
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COLASPLAT : COMPACT LANGUAGE 3D GAUSSIAN
SPLATTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Language 3D Gaussian Splatting (3DGS) has exhibited promising advancements
in open-vocabulary 3D scene understanding, incorporating semantic features from
pretrained vision-language models into Gaussians to encode the semantic infor-
mation of a scene. However, language-embedded 3DGS suffers from high com-
putational and storage costs due to the massive number of Gaussians and the
extra high-dimensional semantic attributes, which hinder its practical applica-
tion. Existing compression methods primarily reduce 3DGS model redundancy
through pruning or quantization, which can be sequentially applied to obtain a
highly compressed language-embedded 3DGS model as a straightforward solu-
tion. However, all the existing approaches are not designed for compressing lan-
guage 3DGS, where rich semantic features are ignored during the compression
stages, leading to severe semantic information loss and significantly degraded
scene understanding performance. Furthermore, the disjoint nature of the prun-
ing and quantization stages results in lower rendering quality. To address these
issues, we propose CoLaSplat, a unified compression framework for compact
language 3DGS. CoLaSplat formulates semantic learning, sparsification, and
vector quantization as a single optimization problem, constrained by the number
of Gaussian primitives and vector quantization objective, seamlessly integrating
the optimization procedure into the training process and incorporating language
embeddings. To solve the unified optimization problem, we develop an efficient
primal-dual optimization scheme by solving their associated subproblems and up-
dating the variables separately, progressively compacting the model while preserv-
ing semantic and RGB rendering fidelity. Moreover, we theoretically analyze the
convergence and stability of the proposed framework. Extensive experiments on
3D semantic segmentation and object localization demonstrate that our proposed
CoLaSplat brings substantial efficiency gains while maintaining high task per-
formance. Specifically, CoLaSplat achieves up to 15× model size reduction,
147× faster inference, and 6.7× lower memory usage.

1 INTRODUCTION

Open-vocabulary 3D scene understanding has received substantial attention in the field of artificial
intelligence. It aims to comprehend and interpret 3D scenes with natural language, facilitating a
wide range of applications, such as immersive AR/VR experiences (Koch et al., 2024), autonomous
driving (Cheng & Li, 2024), and robotic manipulation (Qiu et al., 2024a; Huang et al., 2022). Prior
works primarily rely on implicit neural representations (Peng et al., 2023; Wang et al., 2023; Kerr
et al., 2023) to capture 3D representations. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023) has revolutionized the realm of 3D scene representation learning. Instead of implicit repre-
sentations, it leverages explicit point-based representations learned by millions of 3D Gaussians to
model 3D scene geometric and appearance details, achieving superior visual fidelity and real-time
rendering. Inspired by the promising visual rendering results of 3DGS, current 3D scene under-
standing approaches (Zhou et al., 2024; Qiu et al., 2024b; Qu et al., 2024) have shifted to develop
language-embedded 3DGS by enriching each Gaussian with semantic features, which are extracted
from the pre-trained vision-language model such as CLIP (Radford et al., 2021) and BLIP (Li et al.,
2022b), thereby endowing it with 3D semantic representation capability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

FPS: 90
Mem: 9.3 GB
Size: 604 MB

OpenGaussian LEGaussians

LangSplat OursGround Truth

Text Query: “waldo”

FPS: 155 FPS: 431 ↑

Mem: 5.6 GB
Size: 890 MB

Mem: 9.3 GB
Size: 387 MB

FPS: 90 FPS: 107

Mem: 14.6 GB
Size: 393 MB

Mem: 5.0 GB ↓
Size: 115MB ↓

(a) (b)

ramen figurines teatime kitchen
0

20

40

60

80

100

m
Io

U
(%

)

LERF dataset

Baseline

Pruning+Quantization

Ours

bed bench lawn room sofa
85

88

90

92

95

98

100

m
Io

U
(%

)

3D-OVS dataset

Baseline

Pruning+Quantization

Ours

Figure 1: (a) Improvements of CoLaSplat over baselines in 3D semantic segmentation and model
efficiency on the “figurines” scene from LERF (Kerr et al., 2023) dataset. (b) 3D semantic segmen-
tation performance (mIoU, %) on 3D-OVS (Liu et al., 2023) dataset and LERF dataset, comparing
the baseline (Langsplat), a simple pruning (Zhang et al., 2025b) and quantization (Navaneet et al.,
2023) combination, and CoLaSplat.

Despite their strengths, existing language 3DGS methods suffer from significant memory and stor-
age challenges, which mainly arise from two aspects. First, inheriting the substantial number of
Gaussians associated with trainable parameters (e.g., opacity, location, and color) (Kerbl et al.,
2023) from 3DGS, language 3DGS requires massive memory space to store Gaussians. Moreover,
the high-dimensional semantic features that are embedded into Gaussian primitives have further sig-
nificantly increased their memory consumption (Zhou et al., 2024), especially in densely sampled
scenes, thereby preventing prior approaches from semantically understanding complex 3D scenes.

Unfortunately, previous works have focused on compressing standard 3DGS, with pruning (Yang
et al., 2024; Ali et al., 2024; Zhang et al., 2025b) and quantization (Navaneet et al., 2023; Liu et al.,
2024; Lee et al., 2024). To obtain a highly compact language-embedded 3DGS model, a naive solu-
tion is to sequentially apply existing pruning and quantization methods, as they address orthogonal
sources of redundancy (Hanson et al., 2025; Navaneet et al., 2024; Fan et al., 2024). However,
since these approaches are not specifically designed for language 3DGS, simply applying them can
result in severe semantic information loss, thereby degrading scene understanding performance, as
illustrated in Fig. 1(b). Additionally, the pruning and quantization compression stages are disjoint,
which can accumulate and amplify errors, leading to unsatisfactory rendering quality.

To address these issues, we propose CoLaSplat, a unified compression framework for com-
pact and high-fidelity language-embedded 3DGS. CoLaSplat innovatively unifies model training,
pruning, and vector quantization as a single optimization problem, constrained by the number of
Gaussian primitives and the vector quantization objective, seamlessly integrating the optimization
procedure into the training process, which automatically finds the sweet spot among multiple objec-
tives. To solve this non-trivial optimization problem, we develop a primal-dual optimization scheme
that connects Gaussian parameters with an auxiliary variable and the set of quantized parameter
vectors. Then, multiple iterative steps are alternatively performed in the optimization-integrated
training until convergence. This process progressively removes unimportant Gaussians and quan-
tizes parameters of Gaussians while maximally preserving semantic and color information. This
enables CoLaSplat to substantially reduce both the number of Gaussian primitives and parameter
redundancy in language 3DGS, considerably improving computational efficiency while maintaining
semantic and visual fidelity.

In summary, the main contributions of our work can be summarized as:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We propose CoLaSplat, a unified language 3DGS compression framework that alleviates mem-
ory and storage costs. By formulating the compression and semantic learning objective as a unified
optimization problem and iteratively solving it, CoLaSplat progressively sparsifies Gaussian
primitives and quantizes the parameters in the training process while preserving semantic and
rendering fidelity. Thus, CoLaSplat significantly reduces the model size while maintaining
high-quality semantic representations. To the best of our knowledge, CoLaSplat is the first
unified compression framework for compact language 3DGS, enabling accurate open-vocabulary
scene understanding and high-quality rendering with highly reduced computational costs.

• We propose an efficient primal-dual optimization solution to solve the unified compression prob-
lem, which alternates among four steps: optimizing the supervision loss with a regularization term
through a primal update, enforcing sparsity through a sparsification update, imposing quantiza-
tion objective through a vector quantization update, and dual update. Moreover, we provide a
rigorous convergence analysis and proof of our method in Appendix C.

• We conduct extensive experiments to evaluate the effectiveness of CoLaSplat on multiple 3D
open-vocabulary understanding tasks, including 3D semantic segmentation and 3D object local-
ization. Particularly, it achieves significant reductions in model size of up to 15×, GPU memory
usage of up to 6.7×, and speedup in inference of up to 147×, while maintaining superior semantic
and visual quality comparable to the state-of-the-art baselines.

2 RELATED WORK

Open-Vocabulary 3D Scene Understanding. Previous methods (Li et al., 2022a; Liang et al.,
2023; Kerr et al., 2023) primarily leverage implicit neural networks operating on 2D images, using
vision-language models like CLIP (Radford et al., 2021) to achieve cross-modal feature alignment.
Their core objective is to overcome the limitations of traditional segmentation methods that rely
on predefined categories. Recent efforts mainly concentrate on 3DGS-based implementations. In
these approaches, each Gaussian is augmented with semantic feature embeddings. Guo et al. (2024)
enables semantic-based selection and editing of Gaussians; Wu et al. (2024) incorporates a CLIP
text encoder to align Gaussian semantics with textual queries; Qin et al. (2024) assigns category
labels through Gaussian-text feature matching, addressing the need for 3D annotations in conven-
tional 3D segmentation; Zhou et al. (2024) employs a feed-forward 3D Gaussian architecture with a
sparse view feature inference module, eliminating the need for per-scene optimization; and Shi et al.
(2024) adds an edge detection module on top of CLIP-based semantic alignment to resolve semantic
ambiguities around object boundaries in open-vocabulary 3D segmentation.

3D Gaussian Splatting Compression. Techniques for compressing 3D Gaussian Splatting are com-
monly divided into three categories: pruning, quantization, and mixed compression. Pruning tech-
niques focus on discarding unimportant Gaussians through the learnable mask (Lee et al., 2024;
Wang et al., 2024; Liu et al., 2025; Zhang et al., 2025b; 2024; 2025a; Fang & Wang, 2024), view-
dependent metrics (Fan et al., 2024) or hand-crafted importance criteria such as opacity, composited
importance score, and dominant primitives (Niemeyer et al., 2024; Ali et al., 2024; Hanson et al.,
2025; Fan et al., 2024). Quantization-based efforts aim to reduce the number of values to repre-
sent each parameter in Gaussians (Navaneet et al., 2024). Leveraging the size estimator to establish
a robust relationship between size and hyperparameters, SizeGS (Xie et al., 2024) proposes a size-
aware hierarchical mixed precision quantization scheme. To achieve higher compression rates, more
recent approaches combine multiple compression techniques for mixed compression (Niedermayr
et al., 2024; Deng et al., 2024). SA-3DGS (Zhang et al., 2025a) removes the least significant Gaus-
sians based on learned importance scores and further compresses their parameters via importance-
aware clustering. CompGS (Liu et al., 2024) employs sliding-window masking and geometry-based
quantization to compress redundant Gaussians and their geometric attributes.

However, these methods are designed to eliminate redundancy in standard 3DGS, whereas the com-
pression of language-embedded 3DGS has not yet been explored.

3 BACKGROUND

3D Gaussian Splatting explicitly leverages a collection of Gaussians to model 3D scene geometry
and appearance. Specifically, each Gaussian G(x) is defined by a mean vector µ ∈ R3 and a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

covariance matrix Σ:
G(x) = exp

(
− 1

2
(x− µ)⊤Σ−1(x− µ)

)
, (1)

where x is a location in the 3D scene. The learnable parameters of a Gaussian consist of
{µ, c, o,R,S}, which correspond to its position, color, opacity, rotation, and scale.

To optimize the Gaussian parameters, they are projected onto 2D image planes, and a tile-based
rasterization strategy is employed to improve computational efficiency (Zwicker et al., 2001). The
2D image pixel color Cpixel is rendered by the blending process:

Cpixel =
∑
i∈N

ci αi

i−1∏
j=1

(1− αj), αi = oi G
′
i, (2)

where ci is the color of the i-th Gaussian, oi is its opacity, N is the set of ordered Gaussians
contributing to the rasterization at the target rendering pixel, and G′

i represents the projection of the
Gaussian onto the 2D plane.

To embed semantic information into Gaussian primitives, learnable language embeddings f are
introduced as new attributes associated with each Gaussian. For a particular pixel, the rasterization
process propagates these embeddings onto the image plane as follows:

Fpixel =
∑
i∈N

fi αi

i−1∏
j=1

(1− αj), (3)

where Fpixel represents the accumulated language embedding related to a pixel in a 2D image.

Some recent advanced methods (Nguyen et al., 2024; Qin et al., 2024) embed multi-scale hierarchi-
cal language features, derived from CLIP (Radford et al., 2021) features and guided by multi-scale
masks obtained from Segment Anything Model (SAM) (Kirillov et al., 2023), typically covering
three semantic scales. Moreover, dimensionality reduction of language embeddings is often neces-
sary; for instance, LangSplat (Qin et al., 2024) employs an autoencoder to map CLIP embeddings
into a compact latent space for efficient rendering and reconstructs the full features when needed.
Our approach also adopts both strategies.

During inference, given a text query ϕquery, a relevancy score (Kerr et al., 2023) is computed between
ϕquery and the rendered language embedding Fpixel for downstream tasks. For 3D object localization,
the point with the highest relevancy score is predicted as the object location and considered correct if
inside the ground-truth bounding box. For 3D semantic segmentation, points exceeding a relevancy
threshold are assigned the query category to form segmentation masks.

4 METHODOLOGY: COLASPLAT

To obtain a highly compact language-embedded 3DGS model with the maximum preserved se-
mantic information and high-quality rendering, we propose a unified language 3DGS compression
framework, CoLaSplat, which tackles this complex multi-objective compression by formulating
the entire process as a single optimization with constraints on the number of Gaussian primitives
and the vector quantization loss. Then, we propose an efficient primal-dual solution to optimize
the 3DGS language model, which alternates among optimizing multiple sub-problems with iterative
update steps.

4.1 PROBLEM FORMULATION

Language Embedded Training Objective. In the regular 3DGS training (Kerbl et al., 2023), the
Gaussian parameters are learned by a combination of pixel-wise ℓ1 loss and differentiable SSIM loss
between the rendered RGB images and the ground-truth multi-view images. The rendering loss is
defined as LRGB = (1− λ)L1 + λLD-SSIM, where λ ∈ [0, 1] balances the two terms. On the other
side, the language embeddings are trained with multi-level semantic labels in a supervised way. As
introduced in the previous section, the ground truths are derived from CLIP features and structured
under the guidance of multi-scale masks generated by SAM. Mathematically, the language loss is

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

defined as Llang = ∥F − FGT∥1, where FGT is the ground truth language embeddings. These two
losses are combined to form the final supervision loss for optimizing the given scene:

L = (1− λ)L1 + λLD-SSIM︸ ︷︷ ︸
RGB learning

+ γ∥F − FGT∥1︸ ︷︷ ︸
semantic alignment

, (4)

where γ denotes the weighting factor that balances the rendering and language losses. Minimizing
this loss yields a language 3DGS model that enhances visual fidelity while embedding semantic
information.

Unified Optimization Objective with Sparsity and Vector Quantization Constraints. Recalling
the rendering functions in Eq. 2 and Eq. 3, the contribution of each Gaussian primitive to the ren-
dered color and semantic results is positively correlated with its opacity. Therefore, we can constrain
the number of Gaussians that contribute significantly to the rendering results, effectively sparsifying
the model. Quantization is then applied only to the remaining parameters.

Given a 3DGS model with N initial Gaussians, we represent the opacities of all Gaussians as a vector
o = [o1, o2, . . . , oN] ∈ RN , where oi denotes the opacity of the i-th Gaussian, and the remaining
parameters as Θ = {θ1,θ2, . . . ,θN}, which include all parameters other than opacity. The training
process is then formulated with a loss function L(o,Θ) that depends on both the opacities o and the
other parameters Θ. We denote the set of clusters as Q = {Q1, Q2, . . . , QM}, where each cluster
Qj has a centroid qj . The collection of centroids {q1, q2, . . . , qM} constitutes the quantization
codebook, where M is the number of cluster centers, i.e., the codebook size. The centroids are
updated by clustering the set of parameters vectors Θ and are also the quantization vectors stored
in the codebook. With the clusters and codebook defined, the unified optimization objective, which
includes sparsity and vector quantization constraints, is given by:

min
o,Θ,Q

L(o,Θ) +

M∑
j=1

∑
θi∈Qj

∥θi − qj∥22, s.t. card(o) ≤ κ. (5)

The sparsity constraint card(o) ≤ κ enforces sparsity in the Gaussian representation by limiting
the number of Gaussians with non-zero opacity to at most κ. Here, card(o) denotes the cardinality
of the vector o, i.e., the number of its non-zero elements. During training, this encourages infor-
mation to concentrate on a small subset of Gaussians with high opacity, while the others gradually
become transparent. After convergence, the nearly transparent Gaussians can be discarded, yielding
a compact representation.

The quantization penalty
∑M

j=1

∑
θi∈Qj

∥θi − qj∥22 acts as the vector quantization objective, pe-
nalizing deviations of each parameter vector θi from its assigned cluster centroid qj . Here, θi ∈ Qj

denotes all vectors belonging to cluster Qj . This term encourages each vector to remain close to
its centroid, effectively promoting quantization of the parameter space. After training, every vector
can be approximated by its cluster center, requiring only the index of the center and the codebook
{q1, . . . , qM} to be stored. Since M ≪ N , this significantly reduces storage cost compared to
storing all individual vectors.

4.2 OPTIMIZATION

The unified optimization objective in Eq. 5 involves two non-differentiable components: the sparsity
constraint card(o) ≤ κ and the quantization penalty

∑M
j=1

∑
θi∈Qj

∥θi− qj∥22, where the penalty
itself is differentiable but the discrete assignment θi ∈ Qj is not. To handle the non-differentiable
components that make the optimization challenging, we reformulate both constraints into forms that
are more amenable to optimization.

We first introduce an auxiliary variable y to separate the sparsity constraint from o, and use Θ̂ =

{θ̂1, . . . , θ̂N} as the set of quantized Gaussian parameter vectors, which separates the quantization
operation from Θ. Then, we take g(·) to be the indicator function of the closed nonempty, non-
convex set defined by the sparsity constraint, i.e., g(y) = 0 for card(y) ≤ κ and g(y) = +∞
otherwise. In this case, the minimization step in Eq. 5 reduces to solving a sparsity-constrained
optimization problem over the feasible set {S | card(o) ≤ κ}. Hence, Eq. 5 can be reformulated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

as an equality-constrained one:

min
o,Θ,Q

L(o,Θ) + g(y) +

M∑
j=1

∑
θ̂i∈Qj

∥θ̂i − qj∥22, s.t. o = y,Θ = Θ̂. (6)

This reformulation allows the differentiable terms o and Θ to be optimized via gradient-based meth-
ods, while the non-differentiable sparsity constraint g(y) and the discrete assignment for quantiza-
tion penalty

∑M
j=1

∑
θ̂i∈Qj

∥θ̂i − qj∥22 are handled independently.

We solve the equality-constrained problem in Eq. 6 by constructing an augmented Lagrangian with
scaled Lagrange multipliers u,V and penalty coefficients ρ1, ρ2:

Lρ(o,Θ,y, Θ̂,u,V) = L(o,Θ)+g(y) +

M∑
j=1

∑
θ̂i∈Qj

∥θ̂i − qj∥22

+
ρ1
2
∥o− y + u∥22 +

ρ2
2
∥Θ− Θ̂+ V ∥22.

(7)

Here, the equality constraints are enforced via quadratic penalty terms, yielding an unconstrained,
penalty-based formulation. This unconstrained problem is then solved iteratively: the primal vari-
ables, including o,Θ,y, Θ̂, are updated by alternately minimizing the augmented Lagrangian
Lρ(o,Θ,y, Θ̂,u,V) with respect to each subproblem, while the scaled Lagrange multipliers u,V
are updated accordingly, as described below:

1 Primal Update. During the first step of iteration t, only the model parameters o and Θ are up-
dated, with all other variables y, Θ̂,u,V held fixed. The update is then formulated as the following
differentiable subproblem:

(ot+1,Θt+1) = argmin
o,Θ

L(o,Θ) +
ρ1
2
∥o− yt + ut∥22 +

ρ2
2
∥Θ− Θ̂t + V t∥22, (8)

where L(o,Θ) is the differentiable training loss, and the remaining quadratic terms are convex.
Consequently, Eq. 8 can be efficiently optimized using standard stochastic gradient descent methods.
Accordingly, the gradients for o and Θ at iteration t are:(

∂L

∂o

)t

=
∂L(o,Θt)

∂o
+ ρ1

(
ot − yt + ut

)
, (9)(

∂L

∂Θ

)t

=
∂L(ot,Θ)

∂Θ
+ ρ2

(
Θt − Θ̂t + V t

)
, (10)

and o,Θ can be updated by:

ot+1 ← ot − η1

(
∂L

∂o

)t

, Θt+1 ← Θt − η2

(
∂L

∂Θ

)t

, (11)

where η1 > 0 and η2 > 0 denote the learning rates for updating o and Θ, respectively.

2 Sparsification Update. In this step, the auxiliary variable y is updated by solving miny g(y) +
ρ1

2 ∥o
t+1− y+ut∥22. The closed-form solution (Parikh et al., 2014; Boyd et al., 2011) can be given

by

yt+1 ← ΠS(o
t+1 + ut), (12)

where ΠS is an operator that enforces the sparsity constraint specified by g(·). In particular, when
S = {y | card(y) ≤ κ}, i.e., the set of vectors with at most κ nonzero elements, ΠS retains the κ
entries of largest magnitude and sets all others to zero.

Because of the quadratic penalty term ρ1

2 ∥o
t+1−y+ut∥22, the ΠS is applied to ot+1+ut rather than

y itself, where the scaled Lagrange multiplier u acts as an accumulated correction term, capturing
the discrepancy between o and y over iterations and steering o toward its sparsified counterpart y.

3 Vector Quantization Update. In the third step, we update the cluster set Q and subsequently
update the quantized Gaussian parameters Θ̂ based on the updated clusters.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

𝐿!"#$

𝒚!"# ← ∏𝓢 𝒐!"# + 𝒖!

Training Dataset

Codebook

	𝒖!"# ← 𝒖! + 𝒐!"# − 𝒚!"#,
	𝑽!"# ← 𝑽! + 𝚯!"# −𝚯,!"#

Original
Parameters

Quantized
Parameters

𝐿%&'

𝐿 = 𝐿%&'(+	𝐿)*+

2
3

1

4
N

2
3

1

4
N

: Ground Truth : Rendered Results

…

Opacity
Semantic

Position

Color

1-th Gaussian

…

Opacity
Semantic

Position

Color

1-th Gaussian

𝜽#
…

Opacity

Position

Color

1-th Gaussian ...

...

𝚯 = [𝜽!, 𝜽"…𝜽#]

N-th Gaussian

𝑜#SAM CLIP

、
、

𝒐!"# ← 𝒐! − 𝜂# 𝜕𝐿 𝒐, 𝚯! /𝜕𝒐 + 𝜌# 𝒐! − 𝒚! + 𝒖! , 	𝚯!"#← 𝚯! − 𝜂, 𝜕𝐿 𝒐!, 𝚯 /𝜕𝚯 + 𝜌, 𝚯! −𝚯,! + 𝑽!

Vector Quantization Update

Primal Update

Dual Update

R
en

de
re

r

2
1

KRGB

Language
Embedding

Language

Rendering & Semantic Loss

𝒐 = [𝑜!, 𝑜"…𝑜#]
Model Parameters 2 Sparsification Update 3

1

4

𝚯,!"# ← ∏𝓠 𝚯!"# + 𝑽!
𝓠Cluster Update By Eq.13

𝓠

,

Figure 2: Overview of the CoLaSplat framework, illustrating the four updates performed in each
iteration of the optimization loop.

The cluster set Q = {Q1, Q2, . . . , QM} and the associated centroids {q1, q2, . . . , qM} are updated
via the standard k-means procedure. Concretely, each centroid qj is first computed as the mean of
the Gaussian parameter vectors θi assigned to it, and then each cluster Qj is updated by reassigning
every θi to its nearest centroid, formally:

for j = 1, . . . ,M :


qt+1
j =

1

|Qt
j |
∑

θt+1
i ∈Qt

j
θt+1
i

Qt+1
j =

{
θt+1
i

∣∣∣ argmink=1,...,M ∥θt+1
i − qt+1

k ∥2 = j
} . (13)

Then the quantized Gaussian parameter vectors Θ̂ are updated by minimizing the corresponding
term in Eq. 7:

∑M
j=1

∑
θ̂i∈Qt+1

j
∥θ̂i − qt+1

j ∥22 +
ρ2

2 ∥Θ
t+1 − Θ̂+ V t∥22, which is computed as

Θ̂t+1 ← ΠQ(Θt+1 + V t). (14)

Here, ΠQ denotes the quantization operator, which replaces each vector with its nearest cluster
centroid in Q. Due to the penalty term ρ2

2 ∥Θ
t+1 − Θ̂+ V t∥22, ΠQ is applied to Θt+1 + V t rather

than Θ̂ itself. The scaled Lagrange multiplier V acts as an accumulated correction term, tracking
the discrepancy between Θ and Θ̂ across iterations and gradually steering Θ toward its quantized
counterpart Θ̂.

4 Dual Update. In the final step of iteration t, the multipliers u and V are updated as

ut+1 ← ut + ot+1 − yt+1, V t+1 ← V t +Θt+1 − Θ̂t+1. (15)

This update to u ensures that if the constraint o = y is not fully satisfied, the corresponding La-
grange multipliers u is increased, which in turn imposes a larger penalty on o in the subsequent
optimization step, effectively driving it toward the sparse set. Similarly, the update of V enforces
the alignment between Θ and Θ̂, gradually optimizing the quantization objective.

The above updates are performed in an alternating manner, and the optimization is considered con-
verged when all variables satisfy their respective conditions, i.e., ∥o−y∥2 ≤ ϵ1 and ∥Θ−Θ̂∥2 ≤ ϵ2,
where ϵ1 and ϵ2 are user-defined hyperparameters, or when the maximum number of iterations
is reached. The overall procedure, integrated into the language 3DGS training, is summarized in
Alg. 1, Appendix B, and illustrated in Figure 2. The theoretical analysis of convergence is provided
in Appendix C.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets, Metrics and Baselines. We evaluate CoLaSplat on two benchmark datasets for open-
vocabulary 3D scene understanding, conducting 3D semantic segmentation experiments on 3D-
OVS (Liu et al., 2023) and LERF (Kerr et al., 2023) and object localization experiments on LERF,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

reporting mean Intersection-over-Union (mIoU) for segmentation and localization accuracy for lo-
calization. To evaluate visual quality, following the 3DGS (Kerbl et al., 2023) protocol for the novel
view synthesis (NVS) task, we report the peak signal-to-noise ratio (PSNR), structural similarity in-
dex measure (SSIM), and learned perceptual image patch similarity (LPIPS). Regarding model effi-
ciency, we measure the computational and storage costs by reporting the average peak GPU memory
usage, model size, and rendering speed in frames per second (FPS). We compare CoLaSplat with
existing state-of-the-art language 3DGS methods, including Feature-3DGS (Zhou et al., 2024), GS-
Grouping (Ye et al., 2024), OpenGaussian (Wu et al., 2024), LEGaussians (Shi et al., 2024), and
LangSplat (Qin et al., 2024).

Implementation. Ground-truth hierarchical semantic features are extracted from each image using
SAM ViT-H (Kirillov et al., 2023) and OpenCLIP ViT-B/16 (Radford et al., 2021). The initial point
cloud for language 3DGS is generated using the default 3DGS (Kerbl et al., 2023) implementation.
Each scene undergoes 40,000 iterations, with 10,000 for joint optimization and alternating optimiza-
tion (Sec. 4.2) applied every 50 iterations. By selecting appropriate κ values, Gaussian points are
reduced by 50% for 3D-OVS and 30% for LERF. For quantization, 8,000 cluster centers are used
to quantize the Spherical Harmonics coefficients, the largest subset of Gaussian parameters. Image
resolutions are set to 1440×1080 (3D-OVS) and 988×731 (LERF), consistent with prior works.
Additional details are provided in Appendix D.

5.2 RESULTS ON THE 3D-OVS DATASET

Method
mIoU↑ (%)

PSNR↑ SSIM↑ LPIPS↓ Mem↓
(GB)

Size↓
(MB) FPS↑

bed bench lawn room sofa mean

Feature-3DGS 83.5 90.7 93.4 84.7 86.9 87.8 21.80 0.68 0.31 6.2 828 2
GS-Grouping 83.0 91.5 90.6 85.9 87.3 87.7 24.50 0.80 0.21 6.1 728 130
OpenGaussian 24.5 52.9 59.4 19.7 28.4 37.0 23.95 0.72 0.26 6.0 381 23
LEGaussians 84.9 91.1 92.5 86.0 87.8 88.5 24.00 0.72 0.26 20.8 383 95
LangSplat 92.5 94.2 96.1 94.1 90.0 93.4 24.13 0.73 0.25 3.8 900 103

CoLaSplat 94.8 95.0 96.3 94.1 92.8 94.6 24.27 0.75 0.24 3.1 60 294

Table 1: Quantitative comparison of CoLaSplat and baseline methods on the 3D-OVS dataset,
evaluating their performance in 3D semantic segmentation, visual quality, and model efficiency.

Table 1 presents a comprehensive comparison across multiple metrics. CoLaSplat outperforms
all baseline methods in both 3D semantic segmentation and efficiency, while achieving visual fi-
delity second only to GS-Grouping. Specifically, it achieves the highest segmentation mIoU on each
scene. Notably, compared to LangSplat, the baseline with the highest mIoU, CoLaSplat reduces
peak GPU memory consumption by 18.4%, decreases model size by 15×, and accelerates rendering
speed by 2.9×. Against the remaining baselines, CoLaSplat demonstrates even greater advan-
tages, achieving a 147× speedup over Feature-3DGS and reducing peak GPU memory consumption
by up to 6.7× compared to LEGaussians. These improvements stem from unifying pruning and
quantization into a single optimization objective during training, enabling a well-balanced trade-off
between semantic accuracy and visual fidelity.

5.3 RESULTS ON THE LERF DATASET

We further evaluate CoLaSplat on the LERF dataset. Table 2 reports results for 3D semantic
segmentation, visual quality, and model efficiency. Despite substantial compression, it maintains
competitive segmentation performance and visual fidelity while achieving the best overall efficiency.
In particular, it attains the highest mean mIoU, and although slightly lower than LangSplat on two
specific scenes, it still surpasses all other baselines. Regarding visual quality, the method performs
on par with LangSplat, exhibiting only a marginally higher LPIPS of 0.01. Moreover, peak GPU
memory consumption is reduced by up to 65.8% compared to LEGaussians and remains 10.7%
lower than the most memory-efficient baseline, LangSplat, while the model size is 3.4× smaller
than that of the most compact competitor, OpenGaussian. Finally, it delivers the fastest rendering
speed, achieving 144× and 2.8× improvements over Feature-3DGS and GS-Grouping, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method
mIoU↑ (%)

PSNR↑ SSIM↑ LPIPS↓ Mem↓
(GB)

Size↓
(MB) FPS↑

ramen figurines teatime kitchen mean

Feature-3DGS 43.7 40.5 58.8 39.6 45.7 21.80 0.68 0.27 6.0 664 3
GS-Grouping 45.5 40.0 60.9 38.7 46.3 25.50 0.89 0.20 8.6 706 154
OpenGaussian 31.0 39.3 60.4 22.7 38.4 22.88 0.81 0.24 9.3 387 90
LEGaussians 46.0 40.8 60.3 39.4 46.9 23.34 0.83 0.24 14.6 393 107
LangSplat 51.2 44.7 65.1 44.5 51.4 24.74 0.85 0.23 5.6 890 155

CoLaSplat 51.2 43.6 64.0 49.0 52.0 24.76 0.85 0.24 5.0 115 431

Table 2: Quantitative comparison of CoLaSplat and baseline methods on the LERF dataset, eval-
uating their performance in 3D semantic segmentation, visual quality, and model efficiency. The
kitchen label is the waldo kitchen scene.

Method ramen figurines teatime kitchen

LSeg 14.1 8.9 33.9 27.3
LERF 62.0 75.0 84.8 72.7
LangSplat 73.2 80.4 88.1 95.5

CoLaSplat 73.2 80.4 91.5 90.9

Table 3: Performance comparisons of 3D object
location accuracy (%) on the LERF dataset.

Table 3 summarizes the results of 3D object
location on the LERF dataset. For a fair
comparison, we only include methods that re-
ported 3D object location results in their pa-
pers. CoLaSplat achieves the best results
on all scenes except kitchen, where it is 4.6%
lower than LangSplat. However, this differ-
ence is caused by a single mispredicted im-
age, as the kitchen scene contains only 22 test
images. This result further demonstrates that
CoLaSplat maintains high semantic fidelity
even under a highly compact representation.

6 ABLATION STUDY

Method
mIoU↑ (%) Mem↓

(GB)
Size↓
(MB) FPS↑

bed bench lawn room sofa

CoLaSplat w/o Pruning 94.4 94.6 96.2 93.1 92.3 3.8 111 262
CoLaSplat w/o Quantization 94.8 95.0 96.0 93.3 92.7 3.1 165 294
CoLaSplat Full 94.8 95.0 96.3 94.1 92.8 3.1 60 294

Table 4: Ablation study results on the 3D-OVS dataset

We present the ablation study results in Table 4, analyzing the effectiveness of the two objectives,
i.e., sparsity and vector quantization, in the unified optimization. We evaluate the performance by
removing one constraint at a time. The results indicate that applying sparsity or vector quantization
constraint individually leads to limited compression efficiency and lower 3D semantic segmentation
performance. CoLaSplat can automatically balance multiple objectives and identify the sweet
spot that maximizes task performance and compression ratio.

7 CONCLUSION

In this work, we propose CoLaSplat, which effectively addresses the challenge of compress-
ing language-embedded 3DGS models that existing methods cannot handle. CoLaSplat unifies
training, pruning, and vector quantization into a single optimization problem. We then develop an
effective primal-dual optimization solution to solve the unified optimization problem, allowing the
training process to identify a sweet spot among multiple compression objectives. Evaluation on two
datasets demonstrates that CoLaSplat substantially improves model compactness and efficiency
while maintaining both high semantic and visual rendering fidelity.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The datasets used in this work are publicly available. The 3D-OVS dataset can be accessed via Liu
et al. (2023), and the LERF dataset is available from Qin et al. (2024). Experiments were conducted
on an NVIDIA RTX 6000 Ada Generation GPU using Python 3.9.21 and PyTorch 2.5.1. Random
seeds were fixed across all experiments to guarantee reproducibility. Additional details regarding the
parameters are provided in Appendix D. Data preprocessing and the implementation of downstream
tasks strictly follow Qin et al. (2024). The code and training scripts are available at: https:
//anonymous.4open.science/r/ColaSplat-6D46.

ETHICS STATEMENT

This work proposes CoLaSplat, a unified compression framework for language-embedded 3D Gaus-
sian Splatting (3DGS), enabling open-vocabulary 3D scene understanding on resource-constrained
conditions. Our method leverages publicly available 3D datasets, which do not contain person-
ally identifiable information, and complies with the original providers’ guidelines. CoLaSplat is
designed to improve the efficiency and accessibility of 3D scene understanding while preserving
semantic and rendering fidelity. Although we do not foresee direct harm, high-fidelity 3D recon-
structions could potentially be misused for unauthorized replication of 3D content. We encourage
responsible use of this technology and adherence to intellectual property laws. No conflicts of inter-
est are present.

REFERENCES

Muhammad Salman Ali, Maryam Qamar, Sung-Ho Bae, and Enzo Tartaglione. Trimming the fat:
Efficient compression of 3d gaussian splats through pruning. arXiv preprint arXiv:2406.18214,
2024.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning, 3(1):1–122, 2011.

Xinlong Cheng and Lei Li. Open 3d world in autonomous driving. arXiv preprint arXiv:2408.10880,
2024.

Tianchen Deng, Yaohui Chen, Leyan Zhang, Jianfei Yang, Shenghai Yuan, Jiuming Liu, Danwei
Wang, Hesheng Wang, and Weidong Chen. Compact 3d gaussian splatting for dense visual slam.
arXiv preprint arXiv:2403.11247, 2024.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, Zhangyang Wang, et al. Lightgaus-
sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. Advances in neural
information processing systems, 37:140138–140158, 2024.

Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
gaussians. In European Conference on Computer Vision, pp. 165–181. Springer, 2024.

Jun Guo, Xiaojian Ma, Yue Fan, Huaping Liu, and Qing Li. Semantic gaussians: Open-vocabulary
scene understanding with 3d gaussian splatting. arXiv preprint arXiv:2403.15624, 2024.

Alex Hanson, Allen Tu, Vasu Singla, Mayuka Jayawardhana, Matthias Zwicker, and Tom Gold-
stein. Pup 3d-gs: Principled uncertainty pruning for 3d gaussian splatting. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 5949–5958, 2025.

Chenguang Huang, Oier Mees, Andy Zeng, and Wolfram Burgard. Visual language maps for robot
navigation. arXiv preprint arXiv:2210.05714, 2022.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.

Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Lan-
guage embedded radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 19729–19739, 2023.

10

https://anonymous.4open.science/r/ColaSplat-6D46
https://anonymous.4open.science/r/ColaSplat-6D46

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

Sebastian Koch, Pedro Hermosilla, Narunas Vaskevicius, Mirco Colosi, and Timo Ropinski.
Lang3dsg: Language-based contrastive pre-training for 3d scene graph prediction. In 2024 Inter-
national Conference on 3D Vision (3DV), pp. 1037–1047. IEEE, 2024.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 21719–21728, 2024.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-driven
semantic segmentation. arXiv preprint arXiv:2201.03546, 2022a.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022b.

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang,
Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted
clip. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 7061–7070, 2023.

Kunhao Liu, Fangneng Zhan, Jiahui Zhang, Muyu Xu, Yingchen Yu, Abdulmotaleb El Saddik,
Christian Theobalt, Eric Xing, and Shijian Lu. Weakly supervised 3d open-vocabulary segmen-
tation. Advances in Neural Information Processing Systems, 36:53433–53456, 2023.

Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
3d scene representation via compressed gaussian splatting. In Proceedings of the 32nd ACM
International Conference on Multimedia, pp. 2936–2944, 2024.

Yifei Liu, Zhihang Zhong, Yifan Zhan, Sheng Xu, and Xiao Sun. Maskgaussian: Adaptive 3d
gaussian representation from probabilistic masks. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 681–690, 2025.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsi-
avash. Compact3d: Smaller and faster gaussian splatting with vector quantization. arXiv preprint
arXiv:2311.18159, 1, 2023.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compgs: Smaller and faster gaussian splatting with vector quantization. In European Conference
on Computer Vision, pp. 330–349. Springer, 2024.

Phuc Nguyen, Tuan Duc Ngo, Evangelos Kalogerakis, Chuang Gan, Anh Tran, Cuong Pham, and
Khoi Nguyen. Open3dis: Open-vocabulary 3d instance segmentation with 2d mask guidance. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 4018–
4028, 2024.

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
for accelerated novel view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10349–10358, 2024.

Michael Niemeyer, Fabian Manhardt, Marie-Julie Rakotosaona, Michael Oechsle, Daniel Duck-
worth, Rama Gosula, Keisuke Tateno, John Bates, Dominik Kaeser, and Federico Tombari. Rad-
splat: Radiance field-informed gaussian splatting for robust real-time rendering with 900+ fps.
arXiv preprint arXiv:2403.13806, 2024.

Neal Parikh, Stephen Boyd, et al. Proximal algorithms. Foundations and trends® in Optimization,
1(3):127–239, 2014.

Songyou Peng, Kyle Genova, Chiyu Jiang, Andrea Tagliasacchi, Marc Pollefeys, Thomas
Funkhouser, et al. Openscene: 3d scene understanding with open vocabularies. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 815–824, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Minghan Qin, Wanhua Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. Langsplat: 3d lan-
guage gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 20051–20060, 2024.

Dicong Qiu, Wenzong Ma, Zhenfu Pan, Hui Xiong, and Junwei Liang. Open-vocabulary mo-
bile manipulation in unseen dynamic environments with 3d semantic maps. arXiv preprint
arXiv:2406.18115, 2024a.

Ri-Zhao Qiu, Ge Yang, Weijia Zeng, and Xiaolong Wang. Feature splatting: Language-driven
physics-based scene synthesis and editing. arXiv preprint arXiv:2404.01223, 2024b.

Yansong Qu, Shaohui Dai, Xinyang Li, Jianghang Lin, Liujuan Cao, Shengchuan Zhang, and Ron-
grong Ji. Goi: Find 3d gaussians of interest with an optimizable open-vocabulary semantic-space
hyperplane. In Proceedings of the 32nd ACM international conference on multimedia, pp. 5328–
5337, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Jin-Chuan Shi, Miao Wang, Hao-Bin Duan, and Shao-Hua Guan. Language embedded 3d gaus-
sians for open-vocabulary scene understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5333–5343, 2024.

Henan Wang, Hanxin Zhu, Tianyu He, Runsen Feng, Jiajun Deng, Jiang Bian, and Zhibo Chen.
End-to-end rate-distortion optimized 3d gaussian representation. In European Conference on
Computer Vision, pp. 76–92. Springer, 2024.

Ruibo Wang, Song Zhang, Ping Huang, Donghai Zhang, and Wei Yan. Semantic is enough: Only se-
mantic information for nerf reconstruction. In 2023 IEEE International Conference on Unmanned
Systems (ICUS), pp. 906–912. IEEE, 2023.

Yanmin Wu, Jiarui Meng, Haijie Li, Chenming Wu, Yahao Shi, Xinhua Cheng, Chen Zhao,
Haocheng Feng, Errui Ding, Jingdong Wang, et al. Opengaussian: Towards point-level 3d
gaussian-based open vocabulary understanding. Advances in Neural Information Processing Sys-
tems, 37:19114–19138, 2024.

Shuzhao Xie, Jiahang Liu, Weixiang Zhang, Shijia Ge, Sicheng Pan, Chen Tang, Yunpeng Bai, and
Zhi Wang. Sizegs: Size-aware compression of 3d gaussians with hierarchical mixed precision
quantization. arXiv preprint arXiv:2412.05808, 2024.

Runyi Yang, Zhenxin Zhu, Zhou Jiang, Baijun Ye, Xiaoxue Chen, Yifei Zhang, Yuantao Chen, Jian
Zhao, and Hao Zhao. Spectrally pruned gaussian fields with neural compensation. arXiv preprint
arXiv:2405.00676, 2024.

Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit
anything in 3d scenes. In European conference on computer vision, pp. 162–179. Springer, 2024.

Liheng Zhang, Weihao Yu, Zubo Lu, Haozhi Gu, and Jin Huang. Sa-3dgs: A self-adaptive compres-
sion method for 3d gaussian splatting. arXiv preprint arXiv:2508.03017, 2025a.

Yangming Zhang, Wenqi Jia, Wei Niu, and Miao Yin. Gaussianspa: An” optimizing-sparsifying”
simplification framework for compact and high-quality 3d gaussian splatting. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 26673–26682, 2025b.

Zhaoliang Zhang, Tianchen Song, Yongjae Lee, Li Yang, Cheng Peng, Rama Chellappa, and Deliang
Fan. Lp-3dgs: Learning to prune 3d gaussian splatting. arXiv preprint arXiv:2405.18784, 2024.

Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Zehao Zhu, Dejia Xu, Pradyumna Chari,
Suya You, Zhangyang Wang, and Achuta Kadambi. Feature 3dgs: Supercharging 3d gaussian
splatting to enable distilled feature fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 21676–21685, 2024.

Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross. Ewa volume splatting. In
Proceedings Visualization, 2001. VIS’01., pp. 29–538. IEEE, 2001.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A USAGE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we used the GPT-5 mini model solely for grammar cor-
rection and language editing of Sections 4, 5, and 6. Specifically, prompts such as “Are there any
grammatical errors in this paragraph” and “Which parts of this paragraph can be removed” were
employed. LLMs were not used for any other purposes.

B OVERALL OPTIMIZATION ALGORITHM

Algorithm 1 Unified Sparsity and Vector Quantization Optimization for language 3DGS

Input: Language 3DGS variables Θ, opacity o, sparsity constraint number κ, number of clusters
M , penalty coefficients ρ1, ρ2, learning rates η1, η2, maximum iterations T , convergence thresh-
olds ϵ1, ϵ2.

Output: Optimized parameters o, Θ, quantization codebook Q.
1: Initialize o0,Θ0,y0, Θ̂0,u0,V 0,Q0

2: for t = 0, 1, 2, . . . , T do
3: ot+1 ← ot − η1

∂L
∂o ; Θt+1 ← Θt − η2

∂L
∂Θ ; ▷ Primal update.

4: yt+1 ← ΠS(o
t+1 + ut); ▷ Sparsification update

5: for j = 1 to M do ▷ Vector quantization update.
6: qt+1

j ← 1
|Qt

j |
∑

θt+1
i ∈Qt

j
θt+1
i ;

7: Qt+1
j ← {θt+1

i | argmink ∥θt+1
i − qt+1

k ∥2 = j};
8: end for
9: Θ̂t+1 ← ΠQ(Θt+1 + V t);

10: ut+1 ← ut + ot+1 − yt+1; V t+1 ← V t +Θt+1 − Θ̂t+1; ▷ Dual update
11: if ∥ot+1 − yt+1∥2 ≤ ϵ1 and ∥Θt+1 − Θ̂t+1∥2 ≤ ϵ2 then
12: break ▷ Convergence reached.
13: end if
14: end for
15: return ot+1,Θt+1,Qt+1

C CONVERGENCE ANALYSIS AND PROOF

This section provides a formal convergence analysis for the optimization scheme. The objective is
to demonstrate that the sequence of iterates generated by the algorithm converges to a critical point
of the constrained optimization problem defined in Eq. 6.

Our proof strategy follows the theoretical framework for non-convex and non-smooth optimization
problems. The core is to show that a Lyapunov function built upon the augmented Lagrangian Lρ

Eq.7 is monotonically non-increasing and bounded from below, which implies that iterates are well-
behaved and any limit point satisfies first-order optimality (generalized KKT) conditions for the
original problem.
Theoretical Assumptions. We adopt following standard assumptions, which are common in non-
convex optimization analysis:

1. Assumption 1 (Properties of the Loss Function). The loss L(o,Θ) is continuously differ-
entiable and L-smooth in (o,Θ), i.e.,

∥∇L(o1,Θ1)−∇L(o2,Θ2)∥ ≤ L∥(o1,Θ1)− (o2,Θ2)∥.

2. Assumption 2 (Lower Boundedness). The objective function, including the non-smooth
terms, is bounded below by 0.

3. Assumption 3 (Penalty and Stepsize). The penalty parameters ρ1, ρ2 > 0 and the learning
rates η1, η2 > 0 satisfy

η1 <
2

L+ ρ1
, η2 <

2

L+ ρ2
.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

4. Assumption 4 (Limit Point). The sequence {(ot,Θt,yt, Θ̂t,ut,V t)}t∈N generated by
Algorithm 1 has at least one limit point.

Augmented Lagrangian and Lyapunov function. The augmented Lagrangian is defined in Eq. (7)
as Lρ(o,Θ,y, Θ̂,u,V). We will work with the Lyapunov function:

Φt = Lρ(o
t,Θt,yt, Θ̂t,ut,V t), (16)

For brevity, we write
∆ot = ot+1 − ot,

∆Θt = Θt+1 −Θt,

rt+1
o = ot+1 − yt+1,

rt+1
Θ = Θt+1 − Θ̂t+1.

(17)

C.1 LEMMA 1 (MODEL PARAMETERS UPDATE YIELDS SUFFICIENT DECREASE)

Statement. Let the updates for ot+1 and Θt+1 be performed as in Eq.11. Under Assumptions 1 and
3, the following holds:

Lρ(o
t+1,Θt+1,yt, Θ̂t,ut,V t) ≤ Lρ(o

t,Θt,yt, Θ̂t,ut,V t)− co
∥∥∆ot

∥∥2
2
− cΘ

∥∥∆Θt
∥∥2
2
,
(18)

with explicit positive constants

co =
1

η1
− L

2
− ρ1

2
> 0,

cΘ =
1

η2
− L

2
− ρ2

2
> 0.

(19)

Proof. Following standard descent lemma for gradient updates on an L-smooth function, the update
for o gives:

L(ot+1,Θt) +
ρ1
2
∥ot+1 − yt + ut∥22 ≤ L(ot,Θt) +

ρ1
2
∥ot − yt + ut∥22 − co∥∆ot∥22. (20)

A similar inequality holds for the Θ update. Combining these proves the statement.

C.2 LEMMA 2 (AUXILIARY UPDATES ARE NON-INCREASING)

Statement. The minimizations in the updates for y and Θ̂ satisfy:

Lρ(o
t+1,Θt+1,yt+1, Θ̂t+1,ut,V t) ≤ Lρ(o

t+1,Θt+1,yt, Θ̂t,ut,V t). (21)

Proof. Update for yt+1 in Eq. 12 is a minimization of g(y) + ρ1

2 ∥o
t+1 − y + ut∥22 (g(·) is defined

in Section 4.2). Therefore, by definition of argmin, the value of the objective at yt+1 must be less
than or equal to the value at yt. The same logic applies to the Θ̂ update. Chaining these two
non-increasing steps proves the lemma.

C.3 LEMMA 3 (DUAL ASCENT AND LYAPUNOV ACCOUNTING)

Statement. Let Θt+1/2 denote the Lyapunov value after finishing Lemmas 1 and 2 (i.e., after the x-
and z-updates) and before the dual step. With the scaled dual updates:

ut+1
1 = ut

1 + (at+1 − zt+1
1) = ut

1 + rt+1
1 ,

ut+1
2 = ut

2 + (Θt+1 − zt+1
2) = ut

2 + rt+1
2 ,

(22)

we have the following explicit expression for the change of the augmented Lagrangian across the
dual step:

Lδ1,δ2(a
t+1,Θt+1, zt+1

1 , zt+1
2 ,ut+1

1 ,ut+1
2)− Lδ1,δ2(a

t+1,Θt+1, zt+1
1 , zt+1

2 ,ut
1,u

t
2)

=

2∑
i=1

δi
2

(
2
〈
rt+1
i + ut

i, r
t+1
i

〉
+

∥∥rt+1
i

∥∥2
2

)
,

(23)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Consequently,

Θt+1 = Θt+1/2 +

2∑
i=1

δi
2

(
2
〈
rt+1
i + ut

i, r
t+1
i

〉
+
∥∥rt+1

i

∥∥2
2

)
, (24)

because the Lyapunov addenda γi

2 ∥a − z1∥2 and γi

2 ∥Θ − z2∥2 remain unchanged during the dual
step (the residuals rt+1

i do not change).
Proof. Only the quadratic penalty terms that involve ui change in the dual step. For each block
i ∈ {1, 2} with rt+1

i fixed and ut+1
i = ut

i + rt+1
i , then we have:

δi
2

(∥∥rt+1
i + ut+1

i

∥∥2
2
−
∥∥rt+1

i + ut
i

∥∥2
2

)
=

δi
2

(
2
〈
rt+1
i + ut

i, r
t+1
i

〉
+

∥∥rt+1
i

∥∥2
2

)
, (25)

by the identity ∥x+ y∥2−∥x∥2 = 2⟨x, y⟩+ ∥y∥2 with x = rt+1
i +ut

i and y = ut+1
i −ut

i = rt+1
i .

Summing over i gives us the Eq.23, and adding the Lyapunov addenda yields Eq.24.

C.4 LEMMA 4 (MONOTONICITY, SUMMABILITY, AND VANISHING RESIDUALS)

Statement. Under the Lemmas 1 to 3 and the standing assumptions, there exist positive constants
C1, C2 (depending on ca, cΘ, δi, γi) such that

Θt+1 ≤ Θt − C1

∥∥∆at
∥∥2
2
− C2

∥∥∆Θt
∥∥2
2
, (26)

and hence {Θt} is monotonically nonincreasing and converges to a finite limit Θ⋆. Moreover,
∞∑
t=0

(∥∥∆at
∥∥2
2
+
∥∥∆Θt

∥∥2
2

)
<∞,

lim
t→∞

∥∥at − zt
1

∥∥
2
= 0,

lim
t→∞

∥∥Θt − zt
2

∥∥
2
= 0.

(27)

Proof. From Lemma 1 we have

Lδ1,δ2(a
t+1,Θt+1, zt

1,z
t
2,u

t
1,u

t
2) ≤

Lδ1,δ2(a
t,Θt, zt

1, z
t
2,u

t
1,u

t
2)− ca

∥∥∆at
∥∥2
2
− cΘ

∥∥∆Θt
∥∥2
2
.

(28)

By Lemma 2, updating z1, z2 is nonincreasing:

Lδ1,δ2(a
t+1,Θt+1, zt+1

1 , zt+1
2 ,ut

1,u
t
2) ≤ Lδ1,δ2(a

t+1,Θt+1, zt
1, z

t
2,u

t
1,u

t
2). (29)

Combining these two and then applying Lemma 3 (Eq.24) gives

Θt+1 ≤ Θt − ca
∥∥∆at

∥∥2
2
− cΘ

∥∥∆Θt
∥∥2
2
+

2∑
i=1

δi
2

(
2
〈
rt+1
i + ut

i, r
t+1
i

〉
+

∥∥rt+1
i

∥∥2
2

)
, (30)

Because rt+1
i = at+1 − zt+1

i and ut
i are fixed at this point, the inner products can be controlled by

2⟨ut
i, r

t+1
i ⟩ ≤ αi∥ut

i∥22+ 1
αi
∥rt+1

i ∥22 for any αi > 0. Choosing γi ∈ (0, δi) and absorbing ∥rt+1
i ∥22

into the Lyapunov weights (recall that Θ contains γi

2 ∥ri∥
2
2) yields constants C1, C2 > 0 for which

the net effect is a strict decrease of the form Eq.26. Summing Eq.26 over k gives the summability
of ∥∆at∥22 and ∥∆Θt∥22 and, via the Lyapunov addenda, ∥rt1∥2 → 0, ∥rt2∥2 → 0.

C.5 MAIN THEOREM (CONVERGENCE TO A STATIONARY POINT)

Theorem 1. Suppose the standing assumptions hold. Let {(ot,Θt,yt, Θ̂t,ut,V t)}t∈N be gener-
ated by Algorithm 1. Then:

1. Lyapunov s{Φt} is monotonically non-increasing and converges to a finite limit Φ⋆.

2. The successive differences of the model parameters vanish: limt→∞
∥∥ot+1−ot

∥∥
2
= 0 and

limt→∞
∥∥Θt+1 −Θt

∥∥
2
= 0.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

3. The primal residuals vanish: limt→∞
∥∥ot − yt

∥∥
2
= 0 and limt→∞

∥∥Θt − Θ̂t
∥∥
2
= 0.

4. Any limit point (o⋆,Θ⋆,y⋆, Θ̂⋆,u⋆,V ⋆) is a stationary point (generalized KKT point) of
the optimization problem in Eq. 6. Specifically, it satisfies:

• Stationarity for Model Parameters:

∇oL(o
⋆,Θ⋆) + ρ1u

⋆ = 0

∇ΘL(o⋆,Θ⋆) + ρ2V
⋆ = 0

• Optimality for Auxiliary Variables:

0 ∈ ∂g(y⋆)− ρ1(o
⋆ − y⋆ + u⋆)

Θ̂⋆ = ΠQ⋆(Θ⋆ + V ⋆)

• Primal Feasibility:
o⋆ = y⋆, Θ⋆ = Θ̂⋆

Proof. Items 1-3 are direct consequences of Lemma 4. For Item 4, let (o⋆, . . . ,V ⋆) be a limit point
of a subsequence {tj}j∈N. The gradient update step for o is otj+1 ← otj − η1(∇oL(o

tj ,Θtj) +
ρ1(o

tj − ytj + utj)). Since successive differences vanish (Item 2), the gradient term must go to
zero. Taking the limit as j → ∞ and using the vanishing residuals (Item 3) yields the stationarity
condition for o⋆. The same logic applies to Θ⋆. The optimality conditions for the auxiliary variables
and primal feasibility follow directly from their update rules and Item 3. This shows the limit point
satisfies the KKT conditions for the problem in Eq. 6.

D MORE IMPLEMENTATION DETAILS

During training, the learning rates are set as follows: 0.05 for opacity and 0.0025 for language
features, while all other parameters follow the default learning rate schedule of 3DGS. For the loss
functions, the rendering loss and language loss serve as the baseline with equal weights of 1.0. To
balance the relative scales of the losses, the language-guided supervision loss is scaled by 1× 10−4,
rather than treated as a sensitive hyperparameter. Additionally, the quantization regularization term
is assigned a weight of 100 to ensure its sufficient influence during joint optimization. The 512-
channel features are then compressed into a 3-dimensional latent space via a multi-layer perceptron
(MLP). For the iterative optimization process, the parameters are set as follows: learning rates
η1 = 0.05 and η2 = 0.0025, and penalty coefficients ρ1 = ρ2 = 0.0005.

16

	Introduction
	Related Work
	Background
	Methodology: CoLaSplat
	Problem Formulation
	Optimization

	Experiment
	Experimental Settings
	Results on the 3D-OVS dataset
	Results on the LERF dataset

	Ablation Study
	Conclusion
	Usage of Large Language Models (LLMs)
	Overall Optimization Algorithm
	Convergence Analysis and Proof
	Lemma 1 (Model Parameters Update yields Sufficient Decrease)
	Lemma 2 (Auxiliary Updates are Non-increasing)
	Lemma 3 (Dual ascent and Lyapunov accounting)
	Lemma 4 (Monotonicity, summability, and vanishing residuals)
	Main Theorem (Convergence to a stationary point)

	More Implementation Details

