench-282

marks like ScienceQA focus on scientific inquiry rather than283

practical geoscience applications, limiting their real-world284

relevance. (2) Their evaluation dimensions are constrained285

by a bottom-up design—questions are derived from existing286

image-text pairs in question banks or papers, then filtered287

and categorized. In contrast, OmniEarth-Bench follows a288

top-down strategy: domain experts first define evaluation dimensions based on real-world geoscience289

challenges and data availability, then curate corresponding data. This ensures each task is both290

meaningful and grounded in practical utility.291
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Table 4: Experimental results on each sphere of VQA tasks, with models ranked by average
performance. ’Avg’ represents the average accuracy across sub-tasks. Proprietary models are
highlighted in gray. ’Experts’ means evaluation results of 100 examples in each sphere by experts.
We mark the highest score of each metric in red , and second highest underlined.

Method Speres (L1 dimensions) Avg.Cross-sphere Atmosphere Lithosphere Oceansphere Cryosphere Biosphere Human-activities sphere

Experts 90 96 91 95 93 97 95 93.4

Closed-source MLLMs
Claude-3.7-Sonnet [12] 30.68 24.72 28.15 23.12 54.46 31.21 11.18 29.07
Gemini-2.0 [11] 16.93 20.83 38.94 16.94 58.52 20.83 23.74 28.1
GPT-4o [10] 0.04 9.64 12.8 13.35 37.48 1.97 2.76 11.15

Open-source MLLMs
InternVL3-72b [97] 19.19 33.98 23.39 20.22 74.56 31.99 29.46 33.26
InternVL3-7b [97] 42.85 30.1 37.47 20.28 49.27 28.74 23.18 33.13
LLaVA-Onevision-7b [92] 19.26 33.69 28.72 24.54 46.4 37.31 30.62 31.51
Internlm-Xcomposer2.5-7b [98] 19.78 17.45 28.88 21.06 40.04 30.67 24.76 26.09
Qwen2.5-VL-7B [99] 9.85 9.25 18.65 13.95 17.85 10.94 6.23 12.39
Qwen2.5-VL-72B [99] 3.92 4.82 22.43 16.27 5.88 14.91 8.63 10.98

Human Annotations vs. GPT Annotations. All annotations are finished by experts and crowd-292

sourcing annotators. Unlike MMBench [13], we did not use tools like GPT-4o [10]. It was driven293

by two key reasons: (1) GPT-4o cannot generate VQA data requiring deep domain expertise. Tasks294

under the Scientific-Knowledge Reasoning (L3) demand substantial background knowledge and295

must be constructed collaboratively by experts. (2) Although GPT-4o can generate samples for296

general perception or simple reasoning tasks, expert evaluation found the data to be low quality and297

insufficiently challenging. For example, in visual grounding task, GPT-4o only detects highly salient298

structures, failing to support our goal of testing MLLMs on locating diverse buildings across complex299

scenes. As a result, all OmniEarth-Bench data was exclusively created by experts and annotators.300

4 Experiment301

Experimental Setup. The MLLMs evaluated on OmniEarth-Bench are grouped into two categories:302

(a) open-source VLMs, including Qwen2.5-VL [91], LLava-Onevision [92], InterVL3 [93] and303

InternLM-XComposer-2.5 [94]; (b) closed-source VLMs, such as GPT-4o [10], Gemini-2.0 [11]304

and Claude 3.7 Sonnet [12] All models were evaluated using LMMs-Eval [95, 96]. Following305

MMBench [13] and MME-Realworld [18] methods, in the VQA task, we manually created 5 options306

for each question: one correct answer, three distractors and one special answer (unable to answer).307

We evaluated the accuracy and reported of L-1 dimension for the VQA task, with L-3 and L-4 results308

available in the appendix. All scores in Tables 4 are reported as percentages (%). For the Grounding309

task, we used precision, assessing accuracy based on the intersection between predicted and ground310

truth bounding boxes, with predictions deemed correct if IoU exceeds a threshold (0.5 and 0.7).311

Figure 5: GPT-4o performance on
ENSO and IOD prediction with dif-
ferent lead months (previous).

All MLLMs exhibit suboptimal performance across all312

7 domains. As illustrated in Tab. 4 and Tab. 5, nearly all313

MLLMs achieve accuracy rates below 40%, significantly314

underperforming relative to their success on traditional315

perception or reasoning benchmarks [13, 100, 41]. Sev-316

eral factors likely contribute to this challenge. First, cur-317

rent multimodal large models are typically trained with-318

out domain-specific Earth science data, which impedes319

their ability to comprehend related queries. Second, many320

Earth science problems are inherently complex, particu-321

larly cross-domain prediction tasks that demand in-depth,322

specialized knowledge, which existing LLMs or MLLMs may not possess. Finally, OmniEarth-Bench323

provides high-resolution, intricate imagery, and the task of interpreting such complex visuals presents324

unique obstacles for MLLMs. This underscores the pressing need for specialized models or advanced325

post-training techniques to effectively address these challenges.326

Time-sensitive task. The Earth’s seven spheres encompass numerous temporally correlated tasks.327

ENSO, a key climate mode influencing global weather extremes via teleconnections [101], has seen328

improved forecasts through domain-specific AI models [79, 102]. As shown in Fig. 5, prediction329

accuracy declines with longer lead times, echoing the limitations of specialized models. However,330

performance of MLLMs still lags behind tailored models. Performance drops further for Indian331

Ocean Dipole (IOD) predictions, aligning with challenges faced by existing methods [103, 80].332
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Table 5: Visual grounding performance on OmniEarth-Bench. 3 spheres have the groudning task.

Benchmark Method GPT-4o Gemini-2.0 Claude-3.7-Sonnet Qwen2.5-VL LLaVA-OneVision InternVL3 8B InternVL3 78B

Human-activities sphere Acc@0.5 0.02 0.03 0 0.59 0.2 0 2.36
Acc@0.7 0 0 0 0 0 0 0.2

Lithosphere Acc@0.5 0.08 0.13 0.02 5.3 0 8.94 4.3
Acc@0.7 0 0.04 0 0.33 0 1.66 0.33

Oceansphere Acc@0.5 0.12 0.34 0.2 1.81 1.51 6.63 13.86
Acc@0.7 0.01 0.06 0.07 0 0 0.6 3.61

Limited Gains from Scaling Model Size on Earth-Science Tasks. We evaluate two sizes of the333

InterVL3 model and find that the 72B InterVL3 does not provide a significant advantage over the334

7B model in our benchmarks, with performance even declining in some evaluation metrics. This335

contrasts with the substantial improvements observed in general-domain tasks. This performance336

bottleneck likely stems from the lack of Earth-science-specific knowledge, rather than a limitation in337

model capacity. Even large MLLMs struggle to reason about unfamiliar scientific concepts without338

targeted training on domain-specific data. These findings highlight the importance of prioritizing the339

integration of domain-specific knowledge in future Earth-science MLLM development, rather than340

merely increasing model size.341

Impact of Model Safety on Results. In Tab. 4, we observe that Qwen2.5-VL and GPT-4o perform342

very poorly, even falling below the level of random guessing. However, this does not mean that these343

two models have the worst perceptual and science-related abilities. We observe that these models tend344

to refuse to answer when they are uncertain, whereas InternVL3 and LLaVA-Onevision randomly345

guess an answer. This safety mechanism in the models leads to the poor performance of Qwen2.5-VL346

and GPT-4o. Detailed refusal rate statistics for each model are provided in the appendix—for instance,347

QwenVL2.5-VL-72B refused to answer 18,258 questions.348

Table 6: CoT performance of OmniEarth-Bench

Models LLaVA-OneVision-7B Qwen2.5-VL-7B InternVL3-8B InternVL3-78B

Precision 89.83 92.72 94.02 94.74
Recall 23.41 29.12 34.47 35.5

F1 37.14 44.32 50.45 51.65

CoT performance. Following the MME-349

CoT [19], building upon our annotated key steps350

in Earth Observation data, we leverage two inter-351

pretable metrics to evaluate the CoT correctness:352

recall and precision. The two metrics respec-353

tively attend to the two aspects of the CoT correctness: informativeness and accuracy. Finally, we354

calculate the F1 score as the metric of CoT quality. As shown in Tab.6, InternVL3 outperformed355

Qwen2.5-VL and LaVA-OneVision with the highest F1 score. Larger open-source variants showed356

superior performance, underscoring the scalability of model size.357

Expert Validation. Although OmniEarth-Bench’s evaluation dimensions and data sources were358

curated by experts, we further validated its quality through expert upper-bound assessments. We359

randomly sampled 100 questions from each sphere and invited independent experts—unaffiliated with360

the annotation team—to answer them. As shown in Tab. 4, expert accuracy consistently exceeded361

90%, confirming the benchmark’s reliability. Occasional errors arose mainly in tasks requiring precise362

calculations or counting.363

5 Conclusion364

We have introduced OmniEarth-Bench, a comprehensive multimodal Earth science benchmark that365

encompasses all six spheres of the Earth system (atmosphere, lithosphere, Oceansphere, cryosphere,366

biosphere, and human-activities) along with their cross-sphere interactions. This benchmark intro-367

duces 100 expert-curated evaluation dimensions and four hierarchical levels of reasoning (perception,368

general reasoning, expert-knowledge reasoning, and chain-of-thought reasoning), representing a novel369

and rigorous evaluation design for geoscientific MLLMs. Our results show that even state-of-the-art370

MLLMs (e.g., Claude) struggle with OmniEarth-Bench; none of the tested models surpassed 35% ac-371

curacy. This stark performance gap underscores the benchmark’s difficulty and exposes fundamental372

limitations in current models’ geoscientific understanding. The significance of OmniEarth-Bench lies373

in its breadth and depth, providing a unified challenge that pushes beyond existing capabilities and374

highlighting the need for MLLMs that integrate visual perception with expert domain knowledge and375

advanced reasoning. We anticipate that OmniEarth-Bench will serve as a catalyst for future research376

in geoscientific AI, guiding the development of models capable of expert-level analysis across Earth’s377

spheres and enabling advanced applications in environmental monitoring, climate science, and Earth378

system management. Limitations. Due to the high cost and difficulty of data acquisition, some379

spheres currently include only eight evaluation dimensions. We plan to expand these by partnering380

with relevant institutions and companies to obtain more data.381
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NeurIPS Paper Checklist699

1. Claims700

Question: Do the main claims made in the abstract and introduction accurately reflect the701

paper’s contributions and scope?702

Answer: [Yes]703

Justification: Our abstract and introduction accurately reflect the scope of our dataset and704

our contributions to the field of Earth sciences.705

Guidelines:706

• The answer NA means that the abstract and introduction do not include the claims707

made in the paper.708

• The abstract and/or introduction should clearly state the claims made, including the709

contributions made in the paper and important assumptions and limitations. A No or710

NA answer to this question will not be perceived well by the reviewers.711

• The claims made should match theoretical and experimental results, and reflect how712

much the results can be expected to generalize to other settings.713

• It is fine to include aspirational goals as motivation as long as it is clear that these goals714

are not attained by the paper.715

2. Limitations716

Question: Does the paper discuss the limitations of the work performed by the authors?717

Answer: [Yes]718

Justification: We openly acknowledge our limitations. Due to the high cost and difficulty of719

data acquisition, some spheres currently include only eight evaluation dimensions. We plan720

to expand these by partnering with relevant institutions and companies to obtain more data.721

Guidelines:722

• The answer NA means that the paper has no limitation while the answer No means that723

the paper has limitations, but those are not discussed in the paper.724

• The authors are encouraged to create a separate "Limitations" section in their paper.725

• The paper should point out any strong assumptions and how robust the results are to726

violations of these assumptions (e.g., independence assumptions, noiseless settings,727

model well-specification, asymptotic approximations only holding locally). The authors728

should reflect on how these assumptions might be violated in practice and what the729

implications would be.730

• The authors should reflect on the scope of the claims made, e.g., if the approach was731

only tested on a few datasets or with a few runs. In general, empirical results often732

depend on implicit assumptions, which should be articulated.733

• The authors should reflect on the factors that influence the performance of the approach.734

For example, a facial recognition algorithm may perform poorly when image resolution735

is low or images are taken in low lighting. Or a speech-to-text system might not be736

used reliably to provide closed captions for online lectures because it fails to handle737

technical jargon.738

• The authors should discuss the computational efficiency of the proposed algorithms739

and how they scale with dataset size.740

• If applicable, the authors should discuss possible limitations of their approach to741

address problems of privacy and fairness.742

• While the authors might fear that complete honesty about limitations might be used by743

reviewers as grounds for rejection, a worse outcome might be that reviewers discover744

limitations that aren’t acknowledged in the paper. The authors should use their best745

judgment and recognize that individual actions in favor of transparency play an impor-746

tant role in developing norms that preserve the integrity of the community. Reviewers747

will be specifically instructed to not penalize honesty concerning limitations.748

3. Theory assumptions and proofs749

Question: For each theoretical result, does the paper provide the full set of assumptions and750

a complete (and correct) proof?751
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Answer:[Yes]752

Justification: We conducted thorough analyses of the proposed dataset, each supported by753

complete evidence.754

Guidelines:755

• The answer NA means that the paper does not include theoretical results.756

• All the theorems, formulas, and proofs in the paper should be numbered and cross-757

referenced.758

• All assumptions should be clearly stated or referenced in the statement of any theorems.759

• The proofs can either appear in the main paper or the supplemental material, but if760

they appear in the supplemental material, the authors are encouraged to provide a short761

proof sketch to provide intuition.762

• Inversely, any informal proof provided in the core of the paper should be complemented763

by formal proofs provided in appendix or supplemental material.764

• Theorems and Lemmas that the proof relies upon should be properly referenced.765

4. Experimental result reproducibility766

Question: Does the paper fully disclose all the information needed to reproduce the main ex-767

perimental results of the paper to the extent that it affects the main claims and/or conclusions768

of the paper (regardless of whether the code and data are provided or not)?769

Answer: [Yes]770

Justification: Our experimental results are reproducible under the described setup.771

Guidelines:772

• The answer NA means that the paper does not include experiments.773

• If the paper includes experiments, a No answer to this question will not be perceived774

well by the reviewers: Making the paper reproducible is important, regardless of775

whether the code and data are provided or not.776

• If the contribution is a dataset and/or model, the authors should describe the steps taken777

to make their results reproducible or verifiable.778

• Depending on the contribution, reproducibility can be accomplished in various ways.779

For example, if the contribution is a novel architecture, describing the architecture fully780

might suffice, or if the contribution is a specific model and empirical evaluation, it may781

be necessary to either make it possible for others to replicate the model with the same782

dataset, or provide access to the model. In general. releasing code and data is often783

one good way to accomplish this, but reproducibility can also be provided via detailed784

instructions for how to replicate the results, access to a hosted model (e.g., in the case785

of a large language model), releasing of a model checkpoint, or other means that are786

appropriate to the research performed.787

• While NeurIPS does not require releasing code, the conference does require all submis-788

sions to provide some reasonable avenue for reproducibility, which may depend on the789

nature of the contribution. For example790

(a) If the contribution is primarily a new algorithm, the paper should make it clear how791

to reproduce that algorithm.792

(b) If the contribution is primarily a new model architecture, the paper should describe793

the architecture clearly and fully.794

(c) If the contribution is a new model (e.g., a large language model), then there should795

either be a way to access this model for reproducing the results or a way to reproduce796

the model (e.g., with an open-source dataset or instructions for how to construct797

the dataset).798

(d) We recognize that reproducibility may be tricky in some cases, in which case799

authors are welcome to describe the particular way they provide for reproducibility.800

In the case of closed-source models, it may be that access to the model is limited in801

some way (e.g., to registered users), but it should be possible for other researchers802

to have some path to reproducing or verifying the results.803

5. Open access to data and code804

18



Question: Does the paper provide open access to the data and code, with sufficient instruc-805

tions to faithfully reproduce the main experimental results, as described in supplemental806

material?807

Answer: [Yes]808

Justification: We have provided a direct link to access the dataset.809

Guidelines:810

• The answer NA means that paper does not include experiments requiring code.811

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/812

public/guides/CodeSubmissionPolicy) for more details.813

• While we encourage the release of code and data, we understand that this might not be814

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not815

including code, unless this is central to the contribution (e.g., for a new open-source816

benchmark).817

• The instructions should contain the exact command and environment needed to run to818

reproduce the results. See the NeurIPS code and data submission guidelines (https:819

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.820

• The authors should provide instructions on data access and preparation, including how821

to access the raw data, preprocessed data, intermediate data, and generated data, etc.822

• The authors should provide scripts to reproduce all experimental results for the new823

proposed method and baselines. If only a subset of experiments are reproducible, they824

should state which ones are omitted from the script and why.825

• At submission time, to preserve anonymity, the authors should release anonymized826

versions (if applicable).827

• Providing as much information as possible in supplemental material (appended to the828

paper) is recommended, but including URLs to data and code is permitted.829

6. Experimental setting/details830

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-831

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the832

results?833

Answer: [Yes]834

Justification: Our results can be reproduced by following the provided experimental guide-835

lines and dataset usage instructions.836

Guidelines:837

• The answer NA means that the paper does not include experiments.838

• The experimental setting should be presented in the core of the paper to a level of detail839

that is necessary to appreciate the results and make sense of them.840

• The full details can be provided either with the code, in appendix, or as supplemental841

material.842

7. Experiment statistical significance843

Question: Does the paper report error bars suitably and correctly defined or other appropriate844

information about the statistical significance of the experiments?845

Answer: [Yes]846

Justification: All experiments were conducted three times using standard settings, and the847

results were averaged.848

Guidelines:849

• The answer NA means that the paper does not include experiments.850

• The authors should answer "Yes" if the results are accompanied by error bars, confi-851

dence intervals, or statistical significance tests, at least for the experiments that support852

the main claims of the paper.853

• The factors of variability that the error bars are capturing should be clearly stated (for854

example, train/test split, initialization, random drawing of some parameter, or overall855

run with given experimental conditions).856
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• The method for calculating the error bars should be explained (closed form formula,857

call to a library function, bootstrap, etc.)858

• The assumptions made should be given (e.g., Normally distributed errors).859

• It should be clear whether the error bar is the standard deviation or the standard error860

of the mean.861

• It is OK to report 1-sigma error bars, but one should state it. The authors should862

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis863

of Normality of errors is not verified.864

• For asymmetric distributions, the authors should be careful not to show in tables or865

figures symmetric error bars that would yield results that are out of range (e.g. negative866

error rates).867

• If error bars are reported in tables or plots, The authors should explain in the text how868

they were calculated and reference the corresponding figures or tables in the text.869

8. Experiments compute resources870

Question: For each experiment, does the paper provide sufficient information on the com-871

puter resources (type of compute workers, memory, time of execution) needed to reproduce872

the experiments?873

Answer: [Yes]874

Justification: All our experiments are evaluation-based and follow the VLMEval framework875

referenced in the paper.876

Guidelines:877

• The answer NA means that the paper does not include experiments.878

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,879

or cloud provider, including relevant memory and storage.880

• The paper should provide the amount of compute required for each of the individual881

experimental runs as well as estimate the total compute.882

• The paper should disclose whether the full research project required more compute883

than the experiments reported in the paper (e.g., preliminary or failed experiments that884

didn’t make it into the paper).885

9. Code of ethics886

Question: Does the research conducted in the paper conform, in every respect, with the887

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?888

Answer: [Yes]889

Justification: We strictly adhered to ethical guidelines and ensured the preservation of890

anonymity.891

Guidelines:892

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.893

• If the authors answer No, they should explain the special circumstances that require a894

deviation from the Code of Ethics.895

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-896

eration due to laws or regulations in their jurisdiction).897

10. Broader impacts898

Question: Does the paper discuss both potential positive societal impacts and negative899

societal impacts of the work performed?900

Answer: [Yes]901

Justification: We discussed the significance of conducting comprehensive evaluations across902

the entire Earth science domain.903

Guidelines:904

• The answer NA means that there is no societal impact of the work performed.905

• If the authors answer NA or No, they should explain why their work has no societal906

impact or why the paper does not address societal impact.907
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• Examples of negative societal impacts include potential malicious or unintended uses908

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations909

(e.g., deployment of technologies that could make decisions that unfairly impact specific910

groups), privacy considerations, and security considerations.911

• The conference expects that many papers will be foundational research and not tied912

to particular applications, let alone deployments. However, if there is a direct path to913

any negative applications, the authors should point it out. For example, it is legitimate914

to point out that an improvement in the quality of generative models could be used to915

generate deepfakes for disinformation. On the other hand, it is not needed to point out916

that a generic algorithm for optimizing neural networks could enable people to train917

models that generate Deepfakes faster.918

• The authors should consider possible harms that could arise when the technology is919

being used as intended and functioning correctly, harms that could arise when the920

technology is being used as intended but gives incorrect results, and harms following921

from (intentional or unintentional) misuse of the technology.922

• If there are negative societal impacts, the authors could also discuss possible mitigation923

strategies (e.g., gated release of models, providing defenses in addition to attacks,924

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from925

feedback over time, improving the efficiency and accessibility of ML).926

11. Safeguards927

Question: Does the paper describe safeguards that have been put in place for responsible928

release of data or models that have a high risk for misuse (e.g., pretrained language models,929

image generators, or scraped datasets)?930

Answer: [Yes]931

Justification: Our paper does not involve data with a high risk of misuse.932

Guidelines:933

• The answer NA means that the paper poses no such risks.934

• Released models that have a high risk for misuse or dual-use should be released with935

necessary safeguards to allow for controlled use of the model, for example by requiring936

that users adhere to usage guidelines or restrictions to access the model or implementing937

safety filters.938

• Datasets that have been scraped from the Internet could pose safety risks. The authors939

should describe how they avoided releasing unsafe images.940

• We recognize that providing effective safeguards is challenging, and many papers do941

not require this, but we encourage authors to take this into account and make a best942

faith effort.943

12. Licenses for existing assets944

Question: Are the creators or original owners of assets (e.g., code, data, models), used in945

the paper, properly credited and are the license and terms of use explicitly mentioned and946

properly respected?947

Answer: [Yes]948

Justification: All our data was obtained through publicly accessible sources, downloaded949

legitimately, and processed and annotated by our team. The proposed OmniEarth-Bench950

follows a highly permissive license (CC-BY 4.0), enabling broad use for various evaluations.951

Guidelines:952

• The answer NA means that the paper does not use existing assets.953

• The authors should cite the original paper that produced the code package or dataset.954

• The authors should state which version of the asset is used and, if possible, include a955

URL.956

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.957

• For scraped data from a particular source (e.g., website), the copyright and terms of958

service of that source should be provided.959
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• If assets are released, the license, copyright information, and terms of use in the960

package should be provided. For popular datasets, paperswithcode.com/datasets961

has curated licenses for some datasets. Their licensing guide can help determine the962

license of a dataset.963

• For existing datasets that are re-packaged, both the original license and the license of964

the derived asset (if it has changed) should be provided.965

• If this information is not available online, the authors are encouraged to reach out to966

the asset’s creators.967

13. New assets968

Question: Are new assets introduced in the paper well documented and is the documentation969

provided alongside the assets?970

Answer: [Yes]971

Justification: We have documented the dataset and made it publicly available, along with972

detailed usage instructions.973

Guidelines:974

• The answer NA means that the paper does not release new assets.975

• Researchers should communicate the details of the dataset/code/model as part of their976

submissions via structured templates. This includes details about training, license,977

limitations, etc.978

• The paper should discuss whether and how consent was obtained from people whose979

asset is used.980

• At submission time, remember to anonymize your assets (if applicable). You can either981

create an anonymized URL or include an anonymized zip file.982

14. Crowdsourcing and research with human subjects983

Question: For crowdsourcing experiments and research with human subjects, does the paper984

include the full text of instructions given to participants and screenshots, if applicable, as985

well as details about compensation (if any)?986

Answer:[Yes]987

Justification: We provided generous compensation to crowdsourcing annotators and offered988

detailed explanations of their collaboration with domain experts.989

Guidelines:990

• The answer NA means that the paper does not involve crowdsourcing nor research with991

human subjects.992

• Including this information in the supplemental material is fine, but if the main contribu-993

tion of the paper involves human subjects, then as much detail as possible should be994

included in the main paper.995

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,996

or other labor should be paid at least the minimum wage in the country of the data997

collector.998

15. Institutional review board (IRB) approvals or equivalent for research with human999

subjects1000

Question: Does the paper describe potential risks incurred by study participants, whether1001

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1002

approvals (or an equivalent approval/review based on the requirements of your country or1003

institution) were obtained?1004

Answer: [Yes]1005

Justification: Our annotation process was thoroughly explained to crowdsourcing annotators1006

in advance. With their informed consent and approval from relevant organizations, we1007

proceeded with the annotation work, providing substantial compensation.1008

Guidelines:1009

• The answer NA means that the paper does not involve crowdsourcing nor research with1010

human subjects.1011
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• Depending on the country in which research is conducted, IRB approval (or equivalent)1012

may be required for any human subjects research. If you obtained IRB approval, you1013

should clearly state this in the paper.1014

• We recognize that the procedures for this may vary significantly between institutions1015

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1016

guidelines for their institution.1017

• For initial submissions, do not include any information that would break anonymity (if1018

applicable), such as the institution conducting the review.1019

16. Declaration of LLM usage1020

Question: Does the paper describe the usage of LLMs if it is an important, original, or1021

non-standard component of the core methods in this research? Note that if the LLM is used1022

only for writing, editing, or formatting purposes and does not impact the core methodology,1023

scientific rigorousness, or originality of the research, declaration is not required.1024

Answer: [Yes]1025

Justification: We only used LLMs to assist with writing, complying with the LLM policy.1026

For benchmark evaluation, MLLMs were employed as assessment tools, following a widely1027

accepted evaluation protocol in this field.1028

Guidelines:1029

• The answer NA means that the core method development in this research does not1030

involve LLMs as any important, original, or non-standard components.1031

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1032

for what should or should not be described.1033
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