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ABSTRACT

What happens when multiple compression methods are combined—does the or-
der in which they are applied matter? Joint model compression has emerged as
a powerful strategy to achieve higher efficiency by combining multiple methods
such as pruning and quantization. A central but underexplored factor in joint model
compression is the compression order, or the sequence of different methods within
the compression pipeline. Most prior studies have sidestepped the issue by assum-
ing orthogonality between techniques, while a few have examined them only in
highly constrained cases. Consequently, the broader role of compression order in
shaping model performance remains poorly understood. In this paper, we address
the overlooked problem of compression order and provide both theoretical and
empirical analysis. We formulate the problem of optimizing the compression order
and introduce the Progressive Intensity Hypothesis, which states that weaker pertur-
bations should precede stronger ones. We provide theoretical guarantees showing
that the relative benefit of one order increases with the underlying performance gap.
Extensive experiments on both language and vision models validate the hypothesis,
and further show its generality to broader setups such as multi-stage compression
and mixed-precision quantization.

1 INTRODUCTION

When combining pruning and quantization, which order leads to better model performance? Although
deep neural networks have achieved remarkable success across diverse domains, deploying them on
edge devices remains challenging due to limited computational resources. To bridge this gap, network
compression techniques (Deng et al.l 2020; Liang et al., 2021} Zhu et al.,|2024) have been proposed,
including pruning (Park et al.l 2024; Song et al., |2024)), quantization (Ashkboos et al., [2024b}, [Kim
et al.} 2025)), knowledge distillation (Tran et al.| 2022} |Xie et al.,[2023), parameter sharing (Desai
& Shrivastaval, 2024; |Wang et al., [2025a) and low-rank approximation (Li et al.,|2025}; [Wang et al.,
2025b)). Recent studies highlight that combining these compression methods—known as joint model
compression—achieves better trade-offs between compression ratio and model performance than
applying them separately (Hawks et al.|,|2021; [Wang et al.| 2022} |Shinde, [2024).

A critical yet underexplored issue in joint model compression is the compression order—the sequence
in which individual compression methods are applied to the target model. As most of these techniques
are not simultaneously applicable and should be executed sequentially (Wang et al., 2020} [Kuzmin
et al.| 2023)), identifying an optimal order can yield a “free lunch” by improving performance without
any additional computation. Empirical findings (Huang et al., 2019} [Hu et al., [2021} |Qu et al.
2025) show that the performance of the compressed model is sensitive to the compression order,
necessitating a deeper understanding of when and why certain orders work better.

However, the role of compression order has been largely overlooked by prior studies (Kurtic et al.,
2022} |Xiao et al., 2023} |Liu et al.,2023)). Most existing studies implicitly assume that compression
order has no effect on the grounds of orthogonality, naively arguing that different techniques operate
independently without interfering with one another (Kim et al., 2021}; (Chitty-Venkata et al., [2023};
Song et al., 2024; |Motetti et al.,|2024). Only a few works have examined the problem, and most of
them merely offer empirical evidence confined to specific settings (Wang et al.,2020; (Wu et al., |2023;
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-
The Progressive Intensity Hypothesis. Neural networks compressed by multiple methods
perform better when weaker perturbations are applied first and stronger ones later.
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Figure 1: The Progressive Intensity Hypothesis: Given two compression techniques, we conjecture
that compressed models perform better if the stronger method is applied after the weaker one. That
said, the optimal order between pruning and quantization varies with their compression ratios.

Yu et al.,|2023)). One notable attempt (Harma et al., 2025)) presents a theoretical framework, proving
the non-orthogonality of pruning and quantization, concluding that pruning followed by quantization
is always preferable. However, the scope of the work remains narrow and less practical, focusing only
on magnitude-based pruning and max-scaled quantization (see Appendix [D.5). To date, no study has
systematically investigated the broader tendencies of compression order in general settings, neither
empirically nor theoretically.

In this paper, we demonstrate that applying more aggressive compression algorithms at later stages
yields superior performance. We first formulate the problem of joint compression order optimization
(see Section [3.T|and Problem I)), and introduce the Progressive Intensity Hypothesis, which posits that
ordering compression methods from weaker to stronger improves performance (see Hypothesis|[I)).
Figure [T) offers a conceptual depiction of the proposed hypothesis. We validate our claim through
both theoretical analysis and extensive experiments. Theoretically, we show that the advantage of
the compression order grows monotonically with the performance gap between two methods under
disjoint sensitivity (see Theorem [I] and Definition [5). In other cases, we define interference as an
additional error from mutual interaction and investigate its influence (see Definition [6]). Experimen-
tally, we validate the hypothesis across both language and vision models, covering diverse model
architectures, tasks, and compression scenarios (see Sections @]and@. Our analysis also considers
how factors such as weight-update strategies and rotations affect the role of compression order (see
Figures | and 5)). Moreover, our results highlight that the hypothesis generalizes to broader paradigms,
including multi-stage approaches and mixed-precision quantization (see Section[5.4).

Our contributions are summarized as follows:

* Formulation. We formally define the novel problem of optimizing the compression order in joint
model compression (see Problem [I]), and propose the Progressive Intensity Hypothesis, suggesting
that stronger perturbations should be applied later to achieve better performance (see Hypothesis|I).

* Theory. We provide a theoretical analysis that quantifies the relationship between method in-
teraction and order sensitivity. Specifically, we prove that the superiority of one ordering grows
monotonically with the performance gap between the two methods (see Theorem [T)).

* Experiments. Extensive and consistent experimental results across various domains, models, and
tasks support our hypothesis (see Figures [3| [} and[6). We further extend the problem to broader
setups such as multi-stage compression and mixed-precision quantization (see Figures [7]and [T0).

To the best of our knowledge, we are the first to both theoretically and experimentally analyze the
impact of compression order in joint model compression under general and practical settings.

Reproducibility. All of our implementations are available at https://anonymous.4openl
science/r/PQQP/ and within the Supplementary Materials (Authors, [2026).
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2 PRELIMINARIES AND RELATED WORKS

We briefly describe the preliminaries and related works on pruning, quantization, and joint model
compression. The notations used throughout this paper are formally defined in Appendix [A]

Pruning and Quantization. Compressiorﬂ techniques aim to transform a pre-trained model ¢ as a
more efficient version ¢’ while minimizing performance degradation (Xu & McAuley} 2023 |[Dantas
et al.| [2024; [Liu et al., [20254). This process inevitably introduces an error term o(-), representing
the deviation between outputs of ¢ and ¢, which typically increases with the compression ratio C.
We define the compression ratio C' as the memory usage of ¢ divided by that of ¢’. Among various
compression techniques f(¢; C'), our work centers on two major forms: pruning and quantization.

Pruning P(-) directly discards less important components of a model to achieve the desired com-
pression ratio while retaining its most critical parts (Nova et al., 2023} |Ashkboos et al.,|2024a}; |Park
et al.,2024). Based on the level of granularity, pruning methods fall into three categories: structured
pruning (Song et al., |2024) removes entire structural elements such as layers, filters, or attention
heads, semi-structured pruning (Xu et al.,[2024) enforces fixed sparsity patterns (e.g., 2:4 sparsity)
across tensors, and unstructured pruning (Frantar & Alistarh, 2023) prunes weights in a fully flexible
manner. In the case of structured pruning at the layer level, the induced error dp (W, X;) is —W;X;
when pruning is applied to layer [; with weight W and activation X, and 0 otherwise. The model
achieves a compression ratio Cp = 1/(1 — p) by pruning a fraction p of weights.

Quantization Q(-) reduces the bit precision used to represent weights and activations by encoding a
high-bit network into a lower-bit format (Gholami et al.,[2022). Common quantization techniques
include uniform (Li et al., 2021}, non-uniform (Zhao & Yuan, 2025]), binary coding (Park et al., 2025),
and vector quantization (VQ) (Tseng et al.,2024)). Although some techniques such as VQ focus only
on weight quantization without compressing activations, our main scope is on compressing both for
practical acceleration. A main challenge towards robust quantization is the activation outliers (Xiao
et al.,[2023}; [Lee et al., 2024), but recent rotation-based methods (Lin et al., 2024; [Liu et al., [2025b))
have largely overcome it. The layer-wise error by quantization Q(-) for a layer /; with weight W
and activation X is computed as 6o(W;, X;) = Q(W;)Q(X,;) — W; X, with a compression ratio
Cgo = Boyig/Bg depending on the original B,,;, and target Bg bit-widths.

Joint Model Compression. Joint compression combines two or more compression methods, achiev-
ing higher compression ratios while minimizing performance loss (Wang et al., 2020; [Wu et al.|
2023 [Yu et al.; 2023} [Harma et al.| [2025). These methods fall into two categories: co-designed and
post-hoc frameworks. Although the former offers the benefit of integration-aware design, they tend to
be method-specific and less adaptable to alternative configurations (Qu et al., [2025).

In contrast, combining independently designed techniques allows for method-agnostic pipelines that
adapt easily to diverse architectures. Several pruning works (Kurtic et al., 2022 Xiao et al., 2023}
Song et al.| 2024) empirically confirm that such combinations with quantization are both feasible
and beneficial. As independently designed techniques are applied one after another, the order of
compression plays a key role. However, the impact of compression order has not been adequately
examined in the current literature. We denote applying f1(-) before fo(:) as f1 — fa or (fa 0 f1)(*).

3  JOINT COMPRESSION ORDER OPTIMIZATION

3.1 PROBLEM DEFINITION

We are given a pre-trained model and multiple compression techniques, each associated with a specific
compression rate. The goal is to find the optimal order in which to sequentially apply these methods.
An order is considered optimal if it minimizes the degradation in model performance. We quantify
performance using a metric M (-), where higher values indicate better outcomes (e.g., classification
accuracy or the negative of perplexity). We provide the formal definition as Problem [I]

Problem 1 (Joint Compression Order Optimization). We have a pre-trained model ¢, a set of
compression methods F = { f1(-), f2(), - , fu(-)}, and a performance metric M(-). For a set I1 =
{7 :F — F |« is bijective} of all permutations over F, the goal is to find the optimal permutation
7* € II that maximizes the performance of the compressed model: 7* = arg max . M(7(¢)).

'In the remainder of the paper, we use ‘compression’ to refer to ‘model compression’ for simplicity.
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3.2 CHARACTERIZING COMPRESSION ATTRIBUTES

Two key attributes arise when characterizing compression in a general setting: granularity and intensity.
Granularity refers to the smallest structural unit on which compression is applied, and intensity refers
to how aggressively the method alters the model, measured by its impact on performance.

Granularity of Compression. Compression methods are not applied to the model as a whole, but
rather operate locally on its individual components. We define compression granularity as the atomic
level at which compression is performed. To formalize this notion, we begin by abstracting the model
into a set of component types, such as layers, sublayers, or attention heads. We refer to these as
abstract types, which define the structural units over which compression may act. For two abstract
types t1 and to, we say t; is larger than to if 1 strictly contains ¢, as a structural unit. Among all
types that are larger than both ¢ and t5, we define the least upper type ty,(t1,t2) as the smallest one.
For a given model ¢, let 74 denote the set of abstract types; this set depends on the model architecture.

Each compression method f(-) may be applicable only to a subset of abstract types. We denote
this subset by 7; C 7Ty, representing the structural levels at which f(-) can operate. For instance,
layer-wise pruning in large language models is applicable only to units coarser than layers. Then, the
granularity of f(-) is the smallest unit ¢y € 77 on which f(-) is applicable, as defined in Definition|I]

Definition 1 (Compression Granularity). For a model ¢ with a set Ty of abstract types and compres-
sion method f(-), the compression granularity ty == arg minteTf t|, where Ty C Ty denotes the set

of abstract types on which f(-) operates, and |t| denotes the structural size of type t.

Intensity of Compression. Compression methods affect the model differently even at identical com-
pression ratios, so comparing their intensities directly is challenging. To assess compression strength,
we introduce three concepts grounded in performance degradation: performance gap G(f1, f2),
compression equivalent ratio C’}, and compression order advantage .A( fi— fg).

Performance differences between two methods f1(-; C1) and fa(-; C2), each applied at its respective
compression ratios C; and Cj, provide a direct measure of their relative intensity. We call this the
performance gap G(¢, M; f1(:; C1), f2(+; C2)), or simply G(f1, f2), as defined in Definition 2} If
G(f1, f2) > 0, we refer to fo(+; C2) as the stronger compression and f1(-; C7) as the weaker one.

Definition 2 (Performance Gap). Given a model ¢, a performance metric M(-), and two
compression methods f1(-;C1) and fo(-;C2), the performance gap between two methods

G(o, M; f1(5; C1), f2(+5 C2)) = M(f1(; C1)) — M(f2(¢; C2)).

Although G(+) offers a clear pairwise comparison, its values in metric units are difficult to interpret
and may grow rapidly as the compression ratio increases. Alternatively, mapping methods onto
a common scale allows for direct comparison at the level of compression ratios. While multiple
choices exist for the baseline method, we select quantization as it exhibits the best performance across
diverse models, thereby offering the widest range. Accordingly we define the Compression Equivalent
Ratio (CER) C*(f1(+), @, C), or simply C% , which expresses the effect of method fi(-; C) at ratio
C' as an equivalent ratio of quantization Q(-), as Definition [3| In other words, starting from a 16-
bit model, a compression method f(¢; C') with C} = 2 achieves the same performance as 8-bit
quantization. Note that CER of quantization Q(-) is naturally equal to its own compression ratio (i.e.,
C% = Cg). We adopt a straightforward approach by computing CER through linear interpolation.
For instance, f(-) achieving M(f;C') = 65% accuracy maps to C; = 3 when quantization Q(-)
yields M(Q; Cg = 2) = 70% and M(Q; Cq = 4) = 60% accuracy, respectively.

Definition 3 (Compression Equivalent Ratio). Given a model ¢, a performance metric M(-), a
compression method f(-), a quantization method Q(-), and a compression ratio C, the compression

equivalent ratio C*(f(-), Q,C) = C’ such that M(Q(¢;C")) = M(f(¢; C)).

Until now our discussion is limited to single methods; but when multiple methods are applied, how
should intensity be defined? Our scope centers on measuring how intensity changes by compres-
sion order. Accordingly, we capture the gain from applying f1(-) before fa(-) over the reverse as
compression order advantage A (¢, M; f1(-) — f2(+)), or simply A(f1 — f2), as Deﬁnition

Definition 4 (Compression Order Advantage). Given a model ¢, a performance metric M(-),
and two compression methods f1(-;C1) and fa(-;C2), the compression order advantage

Ao, M; f1(5C1) = f2(55C2)) = G(f1 = f2, f2 = f1) = M((f20 f1)(8)) = M((f10 f2)(9)).
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3.3 THE PROGRESSIVE INTENSITY HYPOTHESIS

Our goal is to uncover general patterns in how compression order affects the model performance
in joint compression scenarios. While prior works have focused primarily on isolated settings, we
seek to establish a broadly applicable principle. To this end, we propose the Progressive Intensity
Hypothesis, which posits that applying stronger compression methods at later stages generally yields
better performance. We formalize this hypothesis for a pair of methods in Hypothesis [T} which serves
as the main focus of our analysis; its extension to multiple methods is presented in Appendix B3]

Hypothesis 1 (The Progressive Intensity Hypothesis). Let f1(-; C1) and fa(+; C2) be two compres-
sion methods applied to a model ¢. Then, the compression order advantage .A( fL— fg) grows
monotonically with the performance gap G(f1, f2), or equivalently with the CER difference C’J"Ez fC;l .

As an example, if methods f1(-) and f2(-) yields M(f1; C1) = 75% and M( f2; C2) = 70% accuracy,
respectively (i.e., G(P, Q) = 5%p), the compression order advantage A( fL— fg) is mild; replacing
C3 into Ch at M( f2; C%) = 60% accuracy (i.e., G(f1, f2) = 15%p) results in a larger advantage.

4 THEORETICAL ANALYSIS

We theoretically analyze how compression order affects model performance. We introduce disjoint
selectivity to isolate order-dependent units, and prove in Theorem [I]that only these units determine
the performance gap. We then show in Theorem [2] that Hypothesis [ holds due to the reduction of
order-dependent units. We extend to non-disjoint cases in which interference occurs. Consistent with
earlier works (Sun et al.;[2024; [Harma et al.| [2025)), we investigate each unit, relying on Assumptionm

Assumption 1. Given a model ¢ with a set L of layers, performance metric M(-), a compression
method f(-), and the layer-wise reconstruction loss ¢ ¢(l;), assume the followings:

e Layer-wise independence. The reconstruction error at one layer does not affect the reconstruction
error at another: ¥l;,l; € L, i # j: 0,(1;)/06(1;) = 0.

* Error-performance trade-off. Model performance is inversely related to total reconstruction error:

38> 0, M(¢) = M(f(¢)) = B 2p,er 10, (1)1 7

Disjoint Selectivity. Sequential application of two compression methods leads to two distinct scenar-
ios: either there exist units altered by both methods, or all units are exclusively assigned to one. We
define the latter scenario as the case where disjoint selectivity holds, as in Definition[5} This means
that while the assignment may vary with order, each unit is ultimately handled by only one method.
Definition 5 (Disjoint Selectivity). Given a model ¢, two compression methods f1(-) and fa(-) with
respective granularities ty, and ty,, disjoint selectivity holds if Yu; € U(¢;tu(ts,,t5,)), V7 €
{fiof2, fao f1}, DIt (m)+ D2 () = 1, where U(¢; t) is the set of all units of model ¢ at granularity
t, and Df (1) denotes whether f(-) modifies unit u under the order = (i.e., 1 if modified, 0 otherwise).

Under disjoint selectivity, the compression order advantage A( fL— fg) is proportional to the
cumulative sum of error difference g(-) across units assigned differently depending on the order as
formulated in Theorem [T} The underlying intuition is that the performance gap rises solely from units
whose assignment varies with the order; for others, the error remains invariant and thus cancels out.
To illustrate, consider units u1, ug, and u3 and compression methods f1(+) and fa(-). If u; is always
handled by f;(-) regardless of the order, while us and u3 are assigned differently depending on the
order, then the advantage .A( fi— fg) is proportional to error difference of units us and us.
Theorem 1 (Compression Order Advantage under Disjoint Selectivity). Suppose we compress a
model ¢ with two compression methods fi1(-) and f2(-) with respective granularities ty, and ty,,
where disjoint selectivity holds. Then, under Assumption[l| the compression order advantage

A(fr = f2) = M((f20 f1)(9) = M((fro fo)(@) = B-( D glw) = > g(w)),

u; EG2 u; €G1

where g(u;) = H5f1 (uz)Hi - H5f2 (ui)Hifor error §¢(u;) on unit u; by f(-), and groups G, =
{u| D (foo fi) =1, Dfi(fio f2) =0} and Ga = {u | D (fao f1) =0, D (fio f2) = 1}.

Proof. Refer to Appendix [B.1] O
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Figure 2: A case study of pruning P(-) and quantization Q(-) on model ¢. (a) if pruning granularity
(green) is coarser or equal to quantization granularity (orange), disjoint selectivity holds. (b) Other-
wise, partial removal of quantization units by pruning introduces extra error, termed interference A.

Monotonicity. Under disjoint selectivity, we show that Hypothesis[IJholds when the two compression
methods are well-designed—that is, minimally disruptive to the model. We examine this through a
case study on pruning and quantization. We assume a favorable scenario where pruning is configured
to induce minimal degradation, and quantization introduces symmetric, zero-mean errors centered at
the original values. These assumptions are formalized in Assumption 2]

Assumption 2. Given a model ¢ with a set IL of layers and performance metric M(-), assume that:

* Well-designed pruning P(-). The pruning method is chosen from the set of pruning strategies
that aim to preserve the model performance: P(-) € P(Cp) where P(Cp) = {Pi(-)|C(Pi(¢)) =
Cp, M(¢) — M(P;(¢)) < 8} denotes the set of pruning strategies that satisfy the target ratio

Cp while keeping performance degradation within a small budget 6.

* Well-designed quantization Q(-). For all layers, quantized outputs follow a symmetric distribution
around the original values: V1; € L, Q(W;)Q(X;) ~ N(W;X;,03]1), where N(-) is the Gaus-
sian distribution. The quantization error is negligible (i.e., Q(W,;)9(X;) — W;X; <« W, X;).

Theorem 2] states that when disjoint selectivity holds and the compression methods are well-designed,

A(Q — P) increases monotonically with CER differencd”| C’; — C'o for fixed C'p. Note that as Cg

increases, compressed performance degrades and both CER difference C%; — C'g and performance

gap G(Q, P) increase monotonically. We show that .A(Q — 73) increases in this setting because the

gap depends solely on order-dependent units under Theorem|[I]and their reduction yields monotonic
growth. We discuss the impact of C'p in Appendix

Theorem 2 (Monotonicity). Suppose we compress a model ¢ with pruning P(-) and quantization
Q(-), where disjoint selectivity holds. Then, under Assumptions|Il|and IZI given performance metric
M(+) and two pairs of compression ratios (Cp,,Co, ) and (Cp,,Co,), if CER difference increases

C;;l —Cq, > 07*31 —Co,,
then, the compression order advantage increases monotonically:
A(¢7 M; Q(’ CQ1) — 7)(, CPl)) 2 A(¢7 M; Q(v CQZ) — P(? CPI))'
Proof. Refer to Appendix [B.2] O

Granularity and Interference. Disjoint selectivity does not always hold in practical joint compres-
sion settings for pruning and quantization. As pruning operates by fully discarding or keeping each
unit, it always satisfies disjoint selectivity. In contrast, quantization satisfies this condition only when
its granularity is finer than or equal to that of pruning. Figure 2] illustrates this: (a) if tp > tg,
disjoint selectivity is preserved as pruning removes entire quantization units. However, (b) if tp < tg,
pruning may partially eliminate a quantization unit, introducing regions where both methods interfere.

In general joint compression of two methods f1(-) and fa2(+), this violation of disjoint selectivity
introduces additional error, which we define as interference A(¢; f1 — f2), or simply A(f1 — f2)
in Definition[6] Intuitively, interference quantifies how one method disturbs the behavior of the other.

Definition 6 (Interference). Given a model ¢ and two methods f1(-) and f2(-), the interference
Al f1 = f2) =D (Opop, (u) = 67, (u)), where X = U(¢i ty,) N {u | DL (fr0 f1) =1},

ueX

By definition, quantization serves as the baseline scale, so its CER equals its own compression ratio (i.e.,
C5 = Co). Therefore, C» — Cg represents the CER difference between pruning and quantization.
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Figure 3: Across diverse language models, the compression order advantage .A(Q — 73) increases
monotonically with the CER difference C%, — Cg. See Section @] for details.

set U(¢;t) contains all units of model ¢ at type t, DI () indicates whether unit u is modified by f(-)
under order (1 if modified, 0 otherwise), and & ¢(.(u) denotes the error on u after applying f(-).

Interference may or may not occur, depending on its applied techniques. A notable example is
mixed-precision quantization, where treating each bit-width quantization as a distinct method satisfies
disjoint selectivity, thereby avoiding interference. In our primary focus of pruning and quantization,
interference arises solely from pruning, meaning that as the pruning ratio p increases, a larger portion
of each unit is removed, leading to greater interference. Consequently, while exact outcomes may
vary, A( f1i— fg) remains a monotonic function of C';, — Cg, even under interference. In conclusion,
Hypothesis [T|holds under both disjoint and interfering scenarios, highlighting its general validity.

5 EXPERIMENTAL FINDINGS

We empirically validate our hypothesis in joint compression scenarios, starting with pruning and
quantization on language and vision models. We then extend to general pipelines beyond them.

5.1 EXPERIMENTAL SETUP

We briefly introduce the experimental setup. Further setups are detailed in Appendix [C|

Setup. For language models, we focus on decoder-only LLMs, mainly LLaMA (Touvron et al.}[2023)
herd models. The main metric is the negative of perplexity on WikiText-2 (Merity et al.,|2017) dataset;
results on commonsense reasoning tasks appear in Appendix [D.3] For vision models, we evaluate the
classification accuracy of ResNet-18 (He et al.l 2016) (CNNs) and DeiT-Base (Touvron et al., [2021)
(ViTs) models on ImageNet (Deng et al., 2009) dataset.

Baselines. We evaluate three pruning (SparseGPT (Frantar & Alistarh, 2023)), Wanda (Sun et al.|
2024), SLEB (Song et al.| [2024)) and four weight-activation quantization methods (RTN (Gupta et al.}
2015)), OPTQ (Frantar et al., |2023)), QuaRot (Ashkboos et al., 2024b), QuaRot + OPTQ) for language
models. For vision models, we apply PRACTISE (Wang & Wul [2023)) and N2UQ (Liu et al., 2022)
for CNNs, and adopt SAVIT (Chuanyang et al.,[2022) and RepQ-ViT (Li et al., 2023) for ViTs.

5.2 ANALYSIS ON LANGUAGE MODELS

We verify whether Hypothesis[T|holds for language models. Then, we analyze the effect of weight
updates and rotations in quantization, and investigate the impact of pruning granularity on interference.

Compression Order Advantage by CER Differences. We analyze how the compression order ad-
vantage A(Q — 73) varies with CERs for SparseGPT (P(-)) and QuaRot (Q(-)) across three models:
LLaMA 2 7B, 13B, and LLaMA 3 8B. Figure [3|confirms that both terms increase monotonically for
all three models. Each point in the figure corresponds to a compression ratio pair (Cp, Cg), defined
by pruning ratio p € [0.05,0.1,0.15,0.2,0.25, 0.3] and quantization bit-width Bg € [4,5,6,7, 8.
We fit an exponential curve per pruning ratio p, reflecting the underlying trend. In this setting, the



Under review as a conference paper at ICLR 2026

[— p=0.05 = p=0.1 p=015 =—— p=02 = p=025 = p=0.3]
RTN QuaRot OPTQ QuaRot + OPTQ
0.1 00 S —e—erepmeos
0.0 o % o © %0 -
& [y y . ol
% ) -0.1 -02
2 Q02 o -
S = sl } 03
n ° -03
-5 -0 -05 00 05 -2 04T 0 i 2
0.0
< & -0.5
21
S o -1.0
=
2055 S0 65 00 05
0} e——s—s=—s=mco—m
m 2 10
m ! -40
= -20
2~ -60
-30
s 00 05 10 13 -1 0 2 -05 00 05 10 15 h! 0 1 2

C;-Co -G P —Co
Figure 4: Compression order advantage A(Q — P) against CER difference C;, — Cg for three prun-
ing P(-) and four quantization Q(-) methods on a LLaMA 3 8B model. Our hypothesis consistently

holds for language models regardless of pruning granularity, rotation, and weight updates.

x-axis C% — Cg captures the difference between the intrinsic intensities of pruning and quantization,
with both C';, and Cg calibrated on the original model ¢. These values are not recalculated within
joint pipelines; instead, they remain fixed reference scales, and the observed order advantage (y-axis)
reflects the interaction between the two methods. Such consistent monotonic trends supports the
validity of Hypothesis|[T]across diverse language model architectures and scales; see Appendices[D.1]
and [D.2]for results on encoder-based and other decoder-only models, respectively.

Finding 1. The Progressive Intensity Hypothesis holds across diverse language models of varying
scales and architectures, showing that stronger compression should be applied later.

Weight Updates and Rotation-based Transformations. We investigate the hypothesis under prac-
tical techniques such as weight-updates and rotations. Figure ] shows that Hypothesis[I| consistently
holds across diverse combinations of methods. Our framework is agnostic to the type of compression
methods; weight updates and rotations reduce quantization error, thereby increasing C%.

Finding 2. The hypothesis generalizes beyond specific design choices of pruning and quantization,

remaining robust under weight-update and rotation methods.
An intriguing phenomenon arises in pruning rotation-based methods: without 10° —p
quantization, pruning leads to a drastic performance drop compared tono = i ];Z;’if:""
rotation. Figure [§]illustrates the perplexity changes of a LLaMA 3 8B model z (

. . . . = /
pruned by SparseGPT, depending on QuaRot rotation. Increasing the pruning &
ratio amplifies the discrepancy between rotated and non-rotated settings, E 10
as pruning is applied without accounting for rotation. This effect emerges
10 12 14 16

because rotation may introduce two types of errors: matrix-wise errors from
residual components and instance-wise errors from altered pruning decisions.
We further discuss the details in Appendix [D.4]and Table[d] As rotation may
intensify pruning, it is essential to design pruning approaches compatible
with rotation-based quantization, the emerging de facto standard.

Compression Ratio

Figure 5: Rotation im-
pact on pruning. See
Section [5.2]for details.

Finding 3. Rotation alone amplifies pruning effects, underscoring the necessity of designing
rotation-aware pruning methods.
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Figure 6: The Progressive Intensity Hypothesis holds across Figure 7: Multi-stage compression
diverse vision models. See Section @for details. results on a LLaMA 3 8B model.

Pruning Granularity and Interference. We verify the presence of Table 1: A(Q — P) by
interference by comparing results across different pruning granu- quantization ratio Cyg.
larities. Table reports A(Q — P) across different quantization

bit-width Bg when applying two 5% pruning methods with QuaRot. ¢ (By) SparseGPT ~SLEB

For SLEB, which applies structured pruning at sublayer level, there 178 (9) 0.002 0
exists a regime where no layers differ in their pruning status across 2.00 (8) 0.001 0
orders, leading to an exact A(Q — P) of zero (i.e., no interference). %-ég Eg :8'8‘1)2 8
By contrast, SparseGPT, as an unstructured pruning method, exhibits 320 (5) 0017 -0.057

interference in low C'g ranges. Notably, empirical results suggest that 4.00(4)  -49.899  -9.379
interference also exhibits a monotonic trend regarding Cg.

Finding 4. Pruning granularity determines interference: structured pruning shows no interference
in early regimes, while unstructured pruning exhibits monotonic interference.

5.3 ANALYSIS ON VISION MODELS

We verify whether Hypothesis[T|holds for vision models, focusing on CNNs and ViTs.

CNN and ViT Models. In Figure [f] we analyze the behavior of ResNet-18 and DeiT-Base models
under PRACTISE (P(-)) and N2UQ (Q(+)), and SAViT (P(-)) and RepQ-ViT (Q(+)) methods,
respectively. The results confirm that both A(Q — 77) and C% — Cg increase monotonically for
both models, regardless of the pruning or quantization configurations. Notably, the compression
order advantage is substantially larger than that observed in language models, where it was often
marginally positive. This is because vision models experience less performance degradation under
higher compression rates C'p» of pruning, thereby maintaining robust accuracy in the regime where
the quantization-first advantage A(Q — P) > 0 (i.e., where Cp is high).

Finding 5. Vision models consistently satisfy the Progressive Intensity Hypothesis regardless of
architecture and applied compression techniques, showing stronger quantize-then-prune gains
A(Q — 73) since pruning degrades them much less than in language models.

5.4 BEYOND PRUNING AND QUANTIZATION: TOWARD GENERAL PIPELINES

We extend the Progressive Intensity Hypothesis to general compression pipelines. These results align
with the n-method ordering formulation in Appendix [B.3]

Multi-stage Compression. Pruning is generally performed in multiple stages to mitigate performance
degradation. In Figure /| we investigate the impact of compression order by alternately applying
SparseGPT (P(+)) and QuaRot (Q(+)) to the LLaMA 3 8B model where the sum of pruning ratios
p1+p2 = 03 (eg., P(;Cp,) = Q(-) — P(-;Cp,)). Our results consistently demonstrate
positive advantages, indicating that stronger pruning placed later improves performance under fixed
quantization, confirming that our hypothesis holds not only for two stages but also for multiple ones.

Finding 6. Beyond pairwise orders, the hypothesis holds in practical multi-stage compression,
indicating that scheduling stronger compression later in the sequence yields higher accuracy.
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Figure 8: Joint compression re- Figure 9: Performance under Figure 10: The impact of com-
sults with LoRA adapters. pruning and parameter sharing. pression order in MPQ.

Parameter Efficient Fine-tuning. Parameter Efficient Fine-Tuning (PEFT), which introduces
lightweight low-rank adapters to mitigate compression-induced performance degradation, has recently
become a widely adopted practical approach. We investigate whether the proposed principle remains
valid in scenarios where PEFT is applied alongside pruning and quantization. Figure [§]confirms that
the same pattern holds for LLaMA 3 8B when combined with SparseGPT (P(-)), RTN (Q(+)), and
LoRA (PEFT). Applying LoRA after quantization produced a similar corrective
effect to rotation, effectively compensating quantization-induced performance loss. Overall, the
progressive intensity hypothesis remains robust under practical training pipelines that include PEFT.

Finding 7. PEFT preserves the hypothesis that stronger compression should be applied later, as
post-quantization LoRA effectively restores accuracy and maintains the expected ordering.

Parameter Sharing. Beyond pruning and quantization, parameter sharing S(-) is an independent
compression technique that ties multiple layers into a unified set of weight parameters. We conduct
joint compression experiments with pruning and parameter sharing to assess whether the principle
generalizes beyond the pruning—quantization setting. In Figure[9] results on LLaMA 2 7B model with

Basis Sharing (Wang et al.| [2025a)) (S(-)) and magnitude-based pruning (Han et al.,[2015)) (P(-))

confirm that the same ordering effect emerges as well.

Finding 8. Joint compression with parameter sharing also follows the hypothesis: placing the
stronger operation later yields better performance.

Mixed-precision Quantization. As previously discussed, Mixed Precision Quantization (MPQ) can
be formulated as a joint compression problem where each bit-width allocation acts as a separate
compression method, satisfying disjoint selectivity. Figure[I0]illustrates the effect of compression
order in MPQ, where we sequentially allocate bit-widths using HAWQ-V2 on ResNet-18. As the
total compression ratio increases, progressive allocation (prog.; 8—2 bits) increasingly outperforms
regressive allocation (regr.; 2—8 bits), in terms of .A(prog. — regr.). As the overall compression
ratio increases, lower-bit quantization becomes stronger, which supports the hypothesis in MPQ.

Finding 9. The Progressive Intensity Hypothesis also holds in MPQ, with progressive bit allocation
outperforming regressive allocation since lower-bit quantization acts as stronger compression.

6 CONCLUSION

We address the under-explored problem of joint compression order optimization and provide both
theoretical and experimental evidences. The Progressive Intensity Hypothesis (Hypothesis|[T) offers a
simple yet powerful rule: weaker perturbations first, stronger ones later. Future works include investi-
gating interference in more complex pipelines, providing explicit predictive rules, and automating
compression order selection (see Appendix [D.7).

10
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A NOTATION

We summarize the frequently used notations in the paper as Table

Table 2: Frequently used notations.

Symbol Description
10) A pre-trained model
¢’ A compressed model
f(-)eF Compression method from a set F
C Compression ratio
M) Performance metric
W;, X; Weight and activation matrices of layer [;, respectively
mell Compression order from a set I of all possible permutations
P(),9(") Pruning and quantization methods, respectively
D Pruning ratio (Cp» = 1/(1 — p))
Borig, Bo Original and quantized bit-widths, respectively
d¢(4) Error induced by applying f(-)
teTy Abstract data type from the set of all valid types in model ¢
ty Granularity of f(-)
u € U(p;t) A unit of type ¢ within the model ¢
D () Binary indicator of whether f(-) modifies unit v under order 7
G(f1, f2) Performance gap between f1(-) and fo(+)
A( fi— f2) Compression order advantage of f; — fo over fo — f1
(@) Compression Equivalent Ratio (CER) of f(-)

INCT S

Interference from f;(-) to fa(+)

2= hA
B DETAILS ON THEORETICAL ANALYSIS A fz
We provide the detailed proofs for Theorems|[]and 2] then formulate 2 Gy Gy
a generalized version of Hypothesis [I] applicable to a broader setting ~ «2
with multiple compression methods. T
W3
B.1 PROOF OF THEOREM[I] = & Gs

Proof. Given two compression methods fi(+) and fa(+) with respec-
tive granularities ¢y, and ty,, disjoint selectivity ensures that ev-
ery unit is assigned exclusively to one method. Hence, every unit
u € U(¢; ti(ty,,ty,)) is classified into one of four disjoint groups,
G1, Ga, G3, or Gy, according to its assigned method. Then,

Figure 11: We partition all
units u into four disjoint
groups. Only groups G and
G+ influence A(f1 — fg).

G1={u| D (f20 f1) =1, DI (f10 fa) = 0},
Gz = {u|Df!(f20 /1) =0, D! (fro f2) =1},
Gs = {u|DJ(f20 f1) =0, DI (f10 fa) = 0},
Gy ={u|DJ(fz0 f1) =1, Df}(fio f2) =1},
G1LUG2UG3 UGy =U(¢; tilts,, tr,)),

where U(¢; t) represents the unit set of model ¢ at granularity ¢, and D/ () records whether f(:)
modifies u under the ordering 7 (1 if yes, 0 if no). Note that these four groups are mutually exclusive
and collectively exhaustive. Also, |G| = |G2| since the compression ratio Cp is identical regardless

of the compression order. Figure (I 1|illustrates the four groups.
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Under Assumption and the defined partitioning of groups, the compression order advantage A( . )
is expressed in terms of unit-wise reconstruction errors & ¢ (u; ):

A(fi = f2)
M((f2 0 f1)(8)) = M((f10 f2)())
= _B<6(f20f1)(¢) - 6(f10f2)(¢))

—6( Yo 8wl + D0 MonwdlE+ D M0n(wliF+ > 1185 (w7

u; €Gy u; €EGa u; €G3 u; €EGy
= D 1n@dlE = > 16n@)lE = D 16n @)l — > 1167 (w ||F)
u; €EG1 u; €EGo u; €G3 u; €Gy
=B X 1@+ D 18 @llE = D 18n@)lE = D 195 @)lF)
u; €G1 u; €Go u; €G1 u; €Ga
=B( > glw)— Y gluw)),
u; €Ga u; €Gy
where error difference g(u;) = H5f1 Us; H 7 H5f2 Us; H o Note that G3 and G4 are discarded since

their effect remains unchanged irrespective of the compression order.

O

Case study on pruning and quantization. To support intuition, we provide a case study on pruning
and quantization, which constitute the core scenario of our work. As described in the main text, disjoint
selectivity holds only when the granularity ¢ of pruning P(-) is greater than or equal to the granularity
to of quantization Q(-). We analyze this at the layer level: let W; and X; denote the weight and
activation of a layer /; € IL in the model ¢. Note that the error d¢ (W, X;) = f(W) f(X;) =W, X;
for a compression method f(-), as described in Sectlonl

We partition the layers LL into four disjoint groups G, Gs, G3, and G4 based on their pruning status:

G1 =Pgop \ Ppog,

Gy = PPOQ \ ]PQOPa

Gs =Pgop NPpog,

Gs =L\ (Pgop UPpso),
Gi1UGyUG3UG4 =L

where Py denote the sets of pruned layers when applying f(-).

Then, the quantization-first advantage A(Q — P) is estimated as follows:
A(Q = P) = M((PoQ)(¢)) = M((QoP)(#) = —B(poa(9) — daor(9))

= =B X IFpea(We. X[} ~ [[sesp (Wi X))
l;el

= =B Y 16p(Q(W:), Q(X4) + 6o (Wi, X, |7, — [0 (P(W2), P(X.)) + bp(Wi, X,) 1.

l, €L

_ _5< > {lsewi x|} — | - Wi} |

1;€Gy

+ 2 {ll - W)X + da (Wi X))} - H@(Wuxnui})
1;€G2

= —ﬂ( > {loowi X5 |- waxi|3 f+ 3 {l - wixi - Haawi,xnui})

1;€Gy 1;€G2
_ 5( Y gwax) - Y g(wi7xi>),
1, €Go 1, €Gq

16



Under review as a conference paper at ICLR 2026

where g(W,;,X;) = HéQ(Wi, X;) ||2F - H - W;X,; ||2F This expression holds as for any layer [; € L,
the pruning operator and its associated error are defined as follows:

0 if pruned
W,X; otherwise’

—W,X,; if pruned
0 otherwise

P(W,)P(X;) = { (Wi, X;) = {

B.2 PROOF OF THEOREM[Z]

Proof. As A(Q — P) and G(-) (or C% — Cg) are functions of the compression ratio C'o we analyze
their behavior separately. Without loss of generality, we consider only the case where each ratio
changes in the direction of increasing U5, — Cg, i.e., decreasing Cg.

Under Assumption [2] which assumes well-designed quantization, decreasing C'g preserves the
expected value of the quantized outputs while decreasing their standard deviation. As pruning
intensity is held constant, the variation across compression orders is attributed solely to the severity
of quantization. Lower quantization ratio (i.e., smaller standard deviation) decreases the chance that
units behave differently across orders, which can only decrease or preserve the value of |G1| = |G2|,
but never increase it. We analyze the two possible cases as follows.

* Case 1: Number of layers affected by order decreases. Although more than one layer may
change simultaneously, any such change can be decomposed into a sequence in which layers are
added one by one; thus it suffices to analyze the case where exactly one layer is added. Let [; and
l; denote the layers moving from G, and G, to G3, respectively. As only G; and G contribute to
A(Q — P), this value will not decrease if g(1;) — g(I;) < 0. The loss is given as:

9(l3) = 9(l) = (16(W, X))l — 16a(Wi, Xi) 1) — (Il = W;X,llE — | = WX %)

Under Assumptions and the second term in parentheses is positive, i.e., | — W;X;[% — | —
Wle\% > 0. This is because under pruning alone, I; € G is pruned while /; € G is not. Under
the well-designed pruning assumption, which minimizes performance drop, Assumption [T]implies
that this is equivalent to minimizing error increase. Therefore, the pruning error | — W, X |% for
pruned [; is less than or equal to | — W ;X ;|2 for unpruned I, making the term positive.

Given the assumption of well-designed quantization in Assumption [2} the remaining first term,
which denotes the difference in quantization errors, is negligible compared to the pruning-related
component. This is because the quantization error at each layer is modeled as zero-mean noise with
small variance, whereas the pruning error term | — W, X;|%. (or | — W, X;|%) corresponds directly
to the magnitude of the pruned responses. Thus, the difference |6o(W;, X;)|% — [00(W;, X;)|%

remains uniformly small compared to | — W;X;|%4 — | — W;X;|%, so the pruning-induced gap
dominates g(I;) — g(l;). Consequently, we get
9(t;) = g(l) = = (I = W;X; |5 = | - WiXi|[ %) <0.

Overall, as the decrease in number of order-dependent layers eliminates negative loss term, com-
pression order advantage A(Q — 73) increases.

* Case 2: Number of layers affected by order remains unchanged. As the loss-contributing groups
G1 and G4 do not change, the compression order advantage A(Q — P) remains unaffected.

In conclusion, monotonicity holds under fixed C'p as A(Q — 73) does not decrease in the direction
where (', — Cg increases. O

B.3 GENERALIZATION TO MULTIPLE METHODS

We formulate Hypothesis|I|in the main text under the setting of two compression methods f;(-) and
f2(+). This is because if the hypothesis holds for any pair of methods, it can be generalized to more
than two methods.

Following the setup in Problem|[I] suppose we sequentially apply a set F = fi(-), f2(-), -+, fu(*)
of compression methods to a pre-trained model ¢. Then, any pair (71, 72) of permutations from
the set IT = {m : F — F | 7 is bijective} of all permutations can be converted into one another via
a sequence of adjacent transpositions. This is because the adjacent transpositions generate the full
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Table 3: Baseline methods covered in our experiments across different settings.

Compression Modality Target Models Baseline Methods
Decoder-onl SparseGPT (Frantar & Alistarh, 2023)),
e Wanda (Sun et al., 2024),
Language SLEB (Song et al.,[2024)
. dels
Pruning mo Encoder-based

P() models K-prune (Park et al.,|[2024)
Vision CNNs PRACTISE (Wang & Wu, [2023)
models ViTs SAVIT (Chuanyang et al.}[2022)

RTN (Gupta et al., 2015),
De‘;’gg&‘gnly OPTQ (Frantar ot al.L 2023).
Language QuaRoT (Ashkboos et al.,[2024b)
. dels
Quantization mo Encoder-based .

(") models UniQuanF (Park et al., 2025])
Vision CNNs N2UQ (Liu et al., [2022)
models ViTs RepQ-ViT (Li et al.,[2023)

Parameter Language Decoder-onl
Efficient gras y LoRA (Hu et al.| [2022)
. . models models
Fine-tuning
Parameter Language Decoder-only . .
Sharing models models Basis Sharing (Wang et al., 2025a)
Mixed-precision  Vision CNNs HAWQ-V2 (Dong et al., 2020)
quantization models

symmetric group, allowing any permutation to be constructed from another. Thus, under Hypothesis|[T}
we demonstrate our original claim in Figure[I] that applying stronger permutations later leads to better
performance or the compressed model.

C EXPERIMENTAL SETUP

We describe the details on the experimental setup, including models, datasets, baselines, evaluation
protocol, and implementation.

Models. We evaluate representative models across modalities, including LLaMA 2 (7B, 13B) (Tou-
vron et al.| [2023), LLaMA 3 8B (Grattafiori et al., [2024), Mistral 7B (Jiang et al., [2023), Mistral
Nemo-12B (Mistral Al Team, 2024}, and BERT (Devlin et al.,|2019) for language, and ResNet-18 (He
et al.,[2016) and DeiT-Base (Touvron et al.,[2021)) for vision.

Datasets. We evaluate decoder-only language models on WikiText-2 (Merity et al.,[2017) and C4 (Raf-
fel et al.l [2020) datasets for perplexity, and on five commonsense reasoning tasks—ARC (Clark
et al.|[2018), HellaSwag (Zellers et al.|[2019), LAMBADA (Paperno et al.,2016)), PIQA (Bisk et al.|
2020), and Winogrande (Sakaguchi et al.|[2021). For encoder-based models, we evaluate performance
using the Spearman’s rank correlation coefficient on the STS-B dataset. For vision models, we report
classification accuracy on the ImageNet (ILSVRC 2012) (Deng et al.,[2009) dataset.

Baseline Methods. We validate our hypothesis across a total of sixteen pairs of compression methods
by incorporating six pruning methods, six quantization methods, and one mixed-precision quantiza-
tion method. Table [3| provides an overview of baseline methods categorized by target models and
modalities. Refer to the original papers for further details.

Evaluation Protocol. The calibration dataset consists of a single batch with 128 samples drawn from
the same dataset used for perplexity evaluation. We set the batch size to 16 for perplexity evaluation
and to 128 for commonsense reasoning tasks. All quantization methods apply the same bit-width to
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weights, activations, and KV-cache, with clipping applied during weight quantization. Both models
are evaluated without fine-tuning using a batch size of 128. Metrics are reported as the average of five
repeated runs, each computed with four-digit precision. We plot the relative values for visualization.

Implementation and Machine. Our implementations are written in Python and rely on PyTorch,
Transformers, Accelerate, and TorchVision libraries. For all baseline methods, we reproduce the
results based on their open-source code and hyperparameter configurations. All of our experiments
are done at a workstation with Intel Xeon Gold 6338 and NVIDIA A100 80GB.

Parameter Efficient Fine-tuning Experiment. We adopt LoRA (Hu et al) [2022) on top of
SparseGPT (Frantar & Alistarh| [2023) and RTN (Gupta et al., 2015)) to fine-tune the compressed
model. The target model is LLaMA 3 8B (Grattafiori et al.,[2024), where fine-tuning is processed
after quantization. We select WikiText-2 as the calibration dataset and train for a total of 2 epochs.
We follow Basis Sharing (Wang et al., [2025a) for training details of the low-rank adapter, while
exploiting the PEFT (Mangrulkar et al.| 2022) library.

Parameter Sharing Experiment. We evaluate the performance of a LLaMA 2 7B model when
applying Basis Sharing (Wang et al., [2025a)) and magnitude-based pruning (Han et al., 2015)). We
follow Basis Sharing for hyperparameters regarding parameter sharing, where the group size is 128.
QuaRot (Ashkboos et al.l [2024b) is selected as the quantization baseline for calculating compression
equivalent bits. No additional fine-tuning is applied under this setting.

Mixed-precision Quantization Experiment. We base our method on HAWQ-V2 (Dong et al.|
2020), but allocate bit-widths iteratively rather than in a single shot. At each iteration, we search
per-layer bit-widths from a range of [2, 3, 4, 5, 6, 7, 8] and train for 5 epochs. All other experimental
settings, including hyperparameters and quantization techniques, are aligned with the original paper.
We run all MPQ experiments on a workstation with Intel Xeon Silver 4310 and NVIDIA RTX 4090.

D FURTHER DISCUSSION AND EXPERIMENTS

We present results from extended experiments and offer further discussion and remarks on our work.

D.1 ANALYSIS ON ENCODER-BASED MODELS

Beyond decoder-only LLMs, we extend our analysis to 0.006
encoder-based language models to validate the generality

of our hypothesis. Figure [I2] presents the performance of 0.004
a BERT (Devlin et al.l |2019) model under K-prune (Parkl 0.002
et al.,[2024) (P(-)) and UniQuanF (Park et al., 2025) (Q(-)). &

We adopt Spearman correlation as the performance metric, QT}) 0.0007 -
measured on the STS-B dataset (Cer et al., 2017) from the < 0002
GLUE (Wang et al., 2019) benchmark. We have two observa- '
tions from the result. First, we observe a monotonic increase ~0.004
along both axes, confirming that our hypothesis holds. No-

tably, similar to our other findings, the fitted curve shows an —0.006

0.5 1.0 1.5 2.0
Ct—Co
Figure 12: The hypothesis holds
for encoder-based language models.
See Appendix [D.T|for details.

exponential pattern, indicating that performance differences
grow exponentially with compression ratio regardless of the
metric M(-). Notably, the presence of positive advantage is
more consistent here, which is rarely seen in decoder-based
language models. This is because large C}, — Cg indicates
severe pruning-induced degradation, yet encoder-based models
remain robust even under additional quantization in those regions—unlike decoder-only models. This
suggests that the common belief in decoder-based LLMs—that pruning followed by quantization is
always better (Yu et al.| [2023; [Frantar & Alistarhl, 2023 [Harma et al.} 2025)—Tlikely stems from the
fact that pruning methods for LLMs still cause much greater degradation than quantization under
identical compression ratios, making the region where .A(Q — 73) > 0 harder to observe.
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Figure 13: The compression order advantage .A(Q — P) increases monotonically with the CER
difference C';, — Cg also for Mistral herd models. See Appendixfor details.

D.2 EXPERIMENTS ON DIVERSE LLMS

Our experiments on decoder-only models are limited to the LLaMA herd (LLaMA 2 (Touvron et al.,
2023), LLaMA 3 (Grattafiori et al.,2024)), which may not fully reflect broader generality. To address
this, we conduct additional experiments on models from the Mistral herd. Figure [13| presents the
results of applying SparseGPT (P(-)) and QuaRot (Q(+)) to Mistral 7B (Jiang et al., 2023)) and
Mistral Nemo 12B (Mistral AI Team), 2024). We have two observations from the result. First, the
compression-order trend aligns well with the hypothesis across Mistral-based models. The result
serves as additional evidence confirming the hypothesis in decoder-only language models. Second,
comparing models within the same herd (see Figure 3], we find that smaller models exhibit greater
variation in compression-order advantage for identical CER differences. This may be due to the fact
that low-bit quantization (or stronger quantization) causes greater degradation in smaller models,
intensifying observed differences.

D.3 COMMONSENSE REASONING PERFORMANCE

Although the negative of perplexity serves as an intuitive and efficient metric M (-) for evaluating
language models, prior studies (Meister & Cotterell, 2021} |[Fang et al., [2025) suggest it does not
always correlate with real-world performance. We thus investigate the performance of a LLaMA 3 8B
model across five commonsense reasoning tasks in Figure[14] under SparseGPT (P(-)) and QuaRot
(Q(+)). Results affirm the generality and metric-agnostic nature of our framework, as the hypothesis
holds across these tasks.

D.4 IMPACT OF ROTATION ON PRUNING METHODS

In Figure[5]and Finding 3, we observe that applying rotation without quantization may lead in notable
degradation on pruning performance. To further analyze this, Table 4] compares the performance
of a LLaMA 3 8B model pruned with and without QuaRot-based rotation, across two pruning
methods with different granularities. We have two observations from the result. First, rotation-induced
degradation scales with the pruning ratio. This is because higher pruning ratios result in more units
being pruned that are altered by rotation, thereby increasing the error. Second, unstructured pruning
exhibits significantly higher error compared to structured pruning. This trend is especially evident
under high pruning ratios.

We therefore investigate the underlying reason behind this phenomenon. We identify two types of
errors induced by pruning, depending on its granularity: matrix-wise and instance-wise. Figure[I3]
conceptually illustrates these two cases.

First, in the case of matrix-wise pruning, ignoring rotation during pruning leaves the rotation-induced
matrix H intact, introducing extra computation and numerical errors compared to the non-rotated case.
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Figure 14: Commonsense reasoning task performance of a LLaMA 3 8B model for SparseGPT and
QuaRot. See Appendix [D.3]for details.
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Table 4: WikiText-2 perplexity comparison of a LLaMA 3 8B model pruned by SLEB (Song et al.,
2024)) and SparseGPT (Frantar & Alistarh, [2023)) under varying pruning ratios, with and without
rotation following QuaRot (Ashkboos et al.,2024b). See Section Eflfor details.

SLEB SparseGPT

Pruning Ratio ; . . . ; .
g No rotation Rotation Difference No rotation Rotation Difference

Original 6.137
0.05 6.857 6.871 0.014 6.140 6.154 0.014
0.1 8.792 8.828 0.036 6.159 6.205 0.046
0.15 12.603 12.615 0.012 6.213 6.352 0.139
0.2 25.289 25.295 0.006 6.330 6.629 0.299
0.25 51.212 51.560 0.348 6.546 7.250 0.704
0.3 61.502 61.901 0.399 6.894 8.504 1.610
0.35 65.997 66.234 0.237 7.474 20.842 13.368
0.4 92.848 93.260 0.412 8.477 98.213 89.736

| I:l Weight . Rotation I:l Fused weight i-_-_.i Pruned |
— |—| oo — |

\A H HT W,
(a) Matrix-wise (b) Instance-wise

Figure 15: Two cases of errors when pruning rotated units. See Section for details.

As suggested in QuaRot (Ashkboos et al., 2024b), the rotation inverse is fused into the target layer,
while the original transform is merged into the preceding normalization layer, leaving un-removed
components that generate error during naive pruning. This type of error scales proportionally with
the pruning ratio, as each pruned matrix introduces one such error.

Second, in instance-wise pruning, additional errors arise due to rotation-induced changes in unit
selection, on top of the matrix-wise error. As the goal of rotation is to facilitate quantization by
flattening activation outliers, multiplying its inverse results in an error compared to the original matrix.
Consequently, the discrepancy in layer content leads to different pruning decisions. Furthermore, this
selection-based error grows with higher pruning ratios due to a greater number of pruned units.

In summary, given these errors, it is crucial to develop pruning techniques that align with rotation-
based quantization strategies.

D.5 A DIRECT COMPARISON WITH PRIOR STUDIES

We discuss how our approach differs from prior studies, particularly SmoothQuant (Xiao et al.| [2023)
and |[Harma et al.|(2025). Our contribution lies in establishing a general analysis for understanding
compression order across diverse methods, whereas these prior works either focus on single-method
optimization or analyze specific method pairs under restrictive assumptions.

SmoothQuant (Xiaao et al., 2023). SmoothQuant addresses a fundamentally different problem than
joint compression order optimization. Specifically, SmoothQuant optimizes a single compression
technique (quantization) by mitigating activation outliers through per-channel scaling transformations.
While the paper states that “SmoothQuant is orthogonal to quantization schemes,” this refers to
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its compatibility as a pre-processing step that can be applied before various quantization methods.
However, SmoothQuant does not examine the order-dependent interaction problem when combining
quantization with other compression families such as pruning. In contrast, our work focuses on
understanding how compression order affects model performance when sequentially combining
methods from different compression families. SmoothQuant may serve as a component within our
quantization baselines (i.e., as a pre-processing step before quantization), but our analysis operates at
a higher level—determining the optimal ordering between different model compression techniques
regardless of the specific quantization implementation. This distinction is critical: SmoothQuant
addresses intra-method optimization (improving quantization itself), while we address inter-method
composition (ordering across different compression types).

Harma et al. (2025). As noted in Section [2, only a few studies have addressed how the order of
compression methods affects model performance. Among them, Harma et al.| (2025)) stands out as the
only study that attempts a theoretical approach to the problem. They examine the interaction between
pruning and quantization, showing that the two are not orthogonal as assumed by previous works.
Furthermore, they argue that pruning followed by quantization is universally optimal.

However, their framework suffers from three significant limitations. First, their framework relies
on oversimplified assumptions that hinder practical applicability. Specifically, they focus solely on
magnitude-based pruning (removes weights based on their absolute values) and max-scaled block-
wise quantization (uniformly rescaling blocks using their maximum value), both of which are naive
approaches that are less practical and often fail to preserve accuracy. Second, their analysis is confined
to a minimal set of scenarios, failing to address diverse architectures or methods. Beyond the limited
set of methods, their experiments also consider only the combination of two techniques—pruning
and quantization—on decoder-based LLMs, lacking broader coverage of models and compression
approaches. Lastly, the framework cannot be generalized across different settings, as many coun-
terexamples have shown that pruning-before-quantization is not always optimal. Motivated by these
gaps, we aim for a more general formulation that holds across methods, models, and metrics, thereby
introducing the Progressive Intensity Hypothesis.

D.6 VIOLATION CASES OF THE HYPOTHESIS

Although our hypothesis is highly general and robust, we still observe cases where it does not hold.
These cases largely fall into three categories: severe performance collapse, full model re-training,
and increase of order-affected layers. First, each model exhibits a different tolerance to compression,
with performance dropping exponentially beyond a certain ratio. While these settings are impractical
due to severe performance loss, we observe cases where applying the stronger method first performs
better. This may be because the error is already too large, violating our assumption of well-designed
compression in Section @} applying the stronger method first might help reduce the total error. For
less compression-robust models like decoder-based LLMs, we observe earlier breakdowns—such as
diminishing advantage when pruning ratio increases at fixed bit-width (Figure [3a)). Second, when
strong full-training is applied, the advantage from compression order may invert. Compression order
serves merely as initialization, and the retraining process dominates, making it difficult to attribute
outcomes to order alone. We plan to investigate these and potentially other exceptions more rigorously
in future work. Lastly, in practical situations, increasing C'p may result in increase of order-affected
layers, leading to a violation of the hypothesis. We analyze the details in the following paragraph.

Impact of C'». Without loss of generality, we consider only when Cp increases. Increasing Cp
implies a stronger pruning effect, since it lowers M (P(¢)), resulting in a decrease in G(P, Q) and a
corresponding increase in C. Hence, to ensure monotonicity and satisfy Hypothesis .A(Q — 79)
should increase accordingly. Note that C'g is fixed while analyzing the effect of C'p.

To analyze the effect of increasing C'p, we first consider a local step in which the total number of
pruned units increases by one. For the initial pruning ratio p and the increased ratio p’ under the same
granularity ¢p, the following relation holds:

P - [U(gitp)| =p- [U(¢stp)| + 1.
From the definition of compression ratio Cp = 1/(1 — p), larger pruning ratios correspond to larger
compression ratios. By repeating this incremental process, we can construct any pruning ratio. Under
disjoint selectivity, each unit is exclusively assigned to one compression method, allowing us to
partition the units into four disjoint groups as discussed in Appendix
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Figure 16: If the number of pruned units increases by one, the change in unit allocation across groups
fall into three distinct cases. See Appendix D.6|for details.

Increasing the pruning ratio from p to p’ result in three possible changes in the group configuration: the
number of affected layers 1) decreases by one, 2) remains unchanged, or 3) increases by one. The three
cases are visualized in Figure From Theorem A(Q—=P) =8 dot,ec, 90 =221 e, g(ly))
(where g(l;) = |6o(Wi,X,)||% — || — W;X;||%) should be preserved or increased to satisfy
Hypothesis[I} However, this condition is fulfilled in only Cases 1 and 2, but not in Case 3.

* Case 1: Number of layers affected by order decreases by one. If a layer is no longer affected by
compression due to order change, then another layer must also be excluded to preserve the total
number of pruned layers which should be increased by one. Thus, |G| and |G2| each decrease
by one, while |G3| increases by two. Similar to Case 1 of Appendix as the increase in C'p
eliminates a negative loss term, A(Q — 73) increases.

e Case 2: Number of layers affected by order remains unchanged. If the additionally pruned
layer is always pruned regardless of the compression order, then |G3| increases by 1 while |Gy
decreases by 1. Similar to Case 2 of Appendix as the loss-contributing groups G; and G2 do
not change, the compression order advantage A(Q — P) remains unaffected.

¢ Case 3: Number of layers affected by order increases by one. The aforementioned two cases
could not increase the number of order-dependent units, whereas there should exist a case where
both groups |G| and |G| increases by one. As the number of total pruned layers should be
increased by one, the added layers should be originated from Gy, i.e., |G4| decreases by two. In
contrast to Case 1, A(Q — P) may decrease due to the increase of negative loss terms.

As the conditions under which each case emerges differ across specific configurations, this phe-
nomenon is not analyzed in general settings. We leave a precise characterization of the conditions
under which increasing the pruning ratio may invalidate the progressive intensity hypothesis as an
important direction for future work.

D.7 ADDITIONAL REMARKS

Limitations of Current Work. We introduce a broadly applicable hypothesis that can be extended to
diverse compression methods and model types across different domains. Still, we acknowledge three
important limitations in our current work. First, due to the general nature of our framework, it does
not provide detailed analysis for each specific combination of methods. While our hypothesis captures
high-level trends, it does not define the best compression sequence for individual cases. This motivates
research into discovering the best compression orderings under practical scenarios. Second, our study
is limited to joint model compression in plug-and-play settings where methods are combined post-hoc.
As demands for higher compression grow, integrated design strategies should be investigated beyond
simple combinations. Lastly, our framework does not yet provide explicit predictive rules or precise
estimation of how much better one compression order is than another. Capturing the nonlinear and
cross-layer effects required for precise sign or value prediction of compression-order advantage .A(-)
remains an open problem. We therefore consider the development of predictive models for .A and
meta-learning approaches for automatic order selection as a promising direction for future research.
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Future Work. In addition to addressing the aforementioned limitations, future directions may also
include extensions of our current framework. First, a systematic study of interference across different
pipeline designs would provide deeper insights beyond our current empirical findings. Another
direction is to automate compression order selection based on observed trends. A unified approach
that generalizes across cases may offer a better understanding on the role of compression order. Lastly,
evaluating our hypothesis on emerging architectures such as Mixture-of-Experts and multimodal
LLMs may broaden its generality.

Usage of Al Assistants. We employ ChatGPTE] (GPT-40) and Perplexityﬂ exclusively for language
polishing purposes; for improving grammar and clarity at the sentence level. We do not use them for
any research-related tasks, including code implementation, theoretical derivation, and result analysis.

*https://chatgpt.com/
*nttps://www.perplexity.ai/
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