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Abstract
To align large language models (LLMs) and other
sequence-based models with human values, we
typically assume that human preferences can be
well represented using a “reward model”. We in-
fer the parameters of this reward model from data,
and then train our models to maximize reward.
Effective alignment with this approach relies on
a strong reward model, and reward modeling be-
comes increasingly important as the dominion of
deployed models grows. Yet in practice, we often
assume the existence of a particular reward model,
without regard to its potential shortcomings. In
this preliminary work, I survey several failure
modes of learned reward models, which may be
organized into three broad categories: model mis-
specification, ambiguous preferences, and reward
misgeneralization. Several avenues for future
work are identified. It is likely that I have missed
several points and related works; to that end, I
greatly appreciate your correspondence.

1. Introduction
The alignment of large language models (LLMs) (Bom-
masani et al., 2021; Brown et al., 2020; OpenAI, 2023) with
human needs and values typically involves the use of a “re-
ward model” to perform reinforcement learning (RL) from
human feedback (RLHF) (Christiano et al., 2017; Leike
et al., 2018). Although this has proven effective in training
language models that follow instruction and behave as help-
ful and harmless assistants (Ouyang et al., 2022; Bai et al.,
2022), numerous researchers have commented on certain
weaknesses of reward models, and the challenges involved
in using them to accurately represent human preferences
(Armstrong & Mindermann, 2018b; Pitis, 2019; Abel et al.,
2021; Ziegler et al., 2019; Freedman et al., 2021; Skalse
& Abate, 2022; Knox et al., 2022; Tien et al., 2023). This

1University of Toronto. Vector Institute. Toronto, Canada.
Correspondence to: <spitis@cs.toronto.edu>.

The Many Facets of Preference-based Learning, Workshop at the
International Conference on Machine Learning (ICML) 2023.

preliminary work surveys certain shortcomings of learned
reward models that have been identified by the author and
others. They may be broadly categorized as follows:

Model misspecification: one or more models in the re-
ward modeling process is misspecified, leading to inaccu-
rate reward inference.

Ambiguous preferences: the modeled preferences de-
pend on exogenous variables that are unknown or may
change between reward inference and policy deployment.

Reward misgeneralization (unidentifiability): the em-
pirical data is insufficient to determine the reward in such
a way that it generalizes out-of-distribution.

Many of the failure modes identified are hard problems. But
recognition is the first step toward finding solutions and
implementing adequate protections. We should strive to find
solutions to these problems before strong AI systems are
granted sufficient agency to pose a real threat to society.

I will start by outlining a general framework for reward
modeling in Section 2, and then proceed in Section 3 to
outline the several failure modes.

2. Reward Models
2.1. A birds-eye view of the reward modeling process

I propose the following high level framework:

Ground
Truth

Human
Preference

Reward
Model

Agent
Policy

f IRL RL

Reward Modeling

Here, the ground truth consists of the preferences that a
human principal with omniscience would possess regarding
the agent’s policy. We can understand the ground truth
as “objective” preferences. A noisy function f maps them
to the subjective (or in context) human preferences. The
human preferences are then used to train a reward model
using some reward learning algorithm IRL (for Inverse RL,
but see below). Finally, the learned reward model is used
to train an agent policy using algorithm RL, which is what
we typically think of as the RL problem. This paper is
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concerned only with the accuracy of the reward model and
not the final agent policy; i.e., only with the mapping IRL◦f
from ground truth preferences to reward model.

Traditionally, Inverse RL maps from policy to reward, but I
will lean on the Reward Rational Implicit Choice framework
(Jeon et al., 2020) and consider the broader view of mapping
arbitrary (possibly implicit) choices to rewards:

Choice
Set X Choice

Human
Preference

Grounded
Preference

Context C Model
Spec

Reward
Model

ψ

Inverse RL (IRL)

This figure decomposes the IRL arrow from the first figure
into three steps. First, given some context C, human pref-
erence is expressed by choosing one or more options from
a choice set X , which may be a set of trajectories, natural
language utterances, demonstrations, or any other modality
that provides signal about human preference (see Jeon et al.
(2020) for other possibilities). Second, the human choice is
grounded into a preference over trajectories using ground-
ing function ψ : x 7→ τ̃ , where x ∈ X , τ is a trajectory,
and ∼ marks a distribution so that τ̃ is a distribution over
trajectories. Finally, the parameters of a reward model are
optimized so as to represent the grounded preferences.

2.2. Three comments on reward modeling

C1. Rewards compress utility

Perhaps due to the historical prevalence of the Markov as-
sumption (Sutton & Barto, 2018), our field focuses a lot
on the notion of “reward” and very little on the notion of
“utility”. Abbeel & Ng (2004) offered this strong statement:

[T]he entire field of RL is founded on the presupposi-
tion that the reward function, rather than [preferences
or utility], is the most succinct, robust, and transferable
definition of [a] task. (emphasis mine)

(1)

The reward function maps states and actions to a scalar sig-
nal,R : S×A → R, allowing value (a model of utility) to be
determined as the cumulative sum of future rewards (Bowl-
ing et al., 2022). This depends critically on the assumption
that the state is Markovian: it captures all information nec-
essary to determine future preference. This conditional
independence assumption allows us to determine values for
a very large space (all possible futures) using a relatively
small space (S ×A) (cf. Pitis et al. (2022)), thereby offer-
ing significant compression of utility, and enabling efficient
dynamic programming algorithms (Paster et al., 2022).

We should be wary, however, of treating rewards as primi-
tive objects (i.e., as the definition of a task, as in (1)), simply

because most work in RL begins by assuming the existence
of a Markovian reward function. Reward specification is dif-
ficult (Shah et al., 2022) because individual rewards, on their
own, carry little meaning. I argue that step-wise rewards
are best understood as a difference of utilities (Pitis, 2019),
but this only applies under certain assumptions that may not
always be tenable (Pitis, 2023). For example, ff the tasks
we care about are not Markovian in the state, Markovian
rewards are no longer sufficient (Abel et al., 2021).

There has been a trend in recent work toward defining a
trajectory-wise reward function/model R : τ 7→ r (Ziegler
et al., 2019; Jeon et al., 2020; Stiennon et al., 2020; Ouyang
et al., 2022). Although this diverges from the traditional
step-wise definition, I believe this is wholly appropriate un-
der a broader view of reward, not as a step-wise function,
but as a “view” or abstraction of utility. What I mean by this
will become more clear below, particularly in Subsection
3.2, but the point I want to make here is that utility can be
decomposed into several reward components. These com-
ponents may be causally related in various ways (Barreto
et al., 2017; Haarnoja et al., 2018; Icarte et al., 2018; Colas
et al., 2019). The accuracy of this decomposition, together
with the causal independencies it leverages, determines the
succinctness, robustness, and transferability of rewards (1).

C2. Utility represents in-context, rational preference

Utilities (hence rewards) are numerical representations of
a rational preference relation (≻ / ⪰) over some set of
alternatives O given some context C.

Rational can mean different things, but the weakest notions
of rationality typically require preferences to be asymmetric
(x ≻ y ⇒ y ̸≻ x) and transitive (x ⪰ y, y ⪰ z ⇒ x ⪰ z).
Together, these imply the existence of an ordinal utility
representation, U : O → R, where U(x) > U(y) ⇔ x ≻
y. With some additional consistency assumptions about
rationality, we can obtain a cardinal utility function, where
utility differences are meaningful (Pitis, 2019).

Given omniscience (infinite compute / time for consider-
ation), we imagine that preferences could be defined in a
context-free manner, over the space of exhaustively spec-
ified alternatives, Ω. This is, of course, impractical, and
so preferences are usually restricted to a more manageable
space O, with everything left unspecified in some context C,
so that Ω = O×C. Sometimes we extract an additional con-
ditioning variable from the context, g ∈ G, which represents
a particular goal, task or skill, and may be specified via a par-
tial trajectory (prompt), explicit goal (instruction), or latent
conditioning variable (adapter), so that Ω = O × G × C.

Further to comment C1, we can obtain rewards over some
sub-components of O (e.g. state-action (s, a) is a com-
ponent of trajectory τ ) by decomposing utility using a set
of causal mechanisms (reward components). To achieve
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compression, we exploit (possibly local) conditional inde-
pendencies between reward components (Pitis et al., 2020).

We can summarize this as follows:

Preferences
(over Ω)

In-context Pref.
(over O)

Causal
Reward Model

Utility
(over Ω)

In-context Utility
(over O) Rewards

C

C3. Preferences may be represented numerically in
many ways, one way, or none at all

Let Ω = {x, y}, and consider the preference relation where
x ≻ y. Then any pair of real numbers a, b ∈ R with
a > b is a valid utility representation of ≻ so long as a > b.
Alternatively, let Ω = {x, y, z} and consider the preference
relation where x ≻ y, y ≻ z, z ≻ x. Then no triplet of real
numbers a, b, c ∈ R is a valid utility representation of ≻.

While simplistic, these exemplify two general solution
classes to the preference representation problem that we
must be wary of. Since different rewards may yield equiva-
lent preferences, we should be careful about the statements
we make regarding rewards, as well as how we integrate
different information sources. See Skalse et al. (2023).

We should be particularly wary of cases where rational
preferences fail to possess a reward representation. For
instance, the composition of in-context preferences with
respect to two objectives, each defined with respect to the
same alternatives O and context C, may produce preferences
that appear irrational with respect to O, even though they
are rational with respect to some expanded O′ ⊃ O (Pitis,
2023).

3. Failure Modes of Reward Models
Having contextualized the meaning and purpose of rewards
and reward modeling in the previous Section, let us now
enumerate several potential failures that may arise.

3.1. Model misspecification

At each step of the reward modeling process presented in
Subsection 2.1, there are one or more models involved. A
misspecification of any of these models gives rise to poten-
tially bad outcomes. Let us examine in each turn.

M1. Misspecified human preferences and choice rule

In C2-C3, we assumed that utility (and hence rewards)
should be “rational,” which humans are evidently not: our
preferences and choice behavior deviate, often systemati-
cally, from what rationality would prescribe (Simon, 1972;
Tversky & Kahneman, 1986). Accurate reward inference
requires both prescriptive and descriptive modeling. We

would like our agents to to correct for human failures in
rationality, which we can do by prescribing a rational re-
ward model. But to infer its parameters, we need a descrip-
tive model of how human choice relates to the underlying
“ground truth” preferences we are trying to model; using
the wrong model can lead to policies that perform no better
than chance, or worse (Armstrong & Mindermann, 2018a;
Laidlaw & Dragan, 2022; Skalse & Abate, 2022).

As a first approximation, which can help account for the
empirical noise we observe in human preferences, we can
assert that humans operate according to a “Boltzmann ra-
tionality” (Ramachandran & Amir, 2007) choice rule, but
several recent works have suggested that richer models are
needed to accurately capture human behavior and have ex-
plored ways of learning the human model (Shah et al., 2019;
Knox et al., 2022; Hong et al., 2022; Ghosal et al., 2022).

To summarize, if we understand human choice behavior
as a noisy representation of an underlying ground truth
(Condorcet, 1785; Pitis & Zhang, 2020), an accurate model
of the noisy channel is essential for aligning the learned
reward with ground truth preferences:

Ground
Truth

Human
Preference

Reward
Model

Agent
Policy

f IRL RL

Rational Boundedly
Rational

Rational Boundedly
Rational

M2. Misspecified choice set X or grounding function ψ

Freedman et al. (2021) consider the risks of making the
incorrect assumption about the choice set X from which
human choices are made during IRL. They identify sev-
eral ways in which the choice set can be misaligned, and
show that in the worst case—when the robot incorrectly
assumes that X contains certainly alternatives that are
actually preferred to the empirically observed choices—
misspecification can lead to significant regret.

Recall that IRL applies grounding function ψ to map ob-
served human choices to distributions over the set of al-
ternatives O. For example, if a, b ∈ X , and a choice of
a is observed, we assume that the human assigns higher
utility to the distribution ψ(a) of alternatives in O than the
distribution ψ(b). To my present knowledge, this type of
misspecification has not been explored in the literature.

M3. Misspecified reward model

Even if all other models are correct, and the reward model
is well optimized during IRL, an underexpressive reward
model can lead to incorrect inferences about preferences.
The most commonly used form of reward model assumes
a fixed discount factor γ and only infers the parameters of
function R : S ×A → R (Ng & Russell, 2000; Christiano
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et al., 2017). Christiano et al. (2017) (footnote 3) notes that
it would be reasonable to adopt a reward model that uses ex-
plicit or inferred discounting, but to my present knowledge,
nobody actually does this (the closest within RL is perhaps
Schultheis et al. (2022)). But prior work has shown that
a reward model using fixed γ cannot represent all rational
preferences for a reasonably specific definition of rationality
(White, 2017; Pitis, 2019). Pitis (2019) shows that although
IRL with fixed γ can recover a reward function that correctly
implies the optimal policy when the RL process is perfect,
it may incorrectly predict preferences with respect to sub-
optimal policies. This may be problematic, as in practical
problems, only suboptimal policies are achievable.

A closely related modeling failure has to do with feature
selection for reward models. Non-Markovian rewards are
the prime example of this: if the features do not contain
all relevant historical information, so that the true reward
function is non-Markovian with respect to state features,
IRL will obviously fail to produce a strong reward function
(Abel et al., 2021). If LLM reward models condition on a
long enough context, this is not likely to be a large problem.

3.2. Ambiguous preferences

As noted in C2, asymmetry (x ≻ y ⇒ y ̸≻ x) is a basic
requirements for preference ≻. Yet, particularly when the
space of alternatives O is underspecified, ≻ may depend
critically on certain unstable elements of the context C—if
C changes, we may observe preference reversal (see Pitis
(2019), Section 4.2). Humans providing preference feed-
back may be so uncertain about C (they might ask, “should
we assume c when choosing?”) that they cannot express
a clear preference one way or the other (see Ziegler et al.
(2019), Section 4.3). Below are three ways this type of ambi-
guity might arise, even if all models are correctly specified.

A1. Future value

Christiano et al. (2017) and derivative works (Stiennon et al.,
2020; Ziegler et al., 2019; Ouyang et al., 2022) use trajec-
tory segments as the objects of preferences O, leaving future
behaviors to the context C. Even if their model accurate re-
flects preferences about trajectory segments in-distribution,
a change in assumed background policy or dynamics could
change the future value of actions within the observed trajec-
tory segments. For example, if it assumed that an LLM will
guard private information about the user outside a given tra-
jectory segment, then segments where private information is
obtained will not be penalized. If this background assump-
tion changes, so that private information collected during
a trajectory segment could be leaked in the future, such
segments should be less preferred. To account for this, the
assumptions made by RLHF—or RLAIF (Bai et al., 2022)—
feedback providers should be informed or elucidated, and

the reward model should contain some information about
the future; e.g., a regret-based model (Knox et al., 2022).

A2. Resolved stochasticity and counterfactual outcomes

As noted in Pitis (2019) (Section 4.2), to obtain asymmetric
preferences over trajectories, we must make assumptions
about how we treat resolved stochasticity, which is why in
Pitis (2019) I argue that preferences should be expressed
with respect to state-policy pairs, which do not involved any
unresolved stochasticity (cf. Kreps & Porteus (1978)). As
an example, suppose we are expressing preferences over
Texas Hold’em trajectories. Standard reward modeling is
strictly outcome based, and would prefer a trajectory where
72o calls a significant bet preflop and wins, to one where AA
makes a significant bet preflop and loses. But very rational
humans (myself included) would express preference for the
latter in absence of an explicit instruction to ignore counter-
factual outcomes. While providing human feedback on tra-
jectories involving LLM tool usage, the author has observed
similar preference ambiguity due to resolved stochasticity.
Should trajectories where an the LLM takes a risky action
that ends up having the correct outcomes be preferred? Or
should the potentially bad counterfactual outcomes be in-
cluded? These questions have not been explored, and it is
unclear what impact this has on reward modeling.

A3. Base rates and background assumptions

More broadly, any shift in base rates or background assump-
tions can cause preference reversal. As a straightforward
example: given prompt p, Alice may prefer LLM comple-
tion a to LLM completion b, whereas Bob may prefer LLM
completion b to LLM completion a. Thus, a reward model
learned from Bob may not be suitable for Alice. But similar
differences may arise from subtler differences in context,
such as an LLM’s capability. For example, in context of a
debate, we might prefer an LLM to give highly opinionated
responses, even if that is not the general preference for a
chat model. To combat this problem, we should aim to give
human annotators as much instruction as possible in order
to disambiguate the context C, and consider collecting anno-
tations for a variety of different tasks from G (see C2). The
latter may be necessary to determine the causal mechanisms
responsible for human preference (Arjovsky et al., 2019).

3.3. Reward misgeneralization (unidentifiability

Even if all models are correctly specified, and the context C
is held fixed, so that a policy optimizing a learned reward
model correctly represents the ground truth preference on
the data distribution it was trained on, we may still find that
learned rewards generalize poorly when that data distribu-
tion changes. This is known as reward misgeneralization
(Di Langosco et al., 2022), and may arise for a few reasons.
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U1. Equivalence Classes of Reward Functions

As noted in C3, there may be multiple solutions to the
reward inference problem, whether we are adopting a de-
terministic choice rule (Ng & Russell, 2000) or, as is the
preferred approach in Inverse RL, a stochastic one (Fu et al.,
2018). This is referred to as the unidentifiability problem in
reward modeling (Kim et al., 2021). Unfortunately, while all
solutions may be valid for purposes of imitating behavior in-
distribution, they may not generalize well out-of-distribution
(Tien et al., 2023). Cao et al. (2021) provide an analysis
of this problem and show that under certain conditions,
observing two experts acting under different environment
dynamics or discount factors is sufficient for identification.
This solution might be applied to language model reward
inference by using the system prompt to change how con-
cise the LLM’s responses are (changing γ) or by finetuning
a chat model to two different users (changing dynamics).

U2. Limitations of Training Data

Another failure mode is caused by imbalances in or lim-
ited coverage of the training data used to learn the reward
model. When a reward model is trained on data from a
specific distribution, it may perform poorly when exposed
to examples that are out-of-distribution (OOD). This effect
is most visible in RLHF-trained language models that do
not have sufficient KL regularization, so that RLHF drives
them OOD (Ziegler et al., 2019). It has also been observed
in the traditional RL setting, where reward functions learned
via RLHF that are useful for training the current online
agent fail to be useful for training a new agent (McKinney
et al., 2022). This failure mode is well recognized and has
at least two solutions that are currently used in practice:
the KL regularization mentioned above (Gaon & Brafman,
2020), and online RLHF training / iterative development
and deployment (Leike et al., 2018; Brundage et al., 2022).

U3. Consistency and Strength of Preference

When we are learning certain reward components indepen-
dently, we may incorrectly gauge the relative strength of
preference, leading to poor predictions about preferences
between their combinations, even if the components are in-
dependent. Although consistency correlates with strength
of preference (Alós-Ferrer & Garagnani, 2021), strength of
preference cannot be determined from consistency alone.
Consider the following example. It is perfectly to rational to
(a) strongly prefer steak to salad, yet only choose to eat steak
2/3 of the time, and (b) weakly prefer watching TV before
doing the dishes to doing the dishes before watching TV,
yet consistently choose to watch TV before doing the dishes.
But if standard RLHF is only presented with comparisons
(a) and (b) separately, then it will learn strong preference for
(b) and weak preference for (a), since it equates consistency
with strength. But suppose we concatenate the trajectory

segments and compare the combination (steak, dishes then
TV) to (salad, TV then dishes). It is natural to think that
(steak, dishes then TV) will preferred approximately 2/3 of
the time, since the strong preference dominates. But stan-
dard RLHF (Christiano et al., 2017) would have us predict
that (salad, TV and dishes) is consistently preferred. To
resolve this, we need not only a more expressive model
(M1), but also a data distribution that allows us to infer the
relative strength of preference, by including bundles like
(steak, dishes then TV) in the comparison queries.

4. Conclusion
In this survey, I have provided an opinionated view of reward
modeling, and outlined several ways in which it might fail.
Although some of these failure modes have received, and
are continuing to receive, significant attention (M1, U1,
U2), others have received little to no attention (M3, A1-
A3, U3). Not all failure modes are equally problematic.
For instance, I would not consider a misspecified reward
model (M3) to be a big problem for LLMs, because the
long context length allows for reward functions that are
highly history dependent (of course, this works against C1,
and may compromise generalizability). But this view may
change, depending on future approaches to LLM rewards.
On the other hand, I consider A1-A3 to be very important
problems. Although ambiguity of preference has been noted
as a challenge of RLHF (Ziegler et al., 2019; Gao et al.,
2022), to my knowledge little has been done to address
it. Despite the attention it has received, primarily from
Anca Dragan’s group, I believe much more work is needed
with regards to descriptive modeling of human behavior
(M1-M2). As noted in the abstract, this work is largely
preliminary, and I welcome any feedback or correspondence
from interested parties.
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