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Abstract

Radiological examination of chest CT is an effective method for screening COVID-19 cases.
In this work, we overcome three challenges in the automation of this process: (i) the lim-
ited number of supervised positive cases, (ii) the lack of region-based supervision, and (iii)
variability across acquisition sites. These challenges are met by incorporating a recent aug-
mentation solution called SnapMix, a novel explainability-driven contrastive loss for patch
embedding, and by performing test-time augmentation that masks out the most relevant
patches in order to analyse the prediction stability. The three techniques are complemen-
tary and are all based on utilizing the heatmaps produced by the Class Activation Mapping
(CAM) explainability method. State-of-the-art performance is obtained on three different
datasets for COVID detection in CT scans.

1. Introduction

Deep neural networks are currently the leading image classification method. Their ability
to generalize is well-documented. However, in many medical imaging domains, one faces
challenges that reduce the effectiveness of generic solutions. First, due to the cost of acqui-
sition, privacy issues, and the expertise required for labeling, typical datasets are smaller
than those available for many other computer vision tasks. Second, in medical images, the
exact capturing apparatus, its setting and its operators can all greatly affect the distribution
of the obtained images, causing a sizable domain shift. Third, many diseases are manifested
through symptoms that are well localized, while supervision is given at the image level.

In this work, we demonstrate that explainability methods, which link the classification
outcome to specific image regions, can provide an important building block for overcoming
these three issues. First, the heatmap obtained from such methods serves as the basis
for an augmentation method called SnapMix (Huang et al., 2021), which we demonstrate
to be also effective for the COVID-19 classification task we study in this work. Second,
the heatmap can provide a delineation of whether or not local image patches are strongly
linked to the obtained classification. By requiring image patches of similar relevancy to have
similar embedding, we can improve the classification performance. Third, we can use the
heatmap to validate, at test time, the stability of the obtained classification, by perturbing
the image locations most relevant to the prediction. If the majority of perturbations do not
support the prediction, we flip the predicted label.

We evaluate our method with well-established benchmarks for the classification of Com-
puted Tomography (CT) scans as COVID-19 positive or COVID-19 negative, and present

† Part of the Ph.D of Tal Shaharabany

© 2022 A. Ali, A. Tal Shaharabany & L. Wolf.



Ali Tal Shaharabany Wolf

clear evidence of the utility of our method. The gap in performance we obtain is larger
than the variance between state-of-the-art methods. On one site, in which performance
(F1 score and accuracy) is over 90%, we improve to over 95%. On a second site, in which
performance levels are around 80%, we obtain results of almost 90%. In a third dataset, for
which performance almost saturates, we reduce the error rate by one and a half or more,
depending on the measurement error.

2. Related Work

COVID19 Classification The SARS COV-2 infection (COVID-19) has a devastating
impact on the respiratory system and has caused an enormous number of deaths. Over the
last year, many deep learning methods were developed for classifying COVID-19 in 2D or
3D medical images (Gozes et al., 2020; Rahimzadeh and Attar, 2020; Zhang et al., 2020;
Wang et al., 2020a). Some recent methods use transfer learning from models pretrained on
ImageNet (Hall et al., 2020; Apostolopoulos et al., 2020).

Following Wang et al. (Wang et al., 2020b), we study classification for two CT datasets.
To overcome the domain shift, their approach adds a contrastive loss, which reduces dif-
ferences between latent space distributions. Unlike previous work in the domain of CT
diagnosis of COVID-19, our method employs a generic ResNet architecture, and our con-
tribution relates solely to the training loss and the inference-time augmentation procedure.

Data augmentation Many augmentation approaches were developed over the years as
a form of regularization. These include geometric transformations (Taylor and Nitschke,
2017) and color space transformations (Wu et al., 2015), which have shown to improve many
medical applications (Litjens et al., 2017).

Data mixing approaches create virtual samples that combine multiple images from dif-
ferent categories. The generated image has a fuzzy label from the two categories. In
MixUp (Guo et al., 2019), the augmented image is a linear interpolation from two different
images. The fuzzy labels are computed using the same weights as the images. Cutmix (Yun
et al., 2019) extracts a box from one image and pastes it to the second. The fuzzy labels
are proportional to the area of the box. SnapMix (Huang et al., 2021) is similar to Cutmix,
except that the area of the patch is replaced by the sum of CAM activations within ex-
tracted and masked patches. It was shown to be highly effective on fine-grained classification
datasets of natural images. Here, it is applied to the binary classification.

Explainability The task of generating a heatmap that indicates local relevancy from
the perspective of a CNN observing an input image has been tackled from many different
directions, including gradient-based methods (Shrikumar et al., 2017; Srinivas and Fleuret,
2019; Selvaraju et al., 2017), attribution methods (Bach et al., 2015; Montavon et al.,
2017; Nam et al., 2019; Gur et al., 2020; Chefer et al., 2021), and image manipulation
methods (Fong et al., 2019; Fong and Vedaldi, 2017; Lundberg and Lee, 2017).

The CAM method (Zhou et al., 2016) is based on the gradient of the loss with respect
to the input of each layer. CAM and its extension, GradCAM (Selvaraju et al., 2017) have
been used by downstream applications, such as weakly-supervised semantic segmentation (Li
et al., 2018). Here, we use CAM in a novel way, to create more effective patch embeddings
and drive the test time augmentation.
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(a) (b) (c) (d) (e)

Figure 1: An illustration of the SnapMix process. (a) A first random image, in this case
a positive image from site-A, (b) a second random image, shown as a negative
image from site-B. A random box is marked in each image. (c,d) the CAM maps
of (a,b) respectively, with the associated boxes marked. (e) The SnapMix training
image obtained by combining images (a) and (b) based on the random boxes. The
label of the virtual training image is determined by mixing the labels of the two
source images according to the sum of CAM activations in each box.

Contrastive learning The loss we employ between patches of different levels of rele-
vancy is related to contrastive learning methods, which have recently made a large impact
in the field of self-supervised learning, where they are often used to link an image to its
transformed version (He et al., 2020; Misra and van der Maaten, 2019; Chen et al., 2020).
Our method is applied at the patch level. Contrastive learning has emerged in metric learn-
ing (Chopra et al., 2005) and subsequently in unsupervised representation learning (Hadsell
et al., 2006). The learned embedding brings associated samples closer, while distancing
other samples. In our case, association is determined by CAM-derived relevancy.

3. Method

Our experiments use a Resnet-50 network (He et al., 2016a) trained with the conventional
binary cross-entropy loss LBCE as baseline classifier. We then apply (i) SnapMix (Huang
et al., 2021), (ii) a novel optimization term called Contrastive Patch Embedding loss, and
(iii) a novel test time voting procedure. All three techniques use the heatmaps produced
by the CAM method (Zhou et al., 2016).

3.1. SnapMix (Huang et al., 2018)

The SnapMix method is illustrated in Fig. 1. It combines two training images, depicted
in panels (a) and (b), by considering a random box in each image (marked in red). The
importance of each box is evaluated by integrating the CAM scores in them (panels c,d).
The virtual sample is generated by pasting the box from the second image onto the selected
box of the first image (panel e), and labeling the new image proportionally to the integrated
CAM scores. More specifically, a ratio (ρa,ρb) is computed for each image, by considering
the sum of all CAM scores in a box over the sum of the CAM scores of the entire image.
The labels are then linearly interpolated between the labels of the two images, using the
the complement of the obtained box ratio in the first image (1 − ρa) and the ratio in the
second image ρb.

Unlike the original experiments of Huang et al. (2021), which considered datasets with
many classes, in our case the problem is binary. It often happens that both images belong
to the same class. Moreover, since we train using images from two sites, the virtual images
created could play a role in overcoming the domain shift.
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3.2. Contrastive Patch Embedding

The input images we receive are of size 224 × 224, the receptive field of the ResNet-50
architecture is of size 32, and the spatial dimensions of the embedding are 7 × 7, with a
depth of 2, 048. For each of the 7 × 7 = 49 vectors in R2048 we compute the sum of CAM
activations in the associated patch of size 32 × 32. We then select four vectors out of the
49: two with the highest sum of activations u1 and u2, and two with the lowest sum v1 and
v2. The embedding loss we propose is a contrastive loss (Wu et al., 2018; He et al., 2020;
Oord et al., 2018) that considers the dot products of the four vectors.

LCPE(u1, u2, v1, v2) =− ln
exp(u⊤1 u2)

exp(u⊤1 u2) +
∑2

i,j=1 exp(u
⊤
i vj)

− ln
exp(v⊤1 v2)

exp(v⊤1 v2) +
∑2

i,j=1 exp(u
⊤
i vj)

(1)

This loss brings together the two most label-supporting embedding vectors and two most
label-opposing embedding vectors. At the same time, it distances the top label-supporting
embedding vectors from the pair of vectors that support the alternative label.

We note that the loss can be readily extended to any number of most label-supporting
and most label-opposing vectors. This option is studied in our experiments, showing that
there is no advantage in using more than two of each.

3.3. CAM-Directed Test Time Augmentation

It may be the case that the decision for a certain label is based on local artifacts that bias
the network into making the wrong prediction. To avoid such cases, we classify each image
k + 1 times: using the entire image, and masking one out of k different patches.

For this purpose, we divide the image into small, non-overlapping patches of size 8× 8,
obtaining a grid of size 28 × 28. For each cell in the grid, we compute the sum of CAM
activations. We then create k = 31 alternative images, by masking out sequentially the k
patches with the highest sum of activations. In the first alternative image, we mask out the
patch with the highest CAM scores; in the second, we also mask out the second patch with
the highest CAM scores; and so on. See Fig. 2 for an illustration.

The label we report is obtained through voting among the classifier output of the k
images. A supporting vote occurs when the pseudo-probability obtained from the network
classifier is at least θ = 0.2 if the original image has a positive label (i.e., a pseudo-probability
larger than 0.5), or lower than 1− θ for images with negative labels. If more than half the
k votes are not supporting, we flip the label. In other words, if the inferred labels assigned
by the classifier to the entire image are contradictory for more than half of the k alternative
images, with a high certainty, we flip the predicted label of the image.

4. Experiments

Data We evaluate the proposed method on three COVID CT datasets. For the first
two, we follow the benchmark protocol and splits of Wang et al. (2020b). The SARS-CoV-2
dataset (denoted as site-A) consists of 2,482 CT images of 120 patients, of whom 1252 are
positive with COVID-19. The 1,230 negative samples are affected by other lung diseases.
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(0, 0.47) (1, 0.61) (2, 0.59) (3, 0.64) (28, 0.90) (29, 0.90) (30, 0.93) (31, 0.92)

Figure 2: The Positive-label original test time image (left) obtained a negative classification
score, with a probability of 0.47 of being positive. Removing even a small number
of patches (Images 1-3) increased this probability to over 0.5. Subsequently, as
more and more patches were removed, the probability of a positive case increased
further, and became higher than 1− θ; see the last derived images (out of k = 31
images), Images 28-31.

The resolution of these images varies between 119 × 104 and 416 × 512. The COVID-
CT dataset (Zhao et al., 2020) (denoted as site-B) is much smaller, consisting of 349 CT
images of 216 COVID-19 positive patients and 397 CT images of 171 control patients. The
resolution of the images of site-B ranges from 102× 137 to 1853× 1485. Following (Wang
et al., 2020b), the images of both datasets are resized to a fixed resolution of 224 × 224
and are intensity-normalized to zero mean and unit variance. Classification accuracy, F1
score, Sensitivity, and Precision are reported as percentages, using the train/test splits of
the different datasets. The third dataset is COVIDx-CT (Gunraj et al., 2020), considered
one of the largest in terms of the number of annotated samples provided. It contains 35996
training images of negative samples and 82286 of positive samples. The test split contains
12245 and 6018 samples for positive and negative patients, respectively. Following previous
work on this dataset (Gunraj et al., 2020), we report accuracy as well as sensitivity and
PPV (positive predictive value) for each infection type, at the single scan level. In all three
datasets, multiple scans were obtained from the same patient, but treated as separated
samples. Care was taken such that no patient would appear in both the train and test
splits. See appendix A for more information.

Implementation Details The architecture of our model1 is based on ResNet50, followed
by an MLP classifier. The ResNet model is initialized with pretrained ImageNet weights.
We train the model for 200 epochs. The cross-entropy loss is used unweighted on the original
samples or on virtual SnapMix samples, as dictated by a beta distribution with a parameter
of α = 1, which is the default parameter in (Huang et al., 2021). The LCPE loss is applied
to all samples and is summed, unweighted with the cross-entropy loss.

Baseline methods The first two baseline methods used for sites-A and B are methods
that address domain shift in medical images. Series Adapter (Rebuffi et al., 2017) and
Parallel Adapter (Rebuffi et al., 2018) include a domain adapter model based on a filter
bank, in order to learn a joint representation from multiple datasets. MS-Net (Liu et al.,
2020) was originally developed for a multi-site prostate segmentation task. It uses domain-
specific auxiliary decoders. For classification tasks, each site is associated with an auxiliary
classification head. The results of all three methods are from (Wang et al., 2020b).

The single and joint methods from (Wang et al., 2020a), employ an architecture called
Covidnet. The difference lies in whether the method is trained on each dataset separately
or not. It was also rerun in (Wang et al., 2020b), using a modified architecture (redesign).

1. Our code available at https://github.com/AmeenAli/Explainability_COVID19
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Table 1: COVID-19 classification results for site-A
Method Accuracy Precision Recall F1

Series Adapter (Rebuffi et al., 2017) 85.73±0.71 90.98±0.79 81.91±2.61 86.19±1.65
Parallel Adapter (Rebuffi et al., 2018) 82.13±1.91 83.51±1.87 80.02±2.47 82.39±1.78
MS-Net (Liu et al., 2020) 87.98±1.31 93.78±2.76 84.91±2.83 88.73±1.20

Single (Covidnet) (Wang et al., 2020a) 77.12±0.98 80.04±2.87 70.97±2.37 76.03±1.13
Single (Redesign) (Wang et al., 2020b) 89.09±1.08 94.58±2.07 83.78±0.62 88.97±0.91
Joint (Covidnet) (Wang et al., 2020a) 68.72±1.94 68.27±1.21 69.41±3.91 69.17±1.93
Joint (Redesign) (Wang et al., 2020b) 78.42±2.19 80.82±1.05 74.07±3.16 77.86±2.01

SepNorm (Wang et al., 2020b) 88.76±0.78 95.46±0.74 82.97±1.66 87.88±0.81
SepNorm + Contrastive 90.83±0.93 95.75±0.43 85.89±1.05 90.87±1.29

Baseline architecture 89.68±0.46 95.02±0.40 83.99±0.51 89.13±0.47
Baseline + CPE loss (ablation) 91.71±1.21 97.02±1.65 85.13±1.34 90.03±0.61
SnapMix (Huang et al., 2021) 92.38±0.32 98.33±1.81 86.42±1.50 91.92±0.37
SnapMix + Contrastive 91.99±0.13 99.02±0.52 84.22±1.22 91.03±0.83
SnapMix + CPE (ablation) 95.73±0.07 98.97±0.33 92.49±0.47 95.59±0.12
Our full method 95.90±0.24 98.64±0.12 92.93±0.40 95.87±0.25

The SepNorm method of (Wang et al., 2020b) uses features that are normalized for each
site separately. It is further augmented with a contrastive loss that minimizes the domain
shift (“SepNorm + Contrastive”).

We present results for the ResNet-50 based architecture used by our method (“Baseline
architecture”), and study the effect of our CPE loss (Eq. 1) on it (“Baseline+CPE loss”).
Results are also presented for augmenting this architecture with the SnapMix method. As
additional ablations, we present results for SnapMix combined with either the contrastive
loss of (Wang et al., 2020b) (“SnapMix+Contrastive loss”) or with our CPE loss (“SnapMix
+ CPE”). Finally, we present our full method, which includes SnapMix augmentation, the
CPE loss, as well as CAM-driven test time augmentation and voting. For the COVIDx-CT
dataset we compare our method with the reported baselines in (Gunraj et al., 2020). The
COVIDNet-CT baseline (Gunraj et al., 2020) was pre-trained on ImageNet (Deng et al.,
2009) and later fine-tuned on a COVIDx-CT (Gunraj et al., 2020) dataset, using stochastic
gradient descent with momentum (Qian, 1999). We also compare our model with existing
models for image recognition (ResNet50 , EfficeintNet-B0 , NASNet-A-Mobile (He et al.,
2016b; Zoph et al., 2018; Tan and Le, 2019)) on the COVIDx-CT dataset.

5. Results

The results are reported in Tab. 1 for site-A, and Tab. 2 for site-B. Evidently, for both sites,
the baseline architecture is already competitive with the best method from the literature,
which is SepNorm with Contrastive loss. For site-A, the baseline is slightly inferior; for
site-B it is considerably preferable.

Adding the CPE loss (Sec. 3.2) improves results for both sites. So does SnapMix aug-
mentation, by a larger extent. The two contributions are complementary, and adding both
CPE loss and SnapMix produces considerably better results than either on its own in site-A.
In site-B, the combination of both produces a slightly higher F1 score than either contri-
bution alone. However, SnapMix by itself is slightly better in terms of the three other
scores. The ablation done using the contrastive loss of (Wang et al., 2020b) combined with
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Table 2: COVID-19 classification results for site-B
Method Accuracy Precision Recall F1

Series Adapter (Rebuffi et al., 2017) 70.01±3.82 63.04±4.87 74.91±1.89 67.08±3.09
Parallel Adapter (Rebuffi et al., 2018) 74.93±1.83 79.84±1.75 71.81±2.47 73.46±1.68
MS-Net (Liu et al., 2020) 76.23±1.81 79.29±1.48 74.07±1.29 76.54±1.73

Single (Covidnet) (Wang et al., 2020a) 63.12±2.09 64.03±3.91 57.73±2.94 61.09±1.28
Single (Redesign) (Wang et al., 2020b) 77.07±1.92 79.48±0.96 74.69±3.91 77.04±2.17
Joint (Covidnet) (Wang et al., 2020a) 63.27±2.82 64.27±3.81 54.19±4.17 59.78±3.12
Joint (Redesign) (Wang et al., 2020b) 69.67±0.92 64.98±3.17 66.94±5.86 66.89±4.91
SepNorm (Wang et al., 2020b) 76.89±0.65 80.74±2.98 70.34±3.76 75.02±1.14
SepNorm + Contrastive 78.69±1.54 78.02±1.34 79.71±1.42 78.83±1.43

Baseline architecture 85.23±0.41 86.54±0.84 83.58±0.81 84.51±0.62
Baseline + CPE loss (ablation) 85.96±1.22 87.03±1.22 84.71±1.02 85.22±0.79
SnapMix (Huang et al., 2021) 87.56±0.41 88.76±0.53 85.19±1.02 86.85±0.48
SnapMix + Contrastive 87.03±0.35 88.33±0.85 84.22±0.79 85.72±0.65
SnapMix + CPE (ablation) 87.02±0.49 88.32±0.69 84.69±1.02 86.95±0.76
Our full method 88.76±0.26 87.44±0.42 88.48±0.19 88.25±0.22

Table 3: Classification results on COVIDx-CT dataset
Sensitivity PPV

Method Acc Non-Covid-19 Covid-19 Non-Covid-19 Covid-19

ResNet-50 (He et al., 2016b) 98.7% 98.7% 96.2% 97.8% 99.1%
NASNet-A-Mobile (Zoph et al., 2018) 98.6% 97.9% 96.8% 99.6% 97.1%
EfficeintNet-B0 (Tan and Le, 2019) 98.3% 97.8% 95.8% 98.7% 98.6%
COVIDNet-CT (Gunraj et al., 2020) 99.1% 99.0% 97.3% 98.4% 99.7%
Basline architecture 98.7% 98.7% 96.2% 97.8% 99.1%
Basline architecture + CPE loss 98.9% 98.8% 97.1% 98.0% 99.2%
SnapMix (Huang et al., 2021) 99.0% 99.2% 97.8% 98.6% 99.3%
SnapMix + Contrastive 98.9% 99.0% 97.9% 98.7% 99.2%
SnapMix + CPE loss 99.1% 99.3% 98.2% 98.8% 99.2%
Ours (Full) 99.5% 99.7% 99.7% 99.8% 99.8%

the SnapMix technique hurts F1 performance relative to SnapMix in site-A, by increasing
precision at the expense of recall. On site-B, it reduces all four scores.

Our complete method, which adds the test time augmentation of Sec. 3.3 on top of
SnapMix and the CPE loss, obtains the best accuracy, recall, and F1 score among all
methods. Its precision is slightly lower than the best ablation method. However, the gap
in performance in F1 score (which combines both precision and recall) is substantial in
comparison to the ablation method with the highest precision (site-A - 5%, site-B - 1.5%).

Tab. 3 depicts the results for the COVIDx-CT dataset. Evidently, our method achieves
superior performance over all reported baselines. In this dataset, where performance is
almost saturated, the improvement is smaller in absolute figures. However, our method is
able to cut the error rate of the best method by at least half for all scores.

Parameter Sensitivity SnapMix employs the default augmentation parameters pre-
scribed by (Huang et al., 2021). The CPE loss is defined without the temperature parame-
ter commonly used in other contrastive learning methods and employs the minimal number
of patches. It is, therefore, virtually parameter-free.

The parameter sensitivity of CAM-driven test-time voting is explored in Fig. 3, in which
performance without this voting (“SnapMix+CPE”) is depicted as a dashed horizontal line.
When varying the number of augmented images k (panel a), we observe that for any value
of k, there is a performance boost for site-B, and this is maximized between k = 30 and
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(a) (b) (c)

Figure 3: Ablation study showing (a) The effect of varying the number of alternative images
k, (b) The effect of varying the certainty probability threshold θ. (c) The effect
of varying the number of patches in CPE loss. The dashed lines is panels (a) and
(b) indicate the accuracy of a Resnet 50 with SnapMix + CPE without test-time
augmentations.

k = 35. The performance boost for site A is smaller for all k, and peaks at the value of
k = 31. However, no value of k hurts performance in site A.

Varying the value of the probability threshold, depicted in Fig. 3(b), shows that there
is a positive benefit for all tested values θ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} considering site-B. The
largest contribution is for the value of 0.4. For site A, however, the contribution is positive
only for conservative values (smaller than 0.3, when flipping the label of the test image
becomes less frequent). The value of θ = 0.2 provides a small boost to site-A and is also
the 2nd highest for site-B.

Finally, the CPE loss we define employs, in each image, the two patches with the high-
est explainability score and the two with the lowest. It can be defined very similarly, to
maximize similarity within groups of arbitrary size, while minimizing similarity between
groups. This is explored in Fig. 3(c) for SITE-A and SITE-B. As can be seen, there is no
advantage to using more than four patches in each image.

Appendix B presents qualitative visualization results on the behavior of the various
classifiers as reflected by the explainability maps. Since the method is applicable to non
medical datasets, Appendix C presents initial results for MNIST digit classification.

6. Conclusions

We present a method of COVID-19 detection in CT scans. The method tackles many of the
challenges faced by medical imaging classification systems: distribution shifts across sites,
limited training data, and the lack of region-based tagging. We propose combining three
different techniques, which all rely on the heatmap produced by the CAM explainability
method. The first method is a powerful regularizer called SnapMix, which was previously
used for fine-grained classification. The second is a novel patch embedding method, which
considers the two patches that show the strongest CAM activations in a given image and
the two that present the lowest activations. Finally, we propose a voting method that
constructs multiple masked images based on the CAM score. Taken together, our method
obtains, despite using a generic network architecture, state-of-the-art results on publicly
available COVID-19 CT datasets. The gap in performance is extremely large, and we
demonstrate the individual contribution of each component to it.
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Appendix A. Datasets Splits

The dataset train/test splits that are employed are the exact splits specified by Wang et al.
(2020b); Gunraj et al. (2020).

The SARS-CoV-2 (Site-A) dataset, provides with a total of 2482 CT scans, which
are divided into 1252 positive samples and 1230 negative samples. In this dataset, the data
is collected from 60 patients who are infected by covid-19 (32 males and 28 females) and the
negative samples are based on 60 patients which are not infected with covid-19 (30 males
and 30 females). The negative samples have other pulmonary issues. The splits used are
75%, 25% for training and testing respectively.

The COVID-CT (Site-B) dataset contains in total of 349 positives scans which are
taken from 216 different patients, and 397 negative scans from 171 different patients without
COVID-19. The splits used are 70% for training and 30% for testing.

The last dataset we employ is COVIDx-CT. It contains 35996 training images and
18263 testing images. These images were collected from 3745 patients.

Preprocessing: We do the following preprocessing for all of the datasets: all of the images
are resized into 224x224 and later normalized to zero mean and unit variance.

Validation set parameter sensitivity: In the main text (Fig. 3) we consider the effect
of varying the parameters of the augmentation loss and the parameter of the CPE loss on
the test performance. We observe that the same parameters that are used in all of our
experiments are effective for both sites.

Such a study is better done on a validation set. Since the datasets we employ do not
contain a training set, we repeat the experiments when training on a random subset of 70%
of the training samples, employing the rest of the training samples as the validation set.

The results are reported in Fig. 4. As can be seen, the results support the value for θ is
0.2, for k is 31, and for the number of patches in the CPE loss is 3, for both of the datasets,
Site-A and Site-B. Fig. 3 in the main text presents the analog results for the test set, which
show a similar pattern

Appendix B. Qualitative Explainability Results

Employing the explainability method of Gur et al. (2020), we present the heatmap explana-
tions produced by applying SnapMix alone, SnapMix + our CPE loss, and the underlying
architecture (resnet50) alone and with our CPE loss.

The first two rows in Fig.5, presents two cases in which the ResNet50 classifier failed to
classify correctly, while the other methods managed to predict the correct label. On those
two cases, we can see that the base architecture, focused on irrelevant areas differently from
the other methods. The third and fourth rows are cases where all the methods predict
correctly.

As can be seen for the negative cases, the SnapMix+CPE is distributed more uniformly
over the lung regions, while for SnapMix and base+CPE, the map is focused on specific
areas which is not the expected behavior for negative example. For the positive cases, we
can see that the explainability map of SnapMix+CPE is sharper than the others, which can
indicate more certainty with the decision.
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(a) (b) (c)

Figure 4: Hyper-parameters search - performances on the validation set, which is a training
subset containing 30% from the images. (a) The effect of varying the number of
alternative images k, (b) The effect of varying the certainty probability threshold
θ. (c) The effect of varying the number of patches in CPE loss. .The dashed lines
is panels (a) and (b) indicate the accuracy of a Resnet-50 with SnapMix + CPE
without test-time augmentations. The optimal value for θ is 0.2, for k = 31, and
for the number of patches for the CPE loss is 2 - for both of the datasets, Site-A
and Site-B.

Table 4: Result for domain adaptation for digit classification.

Method MNIST to USPS MNIST to MNIST-M

CyCada (Hoffman et al., 2018) 95.60% -
LC + CycleGAN (Ye et al., 2020) 97.10% -
DRANet Bi-directional (Lee et al., 2021) 98.20% 98.70%
DRANet Tri-directional (Lee et al., 2021) 97.60% 98.30%

Resnet-50 (He et al., 2016a) 98.13% 98.70%
SnapMix (Huang et al., 2021) 98.11% 98.65%
Ours (Full) 98.25% 98.92%

Figure 6 presents the shift of explainability maps during the test-time augmentation pro-
cess. As can be seen, during the accumulated removal of the 31 patches, the explainability
changes gradually to exclude these regions.

Appendix C. Additional Results - Domain Adaptation

In order to check the suitability of our method beyond medical images, we consider the
MNIST-to-USPS dataset. In which we train our model over MNIST dataset and test it
over USPS dataset (Ganin et al., 2016) and the MNIST-M (Ganin and Lempitsky, 2015)
dataset.

The USPS dataset is automatically generated from envelopes by the U.S. Postal Service
containing a total of 9,298 16×16 pixel grayscale samples.
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Normal COVID-19 Normal Normal Normal

COVID-19 Normal COVID-19 COVID-19 COVID-19

COVID-19 COVID-19 COVID-19 COVID-19 COVID-19

Normal Normal Normal Normal Normal

(a) (b) (c) (d) (e)

Figure 5: Visualization of explainability maps for four different methods where (a) The in-
put CT-scan image (b) Resnet50 classifier - baseline architecture (c) Resnet50
classifier with CPE loss function (d) Resnet50 classifier with SnapMix augmenta-
tion (e) Resnet50 classifier with SnapMix augmentation and the CPE loss func-
tion. The correct label appears above the input image in column (a). The infer-
ence of each classifier is positioned above the classifier’s heatmap.

MNIST-M (Ganin and Lempitsky, 2015) is created by merging the original MNIST
digits dataset along with the patches which are randomly extracted from color photos of
BSDS500 (Arbelaez et al., 2010) dataset as their background.

We compare our method with various recent baselines for Domain Adaptation, which
include DRANet (Lee et al., 2021) that disentangles the feature representations into two
elements, content and style. Domain Adaptation is then performed by applying the style
features of the other domain. The method of Ye et al. (2020) calibrates the target domain
images to better fit the source classifier’s representation while maintaining the source domain
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(0 , 0.476) (1 , 0.613) (2 , 0.591) (3 , 0.644) (15 , 0.805) (25 , 0.912) (30 , 0.896)

(0 , 0.460) (1 , 0.448) (2 , 0.468) (3 , 0.528) (15 , 0.856) (25 , 0.903) (30 , 0.906)

(0 , 0.353) (1 , 0.482) (2 , 0.550) (3 , 0.596) (15 , 0.883) (25 , 0.950 ) (30 , 0.977)

Figure 6: The effect of removing high relevancy patches during test-time on the explain-
ability heatmap. In each segment, each column has three elements: a pair of
numbers indicating the number of removed patches and the classification score,
the augmented image, and the explainability map of the modified image. As
can be seen, removing high relevancy patches alters the explainability map in a
smooth (frames are skipped at the high values of k) yet significant way.

performance. Hoffman et al. (2018) employ a cycle-consistent adversarial domain adaptation
method.

As ablations to our full method, we also compare with ResNet50 and ResNet50+SnapMix.
As can be seen from the results in Table. 4, our method is outperform compared to the

recent baselines in the domain adaptation settings.
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