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ABSTRACT

Randomized smoothing is a popular approach for providing certified robustness
guarantees against adversarial attacks, and has become a very active area of re-
search. Over the past years, the average certified radius (ACR) has emerged as
the single most important metric for comparing methods and tracking progress in
the field. However, in this work, we show that ACR is an exceptionally poor met-
ric for evaluating robustness guarantees provided by randomized smoothing. We
theoretically show not only that a trivial classifier can have arbitrarily large ACR,
but also that ACR is much more sensitive to improvements on easy samples than
on hard ones. Empirically, we confirm that existing training strategies that im-
prove ACR reduce the model’s robustness on hard samples. Further, we show that
by focusing on easy samples, we can effectively replicate the increase in ACR.
We develop strategies, including explicitly discarding hard samples, reweighing
the dataset with certified radius, and extreme optimization for easy samples, to
achieve state-of-the-art ACR, although these strategies ignore robustness for the
general data distribution. Overall, our results suggest that ACR has introduced a
strong undesired bias to the field, and better metrics are required to holistically
evaluate randomized smoothing.

1 INTRODUCTION

Adversarial robustness, namely the ability of a model to resist arbitrary small perturbations to its in-
put, is a critical property for deploying machine learning models in security-sensitive applications.
Due to the incompleteness of adversarial attacks which try to construct a perturbation that manipu-
lates the model (Athalye et al., 2018), certified defenses have been proposed to provide robustness
guarantees. While deterministic certified defenses (Gowal et al., 2018; Mirman et al., 2018; Shi
et al., 2021; Müller et al., 2023; Mao et al., 2023; 2024a; Palma et al., 2023; Balauca et al., 2024) in-
cur no additional cost at inference-time, randomized certified defenses scale better with probabilistic
guarantees at the cost of multiplied inference-time complexity. The most popular randomized cer-
tified defense is Randomized Smoothing (RS) (Lécuyer et al., 2019; Cohen et al., 2019), which
computes the maximum certified radius for every input given the accuracy of a base model on noisy
inputs pA.
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Figure 1: Conceptual illus-
tration of the effect of RS
training strategies.

To train better models with larger certified radius under RS, many train-
ing strategies have been proposed (Cohen et al., 2019; Salman et al.,
2019; Jeong & Shin, 2020; Zhai et al., 2020; Jeong et al., 2023). Av-
erage Certified Radius (ACR), defined to be the average of the certified
radiuses over each sample in the dataset, has been the main metric to
evaluate the effectiveness of these methods. However, in this work, we
show that ACR is a poor metric for evaluating the true robustness of a
given model under RS. We prove theoretically that ACR of a trivial clas-
sifier could be arbitrarily large given enough certification budget, and
then show empirically that state-of-the-art (SOTA) RS training strate-
gies reduce the accuracy on hard inputs to increase the ACR. Further, we
demonstrate that through explicitly reweighing the training data to fo-
cus only on easy inputs, the simplest Gaussian training can be gradually
amplified to achieve a SOTA ACR, questioning the development of RS
training strategies.
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Main Contributions Our key contributions are:

• We theoretically prove that with a large enough certification budget, ACR of a trivial classifier
can be arbitrarily large, and that with the certification budget commonly used in practice, an
improvement on easy inputs contributes much more to ACR than on hard inputs, more than
1000x in the extreme case (§4.1 and §4.2).

• We empirically compare RS training strategies to Gaussian training and show that all current
RS training strategies are actually reducing the accuracy on hard inputs where pA is relatively
small, and only focus on easy inputs where pA is very close to 1 to increase ACR (§4.3).
Figure 1 conceptually visualizes this effect.

• Based on these novel insights, we develop strategies to amplify Gaussian training to achieve
a SOTA ACR by reweighing the training data to focus only on easy inputs. Specifically, we
discard hard inputs during training, reweigh the dataset with their contribution to ACR, and
push pA extremely close to 1 for easy inputs via adversarial noise selection. With these simple
modifications to Gaussian training, which do not optimize robustness for the general data
distribution, but only ACR, we achieve a new SOTA in ACR (§5 and §6).

Overall, our work proves the need for new metrics for RS. In particular, we suggest to use certified
accuracy at various radii as a more informative metric and encourage the community to re-evaluate
existing RS training more uniformly (§7). We hope this work can inspire future research in this
direction.

2 RELATED WORK

Randomized Smoothing (RS) is a defense against adversarial attacks that provides certified robust-
ness guarantees (Lécuyer et al., 2019; Cohen et al., 2019). However, to achieve strong certified
robustness, special training strategies tailored to RS are essential. Gaussian training, which adds
Gaussian noise to the original input, is the most common strategy, as it naturally aligns with RS
(Cohen et al., 2019). Salman et al. (2019) propose to add adversarial attacks to Gaussian training,
and Li et al. (2019) propose a regularization to control the stability of the output. Salman et al.
(2020) further shows that it is possible to exploit a pretrained non-robust classifier to achieve strong
RS certified robustness with input denoising. Afterwards, Average Certified Radius (ACR), the
average of RS certified radius over the dataset, is commonly used to evaluate RS training: Zhai
et al. (2020) propose an attack-free mechanism that directly maximizes certified radii; Jeong & Shin
(2020) propose a regularization to improve the prediction consistency; Jeong et al. (2021) propose
to calibrate the confidence of smoothed classifier; Horváth et al. (2022) propose to use ensembles
as the base classifier to reduce output variance; Vaishnavi et al. (2022) apply knowledge transfer on
the base classifier; Jeong et al. (2023) distinguishes hard and easy inputs and apply different loss
for each class. While they all improve ACR, this work shows that ACR is a poor metric for robust-
ness, and that these training algorithms all introduce undesired side effects. This work is the first to
question the development of RS training strategies evaluated with ACR and suggests new metrics as
alternatives.

3 BACKGROUND

In this section, we briefly introduce the background required for this work.

Adversarial Robustness is the ability of a model to resist arbitrary small perturbations to its input.
Formally, given an input set S(x) and a model f , f is adversarially robust within S(x) iff for any
x1, x2 ∈ S(x), f(x1) = f(x2). In this work, we focus on the L2 neighborhood of an input, i.e.,
S(x) := Bϵ(x) = {x′ | ∥x − x′∥2 ≤ ϵ} for a given ϵ ≥ 0. For a given (x, y) from the dataset
(X ,Y), f is robustly correct iff ∀x′ ∈ S(x), f(x′) = y.

Randomized Smoothing constructs a smooth classifier f̂(x) given a base classifier f , defined
as follows: f̂(x) := argmaxc∈Y Pδ∼N (0,σ2I)(f(x + δ) = c). Intuitively, the smooth clas-
sifier assigns the label with maximum probability in the neighborhood of the input. With this
formulation, Cohen et al. (2019) proves that f̂ is adversarially robust within BR(x,pA)(x) when
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pA ≥ 0.5, where R(x, pA) := σΦ−1(pA), Φ is the cumulative distribution function of N (0, 1)
and pA := maxc∈Y Pδ∼N (0,σ2I)(f(x + δ) = c) is the probability of the most likely class. Aver-
age Certified Radius (ACR) is defined as the average of R(x, pA)I(f̂(x) = y) over the dataset. In
practice, pA cannot be computed exactly, and an estimation p̂A such that P(pA ≥ p̂A) ≥ 1 − α
is substituted, where α is the confidence threshold and p̂A is computed based on N trials for the
event I(f(x + δ) = c). We call N the certification budget, which is the number of queries to the
base classifier f to estimate pA. Since RS certifies robustness based on the accuracy of the base
model on samples perturbed by Gaussian noise, Gaussian training, which augments the train data
with Gaussian noise, is the most common method to train the base model for RS. Specifically, it
optimizes

argmin
θ

E(x,y)∼(X ,Y)
1

m

m∑
i=1

L(x+ δi; y)

where δi are sampled from N (0, σ2I) uniformly at random, m is the number of samples and L is
the cross entropy loss.

4 WEAKNESS OF ACR AND THE CONSEQUENCE

We now first theoretically show that ACR can be arbitrarily large for a trivial classifier, assuming
enough budget for certification (§4.1). We then demonstrate that with a realistic certification bud-
get, an improvement on easy samples could contribute more than 1000 times to ACR than on hard
samples (§4.2). Finally, we empirically show that due to the above weakness of ACR, all current RS
training strategies evaluated with ACR reduce the accuracy on hard samples and only focus on easy
samples (§4.3), improving ACR at the cost of performance on hard samples.

4.1 TRIVIAL CLASSIFIER WITH INFINITE ACR

In Theorem 1 below we show that for every classification problem, there exists a trivial classifier
with infinite ACR given enough budget for certification, while such a classifier can only robustly
classify samples from the most likely class in the dataset and always misclassifies samples from
other classes.

Theorem 1. For every M > 0 and α > 0, there exists a trivial classifier f which always predicts
the same class with a certification budget N > 0, such that the ACR of f is greater than M with
confidence at least 1− α.

Proof. Assume we are considering a K-class classification problem with a dataset containing T
samples. Let c∗ be the most likely class and X∗ be the set of all samples with label c∗; then there are
at least ⌈T/K⌉ samples in X∗ due to the pigeonhole theorem. We then show that a trivial classifier
f which always predicts c∗ can achieve an ACR greater than M with confidence at least 1− α with
a proper budget N .

Note that pA = 1 for x ∈ X∗, and thus the certified radius of x ∈ X∗ is R(x) = σΦ−1(α1/N ).
Therefore, ACR = 1

T

[∑
x∈X∗ R(x) +

∑
x/∈X∗ R(x)

]
≥ 1

T

∑
x∈X∗ R(x) ≥ 1

KσΦ−1(α1/N ). Set-
ting N = ⌈ log(Φ(MK/σ))

log(α) ⌉+ 1, we have ACR > M .

Theorem 1 shows that ACR can be arbitrarily large for a trivial classifier with large enough certi-
fication budget. This implies that ACR is not reliable for evaluating a model under RS, as a trivial
classifier can achieve infinite ACR with minimal robustness on at least half of classes. In practice,
the budget certification N is usually limited, and thus R(x, pA) is bounded by a constant for every x
and pA. In this case, the ACR of a trivial classifier is also bounded. However, in §4.2 below, we will
show that this is still problematic, as ACR is much more sensitive to improvements on easy samples
than on hard samples.

4.2 ACR STRONGLY PREFERS EASY SAMPLES

3
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Figure 3: The empirical cumulative distribution of pA on CIFAR-10 for models trained and certified with
various σ with different training algorithms.
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Figure 2: Certified radius r and its sensitivity ∂r
∂pA

against pA. Note the log scale of y axis in Fig-
ure 2b. N is set to 105, α is set to 0.001, and σ is
set to 1.

We now discuss the effect of ACR with a limited
budget. We follow the standard certification setting
in the literature, setting N = 105 and α = 0.001.
With this budget, the maximum certified radius for
one input is R(x, pA = 1) = σΦ−1(α1/N ) ≈ 3.8σ.
However, we will show that ∂R(x,pA)

∂pA
grows ex-

tremely fast, exceeding 1000σ when pA → 1 and
close to 0 when pA → 0.5.

Without loss of generality, we set σ = 1 and denote
R(x, pA) as r. Figure 2 shows r and ∂r

∂pA
against

pA. While r remains bounded by a constant 3.8, ∂r
∂pA

grows extremely fast when pA approaches 1. As a result, increasing pA from 0.99 to 0.999 improves
r from 2.3 to 3.0, matching the improvement achieved by increasing pA from 0 to 0.76. Therefore,
to achieve maximum ACR, it is much more efficient for the training algorithm to focus on improving
pA on easy samples where pA is close to 1. Further, when pA < 0.5, the data point will not contribute
to ACR at all, thus optimizing ACR will not increase pA with a local optimization algorithm like
gradient descent. Therefore, it is natural for RS training to disregard inputs with pA < 0.5 as their
ultimate goal is to improve ACR.

4.3 RS TRAINING TRADES OFF HARD SAMPLES FOR ACR

We have shown that ACR strongly prefers easy samples in §4.2. However, since ACR is not differ-
entiable with respect to the model parameters because it is based on counting, RS training strategies
usually do not directly apply ACR as the training loss. Instead, they optimize various surrogate ob-
jectives, and finally evaluate the model with ACR. Thus, it is unclear whether and to what extent the
design of training algorithms is affected by the ACR metric. We now empirically quantify the effect,
confirming the theoretical analysis. Specifically, we show that SOTA training strategies reduce pA
of hard samples and put more weight (measured by gradient norm) on easy samples compared to
Gaussian training.

Figure 3 shows the empirical cumulative distribution of pA for models trained with SOTA algorithms
and Gaussian training. Clearly, for various σ, SOTA algorithms have higher density than Gaussian
training at pA close to zero and one. While they gain more ACR due to the improvement on easy
samples, hard samples are consistently underrepresented in the final model compared to Gaussian
training. As a result, Gaussian training has higher P(pA ≥ 0.5) (clean accuracy), and SOTA algo-
rithms exceed Gaussian training only when pA passes a certain threshold, i.e., when the certified
radius is relatively large. This is problematic in practice, indicating that ACR does not properly
measure the model’s ability. For example, a face recognition model could have a high ACR but
consistently refuse to learn some difficult faces, which is not acceptable in real-world applications.

To further quantify the relative weight between easy and hard samples indicated by each training
algorithm, we measure the average gradient l2 norm of easy and hard samples for models trained
with different algorithms and σ = 0.5, as a proxy for the sample weight. Intuitively, samples with
larger gradients contribute more to training and thus are more important for the final model. As
shown in Table 1, Gaussian training puts less weight on easy samples than hard samples, which is
natural as easy samples have smaller loss values. However, SOTA algorithms put more weight on
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Method ACR easy hard easy / hard

Gaussian 0.56 10.10 22.67 0.45
SmoothAdv 0.68 5.60 5.62 1.00
Consistency 0.72 14.99 19.32 0.78
SmoothMix 0.74 11.72 11.79 0.99

CAT-RS 0.76 30.45 7.12 4.28

Table 1: The average gradient l2 norm of easy (pA > 0.5) and hard (pA < 0.5) samples for models
trained with different algorithms and σ = 0.5, along with their relative magnitude (easy / hard ). The
corresponding ACR is also shown.

easy samples compared to Gaussian training, e.g., the relative weight between easy and hard samples
is 4.28 for CAT-RS (Jeong et al., 2023), while for Gaussian training it is 0.45. This confirms that
SOTA algorithms indeed prioritize easy samples over hard samples, consistent with the theoretical
analysis in §4.2.

5 AMPLIFYING EASY DATA GREATLY IMPROVES ACR

In §4, we concluded that ACR strongly prefers easy samples, and RS training trades off hard samples
for ACR. This raises the question of whether explicitly focusing on easy data during training can
effectively replicate the increase in ACR. In this section, we propose three modifications to the
simplest Gaussian training to achieve this goal.

5.1 DISCARD HARD DATA DURING TRAINING

Samples with low pA contribute little to ACR, especially those with pA < 0.5 which have no
contribution at all (§4.2). Further, as shown in Figure 3, more than 20% of the data has pA < 0.5
after training converges. Therefore, we propose to discard hard samples directly during training, so
that they explicitly have no effect on the final training convergence. Specifically, given a warm-up
epoch Et and a confidence threshold pt, we discard all data samples with pA < pt at epoch Et.
We fix the number of steps taken by gradient descent and re-iterate on the distilled dataset when
necessary to minimize the difference in training budget. After the discard, Gaussian training also
ignores hard inputs, similar to SOTA algorithms.

5.2 DATA REWEIGHING WITH CERTIFIED RADIUS

0.0 0.5 1.0
pA

0

4

8

(0.75, 1)

Normalized Radius

Sampling Weight

Figure 4: Certified radius (di-
vided by the value at pA = 0.75)
and the sampling weight of the
data against pA.

ACR relates non-linearly to pA, and the growth of the certified ra-
dius is much faster for easy samples with high pA (Figure 2). We
account for this by reweighing the data points based on their certi-
fied radius. Specifically, we use the approximate (normalized) cer-
tified radius as the weight of the probability for every data point
being sampled. We formulate the weight w of every data point x
as:

p̂A = LOWERCONFBOUND(C,N, 1− α)

w = max(1,Φ−1(p̂A)/Φ
−1(pmin)),

where C is the count of correctly classified noisy samples and pmin

is the reference probability threshold. Note that the estimation of
p̂A aligns with the certification. We normalize the weight to be at
least 1 since the original radius is zero when pA is relatively low. To
minimize computational overhead, we evaluate p̂A every 10 epoch
with N = 16 and α = 0.1 throughout the paper. We set pmin = 0.75 because this is the minimum
probability that has positive certified radius under this setting. The sampling weight curve is visu-
alized in Figure 4. After the reweighing, ACR has an approximately linear relationship to pA when
w > 1, and easy samples are sampled more frequently than hard samples so that Gaussian training
also improves pA further for easy samples.

5
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Figure 5: Comparison of the gradient norm distributions for different pA before and after the adaptive attack,
σ = 0.5. Note the log scale of y axis.

5.3 ADAPTIVE ATTACK ON THE SPHERE

SOTA algorithms re-balance the gradient norm of easy and hard samples in contrast to Gaussian
training (Table 1). In addition, when pA is close to 1, Gaussian training can hardly find a useful
noise sample to improve pA further. To tackle this issue, we propose to apply adaptive attack on the
noise samples to balance samples with different pA. Specifically, we use Projected Gradient Descent
(PGD) (Madry et al., 2018) to find the nearest noise to the Gaussian noise which can make the base
classifier misclassify. Formally, we construct

δ∗ = argmin
f(x+δ)̸=c,∥δ∥2=∥δ0∥2

∥δ − δ0∥2,

where δ0 is a random Gaussian noise sample. Note that when x + δ0 makes the base classifier
misclassify, we have δ∗ = δ0, thus hard inputs are not affected by the adaptive attack. In addition,
we remark that we do not constrain δ∗ to be in the neighborhood of δ0 which is adopted by CAT-RS
(Jeong et al., 2023); instead, we only maintain the l2 norm of the noise, thus allowing the attack to
explore a much larger space. This is because for every δ∗ such that ∥δ∗∥2 = ∥δ0∥2, the probability
of sampling δ∗ is the same as δ0. We formalize this fact in Theorem 2.

Theorem 2. Assume δ1, δ2 ∈ Rd and δ1 ̸= δ2. If ∥δ1∥2 = ∥δ2∥2, then PN (0,σ2Id)(δ1) =
PN (0,σ2Id)(δ2) for every σ > 0.

Proof. Let δ = [q1, q2, . . . , qd] ∈ Rd be sampled from N (0, σ2Id). Then we have

P(δ) =
1

(2π)d/2σd
exp

(
− 1

2σ2

d∑
i=1

q2i

)
=

1

(2π)d/2σd
exp

(
− 1

2σ2
∥δ∥22

)
.

This concludes the proof.

Algorithm 1 Adaptive Attack

function ADAPTIVEADV(f , x, c, δ, T , ϵ)
δ∗ ← δ
for t = 1 to T do

if f(x+ δ∗) ̸= c then
break

end if
δ∗ ← one step PGD attack on δ∗ with step size ϵ
δ∗ ← ∥δ∥2 · δ∗/∥δ∗∥2

end for
return δ∗

end function

6
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Figure 5 visualizes the gradient norm distributions for different pA before and after the adaptive
attack. We observe that the adaptive attack balances the gradient norm of easy and hard samples.
Before the attack, the gradient norm of easy samples is much smaller than that of hard samples,
while after the attack, the gradient norm of easy samples is amplified without interfering the gradi-
ent norm of hard samples. Therefore, with the adaptive attack, Gaussian training obtains a similar
gradient norm distribution to SOTA algorithms, and it can find effective noise samples more effi-
ciently. Pseudocode of the adaptive attack is shown in Algorithm 1, and more detailed description
is provided in Appendix A.2.

5.4 OVERALL TRAINING PROCEDURE

Algorithm 2 Overall Training Procedure

Input: Train dataset D, noise level σ, hyperparameters Et, pt, m, T , ϵ
Initialize the model f
for epoch = 1 to Nepoch do

if epoch < Et then
Sample δ1, . . . , δm ∼ N (0, σ2I)
Perform Gaussian training with δ1, . . . , δm

else
if epoch = Et then

Discard hard data samples in D with pA < pt to form D′

end if
if epoch %10 = 0 then

update dataset weight according to §5.2
end if
Sample |D| data samples from D′ with replacement to form the train set D′′

for input x, label c in D′′ do
Sample δ1, . . . , δm ∼ N (0, σ2I)
for i = 1 to m do
δ∗i ← ADAPTIVEADV(f , x, c, δi, T , ϵ)

end for
Perform Gaussian training with δ∗1 , . . . , δ

∗
m

end for
end if

end for

We now describe how the above three modifications are combined. At the beginning, we train the
model with the Gaussian training (Cohen et al., 2019), which samples m noisy points from the
isometric Gaussian distribution uniformly at random and uses the average loss of noisy inputs as
the training loss. When we reach the pre-defined warm-up epoch Et, all data points with pA <
pt are discarded, and the distilled dataset is used thereafter, as described in §5.1. After this, we
apply dataset reweighing and the adaptive attack to training. Specifically, every 10 epoch after Et

(including Et), we evaluate the model with the procedure described in §5.2 and assign the resulting
sampling weight to each sample in the train set. In addition, we use the adaptive attack described in
§5.3 to generate the noisy samples for training. The pseudocode is shown in Algorithm 2.

6 EXPERIMENTAL EVALUATION

We now evaluate our proposed method extensively. Overall, our method always achieves better ACR
than SOTA methods, which indicates that focusing on easy data can effectively improve ACR.

Baselines. We compare our method to the following methods: Gaussian (Cohen et al., 2019),
SmoothAdv (Salman et al., 2019), MACER (Zhai et al., 2020), Consistency (Jeong & Shin, 2020),
SmoothMix (Jeong et al., 2021), and CAT-RS (Jeong et al., 2023). We always use the trained mod-
els provided by the authors if they are available and otherwise reproduce the results with the same
setting as the original paper. We set m = 4 for Gaussian training and our method, since this is the
standard setting for SOTA methods (Jeong et al., 2023).

7
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σ Methods ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

Gaussian 0.486 81.3 66.7 50.0 32.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MACER 0.529 78.7 68.3 55.9 40.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothAdv 0.544 73.4 65.6 57.0 47.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Consistency 0.547 75.8 67.4 57.5 46.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SmoothMix 0.543 77.1 67.6 56.8 45.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
CAT-RS 0.562 76.3 68.1 58.8 48.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ours 0.564 76.6 69.1 59.3 48.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5

Gaussian 0.562 68.7 57.6 45.7 34.0 23.7 15.9 9.4 4.8 0.0 0.0 0.0
MACER 0.680 64.7 57.4 49.5 42.1 34.0 26.4 19.2 12.0 0.0 0.0 0.0
SmoothAdv 0.684 65.3 57.8 49.9 41.7 33.7 26.0 19.5 12.9 0.0 0.0 0.0
Consistency 0.716 64.1 57.6 50.3 42.9 35.9 29.1 22.6 16.0 0.0 0.0 0.0
SmoothMix 0.738 60.6 55.2 49.3 43.3 37.6 32.1 26.4 20.5 0.0 0.0 0.0
CAT-RS 0.757 62.3 56.8 50.5 44.6 38.5 32.7 27.1 20.6 0.0 0.0 0.0
Ours 0.760 59.3 54.8 49.6 44.4 38.9 34.1 29.0 23.0 0.0 0.0 0.0

1.0

Gaussian 0.534 51.5 44.1 36.5 29.4 23.8 18.2 13.1 9.2 6.0 3.8 2.3
MACER 0.760 39.5 36.9 34.6 31.7 28.9 26.4 23.8 21.1 18.6 16.0 13.8
SmoothAdv 0.790 43.7 40.3 36.9 33.8 30.5 27.0 24.0 21.4 18.4 15.9 13.4
Consistency 0.757 45.7 42.0 37.8 33.7 30.0 26.3 22.9 19.6 16.6 13.9 11.6
SmoothMix 0.788 42.4 39.4 36.7 33.4 30.0 26.8 23.9 20.8 18.6 15.9 13.6
CAT-RS 0.815 43.2 40.2 37.2 34.3 31.0 28.1 24.9 22.0 19.3 16.8 14.2
Ours 0.844 42.0 39.4 36.5 33.9 31.1 28.4 25.6 23.1 20.6 18.3 16.1

Table 2: Comparison of certified test accuracy (%) at different radii and ACR on CIFAR-10. The
best and the second best results are highlighted in bold and underline, respectively; for certified
accuracy, we highlight those that are worse than Gaussian training at the same radius in gray.
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Figure 6: Certified radius-accuracy curve on CIFAR-10 for different methods.

Main Result. Table 2 shows the ACR of different methods on CIFAR-10. Detailed description of the
training, including applied hyperparameters, is provided in Appendix A.1. Our method consistently
outperforms all baselines on ACR, which confirms the effectiveness of our modification to Gaus-
sian training in increasing ACR. Further, our method successfully increases the certified accuracy at
large radius, as we explicitly focus on easy inputs which is implicitly taken by other SOTA methods.
Figure 6 further visualizes certified accuracy at different radii, showing that at small radii, SOTA
methods (including ours) are systematically worse than Gaussian training, while at large radii, these
methods consistently outperform Gaussian training. The success of our simple and intuitive modifi-
cation to Gaussian training suggests that ACR introduces a systematic bias in method selection, and
that the field should re-evaluate RS training strategies with better metrics.

Ablation Study. We present a thorough ablation study in Table 3. When applied alone, all three
components of our method improve ACR compared to Gaussian training. Combing two components
arbitrarily improves the ACR compared to using only one component, and the best ACR is achieved
when all three components are combined. This confirms that each component contributes to the
improvement of ACR. In addition, they mostly improve the certified accuracy at large radii and
reduce certified accuracy at small radii, which is consistent with our intuition that focusing on easy
inputs can improve the ACR. More ablation on the hyperparameters is provided in Appendix B.
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σ discard dataset weight adverserial ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

0.25

Gaussian 0.486 81.3 66.7 50.0 32.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

✔ 0.515 81.2 69.3 53.7 36.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0
✔ 0.512 81.3 69.4 53.3 36.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

✔ 0.537 76.7 66.7 55.6 44.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
✔ ✔ 0.523 81.1 69.7 54.6 38.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
✔ ✔ 0.550 77.4 68.5 57.7 45.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0

✔ ✔ 0.554 75.0 67.1 58.1 48.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
✔ ✔ ✔ 0.564 76.6 69.1 59.3 48.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5

Gaussian 0.525 65.7 54.9 42.8 32.5 22.0 14.1 8.3 3.9 0.0 0.0 0.0

✔ 0.627 68.4 59.4 49.5 39.4 29.0 20.5 13.0 7.0 0.0 0.0 0.0
✔ 0.662 68.1 59.7 50.3 41.1 31.7 23.7 16.2 9.2 0.0 0.0 0.0

✔ 0.701 63.4 56.2 49.1 41.7 34.5 28.2 22.1 16.5 0.0 0.0 0.0
✔ ✔ 0.672 68.5 60.1 51.0 41.8 32.4 24.2 16.7 9.3 0.0 0.0 0.0
✔ ✔ 0.731 63.4 56.8 50.1 43.7 37.0 30.8 24.4 18.0 0.0 0.0 0.0

✔ ✔ 0.741 56.1 52.1 47.3 43.2 38.6 34.1 29.1 23.1 0.0 0.0 0.0
✔ ✔ ✔ 0.760 59.3 54.8 49.6 44.4 38.9 34.1 29.0 23.0 0.0 0.0 0.0

1.0

Gaussian 0.534 51.5 44.1 36.5 29.4 23.8 18.2 13.1 9.2 6.0 3.8 2.3

✔ 0.665 46.8 42.1 37.6 33.1 28.7 24.3 20.2 16.1 12.6 9.8 7.4
✔ 0.695 49.9 44.9 39.7 34.9 29.8 25.3 21.4 17.5 13.6 10.1 7.1

✔ 0.690 47.3 42.0 37.0 32.0 27.1 23.2 19.9 16.6 13.6 10.8 8.4
✔ ✔ 0.736 48.8 44.5 40.3 35.9 31.4 27.3 22.9 19.1 15.2 11.7 8.7
✔ ✔ 0.771 47.0 43.1 39.1 35.0 30.9 27.1 23.6 20.2 17.0 14.1 11.6

✔ ✔ 0.818 39.7 37.5 34.8 32.5 29.9 27.7 25.3 22.6 20.1 17.9 15.8
✔ ✔ ✔ 0.844 42.0 39.4 36.5 33.9 31.1 28.4 25.6 23.1 20.6 18.3 16.1

Table 3: Ablation study on each component in our method.

7 DISCUSSION

We have shown that ACR does not uniformly represent the robustness of a model for different data.
Therefore, the field has to seek better alternative metrics to evaluate the robustness of models under
RS. We suggest to use certified accuracy at various radii as a more informative metric, which can be
easily computed with the same certification budget as ACR. In addition, since achieving maximum
certified accuracy at all radii is a challenging task, we should allow algorithms to customize models
for different radii, including the certification hyperparameter σ. This is similar to the practice in
deterministic certified training (Gowal et al., 2018; Mirman et al., 2018; Shi et al., 2021; Müller
et al., 2023; Mao et al., 2023; 2024a;b; Palma et al., 2023; Balauca et al., 2024).

While our modifications presented in §5 are not designed to improve robustness for the general
data distribution, they show effectiveness in increasing certified accuracy at large radius. Other
existing algorithms show similar effects. Therefore, it is important to note that the field has indeed
made progress over the years. However, new metrics which considers robustness more uniformly
should be developed to evaluate RS, and algorithms that outperform generally at various radii are
encouraged. We hope this work can inspire future research in this direction.

8 CONCLUSION

This work rigorously demonstrates that Average Certified Radius (ACR) is a poor metric for Ran-
domized Smoothing (RS). Theoretically, we prove that ACR of a trivial classifier can be arbitrarily
large, and that an improvement on easy inputs contributes much more to ACR than on hard inputs.
Empirically, we show that all state-of-the-art (SOTA) strategies reduce the accuracy on hard inputs
and only focus on easy inputs to increase ACR. Based on these novel insights, we develop strategies
to amplify Gaussian training by reweighing the training data to focus only on easy inputs. Specif-
ically, we discard hard inputs during training, weight the dataset with their contribution to ACR,
and apply extreme optimization for easy inputs via adversarial noise selection. With these intuitive
modifications to the simple Gaussian training, we replicate the effect of SOTA training algorithms
and achieve a new SOTA ACR. Overall, our results suggest the need for evaluating RS training with
better metrics.
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σ 0.25 0.5 1.0

Et 60 70 60
pt 0.5 0.4 0.4
T 3 6 4
ϵ 0.25 0.25 0.5

Table 4: Hyperparameters we use on CIFAR-10.

A EXPERIMENT DETAILS

A.1 TRAINING DETAILS

We follow the standard training protocols in previous works. Specifically, we use ResNet-110 (He
et al., 2016) for CIFAR-10. We investigate three noise levels, σ = 0.25, 0.5, 1.0. We train the model
for 150 epochs with an initial learning rate of 0.1, which is decreased by a factor of 10 in every 50
epochs. Stochastic gradient descent (SGD) optimizer with a momentum of 0.9 is used, and the batch
size is set to 256. We adjust the following hyperparameters to find the best performance for each
setting:

Et = the epoch to discard hard data samples
pt = the threshold of pA to discard hard data samples
T = the maximum number of steps of the PGD attack
ϵ = the step size of the PGD attack

All other parameters are fixed to their default values. Specifically, we use 100 noise samples (N =
100) to calculate pA when discarding hard samples. For updating dataset weight, we use 16 noise
samples (N = 16) to calculate pA, with a minimum value set to 0.75 (pmin=0.75). The number of
noise samples for each input is set to m = 4. The hyperparameters we use on CIFAR-10 are shown
in Table 4.

We use the CERTIFY function in Cohen et al. (2019) to calculate the certified radius, same as previ-
ous baselines, where N = 105 and α = 0.001.

A.2 ADVERSARIAL ATTACK ALGORITHM

In the adaptive attack, we implement the l2 PGD and l∞ PGD attack. The difference between them
lies in how the noise is updated based on the gradient. For l2 PGD, the noise is updated as follows:

δ∗ = δ + ϵ · ∇δL(f(x+ δ), y)/∥∇δL(f(x+ δ), y)∥2,
while for l∞ PGD, the noise is updated as follows:

δ∗ = δ + ϵ · sign(∇δL(f(x+ δ), y)),

where L is the loss function, f is the model, x is the input, y is the label, δ is the noise, δ∗ is the
updated noise, sign is the sign function, and ϵ is the step size. Without specific instructions, our
experiments are always conducted with l2 PGD. We show the results with l∞ PGD on CIFAR-10 in
Appendix C.2.

B ADDITIONAL ABLATION STUDIES

In this section, we provide additional ablation studies on the effect of different hyperparameters. All
results are based on σ = 0.5 and CIFAR-10. Unless otherwise specified, all hyperparameters are the
same as those in Table 4.

B.1 EFFECT OF DISCARDING HARD DATA

We investigate the effect of the two hyperparameters Et and pt in discarding hard samples. The
results are shown in Table 5 and Table 6. If hard samples are discarded too early, it leads to a
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Et ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

50 0.738 58.0 53.2 48.3 42.9 38.1 33.0 27.5 21.8
70 0.760 59.3 54.8 49.6 44.4 38.9 34.1 29.0 23.0
90 0.751 60.1 54.9 49.6 44.1 38.6 33.4 27.5 21.4

110 0.746 60.0 55.1 49.5 43.7 38.0 33.3 27.2 21.0
130 0.738 61.4 56.1 50.2 44.2 37.5 31.7 25.5 19.2

Table 5: Effect of the discarding epoch Et.

pt ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.3 0.753 59.5 54.5 49.4 44.3 39.0 33.7 28.0 21.9
0.4 0.760 59.3 54.8 49.6 44.4 38.9 34.1 29.0 23.0
0.5 0.757 60.0 54.7 49.9 44.5 38.9 33.7 27.9 22.1
0.6 0.758 59.2 54.6 49.5 44.3 39.4 34.1 28.7 22.2
0.7 0.749 59.5 54.4 49.0 43.7 38.7 33.2 27.7 21.7
0.8 0.740 59.5 54.4 49.1 43.6 38.1 32.8 26.8 20.8

Table 6: Effect of the discarding pA threshold pt.

decrease in accuracy for all radii, as many potential easy samples are discarded before their pA
reaches pt. Conversely, discarding hard samples too late allows more samples to remain, resulting
in improved clean accuracy but reduced performance on easy samples, as the training focuses less
on them.

B.2 EFFECT OF ADAPTIVE ATTACK

For the adaptive attack, we evaluate the effect of the step size ϵ and the number of steps T . The
results are shown in Table 7 and Table 8. In general, increasing the number of steps strengthens the
attack, which helps find effective noise samples for extremely easy inputs. As a result, performance
improves at larger radii, but relatively less attention is given to hard samples, leading to a decrease
in clean accuracy. Similarly, increasing the step size in a moderate range (ϵ < 1.0) has a similar
effect. However, if the step size is too large, the attack loses effectiveness, resulting in decreased
performance at all radii.

C ADDITIONAL RESULTS

C.1 RATIO OF REMAINED DATA AFTER DISCARDING HARD SAMPLES

The remaining data ratios after discarding hard samples under different σ on CIFAR-10 are 91%,
80% and 58%, when σ = 0.25, 0.5 and 1.0 respectively. The results indicate that even though a
significant portion of the training set is discarded during training, we still achieve a better ACR than
the current SOTA model according to Table 2. This indicates that discarding a large amount of data
during training leads to a better ACR, proving once again that ACR may not accurately represent
the overall robustness of the model.

ϵ ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.125 0.744 64.2 58.1 51.6 44.7 38.1 31.4 24.4 17.1
0.250 0.760 59.3 54.8 49.6 44.4 38.9 34.1 29.0 23.0
0.500 0.703 50.8 47.4 43.9 40.3 36.4 32.9 28.8 24.4
1.000 0.624 43.2 40.7 38.2 35.4 32.7 29.7 26.6 22.7
2.000 0.533 38.1 35.6 33.0 30.5 27.6 24.9 22.0 19.0

Table 7: Effect of the adversarial attack step size ϵ.
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T ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

2 0.719 66.2 58.9 51.5 43.7 36.2 28.9 21.8 14.5
4 0.752 62.0 56.7 50.9 44.6 38.6 32.7 26.3 19.7
6 0.760 59.3 54.8 49.6 44.4 38.9 34.1 29.0 23.0
8 0.748 57.0 52.6 48.0 43.4 38.7 34.2 29.2 23.6

10 0.732 54.1 49.9 45.9 42.0 37.8 34.0 29.5 24.6

Table 8: Effect of the number of steps of adversarial attack T .
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Figure 7: Certified radius-accuracy curves on CIFAR-10 for different ϵ and T .

√
d · ϵ ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

0.125 0.722 66.3 59.6 51.8 44.3 36.4 29.1 21.3 13.7
0.250 0.746 62.7 57.0 51.1 44.8 38.4 32.0 25.4 18.5
0.500 0.727 55.7 51.3 46.9 42.5 37.7 32.8 28.0 22.6
1.000 0.640 46.4 43.3 39.9 36.7 33.5 30.0 25.9 22.0

Table 9: ACR and certified accuracy under the l∞ PGD attack with σ = 0.5 on CIFAR-10 with
different step size.

T ACR 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

3 0.718 66.0 59.0 51.6 43.8 36.2 28.8 21.2 14.0
4 0.731 65.0 58.5 51.5 44.2 37.3 29.9 23.1 15.8
5 0.736 64.2 57.8 51.4 44.6 37.7 30.6 23.7 16.5
6 0.746 62.7 57.0 51.1 44.8 38.4 32.0 25.4 18.5
7 0.743 61.5 56.4 50.6 44.4 38.1 32.4 25.7 19.1
8 0.742 60.1 54.8 49.7 43.7 38.0 32.7 26.9 20.3

Table 10: ACR and certified accuracy under the l∞ PGD attack with σ = 0.5 on CIFAR-10 with
different number of steps.
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C.2 EXPERIMENTS ON l∞ PGD ATTACK

In this section, we show the results under l∞ PGD attack in Table 9 and Table 10. For l∞ attack,
we use much smaller step sizes ϵ to have the similar attack strength to l2 attack. Specifically, we
investigate

√
d · ϵ = 0.125, 0.25, 1.5, 1.0 for l∞ attack, where d is the dimension of the input. After

the thorough experiments, we find that using
√
d · ϵ = 0.25 and the same with l2 attack for other

hyperparameters reaches the best ACR.

The the l∞ attack has the similar effect on results to the l2 attack. Increasing the step size or the
number of steps of the attack will result in better accuracy at large radii but lower accuracy at small
radii.
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