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Abstract
Recent advances in graph neural networks (GNNs) have enabled a more com-
prehensive representation of molecules and molecular systems, thereby enhanc-
ing the precision of molecular property prediction and molecular simulations.
Nonetheless, as the field has been progressing to bigger and more complex ar-
chitectures, state-of-the-art GNNs have become largely prohibitive for many
large-scale applications. In this paper, we explore the utility of knowledge dis-
tillation (KD) for accelerating molecular GNNs. To this end, we devise KD
strategies that facilitate the distillation of hidden representations in directional
and equivariant GNNs, and evaluate their performance on the regression task of
energy and force prediction. We validate our protocols across different teacher-
student configurations and datasets, and demonstrate that they can consistently
boost the predictive accuracy of student models without any modifications to
their architecture. All in all, we manage to close the gap in predictive accuracy
between teacher and student models by as much as 96.7% and 62.5% for energy
and force prediction respectively, while fully preserving the inference throughput
of the more lightweight models.

1 Introduction
In the last couple of years, the field of molecular simulations has undergone a rapid paradigm shift
with the advent of new, powerful computational tools based on machine learning (ML) [1, 2]. At the
forefront of this transformation have been recent advances in graph neural networks (GNNs), which
have brought about architectures that more effectively capture geometric and structural information
critical for the accurate representation of molecules and molecular systems [3–5]. Consequently,
a multitude of GNNs have been developed, which now offer predictive performance approaching
that of conventional gold-standard methods like density functional theory (DFT) at a fraction of the
computational cost [6–10]. This has, in turn, significantly accelerated the modeling of molecular
properties and the simulation of diverse molecular systems, bolstering new research developments in
many scientific disciplines, including material sciences, drug discovery and catalysis.

Nonetheless, this progress - largely coinciding with the development of bigger and more complex
models, has naturally come at the expense of increased complexity [8, 10–12]. This has gradually
limited the utility of state-of-the-art GNNs for large-scale molecular simulation applications (e.g.,
molecular dynamics, high-throughput searches), where inference throughput (i.e., how many samples
can be processed for a given time) is critical for making fast continual predictions about the evo-
lution of a system. Hence, addressing the trade-off between accuracy and computational demand
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remains essential for creating more affordable tools for molecular simulations and expanding the
transformational impact of GNN models in the area.

Motivated by that, in this work, we investigate the potential of knowledge distillation (KD) in
enhancing the performance and scalability of state-of-the-art GNNs for molecular simulations.

2 Methods
Setup. We consider molecular systems at an atomic level, i.e., N atoms represented by their atomic
number z = {z1, ..., zN} ∈ ZN and positions X = {x1, . . . ,xN} ∈ RN×3. Given a system, we
want a model that can predict in a multi-output fashion the energy E ∈ R of the system, and the
forces F ∈ RN×3 acting on each atom (see Appendix A.1 for more information).

In the context of this prediction task, we train molecular GNNs by enforcing a loss that combines
both the energy and force prediction error as follows:

L0 = αELE(Ê, E) + αFLF(F̂ ,F ), (1)

where E and F are the ground-truth energy and forces, Ê and F̂ are the predictions of the model
of interest, and LE and LF are some loss functions weighted by αE, αF ∈ R. To perform knowledge
distillation, we augment this training process by defining an auxiliary KD loss term LKD, which is
added to L0 (with a factor λ ∈ R) to derive a new training loss function L of the form:

L = L0 + λLKD. (2)

In this work, we focus on feature-based KD - an extension of vanilla output-based KD, concerned
with the distillation of knowledge across the intermediate layers of models [13]. This allows us to
overcome the limitations of vanilla KD in our context (see Appendices A.2 and A.3) and train more
lightweight student models to mimic features that are easier to assimilate compared to the final output
directly [14]. We perform knowledge distillation of intermediate representations by devising a loss
on selected hidden features Hs ∈ Us and Ht ∈ Ut in the student and teacher models respectively,
which takes the form:

LKD = Lfeat(Ms(Hs),Mt(Ht)), (3)

where Ms : Us 7→ U and Mt : Ut 7→ U are transformations that map the hidden features to a
common feature space U , and Lfeat : U × U 7→ R+ is some loss of choice. Possible options for
the transformations Ms,Mt include the identity transformation, linear projections and multilayer
perceptron (MLP) projection heads; whereas for the distillation loss Lfeat, typical functions are mean
squared error (MSE) and mean absolute error (MAE).

Defining feature distillation strategies for molecular GNNs. Unlike standard GNNs that often only
consider scalar node features, molecular GNNs can contain diverse features (scalars, vectors and/or
equivariant higher-order tensors based on spherical harmonics) organized across nodes and edges
within a complex molecular graph. These are continually evolved by model-specific operators to
infer molecular properties, such as energy and forces, in a multi-output prediction fashion. Therefore,
features often represent different physical, geometric and/or topological information relevant to
specific parts of the output. This significantly complicates the design of an effective KD strategy,
especially when models differ architecturally, as one needs to extract and align representations
corresponding to comparable features in both models.

Here, we set out to devise KD strategies that are representative and effective across various molecular
GNNs. Hence, we consider GNNs that have diverse architectures and performance profiles, namely
GemNet-OC [15], PaiNN [16], and SchNet [17] (see Appendices E and F). Unlike typical student-
teacher configurations, these models are characterized by distinct types of features, including scalar
node- and edge-features, and equivariant geometrical vectors (see Appendix B for more information).
Here, we leverage these model dissimilarities and devise three distinct KD strategies:

- node-to-node (n2n): As all three models considered in this study contain scalar node features Hnode,
we can distill knowledge in between these directly by defining a loss LKD, such that

LKD = Lfeat(Ms(Hnode,s),Mt(Hnode,t)). (4)

Note this is a general approach that utilizes node features only, making it applicable to standard
GNNs. Here, we want to force the student to mimic the representations of the teacher for each
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node (i.e. atom) independently, so we use a loss that directly penalizes the distance between the
features in the two models, such as MSE (similar to the original formulation of feature-based KD
in Romero et al. [13]). Other recently proposed losses Lfeat for the distillation of node features in
standard GNNs specifically include approaches based on contrastive learning [18–21] and adversarial
training [22]. We do not focus on such methods as much since they are better suited for (node)
classification tasks (e.g. contrasting different classes of nodes), and not for molecule-level predictions.

To take advantage of other types of features relevant to molecular GNNs, we further devise two
additional protocols below.

- edge-to-node (e2n): The GemNet-OC model heavily relies on its edge features, which are a key
component in the directional message passing defined in the architecture and can be useful as a KD
resource. However, the other models considered here do not have similar edge features to distill to.
To accommodate that, we propose a KD strategy where we transfer information from GemNet-OC’s
edge features Hedge,(i,j) by first aggregating them as follows:

Hedge2node,i =
∑

j∈N (i)

Hedge,(i,j), (5)

where i is the node index. The resulting vector Hedge2node,i is a scalar, node-level feature, and we can,
therefore, use it to transfer knowledge to the student node features Hnode,s as in Eq. 4.

- vector-to-vector (v2v): Similarly, the PaiNN model defines custom vectorial node features, which
differ substantially from the scalar (node and edge) features available in the other models. These
are not scalar and invariant to rigid transformations of the atoms, but geometrical vectors that are
equivariant with respect to rotations. As these carry important information about a given system,
we also want to define a procedure to distill these. When we perform KD between two PaiNN
models, we can directly distill information between these vectorial features just as in Eq. 4. However,
when distilling knowledge into PaiNN from a teacher without such vectorial features, e.g., GemNet-
OC, we do the following feature transformation. We transfer knowledge between (invariant) scalar
edge features and (equivariant) vectorial node features by noting that scalar edge features sit on an
equivariant 3D grid since they are associated with an edge between two atoms in 3D space. Hence,
we can aggregate the edge features {Hedge,(i,j)}j∈N corresponding to a given node i into node-level
equivariant vectorial features Hvec,i by considering the unit vector uij = 1

|xj−xi| (xj − xi) that
defines the direction of the edge (i, j), such that

H
(k)
vec,i =

∑
j∈N (i)

ui,jH
(k)
edge,(i,j), (6)

with the superscript k indicating the channel. Note H
(k)
vec,i is equivariant to rotations, as the vector u

is equivariant to rotations, and H
(k)
edge,(i,j) is a scalar, not influencing its direction.

Additional KD strategies. We further evaluate two additional KD approaches inspired by the vanilla
logit-based KD used in classification, which we augment to make suitable for regression tasks (see
Appendix C).

3 Experimental results
To evaluate our proposed methods, we perform experiments using different teacher-student configu-
rations on the OC20-2M [23] and COLL [24] datasets, with models as implemented in the OC20
codebase2. Experimental details can be found in Appendix D. In addition to regular PaiNN (referred
to as PaiNN-big here), we also use a smaller version (PaiNN-small) where we reduce the number of
hidden layers and their dimensionality.

The results of our experiments on OC20 are summarized in Table 1 (see Appendix G for results on
COLL), presenting a comparative analysis of the predictive performance of different student models
with and without the implementation of knowledge distillation across four relevant metrics: energy
MAE - the MAE between ground truth and predicted energies; force MAE; force cos - the cosine
similarity between ground truth and predicted forces; and energy and forces within threshold (EFwT)

2https://github.com/Open-Catalyst-Project/ocp
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Table 1: Evaluation of the performance of our KD strategies across teacher-student architectures
on the OC20 S2EF task. All models are trained on the OC20-2M dataset. Numbers in brackets
represent the proportion of the gap between the student and the teacher that has been closed by the
respective KD strategy (in %). Best results are given in bold. Values represent the average across the
4 validation datasets available in OC20.

OC20 S2EF Validation

Energy MAE Force MAE Force cos EFwT
Model meV ↓ meV/Å ↓ ↑ % ↑

sa
m

e

Student (PaiNN-small) 489 47.1 0.345 0.085
Teacher (PaiNN-big) 440 45.3 0.376 0.139
Vanilla KD (1) 515(-52.4%) 48.5(-81.0%) 0.269(-237%) 0.07(-28%)
Vanilla KD (2) 476(27.2%) 50.8(-215%) 0.307(-117%) 0.068(-32.6%)
n2n 457(64.8%) 46.7(20.5%) 0.348(9.3%) 0.085(0.5%)
v2v 459(60.8%) 47.2(-9.1%) 0.347(6.8%) 0.079(-11.9%)

si
m

ila
r

Student (SchNet) 1308 65.1 0.204 0
Teacher (PaiNN-big) 440 45.3 0.376 0.139
Vanilla KD (1) 1214(10.8%) 64.6(2.3%) 0.230(15.2%) 0.003(1.8%)
Vanilla KD (2) 1216(10.5%) 64.6(2.5%) 0.229(14.5%) 0(0%)
n2n 1251(6.6%) 65.2(-0.5%) 0.223(11.1%) 0(0%)

di
ffe

re
nt

Student (PaiNN-big) 440 45.3 0.376 0.139
Teacher (GemNet-OC) 286 25.7 0.598 1.063
Vanilla (1) 440(0.0%) 43.9(7.1%) 0.378(0.8%) 0.14(0.4%)
Vanilla (2) 419(13.6%) 114.8(-353%) 0.324(-23.8%) 0.127(-1.3%)
n2n 346 (60.8%) 42.8(12.8%) 0.393(7.4%) 0.262 (13.4%)
e2n 418(14.2%) 41.3 (20.5%) 0.405 (12.8%) 0.207(7.4%)
v2v 437(1.8%) 42.9(17.1%) 0.397(9.4%) 0.124(-1.6%)

- the percentage of systems whose predicted energies and forces are within a specified threshold from
the ground truth [23]. We observe that by using KD, we can significantly boost the performance
of the student models, allowing us to substantially close the gap in predictive accuracy between
teacher and student models - achieving results as high as 64.8% and 20.5% for energy and force
predictions respectively on OC20, and 96.7% and 62.5% respectively on COLL. More importantly,
our experiments demonstrate that the proposed procedures are robust and consistent, as we achieve
improvements in accuracy across all teacher-student configurations on both datasets.

Notice that performance improvements are generally higher in energy predictions than force pre-
dictions. One possible explanation for this phenomenon could be attributed to the nature of the
supervised task. In particular, there are substantially more force labels (i.e., one 3D vector per atom,
which could be hundreds per sample) than energy labels (i.e., one per sample). Consequently, we
hypothesize it is easier for models to learn to make accurate force predictions, and, therefore, there is
more room for improvement in the energy predictions, which we can target with KD.

4 Conclusion
In this paper, we investigate the utility of knowledge distillation as a means of distilling larger,
more computationally expensive GNNs for molecules into smaller, more efficient models. To this
end, we propose three distinct feature-based KD strategies that allow the distillation of intermediate
representations across diverse molecular GNN models. Our experiments demonstrate that knowledge
distillation can consistently enhance the performance of student models across teacher-student
configurations and datasets, confirming its effectiveness and robustness in the context of molecular
GNNs. We reiterate that with our approach, no modifications to the student architectures are made,
meaning we achieve a boost in accuracy without impacting inference throughput. Yet, we note that
training times are affected, albeit not necessarily if a pre-trained teacher model is available (see
Appendix H). With this work, we aim to elucidate the potential of KD in the domain of molecular
simulations and stimulate future work in the area.
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A Background
A.1 GNNs for molecular systems.

GNNs are a suitable framework for modeling molecular systems. Each molecular system (X, z) can
be represented as a mathematical graph G = (V, E), where the nodes V correspond to the set of atoms,
and edges E are created between nodes by connecting the closest neighboring atoms (typically defined
by a cutoff radius and/or a maximum number of neighbors). Hence, in the context of molecular
simulations, we can create a GNN that operates on atomic graphs G by propagating information
between the atoms and the edges, and makes predictions about the energy E ∈ R of the system, and
the forces F ∈ RN×3 acting on each atom in a multi-output manner - i.e., Ê, F̂ = GNN(X, z).
Both these properties are of high interest when simulating molecular systems. The energy of a system
is essential for the prediction of its stability, whereas the forces are important for molecular dynamics
simulations, where computed forces are combined with the equations of motion to simulate the
evolution of the system over time.

The main problem when modeling molecules and molecular properties is the number of underlying
symmetries to account for, most importantly rigid transformations of the atoms. For instance, the
total energy E of a system is not affected by (i.e., is invariant to) rotations and translations of the
system. However, the forces F do change as we rotate a system - i.e., they are equivariant to rotations.
Therefore, to make accurate predictions about molecular systems, it is crucial to devise models that
respect these symmetries and other physical constraints. There is now a plethora of diverse molecular
GNNs that achieve that, e.g., SchNet [17], DimeNet [7, 24], PaiNN [16], GemNet [8, 15], NequIP [6],
and SCN [10], which have incrementally established a more holistic description of molecular systems
by capturing advanced geometric features and physical symmetries. This has, however, come at the
expense of computational efficiency, making state-of-the-art models orders of magnitude slower than
more lightweight options.

A.2 Knowledge distillation.

Knowledge distillation is a technique for compressing and accelerating ML models [25], which
has recently demonstrated significant potential in domains like computer vision [26] and natural
language modeling [27]. The main objective of KD is to create more efficient models by means
of transferring knowledge (e.g. model parameters and activations) from large, computationally
expensive, more accurate models, often referred to as teacher models, to simpler, more efficient
models called student models [28]. Since the seminal work of Hinton et al. [29], the field has
drastically expanded methodologically, with the development of protocols that accommodate the
distillation of "deeper" knowledge, more comprehensive transformation and fusion functions, as well
as more robust distillation losses [28, 30]. Yet, these advances have mostly focused on classification,
resulting in methods of limited utility in regression tasks [31]. Moreover, most research in the
area has been confined to non-graph data (e.g., images, text, tabular data). Despite recent efforts
to extend KD to graph data and GNNs, these have likewise only concentrated on classification
tasks involving standard GNN architectures [32, 33]. And, in particular, the application of KD to
large-scale regression problems in molecular simulations, which involve state-of-the-art molecular
GNN architectures containing complex, geometric node- and edge-level features, is still unexplored.

A.3 Output-based KD.

KD was originally proposed in the context of classification by leveraging the fact that the soft label
predictions (i.e., the logits after softmax normalization) of a given (teacher) model carry valuable
information that can complement the ground-truth labels in the training process of another (student)
model [29]. Since then, this has become the standard KD approach - commonly referred to as
vanilla KD in the literature, which is often the foundation of new KD protocols. The main idea
of this technique is to employ a KD loss LKD that forces the student to mimic the predictions of
the teacher model. This is usually achieved by constructing a loss LKD = KL(zs, zt) based on the
Kullback–Leibler (KL) divergence between the soft logits of the student zs and the teacher zt.

However, this strategy - based on the distillation of the output of the teacher model only [28] - poses
two significant limitations. First, it is by design exclusively applicable to classification tasks, since
there are no outputs analogous to logits in regression setups [25, 34]. This has consequently limited
the utility of most KD methods for regression tasks. Second, this approach forces the student to

8



Accelerating Molecular Graph Neural Networks via Knowledge Distillation

emulate the final output of the teacher directly, which can be unattainable in regimes where the
complexity gap between the two models is substantial, and thus detrimental to KD performance [35].

B Description of features
• SchNet [17]: A simple GNN model based on continuous-filter convolutional layers, which only

contains scalar node features s ∈ Rd. These are used to predict the energy, Ê. The force is
then calculated as the negative gradient of the energy with respect to the atomic positions, i.e.,
F̂ = −∇Ê.

• PaiNN [16]: A GNN based on equivariant message passing, which contains scalar node features
x ∈ Rd1 - used for energy prediction; as well as geometric vectorial node features, v ∈ R3×d2

that are equivariant to rotations and can thus be combined with the scalar features to make direct
predictions of the forces (i.e., without computing gradients of the energy).

• GemNet-OC [15]: A GNN model that utilizes directional message passing. It contains scalar
node features h ∈ Rdh and scalar edges features m ∈ Rdm . After each block of layers, these are
processed through an output block, resulting in scalar node features x(i)

E and edge features x(i)
F ,

where i is the block number. The output features from each block are aggregated into output
features xE and xF , which are used to compute the energy and forces respectively.

Table 2: Molecular GNNs can have diverse features depending on their architecture. This is an
overview of the types of features available in the three models we use in this study.

SchNet PaiNN GemNet-OC

Scalar node features ✓ ✓ ✓
Scalar edge features ✓
Vectorial node features ✓
Output blocks ✓

C Additional KD strategies
Vanilla (1): As mentioned, the main problem with using vanilla KD for regression is the lack of
features analogous to logits. One way of adapting vanilla KD for regression is by steering the student
to mimic the final output of the teacher directly [31]:

LKD = αELE(Ês, Êt) + αFLF(F̂ s, F̂ t), (7)

where the subscripts s and t refer to the predictions of the student and teacher, respectively. Note that,
unlike in classification, this approach does not provide much additional information in regression
tasks, except for some limited signal about the error distribution of the teacher model [25, 34].

Vanilla (2): One way to enhance the teacher signal during training is to consider the fact that
many GNNs for molecular simulations make separate atom- and edge-level predictions which are
consequently aggregated into a final output. For instance, the total energy E of a system is usually
defined as a sum of the predicted contributions from each atom Ê =

∑
i Êi. Hence, we note that we

can extend the aforementioned vanilla KD approach by imposing a loss on these granular predictions
instead. Following the energy definition above, the KD loss can be expressed as

LKD =
1

N

N∑
i=1

LE(Êi,s, Êi,t). (8)

These individual energy contributions are not part of the labeled data, but, when injected during
training, provide more fine-grained information than the aggregated prediction.

D Training and hyperparameters
We utilize the following setup: we use MSE as a distillation loss Lfeat; a learned linear layer as a
transformation function Ms on the features of the student; and the identity transformation as Mt.
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When distilling knowledge from GemNet-OC, we use the aggregated output block features xE and xF
as node features and edge features, respectively. This is similar to the review-based setup proposed in
[36]. For PaiNN and SchNet, we use the final node features.

The models were trained on NVIDIA A100 40 GB and NVIDIA RTX A6000 48 GB GPUs. All
models were trained on single GPUs, except for SchNet when trained on OC20, which required 3
GPUs. In Tables 3-5, hyperparameters for the models are presented. In Table 6, the weighting of the
KD are presented.

E Defininig teacher-student configurations based on model similarity
We investigated 3 different teacher-student configurations with varying levels of architectural disparity
as measured with central kernel alignment [37, 38] (see Figure 1):

• same architecture: distilling our default PaiNN model (PaiNN-big) to a smaller version with
four instead of six layers, and 256 hidden dimensions instead of 512 (PaiNN-small);

• similar architecture: distilling PaiNN-big to SchNet;

• different architecture: distilling GemNet-OC to PaiNN-big.

Figure 1: Similarity analysis between the node features of SchNet, PaiNN and GemNet-OC using
CKA.

F Baseline results
Table 7 summarizes the performance of our models without any knowledge distillation on OC20 and
COLL. Results on OC20 represent an average across the 4 validation datasets available in OC20. We
train SchNet, PaiNN-small and PaiNN-big to convergence ourselves, whereas the GemNet-OC model
we employ is the pre-trained model as available within the OC20 repository.

G COLL results
Table 8 summarizes our benchmarking results on the COLL dataset.

H Training times
One caveat of knowledge distillation is that it inherently increases the training time of the student
model. In our offline KD setup, we need to perform additional forward passes through the teacher
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Table 3: GemNet-OC hyperparameters. For the experiments we have conducted on OC20 data,
we used the model pretrained on OC20-2M (July 2022), and we have hence not done any training
ourselves.

Hyperparameter OC20 COLL
No. spherical basis 7 7
No. radial basis 128 128
No. blocks 4 4
Atom embedding size 256 128
Edge embedding size 512 256

Triplet edge embedding input size 64 64
Triplet edge embedding output size 64 64
Quadruplet edge embedding input size 32 32
Quadruplet edge embedding output size 32 32
Atom interaction embedding input size 64 64
Atom interaction embedding output size 64 64
Radial basis embedding size 16 16
Circular basis embedding size 16 16
Spherical basis embedding size 32 32

No. residual blocks before skip connection 2 2
No. residual blocks after skip connection 2 2
No. residual blocks after concatenation 1 1
No. residual blocks in atom embedding blocks 3 3
No. atom embedding output layers 3 3

Cutoff 12.0 12.0
Quadruplet cutoff 12.0 12.0
Atom edge interaction cutoff 12.0 12.0
Atom interaction cutoff 12.0 12.0
Max interaction neighbors 30 30
Max quadruplet interaction neighbors 8 8
Max atom edge interaction neighbors 20 20
Max atom interaction neighbors 1000 1000

Radial basis function Gaussian Gaussian
Circular basis function Spherical harmonics Spherical Harmonics
Spherical basis function Legendre Outer Legendre Outer
Quadruplet interaction True True
Atom edge interaction True True
Edge atom interaction True True
Atom interaction True True
Direct forces True True

Activation Silu Silu
Optimizer - AdamW
Scheduler - LinearWarmupExponentialDecay
Force coefficient - 100
Energy coefficient - 1
EMA decay - 0.999
Gradient clip norm threshold - 10
Initial learning rate - 10−3
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Table 4: PaiNN hyperparameters. The different number of layers and hidden channels indicate the
values we have used for PaiNN-big and PaiNN-small, respectively.

Hyperparameter OC20 COLL
Hidden channels 512/256 256/128
Number of layers 6/4 6/4
Number of RBFs 128 128
Cutoff 12.0 12.0
Max. num. neighbors 50 50
Direct Forces True True

Batch size 32 32
Optimizer AdamW AdamW
AMSGrad True True
Initial learning rate 10−4 10−3

Scheduler LambdaLR LinearWarmupExponentialDecay
Warmup steps None 3750
Learning rate decay factor 0.45 0.01

Learning rate milestones (steps) 160000, 320000,
480000, 640000 -

Force coefficient 100 100
Energy coefficient 1 1
EMA decay 0.999 0.999
Gradient clip norm threshold 10 10

Table 5: SchNet hyperparameters. For the experiments we have conducted on OC20 data, we used
the default configuration for the OCP-2M dataset as provided in the OCP repository.

Hyperparameter OC20 COLL
Hidden channels 1024 128
Filters 256 128
Interaction blocks 5 6
Gaussians 200 50
Cutoff 6.0 12.0

Batch size 192 32
Initial learning rate 10−4 10−3

Optimizer AdamW AdamW
Scheduler LambdaLR LinearWarmupExponentialDecay
Learning rate decay factor 0.1 0.01

Learning rate milestones 52083, 83333,
104166 -

Warmup steps 31250 3750
Warmup factor 0.1 -
Force Coefficient 100 100
Energy Coefficient 1 1
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Table 6: Choice of the weighting factor λ of the KD loss for the different teacher-student configura-
tions and KD strategies.

Teacher Student Loss OC20 COLL
GemNet-OC PaiNN-big vanilla (1) 1.0 0.2
GemNet-OC PaiNN-big vanilla (2) 500 100
GemNet-OC PaiNN-big n2n 10000 1000
GemNet-OC PaiNN-big e2n 10 10
GemNet-OC PaiNN-big v2v 50000 100

PaiNN-big PaiNN-small vanilla (1) 1 1
PaiNN-big PaiNN-small vanilla (2) 200 100
PaiNN-big PaiNN-small n2n 100 100
PaiNN-big PaiNN-small v2v 1000 10000

PaiNN-big SchNet vanilla (1) 0.1 1
PaiNN-big SchNet vanilla (2) 0.1 100
PaiNN-big SchNet n2n 1000 100

Table 7: Evaluation of the performance of the four baseline GNN models considered in this study (i.e.
no knowledge distillation) on: OC20 (top); and COLL (bottom). The results show a clear tradeoff
between accuracy and computational cost.

Inference OC20 S2EF ValidationThroughput

Samples / Energy MAE Force MAE Force cos EFwT
Model GPU sec. ↑ meV ↓ meV/Å ↓ ↑ % ↑
SchNet 788.2 1308 65.1 0.204 0
PaiNN-small 618.2 489 47.1 0.345 0.085
PaiNN-big 237.8 440 45.3 0.376 0.14
GemNet-OC 75.8 286 25.7 0.598 1.06

Inference COLL test setThroughput

Samples / Energy MAE Force MAE Force cos EFwT
Model GPU sec. ↑ meV ↓ meV/Å ↓ ↑ % ↑
SchNet 35000 146.5 121.2 0.970 2.75
PaiNN-small 27000 104.0 80.9 0.984 5.4
PaiNN-big 12000 85.8 64.1 0.988 10.1
GemNet-OC 2600 44.8 38.2 0.994 20.2

to extract representations to distill to the student. However, it is important to note that, despite
increasing the computational time per training step, we observed that models trained with KD
consistently outperformed their baseline counterparts even when compared at the same training time
point (Figure 2), despite the latter having been trained for more steps/epoch in total. This means that,
all in all, we can use KD to enhance the predictive accuracy in models without necessarily impacting
training times.

However, we make the following remark. In our experiments, we utilized publicly available pre-
trained Gemnet-OC model weights, and therefore did not have to train the teacher model ourselves.
However, when access to a pre-trained teacher model is not available, one should also account for the
time required to train the teacher.
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Table 8: Evaluation results on the COLL test set. Numbers in brackets represent the proportion of
the gap between the student and the teacher that has been closed by the respective KD strategy (in %).
Best results are given in bold.

COLL test set

Energy MAE Force MAE Force cos EFwT
Model meV ↓ meV/Å ↓ ↑ % ↑

sa
m

e

Student (PaiNN-small) 104.0 80.9 0.984 5.4
Teacher (PaiNN-big) 85.8 64.1 0.988 10.1
Vanilla KD (1) 106.1(-11.5%) 82.0(-6.5%) 0.984(2.3%) 4.46(-20.2%)
Vanilla KD (2) 86.4 (96.7%) 80.9(0%) 0.983(-2.3%) 4.3(-23.7%)
n2n 92.5(63.2%) 77.8(18.5%) 0.984(18.2%) 6.63 (26.5%)
v2v 90.4(74.7%) 70.4 (62.5%) 0.986 (45.5%) 5.8(8.4%)

si
m

ila
r

Student (SchNet) 146.5 121.2 0.970 2.75
Teacher (PaiNN-big) 85.8 64.1 0.988 10.1
Vanilla KD (1) 146.1(0.7%) 120.8(0.7%) 0.970(1.1%) 2.54(-2.9%)
Vanilla KD (2) 104.1 (69.9%) 120.9(0.5%) 0.970(1.1%) 6.45 (50.7%)
n2n 141.6(8.1%) 117.2 (7.0%) 0.971 (5.4%) 2.63(-1.6%)

di
ffe

re
nt

Student (PaiNN-big) 85.8 64.1 0.988 10.1
Teacher (GemNet-OC) 44.8 38.2 0.994 20.2
Vanilla KD (1) 86.2(-1.1%) 63.9(0.6%) 0.988(1.5%) 10.1(0.1%)
Vanilla KD (2) 61.4(59.5%) 62.9(4.6%) 0.988(5.2%) 13.0(29.2%)
n2n 60.4 (62.0%) 61.2 (11.3%) 0.989 (14.9%) 13.6 (34.6%)
e2n 77.3(20.8%) 63.3(3.0%) 0.988(7.9%) 11.0(9.2%)
v2v 81.2(11.2%) 63.3(3.1%) 0.988(3.4%) 10.5(4.6%)

Figure 2: Energy validation error of PaiNN without (blue) and with (orange) knowledge distillation
from GemNet-OC, trained for the same number of steps (1 million). Validation on a random sample
of size 30k samples from the in-distribution OC20 validation set.
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