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Abstract

Sampling all possible transition paths between two 3D states of a molecular system1

has various applications ranging from catalyst design to drug discovery. Cur-2

rent approaches to sample transition paths use Markov chain Monte Carlo and3

rely on time-intensive molecular dynamics simulations to find new paths. Our4

approach operates in the latent space of a normalizing flow that maps from the5

molecule’s Boltzmann distribution to a Gaussian, where we propose new paths6

without requiring molecular simulations. Using alanine dipeptide, we explore7

Metropolis-Hastings acceptance criteria in the latent space for exact sampling and8

investigate different latent proposal mechanisms.9

1 Introduction10
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Figure 1: Distribution of ala-
nine dipeptide’s 3D configu-
rations visualized via a his-
togram of its main dihedral
angles ϕ, ψ. Two metastable
states are highlighted, be-
tween which we aim to sam-
ple the ensemble of all possi-
ble transition paths.

Sampling the trajectories in which a molecular system changes from11

one 3D configuration to another—a task known as transition path12

sampling (TPS)—has many applications, such as designing cata-13

lysts [Crehuet and Field, 2007], materials [Selli et al., 2016], or drug14

discovery [Kirmizialtin et al., 2012, 2015]. In fact, the transition path15

ensemble is the ideal description of a chemical reaction’s mecha-16

nism. We explore how this problem can be solved using a Boltzmann17

generator (a normalizing flow trained to sample a molecule’s Boltz-18

mann distribution) [Noé et al., 2019] and its latent space to obtain19

or approximate the ensemble.20

In the TPS problem, we are given a single molecular system and21

two 3D conformations of interest for it: states A and B, as seen in22

Figure 1. These could be the structure of reactants before a reaction23

and the structure of the product molecule after the reaction. With24

this, we aim to sample the transition paths between them with the25

likelihood at which they occur. To describe a transition path, we use26

a sequence of time-equidistant 3D atom configurations (i.e., frames)27

that starts in state A and ends in state B.28

Existing approaches for this problem [Dellago et al., 1998b,a, Bol-29

huis et al., 2002] use Markov chain Monte Carlo (MCMC) sampling30

to iteratively sample a new path given the current one. New paths31

are commonly proposed using shooting moves that require molecular dynamics simulation. Given a32

path, the proposal is generated by first randomly selecting a frame of the path and sampling a random33

velocity from a Gaussian. The selected frame with the new velocity is then simulated forward and34

backward in time. If the backward simulation reaches state A and the forward simulation ends in35

state B, this trajectory constitutes a new non-zero probability transition path, which is accepted or36
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Figure 2: MCMC proposals for latent space transition paths. We move a transition path x into
latent space using a Boltzmann generator F (·). With this path z and our latent space proposal kernel
qZ(z̃|z) we propose z̃ and bring it back to configuration/atom space to obtain the transition path
proposal x. The likelihood of all steps can be computed, and we use them in a Metropolis-Hastings
acceptance criterion to sample the transition path ensemble with MCMC.

rejected based on its probability and a Metropolis-Hastings [Metropolis et al., 1953, Hastings, 1970]37

acceptance criterion. All paths that do not transition between A and B will be rejected. Repeating this38

is guaranteed to eventually produce the exact transition path ensemble, but convergence is slow since39

many proposals will not fulfill the constraints, paths are correlated, and finding transitions requires40

expensive simulation.41

In this work, we explore how the TPS problem can be addressed when having access to a trained42

Boltzmann generator, which solves the easier problem of sampling the molecular systems distribution43

of 3D conformers. Given this, we generate MCMC proposals by first moving every frame in a path44

into our latent space. We modify each frame of this path by adding independent Gaussian noise such45

that the overall likelihood can easily be evaluated. Then, we use the Boltzmann generator to bring the46

whole path back to configuration space, compute the probability of the path, and use it to accept or47

reject the proposed path. This procedure is depicted in Figure 2.48

Our contributions are investigating this novel method for transition path sampling and highlighting49

its challenges. To that end, we describe the difficulty of calculating likelihoods for paths that were50

not generated with molecular dynamics and the obstacles for calculating path probabilities in parallel.51

Additionally, we provide insights into what configuration space paths are produced from simple paths52

in the latent space of a Boltzmann generator.53

2 Background and Related Work54

Boltzmann generators. Given a molecule, the probability of each 3D configuration is proportional55

to the exponential of its negative energy, i.e., they follow a Boltzmann distribution. Noé et al. [2019]56

train a normalizing flow [Tabak and Vanden-Eijnden, 2010, Tabak and Turner, 2013] to sample57

a molecule’s Boltzmann distribution, known as Boltzmann generator. While recent innovations58

[Midgley et al., 2023b,a] improved their training efficiency, training them for larger systems remains59

an open problem and a limitation of our Boltzmann generator-based approach.60

Deep learning for transition path sampling. The TPS problem, with the goal to sample the whole61

transition path ensemble, is more challenging than finding a single low-energy transition path: A62

problem that also has been explored with deep learning (DL) approaches [Liu et al., 2022, Holdijk63

et al., 2023]. For the harder TPS problem, DL methods require MCMC with shooting moves as64

proposed by Dellago et al. [1998b,a]. For instance, Falkner et al. [2023] replace the shooting point65

selection with DL and sample them with a Boltzmann generator. Similarly, Jung et al. [2023] increase66

the acceptance rate of shooting moves by selecting the frames to shoot from with a learned function.67

These approaches still require sequential MD simulation. In this work, we explore a novel molecular68

dynamics-free MCMC paradigm using DL.69

3 Method70

We assume access to a Boltzmann generator for the molecule of interest and two of its states, A71

and B, between which we wish to sample the transition path ensemble. In the following, we lay out72

the overall MCMC framework over latent space paths (see § 3.1). This requires two components:73
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Calculating the path probability (see § 3.2), and a proposal kernel for a path in latent space for which74

we lay out several options (see § 3.3).75

3.1 MCMC Framework for Latent Paths76

Let x be our current path with frames xi ∈ Rn×3 and i ∈ {1, ..., l}, where n is the number of atoms77

of our molecule and l the number of frames which we keep constant (the spacing of the frames78

can change with changing path lengths). For our MCMC procedure, we further need a proposal79

kernel q(x̃ | x) that produces a new path proposal x̃ from our current path x1. If we can additionally80

compute the probability of a path pAB , we can sample the transition path ensemble with the MCMC81

algorithm using Metropolis-Hastings acceptance criterion82

α = min

{
1,
pAB (x̃)

pAB(x)
· q (x | x̃)
q (x̃ | x)

}
. (1)

In our work, the proposal consists of first using a Boltzmann generator F trained on the molecule83

to move the path x into latent space to obtain the latent path z =
{
F−1 (x1) , . . . , F

−1 (xl)
}

.84

Subsequently, we make a proposal in latent space to obtain a new latent path z̃ using the latent85

proposal kernel qz(z̃ | z) which we design in § 3.3. Lastly, the latent path is projected back to86

configuration space using the Boltzmann generator x = {F (z̃1) , . . . , F (z̃l)}.87

The proposal kernel thus takes the form q(x̃ | x) = p(z|x)qz(z̃ | z)p(x̃|z̃), where p(z|x) accounts88

for the change of density when using our Boltzmann generator to move the path x into latent space89

and p(x̃|z̃) arises from moving the new latent path back to configuration space. Since the Boltzmann90

generator processes all the frames independently, the change of density factors can be written as91

the product of the individual frames p(z|x) =
∏l

i=1 p(zi|xi). With this in mind, the ratio of the92

forward path proposal q(x̃ | x) and the backward proposal q(x | x̃), as it is required in the acceptance93

criterion in Equation 1, takes the form94

q(x | x̃)
q(x̃ | x)

=
qZ(z | z̃)
qZ(z̃ | z)

·
l∏

i=1

p(z̃i|x̃i)p(xi|zi)
p(zi|xi)p(x̃i|z̃i)

. (2)

Each term in the product can be simplified as follows, where we write x, z for an individual frame95

xi, zi and use the change of variables formula p(x) = p(z) · (det J(F (z)))−1 in the third equality96

p(z̃|x̃)p(x|z)
p(z|x)p(x̃|z̃)

=

p(x̃,z̃)
p(x̃)

p(x,z)
p(z)

p(x,z)
p(x)

p(x̃,z̃)
p(z̃)

=
p(x)p(z̃)

p(x̃)p(z)
=
p(z)(det J(F (z)))−1p(z̃)

p(z̃)(det J(F (z̃)))−1p(z)
=

det J(F (z̃))

det J(F (z))
. (3)

Thus, the ratio of proposals we need to calculate is97

q(x | x̃)
q(x̃ | x)

=
qZ(z | z̃)
qZ(z̃ | z)

·
l∏

j=1

det J(F (z̃j))

det J(F (z
(i−1)
j ))

, (4)

which we can readily use to calculate the acceptance ratio for the MCMC algorithm as laid out in98

Algorithm 1. The remaining challenges are the ability to compute the path probability pAB and a99

concrete latent space proposal kernel qZ(z̃ | z), which we will tackle next.100

3.2 Calculating the Path Probability101

A path’s probability is defined with respect to a molecular dynamics model. Here, we assume102

Langevin dynamics2 under which the transition from frame xi to the next frame xi+1 can be103

calculated as104

xi+1 = xi +∆tvi+1

vi+1 = αvi + (1− α)∇U(xi) +
√
kBT (1− α2)W ,

(5)

1An initial path can be obtained from, for example, a high-temperature MD simulation or by linearly
interpolating in the Boltzmann generator’s latent space.

2For the sake of brevity, we omit the constant atom masses and the friction coefficient.
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given the velocity vi, and the molecule’s energy function U : Rd×3 7→ R. α = exp(−∆t) for a105

time step size ∆t3 and W ∼ N (0,1) corresponds to random motion that is scaled proportional106

to the Boltzmann constant kB and temperature T . Notice that in Langevin dynamics, the only107

randomness when obtaining xi+1 from xi given the velocity vi stems from the Gaussian variable108 √
kBT (1− α2)W . Thus, the probability density p(xi+1,vi+1|xi,vi) of moving from xi to xi+1109

is that of a Gaussian with mean µ = xi + ∆t(αvi + (1 − α)∇U(xi)) and standard deviation110

σ = kBT (1− α2).111

Given this probability p(xi+1,vi+1|xi,vi) of moving between individual frames with the auxiliary112

velocity variable, the probability of a whole path in configuration space is113

pAB (x) = p (x1) ·
l−1∏
i=1

p(xi+1,vi+1|xi,vi), (6)

where p(xi) follows the molecule’s Boltzmann distribution, meaning that p(xi) ∝114

exp(−U(xi)/kBT ) with an unknown proportionality constant. However, this constant is unneces-115

sary since it will cancel out with the same constant of the reverse path density pBA in the acceptance116

ratio in Equation 1.117

Thus, the last missing link to computing pAB(x) is the initial velocity v1. Since our path definition118

does not include an initial velocity (because we do not have a Boltzmann generator that operates over119

both velocities and positions), we opt to marginalize over all possible velocities and approximate the120

following expectation as our final path probability121

pAB(x) = Ev1∼N (0,diag(kBT ))

[
p (x1) ·

l−1∏
i=1

p(xi+1,vi+1|xi,vi)

]
. (7)

All subsequent velocities {vi}i∈{2,...,l} can then be inferred by solving the previous step, allowing us122

to compute p(xi+1,vi+1|xi,vi) sequentially.123

Desirable properties. In designing our MCMC procedure, we set out to avoid the time-consuming124

sequential molecular dynamics simulation. While the path probability can be computed easily for125

paths generated by MD [Jung et al., 2017], calculating the path probability pAB(x) still requires126

sequential computation in our approach. However, this amounts to sequentially performing l vector127

additions, which is very cheap and can be done in parallel for all different initial velocities when ap-128

proximating the expectation. The expensive, time-consuming computations stem from the evaluation129

of the energy function U(xi) for each frame. In our procedure, this can be done in parallel, while in130

molecular dynamics, it has to be performed sequentially.131

3.3 Latent Space Path Proposal Kernel132

As for the concrete latent space path proposal kernel qZ(z̃ | z), we propose three different options:133

1) Gaussian noise added to each frame. 2) A Gaussian Process (GP) with the current path as its mean.134

3) A GP that is adaptively fit to the history of all sampled transition paths and only weakly depends135

on the current path. All these proposals are symmetric and will not contribute to our acceptance ratio136

with qZ(z̃ | z)/qZ(z | z̃) = 1.137

Gaussian proposal. From a latent path z, we propose a new path z̃ = {z1 + ϵ1, . . . ,zl + ϵl} where138

ϵ1, . . . , ϵl ∼ N (0,Σ). While this independent noise for each frame makes it unlikely that all frames139

move coherently and produce high-probability paths, this operation can be performed efficiently and140

allows for fast exploration of the latent space.141

Conditional Gaussian process path proposals. We employ a GP f(t) ∼ GP(m(t), k(t, t′)), where142

f : R 7→ R3n−6 maps the time t ∈ [1, l] along the path to a Gaussian from which a frame at time t is143

sampled4. We fit the GP mean m(·) and kernel function k(·, ·), which is not to be confused with the144

proposal kernel, to a set of s latent paths {zi}i∈{1,...s}, where the index of each frame is used as the145

3Similar to classical fixed length transition path sampling, the timestep size ∆t is not trivial to choose. We
discuss this further in Appendix B.

4The latent space dimensionality is R3n−6 for n atoms since the Boltzmann generator operates on internal
coordinates that are invariant to the 6 degrees of freedom from rigid translations and rotations.
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time t. In the following, we first detail the set of latent paths before explaining how the GP is used to146

propose a new path.147

Our set of latent paths {zi}i∈{1,...s} to fit the GP is either the history of all previously sampled paths or148

we obtain it via linear interpolation in latent space. Specifically, to obtain an interpolation, we sample149

a start x1 and an end frame xl from states A and B, move them to latent space to generate z1, zl =150

F−1(x1), F
−1(xl), and produce the latent path as the linear interpolation zi =

i
lz1 + (1 − i

l )zl151

for i ∈ {1, . . . , l}. After moving it back to configuration space with the Boltzmann generator, this152

constitutes a coarse path. This produces a fixed proposal kernel, where the quality depends on the153

paths it was trained on.154

When using the history of all previously sampled paths as {zi}i∈{1,...s}, the proposal kernel GPs155

changes over the course of MCMC steps s, leading to an adaptive MCMC algorithm. For this to be156

correct, the proposal kernel has to converge and satisfy vanishing adaptation [Andrieu and Thoms,157

2008] where, as the Markov chain progresses, the influence of its most recent states on the proposal158

kernel has to diminish. Intuitively, this is the case for our adaptive kernel since the influence of the159

most recent path on the fitted mean and covariance kernel vanishes as the size of the history (the160

Markov chain) increases.161

We re-fit this adaptive GP proposal to the history of latent paths {zi}i∈{1,...s} at each step s when162

a new path has been accepted. To efficiently do so, we start optimization from the parameters163

of the previous GP proposal kernel that are optimal for {zi}i∈{1,...s−1}. The new optimization’s164

convergence is typically fast since the minimum under the new set of latent paths at step s is likely165

close to that at step s− 1, with the difference diminishing as the length of the Markov chain increases.166

Given the fitted GP, a new latent path z̃ is proposed conditioned on the current one z by sampling167

GPs at times t = 1, . . . , l (which correspond to the frame numbers of the paths) after setting the168

means of GPs at those times to the frames of z, meaning that m(t) = zt for t ∈ {1, . . . l}. This169

amounts to sampling GPs unconditionally at t = 1, . . . , l, subtracting the means m(t), and adding170

the frames zt at each time.171

Unconditional Gaussian process path proposals. Here, we use the adaptive Gaussian process GPs172

and propose new paths z̃ unconditionally, meaning that each proposal is a sample of GPs and the173

only influence of z is through its presence in the set of paths {zi}i∈{1,...s} that GPs was fit on. This174

means that with a progressively increasing number of accepted paths, the influence of the current175

path will diminish. This would fit a Gaussian process that could be used to sample transition paths176

without any latent space, which is an interesting aspect on its own.177

Further, since we will rely on the mean of the Gaussian process, we can also estimate it between the178

frames. This allows us to introduce more variance by evaluating the Gaussian process not at the fixed179

points 1, . . . , l, but to uniformly draw l sorted samples from U[0.5,l+0.5]. With this, the individual180

frames of the path can shift more easily towards and from each other.181

4 Experiments182

Latent space analysis. When moving configurations from the meta-stable states C5 and αR of183

alanine dipeptide (ALDP) into the latent space, we can linearly interpolate between them and map184

them back with the trained Boltzmann generator. For this, we train a Boltzmann generator by185

minimizing the forward KL-divergence loss (compare Appendix A.3). Figure 3 shows that linear186

paths in latent space produce non-linear paths in configuration space. While linearly interpolating187

atom positions of a molecule produces unrealistic paths, this naive latent space approach recovers188

two different modes of transitions between the meta-stable states.189

Ground truth ensemble. We simulated 10 nanoseconds with a timestep of 1 femtosecond at 300K190

with the openMM MD engine [Eastman et al., 2017]. From this data, we can determine for each191

conformation whether it belongs to a meta-stable state, allowing us to find paths by looking for192

sequences that start in A and transition to B (or vice versa). This approach finds variable-length193

transition paths. We rely on the two-way shooting scheme implemented by OPS [Swenson et al.,194

2018a,b] with the same MD setup to sample a fixed-length transition path ensemble. Transitions that195

only rarely occur (Figure 4 bottom) are particularly difficult to produce with classical MD, already196

for the small molecule alanine dipeptide.197
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Figure 3: Linear latent space interpolation. Left: A histogram of the two main dihedral angels ϕ, ψ
as they occur in the MD simulation. The meta-stable states C5 and αR, and a linear interpolation
in latent space (red line) are shown. Right: The resulting density of transition paths when linearly
interpolating between those states in latent space.

Results. Figure 4 shows for all methods a histogram of the sampled transition paths between the198

states C5 ↔ αR and αR ↔ C7, respectively. Unconditional GP Uni refers to the adaptive GP199

proposal with uniform timepoint sampling while Unconditional GP always samples the index of the200

frame as timepoint. Conditional GP uses the adaptive proposal.201

The main finding is that due to the low acceptance rate of our MCMC steps, we are only able to202

produce a low amount of paths or a set of paths with low diversity. When increasing the variance,203

paths will be more diverse but are also less likely to be accepted. To overcome this, proposals that204

produce more physically likely paths are required.205

Some proposal strategies, such as the Gaussian proposal, are computationally efficient, while fitting206

a high-dimensional Gaussian process is time-consuming. With an increasing number of paths, the207

proposals are more likely to be stuck in a local minimum. For the more computationally expensive208

proposals, this makes it challenging to produce the high number of transitions needed to overcome209

this threshold.210

While training a fixed Gaussian process on simple paths in latent space is computationally favorable,211

the results do not indicate that it can capture the transition paths. Since the iterative Gaussian212

processes do not seem to fit the distribution either, our choice of kernel or formulation might be213

inappropriate. In general, we have seen in our experiments that the selection for a kernel of the214

Gaussian process (compare Appendix A.2) poses a difficult problem for this task because it must215

capture an adequate amount of noise without overfitting to the previous paths.216

Overall, the results qualitatively show that the simplest proposal kernel, one that simply adds Gaussian217

noise in latent space, appears to be the most efficient and effective choice. Further, conditioning the218

Gaussian process on the current path appears to slightly increase the variance and leads to a more219

diverse set of paths.220

MD Simulation
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R

MD Simulation 25%
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R

MCMC Shooting
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R

Gaussian Noise
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R

Unconditional GP
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R

Unconditional GP Uni
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R

Conditional GP
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R

MD Simulation
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MD Simulation 25%

R
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Gaussian Noise
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Figure 4: Comparison of sampling methods. Each row shows the transitions between two different
metastable states. Left: "Ground truth" path ensemble from MD simulation of all paths (sub-left) and
the 25% of paths with the highest probability (sub-right). Right: Shooting move MCMC ensemble
and the ensembles of our different latent space proposal kernels. Note that it is unclear what a
meaningful ground truth ensemble is.
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5 Discussion and Conclusion221

Limitations Our approach relies on a trained Boltzmann generator, of which high-quality ones for222

larger molecular systems do not exist yet. Furthermore, the latent space path proposal kernels we223

devise have too low acceptance rates to be useful. This limits them to a low-variance, slowing down224

mode-mixing. Better latent space proposals would be necessary. Lastly, an avenue toward a practical225

solution could be adaptively fine-tuning the Boltzmann generator to make simple paths in latent space226

correspond to physical paths that obey Langevin dynamics in configuration space.227

Conclusion In this paper, we presented a novel way to propose transition paths in the latent space of a228

Boltzmann generator. Throughout this work, we have introduced multiple latent space path proposal229

kernels that perform (learned) operations. This enables a transition path sampling MCMC procedure230

without the need for molecular dynamics simulation. We believe that learned transition path sampling231

methods and, in general, simulation-free MCMC approaches are interesting research questions to232

explore and might lead to faster sampling methods.233
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A Method Details306

A.1 Latent Path MCMC Algorithm307

Our latent space path sampling approach builds on the Metropolis-Hastings method but relies on a308

modified acceptance criteria and an adapted proposal kernel.

Algorithm 1: Fixed-length latent space transition path sampling.

Input: Initial path x(0) with l frames, a trained Boltzmann generator consisting of the map F
and its inverse F−1, the number of steps to run N , and a latent proposal kernel K with
proposal probability qZ (· | ·).

Output: MCMC samples following target distribution
{
x(1), . . . ,x(N)

}
.

1 Calculate latent space representation of initial path z(0) =
{
F−1

(
x
(0)
1

)
, . . . , F−1

(
x
(0)
l

)}
.

2 for i← 1 . . . N do
3 repeat
4 Propose new path in latent space z̃ = K

(
z(i−1)

)
.

5 Compute the proposed path in configuration space x̃ = {F (z̃1) , . . . , F (z̃l)}.
6 Compute acceptance probability

α = min

1,
pAB (x̃)

pAB

(
x(i−1)

) · qZ (
z(i−1) | z̃

)
qZ

(
z̃ | z(i−1)

) · l∏
j=1

det J (F (z̃j))

det J
(
F (z

(i−1)
j )

)
 .

7 Draw a uniformly distributed random number u ∼ U[0,1].
8 until proposed path x̃ is reactive and u ≤ α;
9 Accept proposed path z(i) = z̃,x(i) = x̃.

10 end

309

A.2 Gaussian Process Kernel310

A Gaussian process fits the parameters of a kernel k. As for the concrete choice of kernel, we have311

decided to use an RBF-Kernel with an additional White kernel that can capture variance in the312

individual points. It can be formulated as313

k(x, x′) = c · exp
(
−∥x− x

′∥22
2l2

)
+ n · 1x ̸=x′ , (8)

with learnable parameters l, c, n.314

A.3 Boltzmann Generator Training315

We trained a Boltzmann generator F on the molecule ALDP, consisting of multiple neural spline316

layers [Durkan et al., 2019] with a randomly masked coupling architecture between them. The317

coupling layers allow us to use arbitrarily complex neural networks, that do not have to be invertible318

while still allowing the overall function to be invertible [Dinh et al., 2017]. In this architecture, the319

neural network learns to predict 8 knots and the parameters of a quadratic rational spline function.320

Overall, we use 12 of these neural spline coupling layers each using a residual block with two layers321

with 256 hidden units. The performance of the trained Boltzmann generator is illustrated in Figure 5.322

To train the normalizing flow, we use the samples from the long-running MD simulation of ALDP323

and maximize the likelihood of the frames in latent space is. The goal of the loss is that the samples324

in latent space are distributed according to the base distribution. This is achieved by minimizing the325

forward KL divergence326

LKL (θ) ∝ −Ex∼X

[
log

(
pu

(
F−1
θ (x)

))
− log

(
det J

(
F−1
θ (x)

))]
. (9)

J represents the Jacobian and pu is the distribution of our latent space. F represents the invertible327

function of the Botlzmann generator that maps between the ground truth data distribution X and is328

parameterized by θ.329
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Figure 5: Histogram of states sampled by Boltzmann generator. This histogram shows the main
dihedral angles of 1 million ALDP conformations sampled from the base distribution and then
transported with the normalizing flow.

To represent the molecule, we rely on an internal coordinate representation for our flow, which330

describes the molecule’s state by the dihedral angles and bond lengths [Rezende et al., 2020] as this331

has shown good performance [Noé et al., 2019, Midgley et al., 2023b]. Since some of these variables332

are periodic, we use a mixture between a Gaussian and a uniform distribution as the base distribution.333

This mixture is only used for training; at inference, we change this to a standard normal distributed334

space by using the cumulative and inverse cumulative function to map uniform values from and to a335

normal distribution.336

A.4 Further Latent Space Investigation337

To ensure that the learned latent space is meaningful and can separate between different meta-stable338

states, we have reduced samples of the states C5 and αR to two dimensions, as seen in Figure 6.339

Already a PCA, a non-linear dimensionality reduction, is capable the separating the states by a single340

dimension. This motivates that a linear interpolation between configurations in latent space can341

produce feasible transition paths.

PCA1

PC
A 2

TSNE1

TS
NE

2

Figure 6: Separability of meta-stable States in latent space. Transforming molecule conformations
following the states C5 and αR into the latent space, and plotting them in 2D with PCA and TSNE.
The colors indicate the different conformations.

342
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B Determining the Timestep for TPS343

Finding out the transition time between two states is necessary to be able to determine a suitable344

timestep ∆t and the number of frames. While this task can be challenging for large systems, this is345

not a task we set out to solve. To determine meaningful values, we have estimated the density of the346

transition times as they occur in a long-running MD simulation, as can be seen in Figure 7. With347

this, we have decided to sample transition paths with a duration of 1.6ps. Similar studies can be348

performed to determine the transition times with high probability for transitions between αR and C7,349

where we decided to use a time of 320fs.
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Figure 7: Duration of ALDP transitions. This is the approximated density that shows the duration
of the transition between the states C5 and αR and their respective densities.
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