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IF-Garments: Reconstructing Your Intersection-Free
Multi-Layered Garments from Monocular Videos

Anonymous Authors

Figure 1: We propose IF-Garments to reconstruct Intersection-Free Garments from monocular videos. The template-free
garment extraction shows great generalization while the physics-aware correction robustly eliminates inter-layer penetration.

ABSTRACT
Reconstructing garments from monocular videos has attracted con-
siderable attention as it provides a convenient and low-cost solu-
tion for clothing digitization. In reality, people wear clothing with
countless variations and multiple layers. Existing studies attempt
to extract garments from a single video. They either behave poorly
in generalization due to reliance on limited clothing templates or
struggle to handle the intersections of multi-layered clothing lead-
ing to the lack of physical plausibility. Besides, there are inevitable
and undetectable overlaps for a single video that hinder researchers
from modeling complete and intersection-free multi-layered cloth-
ing. To address the above limitations, in this paper, we propose a
novel method to reconstruct multi-layered clothing from multiple
monocular videos sequentially, which surpasses existing work in
generalization and robustness against penetration. For each video,
neural fields are employed to implicitly represent the clothed body,
from which the meshes with frame-consistent structures are ex-
plicitly extracted. Next, we implement a template-free method for
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extracting a single garment by back-projecting the image segmen-
tation labels of different frames onto these meshes. In this way,
multiple garments can be obtained from these monocular videos
and then aligned to form the whole outfit. However, intersection
always occurs due to overlapping deformation in the real world
and perceptual errors for monocular videos. To this end, we innova-
tively introduce a physics-aware module that combines neural fields
with a position-based simulation framework to fine-tune the pen-
etrating vertices of garments, ensuring robustly intersection-free.
Additionally, we collect a mini dataset with fashionable garments
to evaluate the quality of clothing reconstruction comprehensively.
The code and data will be open-sourced if this work is accepted.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Com-
puting methodologies→ Shape modeling.

KEYWORDS
Clothing reconstruction, Clothing simulation

1 INTRODUCTION
Digitalization of clothing holds significant importance in livestream
sales, virtual try-ons, and entertainment. Recent work[18, 24, 45]
has shown progress in extracting garments from monocular images
or videos, which becomes highly convenient and accessible for
general commerce. In daily life, people wear multiple layers of
garments varying in different styles, which indeed poses significant
challenges for high-quality reconstruction.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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We start the discussion by reconstructing a single garment with
amonocular image or video, which can be categorized into template-
based and template-free approaches. Template-based approaches[12,
15, 24, 29, 45, 48, 51] choose and deform a pre-designed garment tem-
plate to fit observations. They suffer from a limited set of templates,
lacking generalization. Template-free methods[17, 18, 53] first re-
construct the 3D clothed body, then separate the clothing from the
body using 2D segmentation of garments. To obtain the clothed
body, one straightforward idea is to use scanning devices[31, 53, 56],
which needs costly manual post-processing. With the parametric
human body models[33, 43], some studies[4, 11, 17, 18, 23] consider
clothing as the offset of body vertices, which is feasible for most
garments as they usually adhere to the human body in rest pose.
For multi-layered outfits, existing work aims to extract multiple
pieces of clothing from a single monocular image or video simulta-
neously. They either treat all clothing as a single entity[17, 18] or
support only two pieces of clothing[24, 29, 45, 51]. Those[2, 15, 39]
attempting to overcome three or more layers of clothing suffer from
distortions caused by overlap regarding inner garments. Besides,
they suffer from occlusion in a single video so the inner layer of
outfits is incomplete or in the wrong type.

Due to the inevitable occlusion, it is an ill-posed problem to
recover multi-layered clothing from a single video, but is possible
to extract an uncovered garment. Further, multiple garments can
be obtained from corresponding videos and then aligned to form a
multi-layered outfit. Therefore, we propose a novel methodology
to sequentially reconstruct each layer of clothing from multiple
monocular videos. As shown in Figure 2, we ask the actor to re-
move occlusion for the target garment in each video and rotate
slowly to provide approximate multi-view information Our full
approach is divided into three parts. First, a neural Signed Dis-
tance Field (SDF)[23, 42, 50] is leveraged to represent the clothed
body and extract the meshes with consistent topology via march-
ing cube[34]. Second, a template-free approach is implemented by
back-projecting image segmentation labels of the garment from dif-
ferent frames onto these meshes’ vertices. The labeled vertices are
then gathered to form the garment, resulting in multiple garments
from corresponding videos. Finally, it is crucial to combine these
garments into a multi-layered outfit. However, it indeed introduces
intersections due to the following reasons: i) in the real world, the
movement and overlap of clothing can cause deformation; ii) for
reconstructing, results obtained from different videos inevitably
contain misaligned errors due to monocular depth ambiguity. To ro-
bustly eliminate inter-layer penetration, a physics-aware module is
proposed with a novel pipeline to fine-tune garments from the outer
to the inner. Concretely, given an SDF of the clothed body of the in-
ner garment layer, we query the signed distance of the outer layer’s
vertices and push out those vertices with negative signs along the
intersecting direction. To further ensure physically plausible defor-
mation, the SDF-based penetration handling is implemented in a
position-based simulation framework[36] with carefully devised
physics constraints. In addition, existing datasets[4, 18, 23] have
limited clothing variety, making it difficult to adequately evaluate
generalization and also struggle to meet the requirements for multi-
layered clothing reconstruction. Thus, we create mini-IFG, a small
dataset with 23 videos collected from both physics simulation and
the real world for comprehensive evaluation.

Table 1: Comparison among ours and existing works. Our
method supports multi-layer clothing reconstruction with-
out intersection and is independent of garment templates.

Research Layers Template-free Intersection-free

PERGAMO[12] 1 ✗ -
SCARF[18] 1 ✓ -
DELTA[17] 1 ✓ -
REC-MV[45] 2 ✗ ✗

BCNet[24] 2 ✗ ✗

Li et al.[29] 2 ✗ ✗

MulayCap[51] 2 ✗ ✓

SMPLict[15] ≥3 ✗ ✗

ClothWild[39] ≥3 ✗ ✗

LGN[2] ≥3 ✗ ✓

Ours ≥3 ✓ ✓

Briefly, this paper represents the first attempt to reconstruct
intersection-free and complete multi-layered clothing from several
monocular videos. In Table 1, we make a comparison of studies re-
lated to clothing reconstruction from monocular images or videos.
Our method surpasses existing work in terms of the number of
clothing layers, generalization, and robustness against penetration.
Experiments demonstrate that our method can confidently recon-
struct challenging garments and robustly eliminate intersections.

The contributions of this paper can be summarized as follows:
• A template-free approach with great generalization for ex-
tracting a complete garment.

• A physics-aware module ensuring multi-layered clothing
intersection-free with excellent robustness and quality.

• A small dataset containing 23 self-rotating videos of actors
wearing fashionable garments.

2 RELATEDWORK
We briefly review work related to recovering clothing from images
or videos from the following three aspects.

Clothed Body Reconstruction. Some statistical human body mod-
els have been proposed by fitting a function with shape and pose to
real 3D scans[5, 33, 41, 43]. It has made great progress [26, 27, 30,
52, 57, 58] in predicting body parameters from images and videos,
which lays the foundation for clothed body reconstruction. PIFu[46]
and PIFuHD[47] have pioneered the extraction of pixel-aligned
spatial features from images and mapping them to implicit fields
to reconstruct people in arbitrary poses and clothing. Follow-up
methods[19–21, 54, 55, 59] then introduce parametric models as
3D features to condition implicit fields. These methods all require
expensive 3D scans for supervision. Unlike single images, videos
contain richer perspectives. Some studies[3, 4, 16, 23] treat cloth-
ing as offsets of body vertices. They establish a clothed body in
canonical space based on parameterized models[33, 43], then learn
mappings from the canonical space to the posed space of video
frames to recover clothing. In self-rotating videos, clothing has
minimal deformation. Thus, we follow SelfRecon[23] to learn neu-
ral fields from self-rotating videos to obtain the clothed body.
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Figure 2: Videos with the corresponding uncovered garment.
The target garment is marked with a green rectangle.

Garments Extraction. Researchers have already attempted to con-
struct various clothing templates[8, 11, 24, 39, 51, 60]. Subsequent
works fine-tune these templates to match observations. MGN[11]
utilizes a large-scale clothing dataset to develop a per-category
parametric model. BCNet[24] generates a rough template, which is
subsequently enhanced with surface details through a displacement
network. REC-MV[45] simultaneously optimizes the explicit feature
curves and the implicit field of the garments, resulting in superior
dynamic garment surfaces. However, the limited templates are in-
sufficient to cover the vast diversity of clothing. Template-free meth-
ods extract garments from the clothed body, which is achieved by
inverse mapping 2D segmentation to the 3D space. SCARF[18] rep-
resents the clothing using NeRF[38], which results in high-quality
rendering but low-quality geometry. Similar to our template-free
method, Xiang et al.[53] use 140 synchronized cameras to extract
high-fidelity clothing. In contrast, our back-projection scheme lever-
ages the geometric consistency of meshes across different frames,
thus requiring only one camera.

Multi-Layered Clothing Reconstruction. Some studies learn a gen-
erative clothing model with neural distance field[13, 37, 42] from a
3D clothing dataset[15, 39]. They can decode each garment from
the latent space and align them but lack consideration for penetra-
tion. LGN[2] leverages SDF[42] to propose a garment indication
field to handle penetration but overlooks clothing deformation. In
comparison, we implement a physics-aware module that combines
SDF and physics constraints to eliminate inter-layer penetration
while preserving natural non-rigid deformations.

3 METHODOLOGY
In Figure 3, we present an overview of our method, IF-Garments,
which aims to reconstruct intersection-free multi-layered clothing
from monocular videos faithfully. Our key insight lies in resource-
fully leveraging the SDF’s geometric and physical characteristics,
employed in clothing extraction and inter-layer penetration cor-
rection respectively. Specifically, we first follow SelfRecon[23] to
learn a neural SDF in canonical space to reconstruct the clothed
body, which can be mapped to posed space by a pose-conditioned
deformation field (Section 3.1). Next, we back-project the segmen-
tation image labels from different viewpoints onto the vertices of
the corresponding posed mesh to extract garments (Section 3.2).
Finally, all of these garments are aligned in canonical space, and
the physics-aware module solves the intersections between them
(Section 3.3).

3.1 Clothed Body Reconstruction
Given a self-rotating video with𝑁 frames, we adopt VideoAvatar[4]
to generate the camera intrinsic 𝜋 , and SMPL[33] parameters of
the initial shape 𝛽 , and per-frame’s pose {𝜃𝑖 |𝑖 ∈ 1, . . . , 𝑁 } and
translation {𝑡𝑖 |𝑖 ∈ 1, . . . , 𝑁 }.

Canonical Representation. The clothed body S𝜂 in canonical
space with an A-pose is represented as the zero-level-set of an
neural SDF[42], which is parametrized by a Multi-Layer Perceptron
(MLP) 𝜙 with learnable weights 𝜂:

S𝜂 = {x ∈ R3 |𝜙 (x;𝜂) = 0}, (1)

where the mesh of the clothed bodyM is extracted by marching
cube[34].

Deformation Field. To map the clothed body in canonical space
to posed space to match supervision from the video, we decom-
pose the deformation field D into skinning transformation W and
non-rigid deformation 𝑑 . W ensures that the garment’s surface
deforms with the body’s large-scale motions[20], which takes 𝜃𝑖 as
the parameter and is pre-computed as described in [23]. An MLP 𝑑
with learnable weights𝜓 models the fine-grained changes. In 𝑖-th
frame, 𝑑 is conditioned by an optimizable h𝑖 variable to apply defor-
mations to points in the canonical space. By compositingW and 𝑑 ,
we get the final deformation field D = W(𝑑 (·). It takes h𝑖 and 𝜃𝑖
as input and transforms canonical points to the 𝑖-th frame posed
space. We train S and D in the same manner as SelfRecon[23].

For brevity of description, we use D𝑖 to denote 𝑖-th frame’s
deformation field, S𝑖 for 𝑖-th frame’s zero-level-set D𝑖 (S𝜂 ), and
M𝑖 for the mesh extracted from S𝑖 via marching cube[34].

3.2 Template-Free Garment Extraction
In monocular self-rotating videos, the actor rotates slowly, provid-
ing approximate multi-view information about the clothing. Thanks
to the deformation field discussed in Section 3.1, we can obtain
clothed body mesh M𝑖 in posed space. Especially, M and M𝑖 in
all frames share the same topology. Inspired by this, we propose a
template-free clothing extraction method by back-projecting the
garment’s segmentation labels of video frames onto corresponding
M𝑖 . These labels are shared across all of the canonical and posed
meshes and aggregate to form the clothing G (see Figure 3(a)).

Back-Projection. Back-projection is realized by projecting 3D
vertices forward onto 2D pixels to assign garment labels to M𝑖 .
The parameters estimated from the video regarding 𝜋 , 𝜃𝑖 , and 𝑡𝑖 are
referenced in the camera coordinate[4]. For 𝑖-th frame, we obtain
M′

𝑖
by applying the deformation field and translation toM:

M
′
𝑖 = D𝑖 (S𝜂 ) + 𝑡𝑖 = M𝑖 + 𝑡𝑖 . (2)

Given a vertex 𝑃 = [𝑋,𝑌, 𝑍 ]𝑇 ∈ M′
𝑖
, we render it onto the image

plane as 𝑝 = [𝑢, 𝑣] by the perspective projection:

𝜆


𝑢

𝑣

1

 = 𝐾𝑃 =


𝛼𝑢 0 𝑢0
0 𝛼𝑣 𝑣0
0 0 1



𝑋

𝑌

𝑍

 , (3)

where 𝜆 is the depth factor and equal to 𝑍 , [𝑢, 𝑣] are the 2D po-
sition in the image, [𝑢0, 𝑣0] and [𝛼𝑢 , 𝛼𝑣] are the center and focal
length of the camera intrinsic 𝜋 respectively. However, Equation (3)
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(a) Extracting an unoccluded garment from a monocular video.

(b) The physics-aware module to obtain intersection-free clothing.

Figure 3: Overview of IF-Garments. (a) Following SelfRecon[23], we employ neural fields to reconstruct the clothed body
from a monocular video, which can be mapped into the posed space by the deformation field. The garment is extracted by
back-projecting the segmentation labels to the posed clothed body’s vertices from multiple viewpoints. (b) The physics-aware
module involves a novel pipeline to eliminate penetration from outer to inner in canonical space, accomplished with carefully
designed constraints of 𝑪str, 𝑪coll, and 𝑪air.

ignores the visibility of vertices, leading to multiple vertices being
projected onto the same pixel. To address this issue, we utilize the
z-buffer algorithm from OpenGL[49], where the visibility of ver-
tices is determined based on 𝜆. Then, visible vertices will acquire
the corresponding label on the segmentation image. Finally, G is
composed of these labeled vertices. To mitigate the noise caused by
segmentation errors, post-processing is employed, including iso-
lated elements removal, hole filling, and Laplacian smoothing[14].
Depending on the complexity of the garment, we typically back-
project 4 to 8 frames and fuse their labels.

3.3 Physics-aware Module
The clothed body in canonical space undergoes no rigid transfor-
mation, where all garments are aligned initially. However, pene-
tration is inevitable due to the following reasons: i) the way cloth-
ing is worn varies slightly in each video to eliminate occlusion,
and each additional garment will cause deformation to existing
ones; b) perceptual errors arise due to the depth ambiguity of
monocular videos. It poses a significant challenge for solving such
penetration due to the lack of ground truth. Inspired by collision

detection[6, 22, 35] in computer graphics, the neural SDF is em-
ployed to handle intersections. To ensure physical plausibility, we
conscientiously design 3 physics constraints in a position-based
simulation framework[7, 36, 40]. Due to the undetectable overlap,
it is impossible to model multi-layered clothing that completely
adheres to the real world. However, we strive to address severe
penetration through deformation as physically as possible.

3.3.1 Simulation Framework. Following [36], we establish physics
constraints between vertices and solve them with the Gauss-Seidel
method. In each time step, the positions of the vertices are pro-
jected onto each constraint manifold along the constraint gradient.
Due to space limitations, the solving pipeline can be found in the
supplementary materials. Here, we primarily discuss the physics
constraints devised in our work.

Given a vertex p and the vertex p̄ forming an edge with p, we
define the stretch constraint as:

𝑪str (p, p̄) =∥ p − p̄ ∥ −𝐿, (4)
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where ∥ · ∥ means Euclidean norm, and 𝐿 is the rest length. For a
garment mesh G, 𝑪str accounts for the non-rigid deformation and
is applied to all vertices.

3.3.2 SDF-Based Collision Detection. We query the penetration
status of a point in the SDF, including the signed distance (penetra-
tion depth) and the gradient (penetration direction), which provides
robustness for handling intersections. Given a query point p and
an SDF 𝜙 , we define the collision constraint as:

𝑪coll (p) = 𝜙 (p) − 𝛼 ≥ 0, (5)

where 𝛼 is a small positive value to enhance robustness. When
𝑪coll (p) is not satisfied, penetration occurs. Then p is projected to
p′:

p′ = p − ∇𝜙 (p)𝜙 (p). (6)

3.3.3 Multi-Layerd Intersection Handling. The clothing with 𝑁
layers of garments are aligned initially in canonical space and inter-
sections may occur between any two layers. Fortunately, we have
obtained the SDF 𝜙 for each clothed body in canonical space as
described in Section 3.1, allowing us to leverage the SDF of a layer
to correct penetrating vertices of other layer’s mesh according to
Equation (5) and Equation (6). Considering real-world scenarios,
the innermost layer of clothing is usually closely fitted to the body,
which is suitable to serve as the reference, hence penetration cor-
rection is performed from the outermost layer towards the inner
layers. Since the goal is to eliminate penetration between garments,
to avoid the influence of other parts of the clothed body, we apply
a mask R ∈ R to the SDF, which is determined by the bounding
box X ∈ R2×3 of the corresponding garment extracted from this
clothed body. If a query point is not in X, we discard its collision
constraint event it is penetrated. However, it is insufficient to rely
solely on SDF to eliminate penetration. For a three-layer clothing,
we first eliminate the penetration of the mesh of layer 3 based on
the SDFs of layers 1 and 2. When handling the penetration of layer
2 based on the SDF of layer 1, penetration may occur again between
layers 2 and 3. We discuss this further in Section 4.3.1. To address
this problem, we devise the air constraint 𝑪air to keep the gap be-
tween two adjacent intersection-free layers (represented as G and
Ĝ). Given p ∈ G, we have:

𝑪air (p, Ĝ) = 𝑪str (p, q̂)
q̂ = argmin

q∈ Ĝ
| |p − q| |, (7)

where p and q̂ are uniquely corresponding and pre-computed at
the beginning of the simulation.

The complete procedure is outlined in Algorithm 1, where 𝑁 is
the number of layers, G𝑖 is the garment mesh of 𝑖-th layer, and 𝜙 𝑗

is the clothed body SDF of 𝑗-th layer. Lines 2 to 7 correct the 𝑖-th
layer, while lines 8 to 12 are implemented to ascertain that a gap is
maintained between (𝑖 + 1)-th layer and 𝑖-th layer.

4 EXPERIMENTS
Datasets. People Snapshot[4] is a widely recognized dataset in-

cluding monocular self-rotating videos[18, 23, 29, 45]. However,
it only contains a few types of tight-fitting clothing, which is in-
sufficient to support a comprehensive evaluation. Therefore, we

Algorithm 1 Handling intersections from outside to inside.

1: for 𝑖 = 𝑁, 𝑁 − 1, . . . , 2 do
2: for all vertices p ∈ G𝑖 do
3: for 𝑗 = 1, 2 . . . , 𝑖 − 1 do
4: solve collision R 𝑗𝑪𝑐𝑜𝑙𝑙 (p, 𝜙 𝑗 ) ⊲ Equation (5)
5: end for
6: solve stretch 𝑪𝑠𝑡𝑟 (p, p̄) ⊲ Equation (4)
7: end for
8: if 𝑖 < 𝑁 then
9: for all vertices p ∈ G𝑖+1 do
10: solve air 𝑪𝑎𝑖𝑟 (p,G𝑖 ) ⊲ Equation (7)
11: end for
12: end if
13: end for

create mini-IFG that involves self-captured sequences (mini-IFG-
real) and synthetic data (mini-IFG-sim) in a popular clothing design
software, Style3D[1]. mini-IFG consists of 23 videos of 8 subjects
with fashionable clothing. In each video, the actor rotates slowly in
front of the camera while ensuring an uncovered garment as the
target. Such measures allow for the evaluation of reconstructing
both single-garment and multi-layered clothing.

Baselines. We compare with state-of-the-art (SOTA) works in-
cluding video-based methods of SCARF[18] and REC-MV[45] and
image-based of BCNet[24], SMPLicit[15], and ClothWild[39]. Since
REC-MV doesn’t release the model for detecting garment feature
lines, we only reproduce People Snapshot for it.

Metrics. For quantitative comparison, we first align the estimated
mesh to ground truth (synthetic data) by Iterative Closest Point
(ICP) and then compute the Chamfer Distance (CD)[37] between
them, where lower is better.

4.1 Single Garment Recontruction
Here, we aim to compare our approach with SOTA methods on the
accuracy and generalization in single garment reconstruction. To
avoid the impact of incomplete observations, we only reconstruct
a single uncovered garment in each video and obtain the result of
the first frame. For image-based methods[15, 24, 39], we input the
first frame of the video. Similarly, for video-based methods[18, 45],
we also compute the results of the first frame.

Figure 4: Qualitative comparison on People Snapshot. Most
methods can model such garments with simple topology.
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Table 2: Quantitative results on synthetic sequences (mini-IFG-sim). We compare the Chamfer Distance (CD) between the
ground-truth and reconstructed surfaces (in cm).

Method Female-a Female-b Male-a Male-b
Layer-1 Layer-2 Layer-1 Layer-2 Layer-3 Layer-1 Layer-2 Layer-3 Layer-1 Layer-2 Layer-3

SMPLicit[15] 2.9552 3.1213 1.9412 2.9713 2.5360 3.5042 4.0089 4.7301 1.7433 2.7373 3.4295
ClothWild[39] 2.5154 2.7793 3.1969 1.6661 4.0820 3.6386 4.2489 5.6636 2.4353 3.4968 4.9829
BCNet[24] 3.5378 1.9966 1.0470 1.0520 1.6689 3.6667 2.8670 3.4494 0.9508 2.5136 2.8745
SCARF[18] 2.3716 2.7509 4.2129 4.0528 3.5365 3.5762 4.4049 4.5656 2.4269 2.6494 2.9991

Ours 1.2689 1.9152 1.0215 1.0281 1.2331 1.5865 0.9943 1.6717 1.2363 1.0536 1.1297

(a) mini-IFG-real (b) mini-IFG-sim

Figure 5: Qualitative comparison onmini-IFG. The goal is to reconstruct the uncovered garment in the image/video. SCARF[18]
exhibits good generalization but low quality. Template-based methods[15, 24, 39] lack both detail and generalization. Our
template-free approach demonstrates outstanding generalization, confidently handling extremely challenging garments.

4.1.1 Evaluation on Real-world Videos. We show only two typi-
cal sequences from People Snapshot due to the limited variety of
available garments. In Figure 4, most methods can handle such
simple clothing. Among them, the template-based methods of REC-
MV[45] and BCNet[24] behave close to ours.mini-IFG-real includes
videos of humans wearing fashionable clothing. As shown in Fig-
ure 5(a), our method significantly outperforms others, thanks to
the template-free extraction approach. Given the almost infinite
variety of clothing styles, template-based methods[15, 24, 39, 45]
struggle to be applicable in real life. Although SCARF[18] is also
template-free, it suffers from poor geometric quality. In contrast,
we achieve excellent generalization and high quality by effectively
combining 2D segmentation with 3D implicit neural fields.

4.1.2 Evaluation on Synthesis Videos. Table 2 presents the quantita-
tive results testing onmini-IFG-sim. We visually compare the recon-
struction quality in Figure 5(b). For simple clothing, BCNet[24] and
ourmethod perform comparably. However, for challenging clothing,
only our method can obtain correct results. SCARF[18] achieves
shape similarity but exhibits significant noise, while others[15, 24,
39] deviate significantly from the ground truth. We demonstrate
impressive results by reconstructing challenging clothing such as
cheongsams and dungarees, distinctively.

4.1.3 Dynamic Reconstruction. As described in Section 3.2, clothed
bodies in both the canonical space and posed space share a con-
sistent geometric topology, which allows us to support dynamic
reconstruction as well. We provide examples in Figure 6.

Figure 6: Examples of dynamic reconstruction. For a single
garment, since the mesh structure is shared across frames,
we can accomplish dynamic capture.
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Figure 7: Qualitative comparison of multi-layered clothing reconstruction on mini-IFG. SCARF[18] treats clothing as a single
entity. The template of BCNet[24] only supports a pair of tops and bottoms. SMPLicit[15] and ClothWild[39] can handle
multi-layered clothing but lack detail. In contrast, we advocate for reconstructing multi-layered outfits from several videos. We
are the only method that faithfully reconstructs multi-layered clothing while ensuring high quality and no penetration.

4.2 Multi-Layered Clothing Reconstruction
For each subject, our method inputs multiple videos, while baselines
only input one video containing the outermost layer. This is because
the baselines focus on the reconstruction from a single video but
do not support the combination of clothing from multiple videos.
Here, we aim to demonstrate the superiority of reconstructingmulti-
layered clothing based on multiple videos through comparison with
baselines. Moreover, the robustness of penetration handling will
also be validated.

Figure 7 provides qualitative comparisons. SCARF[18] exhibits
the generality of the template-free method but regards clothing as a
whole. The template in [24] is insufficient to meet fashion garments’
requirements. Though layered clothing is available in SMPLicit[15]
and ClothWild[39], the results lack detail and fail in the case of
4 layers. Fundamentally, since the mutual occlusion of clothing
within a single video leads to incomplete observations, they can not
obtain multi-layered clothing with great completeness. Therefore,
additional videos are necessary, which hardly increases the usage
difficulty. However, simply aligning the results frommultiple videos
inevitably causes penetration. We overcome this issue through a
physics-aware module that robustly eliminates intersections, as

depicted in the right of Figure 7. For more detailed visualization,
please refer to the supplementary material.

4.3 Ablation Study
4.3.1 Constraints in Physics-Aware Module. Here, we adequately
illustrate the influence of constraints in the physics-aware module.
First, we align the uncovered garments extracted from multiple
videos in the canonical space (see Figure 8(a)). There are severe pen-
etrations due to perceptual errors and overlapping deformations.
Then, Figure 8(b) and Figure 8(c) depict the penetration correction
strategy from the outer to the inner, as discussed in Section 3.3. Ob-
viously, the intersection between layer 3 and layer 2 is alleviated in
Figure 8(b) and the same occurs for layer 2 and layer 1 in Figure 8(c).
For Figure 8(b) and Figure 8(c), we show constraints activated se-
quentially from top to bottom. For the top row of Figure 8(b), with
only 𝑪coll, the penetration between layer 3 and layer 2 is noticeably
improved but not completely eliminated (as seen at the cuff). This
is because the simulation objects are discrete mesh vertices, and
the sign distance values of vertices cannot reliably represent the
penetration state of triangle faces. For the top row of Figure 8(c),
some vertices of layer 2 are pushed out from the interior of layer 1
and then intersect with layer 3 again (at the hem of the top layer).
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(a) Initial alignment. (b) After correcting layer 3 (outermost). (c) After correcting layer 2.

Figure 8: Ablation study on the physics-aware module. In (a), there are penetrations of the initial alignment of three pieces of
garments. In (b) and (c), we first correct the intersection of the outermost layer and follow with layer 2. From top to bottom of (b)
and (c), different constraints are enabled in order. With 𝑪coll, 𝑪air, and 𝑪srt, our proposed physics-aware module demonstrates
outstandingly robust penetration handling capability.

Fortunately, with 𝑪air to maintain gaps, the repeated inter-layer
intersections are resolved (middle row of Figure 8(c)). However, the
corrections brought by 𝑪air result in non-smoothness compared
to areas where no penetration occurred around. Subsequently, af-
ter enabling 𝑪str, non-rigid deformation eliminates this distortion
(bottom row of Figure 8(c)). It is interesting that the penetration
at the cuffs also disappears (bottom row of Figure 8(b)). This is at-
tributed to our original pipeline in Algorithm 1. After solving 𝑪coll,
some vertices are projected to non-penetrating positions, accompa-
nied by excessive stretching of edges. Then, 𝑪str pulls them closer
by a certain distance. Since 𝑪coll and 𝑪air are solved once while
𝑪str is iteratively satisfied, they reach a balance as the simulation
progresses: no penetration and no excessive deformation.

Figure 9: With back-projection described in Section 3.2, we
can also extract two garments from a single video (top row),
but it is incomplete compared to the multiple videos way
that we actually adopted (bottom row).

4.3.2 Reconstruction Two Garments from Single Video. In Figure 9,
we claim that IF-Garments can reconstruct two pieces of clothing
from one video. However, due to occlusion, the lower lacks com-
pleteness. Instead, with multiple videos, all garments are complete.

5 LIMITATIONS
Segmentation. While our proposed template-free clothing extrac-

tion method achieves impressive generalization, the segmentation
errors negatively impact mesh quality. With the rapid development
of research on automated and semi-automated segmentation[25,
28, 32, 44], we believe this issue will be alleviated.

Animation. Currently, we are reconstructing multi-layered cloth-
ing in the canonical space. Since the deformation fields corre-
sponding to each layer of clothing are independent, penetration
occurs again when garments are mapped to the posed space. So
IF-Garments is unsuitable for direct usage in animation. Recently,
some research related to clothing simulation has contributed to
multi-layered clothing animation[9, 10]. It is possible to achieve
penetration-free posed meshes by leveraging their results.

6 CONCLUSION
We have presented IF-Garments, a novel framework for multi-
layered intersection-free clothing reconstruction from monocular
videos. Our core innovation lies in ingeniously combining neural
SDFs with back-projection and physics simulation to accomplish
both remarkable generalization of clothing extraction and robust-
ness of handling intersections. Sufficient experiments thoroughly
demonstrate the superiority and effectiveness of our method. Due
to convenience and high quality, we believe that IF-Garments can
benefit downstream multimedia tasks such as human performance
capture, personalized avatar modeling, and virtual try-ons.
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