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Figure 1: Overview of OmniEarth-Bench. Our benchmark spans six Earth science spheres and
cross-sphere scenarios, encompassing 100 sub-tasks derived from 33 sensor types.

Abstract

Existing benchmarks for Earth science multimodal learning exhibit critical limita-
tions in systematic coverage of geosystem components and cross-sphere interac-
tions, often constrained to isolated subsystems (only in Human-activities sphere
or atmosphere) with limited evaluation dimensions (< 16 tasks). To address these
gaps, we introduce OmniEarth-Bench, the first comprehensive multimodal bench-
mark spanning all six Earth science spheres (atmosphere, lithosphere, Oceansphere,
cryosphere, biosphere and Human-activities sphere) and cross-spheres with one
hundred expert-curated evaluation dimensions. Leveraging observational data from
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satellite sensors and in-situ measurements, OmniEarth-Bench integrates 29,779
annotations across four tiers: perception, general reasoning, expert-knowledge de-
ductive reasoning and chain-of-thought (CoT) reasoning. This involves the efforts
of 2-5 experts per sphere to establish authoritative evaluation dimensions and cu-
rate relevant observational datasets, 40 crowd-sourcing annotators to assist experts
for annotations, and finally, OmniEarth-Bench is validated via hybrid expert-crowd
workflows to reduce label ambiguity. Experiments on 9 state-of-the-art MLLMs
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reveal that even the most advanced models struggle with our benchmarks, where
none of them reach 35% accuracy. Especially, in some cross-spheres tasks, the
performance of leading models like GPT-40 drops to 0.0%. OmniEarth-Bench sets
a new standard for geosystem-aware Al, advancing both scientific discovery and
practical applications in environmental monitoring and disaster prediction. The
dataset, source code, and trained models were released at OmniEarth-Bench.

1 Introduction

Earth scientists address critical environmental and societal challenges through modeling Earth’s
interconnected systems [1]: the atmosphere, lithosphere, hydrosphere, cryosphere, biosphere, and
human activities [2]. By analyzing cross-system interactions, researchers derive impactful findings
such as flood prediction [3], a complex task requiring multi-domain expertise (e.g., atmospheric
precipitation, biospheric soil moisture, and lithospheric runoff). These discoveries are systematically
validated in high-impact journals including Nature and Science [4, 5, 6, 7, 8, 9].

Existing MLLMs (e.g., GPT-40 [10], Gemini [ I] and Claude [12]) excel at considerable tasks and
have motivated benchmarks that explicitly test core skills. These benchmarks span diverse evaluation
dimensions and explicitly include: Visual understanding [ 13, 14], Vision—language alignment [15, 16],
Long-context modeling [17, 18], Chain-of-Thought (CoT) reasoning [19, 20], Scientific knowledge
reasoning [17, 21] and so on [22, 23, 24]. In Earth science, existing multimodal benchmarks
often focus on visual question answering using remote sensing data, covering a variety of satellite
observation modalities and resolutions [25, 26, 27]. However, these existing benchmarks mainly
focus on the human-activities sphere, with few or no multimodal benchmarks for other spheres.
Moreover, while the semantic information in the observation data of the human-activities sphere is
well-defined (e.g., buildings, roads and ships), other Earth systems lack precise scientific information
formulation. This presents a new challenge: How to establish scientific information definitions
across multi-sphere Earth observations for effectively evaluating multimodal models?

To address this challenge, we introduce OmniEarth- Human-
Bench to evaluate the scientific information processing activities sphere
capabilities of multimodal models across six Earth sci- 22
ence spheres and cross-sphere scenarios. Considering Cross-sphere Lithosphere
the professional expertise required for analyzing Earth o
observation data, we have established four tasks: basic 8600 110 T3
perception tasks, general reasoning tasks, specialized  ¢yyogphere A Oceansphere
scientific reasoning tasks, and specialized scientific CoT P15
reasoning tasks. The basic perception tasks are designed
to assess the model’s ability to perceive and recognize Atmosphere” Biosphere
fundamental features and patterns in the Earth observa- CLinate CLRS Bench VRSBench
tion data. The general reasoning tasks evaluate the abil-

UrBench ‘WeatherQA ClimateIQA

ity to draw logical conclusions based on the perceived
information. The specialized scientific reasoning tasks Ours
aim to assess the ability to interpret scientific knowledge
related to observational data. The specialized scien-
tific CoT reasoning tasks evaluate the ability to perform
step-by-step analysis of the observation data and derive
accurate conclusions based on scientific knowledge.

Figure 2: Dimensions Categories of L4
dimensions. Our benchmark spans 6
spheres and cross-sphere, across 100 typi-
cal subtasks (L4 dimensions).

Fig. 1 shows the typical examples across 6 spheres and cross-spheres. We engaged 2-5 experts (PhD
holders or candidates) per sphere to identify representative real-world tasks, establish authoritative
evaluation dimensions, and curate relevant observational datasets (either existing datasets or original
data sourced from satellites like MODIS [28]). After defining these dimensions, we enlisted 40
crowd-sourcing annotators (undergraduate and master’s students, 5—10 per sphere) to assist experts
in annotation, followed by rigorous cross-validation to ensure quality. Ultimately, OmniEarth-
Bench comprises 100 sub-dimensions (L-4 tasks) across seven categories (atmosphere, lithosphere,
Oceansphere, cryosphere, biosphere, Human-activities sphere, and cross-sphere). As illustrated in
Fig. 2, OmniEarth-Bench substantially surpasses existing benchmarks in comprehensiveness and
coverage. Tab. 2 summarizes its quantitative and qualitative advantages. The key contributions are:
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¢ Comprehensive Evaluation Across All Six Spheres. OmniEarth-Bench is the first bench-
mark to extensively cover all Earth science spheres, offering 58 practical and comprehensive
evaluation dimensions that significantly surpass prior benchmarks.

* Pioneering Cross-Sphere Evaluation Dimensions. To address complex real-world sce-
narios, OmniEarth-Bench introduces cross-sphere evaluation capabilities for societally
important tasks such as disaster prediction and ecological forecasting.

* CoT-Based Reasoning Evaluations in Earth Science. OmniEarth-Bench establishes, for
the first time, CoT-based evaluations tailored for complex Earth science reasoning tasks,
addressing scenarios where previous benchmarks showed near-zero accuracy, and explores
how CoT strategies might enhance reasoning capabilities in the Earth domain.

2 Related Work

Earth Multimodal Benchmark. Recent advancements in large multimodal models (MLLMs) have
accelerated progress in Earth sciences [29, 30], leading to the development of several evaluation
benchmarks [25, 26, 31, 32]. Current benchmarks primarily target the Human-activities sphere and
atmosphere. In the Human-activities sphere, remote sensing-based benchmarks include RSIEval [33],
featuring 100 human-annotated captions and 936 VQA pairs; VRSBench [25], containing 29,614
images, 52,472 object references, and 123,221 QA pairs; and XLRS-Bench, which offers the
largest dataset to date with an average resolution of 8500x8500. Atmospheric benchmarks include
WeatherQA [31], designed specifically to evaluate severe weather predictions in two dimensions;
ClimateIQA [32], built from climate reanalysis data for extreme weather event detection across four
question types; and CLLMate [34], focused on weather and climate event forecasting using numerical
meteorological data and textual event descriptions. However, these benchmarks exhibit notable
limitations: 1) They typically address isolated spheres, neglecting cross-sphere interactions essential
to real-world Earth science challenges. 2) They offer limited evaluation dimensions, with atmospheric
benchmarks assessing fewer than four question types, and even the most extensive Human-activities
sphere benchmark covering only 16 dimensions. Overall, comprehensive benchmarks addressing all
six spheres and evaluating cross-sphere capabilities are still lacking in Earth sciences.

General Multimodal Benchmark. Large-scale vision-language models (VLMs) have shown great
promise in multimodal tasks such as scene understanding and visual sentiment analysis, prompting
the development of diverse benchmarks to quantitatively assess their capabilities. However, earlier
benchmarks mostly targeted specific domains with limited evaluation tasks (e.g., visual ground-
ing [35, 36] or visual question answering (VQA) [37, 38, 39, 40, 41]). Recent efforts aim for more
comprehensive assessments: MME [15] evaluates 14 perceptual and cognitive tasks; MMBench [13]
offers over 3,000 questions spanning 20 skill dimensions like object localization and social reasoning;
Seed-Bench [16] scales up further with 19,000 questions; MMT-Bench [24] integrates real-world
scenarios like autonomous driving; and MME-Realworld [18] includes five real-world contexts
with high-resolution imagery. Multimodal benchmarks focusing on scientific disciplines have also
emerged. HLE [42] covers numerous academic disciplines with 2,500 questions; MMMU-Pro [43]
evaluates multidisciplinary visual-textual integration skills at scale. Recently, multimodal chain-of-
thought (CoT) benchmarks were developed: MME-CoT [19] includes 1,130 questions annotated with
3,865 reasoning steps; and ZeroBench [20] provides 100 handpicked questions and 334 simpler sub-
questions. Despite these advancements, two critical limitations remain: 1) Earth sciences have been
largely neglected, with only SuperGPQA featuring a minimal number (100) of geophysics-related
textual questions, and multimodal CoT benchmarks lacking Earth science content entirely. 2) Existing
benchmarks overlook the importance of observational data, a distinctive strength of Earth sciences
(e.g., satellite imagery, climate data grids, seismic signals). In summary, current general-domain
benchmarks fail to sufficiently evaluate multimodal models in Earth sciences, particularly concerning
observational data and CoT reasoning scenarios.

3 OmniEarth-Bench

OmniEarth-Bench stands out from existing multimodal understanding benchmarks with three key
features: i) It is the first benchmark based on Earth observational data to comprehensively cover all six
Earth spheres, with evaluation dimensions grounded in real-world needs and rigorously validated by
domain experts. ii) It firstly introduces the cross-sphere evaluation dimensions in geoscience, enabling



124
125
126

127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

157
158
159
160
161
162
163
164
165

Source Screening Task Formulation Dataset Formulation

((0)) Value A + Rule ing Granularity ‘Annotation Pipeline e T
P %) —
S Atmosphere’ Urban Construction Perception Data source vnlllon
Biosphere e Forecast enersliRes asoning ENSO Forecast [0
Oceansphere | e | Vegetation Monitoring Scientific-K bl [Salt-dome detection g
%& ~o o _&g Lithos le_o Marine Extreme Events | £ Reaso! 0
- P Bird s,.um Prediction CoT Rea t e

Sensors Selection

ore
—
% g Spheres Representative Scenarios Task Types F"‘F g”‘"‘td \ %
as|
T avomosphere e Quality Control

Manually extmcnd by expert Content Checking Format Checking Accept

L2+ SEVIR Weather L2: Vegetation Monotaring

;

L4: Rotate Center Prediction L4: Vegetation Cover Degree

Covering 33 modalities

Figure 3: Pipeline of OmniEarth-Bench. Our pipeline comprises 4 stages—Source Screening, Task
Formulation, Expert Annotation, and Quality Control—all led by experts. The first two stages are
exclusively conducted by experts, while crowdsourcing annotators assist in the latter two stages.

MLLMs to be tested on realistic, interdisciplinary Earth science cross-sphere tasks. iii) It firstly
establishes the Chain-of-Thought (CoT) reasoning benchmark for geoscience, using expert-reviewed
human annotations and cross-validation to assess CoT effectiveness in complex scientific reasoning.

3.1 Pipeline of Benchmark

Source  Screening.
Our Benchmark Table 1: Data source of different spheres, including open-source datasets,
comprises not only satellite websites and other observation data sources. We only exhibit the
publicly available L1 and L2 dimensions.

open-source datasets

but al a si ificant L1 dimensons | L2 deminesons | Data Source | Annotations Volume
u . SO Slgnl n Global Flood Forecasting GFF [3] 873
portl()n of data man- Cross-sphere Bird Species Prediction SatBird [44] 2,253

11 t t d b Carbon Flux Monitoring CarbonSense [45] 330
ua y extracte y Urban Construction UBCvl1 [46], BHdataset [47] 3,161
experts from Satellite Human-activities sphere Land Use WHU-OHS [48] 2,990
. d Surface Disaster Assessment XView [49] 3,851
imager an raw -

b g yt 1 Species Distribution Prediction Ogﬁfi‘é‘gﬂ' S 1) 2,819
observalional sources. Biosph Vegetation Monitoring GLASS [54], MODIS [28] 900
FOr example Vegeta_ 1osphere Environmental Pollution Monitoring ROSID [55] 246

. . ’, Human Footprint Assessment HFP [56], MODIS [28] 600
tion Monitoring uses Crop Growth Monitoring MOPAD [57] 1,656

ite 1 SEVIR Weather SEVIR [55] 893
Satelllte lmagery from Typhoon Events DigitalTyphoon [59] 5,082
MODIS and eXpeI’t- At h Short-term meteorological events ERAS [60] 140

mosphere Medium-term meteorological events ERAS5 [60] 160
Curated data from the Seasonal meteorological events ERAS [60] 60
Interannual climate change ERAS5 [60] 60
Global Land Surface e T STRAD L] e
. . arthquake monitoring and prediction )
Satelhte (GLASS), Lithosphere Geological exploration imaging TGS-Salt [62] 631
1 ] Marine Debris and Oil Pollution MADOS [63] 221
lnCIUdlng Leaf Area Oceansphere Marine Extreme Events ERASSTVS 583
. P [64]
Index, Fractional Marine Phenomenon Detection COMS [65], M4Fog [66] 570
: . G02202 (SIC) [67], NSIDC-0079 [65]
;’egﬁtiﬁlon C(.)Vercand Cryosphere Sea ice forecast PIOMAS. [6] GIOMAS [10] 200
- . . CryoSat-2 [71]
ca egetatlon oV Glacier analysis IeeBridge [72], ICESat-2 [73] 30

erage Area. Moreover,
for the Eddy data in oceansphere, the chlorophyll (CHL) data used in this study were obtained
by applying the OCI empirical algorithm to Level-2 data acquired by the Geostationary Ocean
Color Imager I (GOCI) aboard the Oceanography and Meteorology Satellite (COMS). After careful
selection and integration, we compiled a comprehensive dataset covering 33 different data modalities
across all Earth spheres. Tab.1 is a summary of the data sources used for each Earth sphere, with
detailed data organization and construction procedures presented in the appendix.

Task Formulation. As shown in Fig.3, OmniEarth-Bench defines tasks across four hierarchical levels
(L1-L4): L1 covers the seven domains based on established geophysical spheres: atmosphere, litho-
sphere, oceansphere, cryosphere, biosphere, Human-activities sphere and cross-sphere. L2 includes
expert-approved, representative scenarios within each sphere, selected based on their scientific and
practical value (e.g., earthquake prediction). Tab.1 illustrates representative scenarios covered by the
L1 and L2 levels. Detailed descriptions of the L3 and L4 dimensions for each sphere are provided in
the appendix. L3 comprises four core abilities: Perception, General Reasoning, Scientific-Knowledge
Reasoning and CoT Reasoning. Perception and General Reasoning align with previous works such as
MMBench [13] and XLRS-Bench [26], where Perception focuses on sensory inputs and Reasoning
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Figure 4: Examples of OmniEarth-Bench. OmniEarth-Bench comprises 100 unique L4 tasks, each
with distinct questions, answers, and images. Spanning diverse data sources, timeframes, and natural
variables, all tasks are jointly defined by domain experts across spheres.

on inference. Scientific-Knowledge Reasoning addresses complex reasoning tasks requiring deep
domain expertise in Earth sciences. CoT Reasoning evaluates the effectiveness of chain-of-thought
processes within Earth science scenarios. L4 provides further granularity by subdividing tasks
based on the L1-L3 dimensions. Each L4 category is verified by domain experts to ensure practical
relevance. Examples include fractional vegetation cover estimation in the biosphere and earthquake
magnitude estimation in the lithosphere. Achieving robust general intelligence in Earth sciences
requires MLLMs to perform effectively across all hierarchical levels. OmniEarth-Bench provides the
first comprehensive framework designed for such an evaluation.

Expert Annotations. For each of the six Earth spheres, we enlisted 2-5 domain experts (Ph.D.
holders or candidates) and 5—10 crowd-sourcing annotators (undergraduate and master’s students).
(1) For each sphere, evaluation dimensions were collaboratively defined by domain experts and
MLLM specialists, ensuring high practical value and complexity. Cross-sphere tasks involved experts
from multiple domains. This approach addresses the limitations observed when crowd-sourcing
annotators proposed overly simplistic tasks—for example, “Estimated Maximum Precipitation Level”
in atmosphere, which GPT-4o0 solved with 97.7% accuracy. Expert-led design ensures meaningful
evaluation. (2) Experts were also responsible for defining data sources. Attempts to delegate this to
annotators led to issues such as low sample difficulty and data scarcity. For complex tasks, annotators
struggled with downloading and aligning data (e.g., MODIS and GLASS from NASA). Thus, experts
curated and organized datasets, with annotators assisting.

Quality Control. To ensure data integrity and task relevance, the quality control process involved
two main steps. Cross-Validation: Annotator outputs were systematically compared against expert-
provided annotation examples. Any discrepancies were flagged and reviewed by domain experts to
ensure annotation correctness, especially for complex tasks involving multi-source or challenging
data. Final Quality Assessment: MLLM specialists conducted thorough reviews to confirm that
annotations adhered to expert standards and maintained consistency across all tasks and Earth spheres.
High-quality annotations were approved and incorporated into the dataset, while annotations that
did not meet quality standards underwent iterative refinement through a feedback loop involving
annotators and expert supervision. This cyclical process ensured continuous improvement and
maintained the overall reliability of the dataset.
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Table 2: Comparison between existing vision-language benchmarks and our benchmark. X rep-
resents semi-automated, i.e., machine generation followed by human verification.

Dataset ‘ Spheres Cross-Sphere | Observation | Data Source | VQA and Visual Grounding ] CoT
s ” > Data Volume | Volume  Dimensions Volume  Expert Annotation | Volume  Average key step annotation
ScienceQA [17] - 21,000 127
Seed-Bench [16] - 19,242 12
MME [15] - 2374 14 (]
MMBench [13] - 3217 20 ]
MME-Realworld [ 18] - 29,429 43 V]
ZeroBench [20] - 100
MME-CoT [19] - 1,130 32
VRSBench [25] Human-activities sphere (V] 2 175,703 12
XLRS-Bench [26] Human es sphere () 6 45,008 16 o
RSIEval [33] Human-activities sphere ] 1 933 1
UrBench [27] Human-activities sphere o 6 11,600 1
WeatherQA [31] Atmosphere ] 1 8,000 2
ClimateIQA [34] Atmosphere ] 2 254,040 4
CLLMate [34] Atmosphere ] 2 7,747 1
OmniEarth-Bench | 6 Spheres | (4 | o | 33 29,779 100 © 610 5.8

3.2 Task Dimensions

OmniEarth-Bench defines tasks across four hierarchical levels (L1-L4), comprising 7 L1 dimensions,
23 L2 dimensions, 4 L3 dimensions, and 103 expert-defined L4 subtasks with real-world applicability.
One representative L4 subtask from each L1 sphere is illustrated in Fig 4. Detailed descriptions of
the L3 and L4 dimensions are provided in the appendix.

Cross-sphere. Cross-sphere tasks in Earth science carry high practical and societal importance [4,

, 0, 9]. To evaluate MLLMs, we select three representative L2 scenarios from socially impactful
applications, including Global Flood Forecasting (L2), Bird Species Prediction (L2) and Carbon
Flux Monitoring (L2). Due to their reliance on expert knowledge and complex reasoning, all are
categorized as Scientific-Knowledge Reasoning (L3). Their L4 dimensions are collaboratively
defined by experts from the relevant spheres. Despite the complexity of cross-sphere scenarios, we
successfully collaborated with domain experts to construct 6 high-value subtasks (L4 dimensions) .

Lithosphere. We firstly construct an MLLM benchmark for the lithosphere based on observational
data, comprising 7 practical subtasks (.4 dimensions) . We define two representative L2 scenarios
within the lithosphere: Seismic Monitoring and Prediction (L2) and Geophysical Exploration (L2).
Seismic monitoring and prediction [74], a critical domain in geosciences, aims to uncover Earth’s
internal dynamics and earthquake nucleation mechanisms, forming a theoretical basis for early
warning and disaster mitigation. Geophysical exploration imaging [75], by analyzing subsurface
responses to physical fields such as seismic waves, electromagnetic fields, and gravity/magnetic
anomalies, enables high-resolution geological modeling essential for understanding subsurface
structures, hydrocarbon exploration, and geological hazard assessment.

Human-activities sphere. The Human-activities sphere leverages remote sensing and mapping
technologies across three key scenarios: Urban Construction (L2), Land Use (L2), and Surface
Disaster Assessment (L2). Urban construction supports planning and socio-economic analysis;
land use classification underpins environmental monitoring and resource management; and disaster
assessment enables rapid post-event response and risk mitigation. OmniEarth-Bench spans all four
L3 capability dimensions in the Human-activities sphere—Perception, General Reasoning, Scientific-
Knowledge Reasoning, and CoT Reasoning—with 29 subtasks (L4 dimensions), surpassing all
existing benchmarks in this domain [25, 26].

Atmosphere. The atmosphere is a key domain in Earth sciences with high practical value and
extensive research interest [76, 77]. While existing benchmarks target specific atmospheric sub-
scenarios [31, 32, 34], they lack comprehensive domain-wide coverage. OmniEarth-Bench addresses
this gap by defining evaluation dimensions across six representative scenarios using data from
ERAS [60], SEVIR [58], and Typhoon [59] datasets: Short-term Weather Events (L2), Medium-term
Weather Events (L2), Seasonal Weather Events (L2), Interannual Climate Variation (L2), Typhoon
Event (L2), and SEVIR Weather (L2). For example, the Typhoon Event dimension serves as a
flagship benchmark for atmospheric machine learning, supporting operational hazard forecasting
and advancing research on tropical cyclone intensity and structure. These six scenarios (L2) span
30 expert-designed subtasks (.4 dimensions) with strong real-world relevance, substantially
surpassing existing atmospheric benchmarks. Full task details are provided in the appendix.

Oceansphere. We build a multi-layer MLLM benchmark for the oceansphere based primarily
on satellite and analysis data products, featuring 9 practical L4 subtasks. This domain includes
three representative L2 scenarios: Marine Oil Spills and Debris Monitoring (L2), Extreme Oceanic
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Events Warning (L2), and Ocean Phenomena Detection (L2). The Marine Oil Spills and Debris
Monitoring [78] scenario uses multi-source remote sensing and in situ water quality data to track
the spatial distribution and temporal dynamics of oil contamination and floating debris, supporting
environmental management and emergency response. The Extreme Oceanic Events Warning [79, 80]
scenario targets the detection and prediction of major climate modes such as El Nifio—Southern
Oscillation (ENSO) and the Indian Ocean Dipole (IOD), aiming to mitigate their societal and
economic impacts. The Ocean Phenomena Detection scenario [81, 82] involves identifying ocean
features like eddies and marine fog, which are key for maritime safety and ecological studies.

Cryosphere. We conduct a MLLM benchmark for the cryosphere primarily based on sea ice
reanalysis data, glacial imagery, and graphical plots, incorporating 8 practical L4 subtasks. We
identify two representative L2 scenarios within the cryosphere: Sea Ice Forecasting (L2) and Glacier
Analysis (L2). SSea ice forecasting focuses on predicting the dynamic changes of sea ice in polar
regions. Arctic sea ice is crucial for understanding global climate change [83, 84]. Its continuous
decline over the last few decades has made sea ice forecasting significant for navigating through the
Arctic Ocean during melting seasons. Moreover, the loss of the Antarctic sea ice would greatly impact
the global sea level. Glacier analysis [85, 86], aims to study the glacial movements and changes of
glaciers over time.

Biosphere. We present a biosphere-focused MLLM benchmark built on observational data and
retrieval products, featuring 16 practical L4 subtasks. It includes four representative L2 scenarios:
Vegetation Monitoring (L2), Human Footprint Assessment (L2), Environmental Pollution Monitoring
(L2), Species Distribution Prediction (L.2) and Crop Growth Monitoring (L.2). Vegetation Monitoring
[87] evaluates plant and ecosystem health to support function assessment, carbon accounting, and
climate response. Human Footprint Assessment [88] quantifies human impact on nature, informing
sustainability and biodiversity strategies. Environmental Pollution Monitoring [89] identifies pollution
events and their extent, guiding environmental policy and mitigation. Species Distribution is a key
concern in the biosphere, as it guides biodiversity conservation and supports modeling species range
shifts under climate and land-use change. Crop Growth Monitoring [90] assesses crop health for
precision agriculture and sustainable farming.

3.3 Statistics and Analyses

Overview Statistics. OmniEarth-Bench includes 100 expert- Table ~ 3: Main statistics in
defined, high-value evaluation dimensions and 29,779 sam- OmniEarth-Bench
ples annotated by both experts and crowdsourced contrib-

utors. As shown in Tab. 2, it offers clear advantages over _Statistic Number
existing benchmarks. Uniquely built on observational Earth ~ Total questions 29,779
science data—rather than exam-style datasets—OmniEarth- - Cross-sphere 3,456
Bench spans all six spheres and cross-sphere scenarios. Con- - Human-activities sphere 9362
.enc p . p . P X - Biosphere 6,221
sistency metrics are reported in Tab. 3, with additional - Atmosphere 6,395
details and dimension-specific indicators provided in the - Lithosphere 2,131
: - Oceansphere 1,374
ndix. :
appe d - Cryosphere 230
Observational Data vs. Exam-guestions Data. .Unlike Multiple-choice questions 27.082
subject-based benchmarks like ScienceQA [17], which rely Visual grounding questions 2,697
on exam que.stions or online learning problems followqd by Single-image questions 24.108
manual filtering, our approach takes a fundamentally differ-  Multi-image questions 5,671
ent path. While such methods could'thgzor'etically span all  Maximum question length 213
six Earth spheres, they face two key limitations: (1) Bench-  Average question length 482
marks like ScienceQA focus on scientific inquiry rather than o7
practical geoscience applications, limiting their real-world - Total key step annotation 3,473
relevance. (2) Their evaluation dimensions are constrained - Average key step annotation 5.8
. . . P - Average key step length 14.8
by a bottom-up design—questions are derived from existing ; :
. S L - Maximum question length 101
image-text pairs in question banks or papers, then filtered - Average question length 50.2

and categorized. In contrast, OmniEarth-Bench follows a
top-down strategy: domain experts first define evaluation dimensions based on real-world geoscience
challenges and data availability, then curate corresponding data. This ensures each task is both
meaningful and grounded in practical utility.
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Table 4: Experimental results on each sphere of VQA tasks, with models ranked by average
performance. 'Avg’ represents the average accuracy across sub-tasks. Proprietary models are
highlighted in gray. ’Experts’ means evaluation results of 100 examples in each sphere by experts.

We mark the highest score of each metric in red , and second highest underlined.

Speres (L1 dii ions)

Method | Cross-sphere A here  Lith here O« e Cryosphere Biosphere Human-activities sphere | Avg.
Experts ‘ 90 96 91 95 93 97 95 ‘ 934
Closed-source MLLMs

Claude-3.7-Sonnet [12] 30.68 24.72 28.15 23.12 54.46 31.21 11.18 29.07
Gemini-2.0 [11] 16.93 20.83 38.94 16.94 58.52 20.83 23.74 28.1
GPT-40 [10] 0.04 9.64 12.8 13.35 37.48 1.97 2.76 11.15
Open-source MLLMs

InternVL3-72b [97] 19.19 33.98 23.39 20.22 74.56 31.99 29.46 33.26
InternVL3-7b [97] 42.85 30.1 37.47 20.28 49.27 28.74 23.18 33.13
LLaVA-Onevision-7b [92] 19.26 33.69 28.72 24.54 46.4 37.31 30.62 31.51
Internlm-Xcomposer2.5-7b [98] 19.78 17.45 28.88 21.06 40.04 30.67 2476 26.09
Qwen2.5-VL-7B [99] 9.85 9.25 18.65 13.95 17.85 10.94 6.23 12.39
Qwen2.5-VL-72B [99] 3.92 4.82 2243 16.27 5.88 1491 8.63 10.98

Human Annotations vs. GPT Annotations. All annotations are finished by experts and crowd-
sourcing annotators. Unlike MMBench [13], we did not use tools like GPT-4o [10]. It was driven
by two key reasons: (1) GPT-40 cannot generate VQA data requiring deep domain expertise. Tasks
under the Scientific-Knowledge Reasoning (L.3) demand substantial background knowledge and
must be constructed collaboratively by experts. (2) Although GPT-40 can generate samples for
general perception or simple reasoning tasks, expert evaluation found the data to be low quality and
insufficiently challenging. For example, in visual grounding task, GPT-40 only detects highly salient
structures, failing to support our goal of testing MLLMs on locating diverse buildings across complex
scenes. As a result, all OmniEarth-Bench data was exclusively created by experts and annotators.

4 Experiment

Experimental Setup. The MLLMs evaluated on OmniEarth-Bench are grouped into two categories:
(a) open-source VLMs, including Qwen2.5-VL [91], LLava-Onevision [92], InterVL3 [93] and
InternLM-XComposer-2.5 [94]; (b) closed-source VLMs, such as GPT-4o [10], Gemini-2.0 [11]
and Claude 3.7 Sonnet [12] All models were evaluated using LMMs-Eval [95, 96]. Following
MMBench [13] and MME-Realworld [ 18] methods, in the VQA task, we manually created 5 options
for each question: one correct answer, three distractors and one special answer (unable to answer).
We evaluated the accuracy and reported of L-1 dimension for the VQA task, with L-3 and L-4 results
available in the appendix. All scores in Tables 4 are reported as percentages (%). For the Grounding
task, we used precision, assessing accuracy based on the intersection between predicted and ground
truth bounding boxes, with predictions deemed correct if IoU exceeds a threshold (0.5 and 0.7).

38.56

37.25

All MLLMs exhibit suboptimal performance across all “
7 domains. As illustrated in Tab. 4 and Tab. 5, nearly all w0
MLLM:s achieve accuracy rates below 40%, significantly
underperforming relative to their success on traditional

10D

Accuracy/%
o
b

a

perception or reasoning benchmarks [ 13, , 411, Sev- “
eral factors likely contribute to this challenge. First, cur- s
rent multimodal large models are typically trained with- T s . 5 2

Month

out domain-specific Earth science data, which impedes

their ability to comprehend related queries. Second, many
Earth science problems are inherently complex, particu-
larly cross-domain prediction tasks that demand in-depth,

Figure 5: GPT-40 performance on
ENSO and IOD prediction with dif-
ferent lead months (previous).

specialized knowledge, which existing LLMs or MLLMSs may not possess. Finally, OmniEarth-Bench
provides high-resolution, intricate imagery, and the task of interpreting such complex visuals presents
unique obstacles for MLLMs. This underscores the pressing need for specialized models or advanced
post-training techniques to effectively address these challenges.

Time-sensitive task. The Earth’s seven spheres encompass numerous temporally correlated tasks.
ENSO, a key climate mode influencing global weather extremes via teleconnections [101], has seen
improved forecasts through domain-specific AI models [79, ]. As shown in Fig. 5, prediction
accuracy declines with longer lead times, echoing the limitations of specialized models. However,
performance of MLLMs still lags behind tailored models. Performance drops further for Indian
Ocean Dipole (I0D) predictions, aligning with challenges faced by existing methods [103, 80].
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Table 5: Visual grounding performance on OmniEarth-Bench. 3 spheres have the groudning task.

Benchmark ‘ Method GPT-40 Gemini-2.0 Claude-3.7-Sonnet Qwen2.5-VL. LLaVA-OneVision InternVL3 8B InternVL3 78B
e Acc@0.5 0.02 0.03 0 0.59 0.2 0 2.36
Human-activities sphere Acc@0.7 0 0 0 0 0 0 02
Lithosphere Acc@0.5 0.08 0.13 0.02 53 0 8.94 43
P Acc@0.7 0 0.04 0 0.33 0 1.66 0.33
Oceansphere Acc@0.5 0.12 0.34 02 1.81 1.51 6.63 13.86
P Acc@0.7 0.01 0.06 0.07 0 0 0.6 3.61

Limited Gains from Scaling Model Size on Earth-Science Tasks. We evaluate two sizes of the
InterVL3 model and find that the 72B InterVL3 does not provide a significant advantage over the
7B model in our benchmarks, with performance even declining in some evaluation metrics. This
contrasts with the substantial improvements observed in general-domain tasks. This performance
bottleneck likely stems from the lack of Earth-science-specific knowledge, rather than a limitation in
model capacity. Even large MLLMs struggle to reason about unfamiliar scientific concepts without
targeted training on domain-specific data. These findings highlight the importance of prioritizing the
integration of domain-specific knowledge in future Earth-science MLLM development, rather than
merely increasing model size.

Impact of Model Safety on Results. In Tab. 4, we observe that Qwen2.5-VL and GPT-40 perform
very poorly, even falling below the level of random guessing. However, this does not mean that these
two models have the worst perceptual and science-related abilities. We observe that these models tend
to refuse to answer when they are uncertain, whereas InternVL3 and LLaVA-Onevision randomly
guess an answer. This safety mechanism in the models leads to the poor performance of Qwen2.5-VL
and GPT-4o. Detailed refusal rate statistics for each model are provided in the appendix—for instance,
QwenVL2.5-VL-72B refused to answer 18,258 questions.

CoT performance. Following the MME- Table 6: CoT performance of OmniEarth-Bench
CoT [19], building upon our annotated key steps
in Earth Observation data, we leverage two inter- — -
pretable metrics to evaluate the CoT correctness: ~_Reca!
recall and precision. The two metrics respec-
tively attend to the two aspects of the CoT correctness: informativeness and accuracy. Finally, we
calculate the F1 score as the metric of CoT quality. As shown in Tab.6, InternVL3 outperformed
Qwen2.5-VL and LaVA-OneVision with the highest F1 score. Larger open-source variants showed
superior performance, underscoring the scalability of model size.

Models | LLaVA-OneVision-7B Qwen2.5-VL-7B  IntenVL3-8B  InternVL3-78B

89.83 9272 94.02 94.74
2341 29.12 34.47 355

| 37.14 44.32 50.45 51.65

Expert Validation. Although OmniEarth-Bench’s evaluation dimensions and data sources were
curated by experts, we further validated its quality through expert upper-bound assessments. We
randomly sampled 100 questions from each sphere and invited independent experts—unaffiliated with
the annotation team—to answer them. As shown in Tab. 4, expert accuracy consistently exceeded
90%, confirming the benchmark’s reliability. Occasional errors arose mainly in tasks requiring precise
calculations or counting.

5 Conclusion

We have introduced OmniEarth-Bench, a comprehensive multimodal Earth science benchmark that
encompasses all six spheres of the Earth system (atmosphere, lithosphere, Oceansphere, cryosphere,
biosphere, and human-activities) along with their cross-sphere interactions. This benchmark intro-
duces 100 expert-curated evaluation dimensions and four hierarchical levels of reasoning (perception,
general reasoning, expert-knowledge reasoning, and chain-of-thought reasoning), representing a novel
and rigorous evaluation design for geoscientific MLLMs. Our results show that even state-of-the-art
MLLMs (e.g., Claude) struggle with OmniEarth-Bench; none of the tested models surpassed 35% ac-
curacy. This stark performance gap underscores the benchmark’s difficulty and exposes fundamental
limitations in current models’ geoscientific understanding. The significance of OmniEarth-Bench lies
in its breadth and depth, providing a unified challenge that pushes beyond existing capabilities and
highlighting the need for MLLMs that integrate visual perception with expert domain knowledge and
advanced reasoning. We anticipate that OmniEarth-Bench will serve as a catalyst for future research
in geoscientific Al, guiding the development of models capable of expert-level analysis across Earth’s
spheres and enabling advanced applications in environmental monitoring, climate science, and Earth
system management. Limitations. Due to the high cost and difficulty of data acquisition, some
spheres currently include only eight evaluation dimensions. We plan to expand these by partnering
with relevant institutions and companies to obtain more data.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction accurately reflect the scope of our dataset and
our contributions to the field of Earth sciences.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We openly acknowledge our limitations. Due to the high cost and difficulty of
data acquisition, some spheres currently include only eight evaluation dimensions. We plan
to expand these by partnering with relevant institutions and companies to obtain more data.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer:[Yes]

Justification: We conducted thorough analyses of the proposed dataset, each supported by
complete evidence.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Our experimental results are reproducible under the described setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

18



805
806
807

808

809

810

811

812
813

814
815
816
817

818
819

824

834

835
836

837

838

839
840

841
842

843

844
845

846

847
848

849

850

852
853
854
855
856

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We have provided a direct link to access the dataset.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our results can be reproduced by following the provided experimental guide-
lines and dataset usage instructions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments were conducted three times using standard settings, and the
results were averaged.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All our experiments are evaluation-based and follow the VLMEval framework
referenced in the paper.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly adhered to ethical guidelines and ensured the preservation of
anonymity.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the significance of conducting comprehensive evaluations across
the entire Earth science domain.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Our paper does not involve data with a high risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All our data was obtained through publicly accessible sources, downloaded

legitimately, and processed and annotated by our team. The proposed OmniEarth-Bench
follows a highly permissive license (CC-BY 4.0), enabling broad use for various evaluations.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have documented the dataset and made it publicly available, along with
detailed usage instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:[Yes]

Justification: We provided generous compensation to crowdsourcing annotators and offered
detailed explanations of their collaboration with domain experts.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: Our annotation process was thoroughly explained to crowdsourcing annotators
in advance. With their informed consent and approval from relevant organizations, we
proceeded with the annotation work, providing substantial compensation.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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1012 * Depending on the country in which research is conducted, IRB approval (or equivalent)

1013 may be required for any human subjects research. If you obtained IRB approval, you
1014 should clearly state this in the paper.

1015 * We recognize that the procedures for this may vary significantly between institutions
1016 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1017 guidelines for their institution.

1018 * For initial submissions, do not include any information that would break anonymity (if
1019 applicable), such as the institution conducting the review.

1020 16. Declaration of LLLM usage

1021 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1022 non-standard component of the core methods in this research? Note that if the LLM is used
1023 only for writing, editing, or formatting purposes and does not impact the core methodology,
1024 scientific rigorousness, or originality of the research, declaration is not required.

1025 Answer: [Yes]

1026 Justification: We only used LLMs to assist with writing, complying with the LLM policy.
1027 For benchmark evaluation, MLLMs were employed as assessment tools, following a widely
1028 accepted evaluation protocol in this field.

1029 Guidelines:

1030 * The answer NA means that the core method development in this research does not
1031 involve LLMs as any important, original, or non-standard components.

1032 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1033 for what should or should not be described.
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