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ABSTRACT

Language 3D Gaussian Splatting (3DGS) has exhibited promising advancements
in open-vocabulary 3D scene understanding, incorporating semantic features from
pretrained vision-language models into Gaussians to encode the semantic infor-
mation of a scene. However, language-embedded 3DGS suffers from high com-
putational and storage costs due to the massive number of Gaussians and the
extra high-dimensional semantic attributes, which hinder its practical applica-
tion. Existing compression methods primarily reduce 3DGS model redundancy
through pruning or quantization, which can be sequentially applied to obtain a
highly compressed language-embedded 3DGS model as a straightforward solu-
tion. However, all the existing approaches are not designed for compressing lan-
guage 3DGS, where rich semantic features are ignored during the compression
stages, leading to severe semantic information loss and significantly degraded
scene understanding performance. Furthermore, the disjoint nature of the prun-
ing and quantization stages results in lower rendering quality. To address these
issues, we propose CoLaSplat, a unified compression framework for compact
language 3DGS. CoLaSplat formulates semantic learning, sparsification, and
vector quantization as a single optimization problem, constrained by the number
of Gaussian primitives and vector quantization objective, seamlessly integrating
the optimization procedure into the training process and incorporating language
embeddings. To solve the unified optimization problem, we develop an efficient
primal-dual optimization scheme by solving their associated subproblems and up-
dating the variables separately, progressively compacting the model while preserv-
ing semantic and RGB rendering fidelity. Moreover, we theoretically analyze the
convergence and stability of the proposed framework. Extensive experiments on
3D semantic segmentation and object localization demonstrate that our proposed
CoLaSplat brings substantial efficiency gains while maintaining high task per-
formance. Specifically, CoLaSplat achieves up to 15 X model size reduction,
147 x faster inference, and 6.7 X lower memory usage.

1 INTRODUCTION

Open-vocabulary 3D scene understanding has received substantial attention in the field of artificial
intelligence. It aims to comprehend and interpret 3D scenes with natural language, facilitating a
wide range of applications, such as immersive AR/VR experiences (Koch et al., 2024), autonomous
driving (Cheng & Li, 2024), and robotic manipulation (Qiu et al., 2024a; Huang et al., 2022). Prior
works primarily rely on implicit neural representations (Peng et al., 2023; Wang et al., 2023; Kerr
et al., 2023) to capture 3D representations. Recently, 3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023) has revolutionized the realm of 3D scene representation learning. Instead of implicit repre-
sentations, it leverages explicit point-based representations learned by millions of 3D Gaussians to
model 3D scene geometric and appearance details, achieving superior visual fidelity and real-time
rendering. Inspired by the promising visual rendering results of 3DGS, current 3D scene under-
standing approaches (Zhou et al., 2024; Qiu et al., 2024b; Qu et al., 2024) have shifted to develop
language-embedded 3DGS by enriching each Gaussian with semantic features, which are extracted
from the pre-trained vision-language model such as CLIP (Radford et al., 2021) and BLIP (Li et al.,
2022b), thereby endowing it with 3D semantic representation capability.
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Figure 1: (a) Improvements of CoLaSplat over baselines in 3D semantic segmentation and model
efficiency on the “figurines” scene from LERF (Kerr et al., 2023) dataset. (b) 3D semantic segmen-
tation performance (mloU, %) on 3D-OVS (Liu et al., 2023) dataset and LERF dataset, comparing
the baseline (Langsplat), a simple pruning (Zhang et al., 2025b) and quantization (Navaneet et al.,
2023) combination, and CoLaSplat.

Despite their strengths, existing language 3DGS methods suffer from significant memory and stor-
age challenges, which mainly arise from two aspects. First, inheriting the substantial number of
Gaussians associated with trainable parameters (e.g., opacity, location, and color) (Kerbl et al.,
2023) from 3DGS, language 3DGS requires massive memory space to store Gaussians. Moreover,
the high-dimensional semantic features that are embedded into Gaussian primitives have further sig-
nificantly increased their memory consumption (Zhou et al., 2024), especially in densely sampled
scenes, thereby preventing prior approaches from semantically understanding complex 3D scenes.

Unfortunately, previous works have focused on compressing standard 3DGS, with pruning (Yang
etal.,, 2024; Ali et al., 2024; Zhang et al., 2025b) and quantization (Navaneet et al., 2023; Liu et al.,
2024; Lee et al., 2024). To obtain a highly compact language-embedded 3DGS model, a naive solu-
tion is to sequentially apply existing pruning and quantization methods, as they address orthogonal
sources of redundancy (Hanson et al., 2025; Navaneet et al., 2024; Fan et al., 2024). However,
since these approaches are not specifically designed for language 3DGS, simply applying them can
result in severe semantic information loss, thereby degrading scene understanding performance, as
illustrated in Fig. 1(b). Additionally, the pruning and quantization compression stages are disjoint,
which can accumulate and amplify errors, leading to unsatisfactory rendering quality.

To address these issues, we propose CoLaSplat, a unified compression framework for com-
pact and high-fidelity language-embedded 3DGS. CoLaSplat innovatively unifies model training,
pruning, and vector quantization as a single optimization problem, constrained by the number of
Gaussian primitives and the vector quantization objective, seamlessly integrating the optimization
procedure into the training process, which automatically finds the sweet spot among multiple objec-
tives. To solve this non-trivial optimization problem, we develop a primal-dual optimization scheme
that connects Gaussian parameters with an auxiliary variable and the set of quantized parameter
vectors. Then, multiple iterative steps are alternatively performed in the optimization-integrated
training until convergence. This process progressively removes unimportant Gaussians and quan-
tizes parameters of Gaussians while maximally preserving semantic and color information. This
enables CoLaSplat to substantially reduce both the number of Gaussian primitives and parameter
redundancy in language 3DGS, considerably improving computational efficiency while maintaining
semantic and visual fidelity.

In summary, the main contributions of our work can be summarized as:
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* We propose CoLaSplat, a unified language 3DGS compression framework that alleviates mem-
ory and storage costs. By formulating the compression and semantic learning objective as a unified
optimization problem and iteratively solving it, CoLaSplat progressively sparsifies Gaussian
primitives and quantizes the parameters in the training process while preserving semantic and
rendering fidelity. Thus, CoLaSplat significantly reduces the model size while maintaining
high-quality semantic representations. To the best of our knowledge, CoLaSplat is the first
unified compression framework for compact language 3DGS, enabling accurate open-vocabulary
scene understanding and high-quality rendering with highly reduced computational costs.

* We propose an efficient primal-dual optimization solution to solve the unified compression prob-
lem, which alternates among four steps: optimizing the supervision loss with a regularization term
through a primal update, enforcing sparsity through a sparsification update, imposing quantiza-
tion objective through a vector quantization update, and dual update. Moreover, we provide a
rigorous convergence analysis and proof of our method in Appendix C.

* We conduct extensive experiments to evaluate the effectiveness of CoLaSplat on multiple 3D
open-vocabulary understanding tasks, including 3D semantic segmentation and 3D object local-
ization. Particularly, it achieves significant reductions in model size of up to 15x, GPU memory
usage of up to 6.7x, and speedup in inference of up to 147 x, while maintaining superior semantic
and visual quality comparable to the state-of-the-art baselines.

2 RELATED WORK

Open-Vocabulary 3D Scene Understanding. Previous methods (Li et al., 2022a; Liang et al.,
2023; Kerr et al., 2023) primarily leverage implicit neural networks operating on 2D images, using
vision-language models like CLIP (Radford et al., 2021) to achieve cross-modal feature alignment.
Their core objective is to overcome the limitations of traditional segmentation methods that rely
on predefined categories. Recent efforts mainly concentrate on 3DGS-based implementations. In
these approaches, each Gaussian is augmented with semantic feature embeddings. Guo et al. (2024)
enables semantic-based selection and editing of Gaussians; Wu et al. (2024) incorporates a CLIP
text encoder to align Gaussian semantics with textual queries; Qin et al. (2024) assigns category
labels through Gaussian-text feature matching, addressing the need for 3D annotations in conven-
tional 3D segmentation; Zhou et al. (2024) employs a feed-forward 3D Gaussian architecture with a
sparse view feature inference module, eliminating the need for per-scene optimization; and Shi et al.
(2024) adds an edge detection module on top of CLIP-based semantic alignment to resolve semantic
ambiguities around object boundaries in open-vocabulary 3D segmentation.

3D Gaussian Splatting Compression. Techniques for compressing 3D Gaussian Splatting are com-
monly divided into three categories: pruning, quantization, and mixed compression. Pruning tech-
niques focus on discarding unimportant Gaussians through the learnable mask (Lee et al., 2024;
Wang et al., 2024; Liu et al., 2025; Zhang et al., 2025b; 2024; 2025a; Fang & Wang, 2024), view-
dependent metrics (Fan et al., 2024) or hand-crafted importance criteria such as opacity, composited
importance score, and dominant primitives (Niemeyer et al., 2024; Ali et al., 2024; Hanson et al.,
2025; Fan et al., 2024). Quantization-based efforts aim to reduce the number of values to repre-
sent each parameter in Gaussians (Navaneet et al., 2024). Leveraging the size estimator to establish
a robust relationship between size and hyperparameters, SizeGS (Xie et al., 2024) proposes a size-
aware hierarchical mixed precision quantization scheme. To achieve higher compression rates, more
recent approaches combine multiple compression techniques for mixed compression (Niedermayr
et al., 2024; Deng et al., 2024). SA-3DGS (Zhang et al., 2025a) removes the least significant Gaus-
sians based on learned importance scores and further compresses their parameters via importance-
aware clustering. CompGS (Liu et al., 2024) employs sliding-window masking and geometry-based
quantization to compress redundant Gaussians and their geometric attributes.

However, these methods are designed to eliminate redundancy in standard 3DGS, whereas the com-
pression of language-embedded 3DGS has not yet been explored.

3 BACKGROUND

3D Gaussian Splatting explicitly leverages a collection of Gaussians to model 3D scene geometry
and appearance. Specifically, each Gaussian G(x) is defined by a mean vector u € R and a
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covariance matrix X: .
G(@) = exp (- 5@ - )57 (@~ ). )

where x is a location in the 3D scene. The learnable parameters of a Gaussian consist of
{m, ¢, 0, R, S}, which correspond to its position, color, opacity, rotation, and scale.

To optimize the Gaussian parameters, they are projected onto 2D image planes, and a tile-based
rasterization strategy is employed to improve computational efficiency (Zwicker et al., 2001). The
2D image pixel color Cjy is rendered by the blending process:

i—1

Cpixel = Z C; Oy H(l - Oéj), Qj = 04 G;, (2)

ieEN j=1

where c¢; is the color of the i-th Gaussian, o; is its opacity, N is the set of ordered Gaussians
contributing to the rasterization at the target rendering pixel, and G’ represents the projection of the
Gaussian onto the 2D plane.

To embed semantic information into Gaussian primitives, learnable language embeddings f are
introduced as new attributes associated with each Gaussian. For a particular pixel, the rasterization
process propagates these embeddings onto the image plane as follows:

i—1

Fyxa = Y fioi [J(1 =), 3)

ieEN j=1
where Fii.| represents the accumulated language embedding related to a pixel in a 2D image.

Some recent advanced methods (Nguyen et al., 2024; Qin et al., 2024) embed multi-scale hierarchi-
cal language features, derived from CLIP (Radford et al., 2021) features and guided by multi-scale
masks obtained from Segment Anything Model (SAM) (Kirillov et al., 2023), typically covering
three semantic scales. Moreover, dimensionality reduction of language embeddings is often neces-
sary; for instance, LangSplat (Qin et al., 2024) employs an autoencoder to map CLIP embeddings
into a compact latent space for efficient rendering and reconstructs the full features when needed.
Our approach also adopts both strategies.

During inference, given a text query @query, a relevancy score (Kerr et al., 2023) is computed between
®query and the rendered language embedding Fix for downstream tasks. For 3D object localization,
the point with the highest relevancy score is predicted as the object location and considered correct if
inside the ground-truth bounding box. For 3D semantic segmentation, points exceeding a relevancy
threshold are assigned the query category to form segmentation masks.

4 METHODOLOGY: COLASPLAT

To obtain a highly compact language-embedded 3DGS model with the maximum preserved se-
mantic information and high-quality rendering, we propose a unified language 3DGS compression
framework, CoLaSplat, which tackles this complex multi-objective compression by formulating
the entire process as a single optimization with constraints on the number of Gaussian primitives
and the vector quantization loss. Then, we propose an efficient primal-dual solution to optimize
the 3DGS language model, which alternates among optimizing multiple sub-problems with iterative
update steps.

4.1 PROBLEM FORMULATION

Language Embedded Training Objective. In the regular 3DGS training (Kerbl et al., 2023), the
Gaussian parameters are learned by a combination of pixel-wise ¢; loss and differentiable SSIM loss
between the rendered RGB images and the ground-truth multi-view images. The rendering loss is
defined as Lrgp = (1 — A\)L1 + ALp.ssiv, where A € [0, 1] balances the two terms. On the other
side, the language embeddings are trained with multi-level semantic labels in a supervised way. As
introduced in the previous section, the ground truths are derived from CLIP features and structured
under the guidance of multi-scale masks generated by SAM. Mathematically, the language loss is
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defined as Liyg = ||F — Fgrl|1, where Fgr is the ground truth language embeddings. These two
losses are combined to form the final supervision loss for optimizing the given scene:

L= (1-XLy+ Apssim+7||F — Far|1, “4)

RGB learning semantic alignment

where v denotes the weighting factor that balances the rendering and language losses. Minimizing
this loss yields a language 3DGS model that enhances visual fidelity while embedding semantic
information.

Unified Optimization Objective with Sparsity and Vector Quantization Constraints. Recalling
the rendering functions in Eq. 2 and Eq. 3, the contribution of each Gaussian primitive to the ren-
dered color and semantic results is positively correlated with its opacity. Therefore, we can constrain
the number of Gaussians that contribute significantly to the rendering results, effectively sparsifying
the model. Quantization is then applied only to the remaining parameters.

Given a 3DGS model with N initial Gaussians, we represent the opacities of all Gaussians as a vector
0 = [01,09,...,0N] € RY, where o; denotes the opacity of the i-th Gaussian, and the remaining
parameters as @ = {61, 05, ..., 0y}, which include all parameters other than opacity. The training
process is then formulated with a loss function L(o, ©®) that depends on both the opacities o and the
other parameters ®. We denote the set of clusters as @ = {Q1,Q2,. .., Qs }, where each cluster
Q; has a centroid g;. The collection of centroids {qi,q2,...,qar} constitutes the quantization
codebook, where M is the number of cluster centers, i.e., the codebook size. The centroids are
updated by clustering the set of parameters vectors ® and are also the quantization vectors stored
in the codebook. With the clusters and codebook defined, the unified optimization objective, which
includes sparsity and vector quantization constraints, is given by:

M
n(l)ir}gL(o,G) + Z Z 16; —q;ll3, st card(o) < k. )
o 71=16;€Q);

The sparsity constraint card(o) < k enforces sparsity in the Gaussian representation by limiting
the number of Gaussians with non-zero opacity to at most . Here, card(o) denotes the cardinality
of the vector o, i.e., the number of its non-zero elements. During training, this encourages infor-
mation to concentrate on a small subset of Gaussians with high opacity, while the others gradually
become transparent. After convergence, the nearly transparent Gaussians can be discarded, yielding
a compact representation.

The quantization penalty Z;Vil Z&EQ; 16; — q;||3 acts as the vector quantization objective, pe-
nalizing deviations of each parameter vector 6; from its assigned cluster centroid q;. Here, 8; € Q);
denotes all vectors belonging to cluster );. This term encourages each vector to remain close to
its centroid, effectively promoting quantization of the parameter space. After training, every vector
can be approximated by its cluster center, requiring only the index of the center and the codebook
{q1,-..,qun} to be stored. Since M <« N, this significantly reduces storage cost compared to
storing all individual vectors.

4.2 OPTIMIZATION

The unified optimization objective in Eq. 5 involves two non-differentiable components: the sparsity
constraint card (o) < k and the quantization penalty Zj\il > 6.c0, 10i —q; |2, where the penalty
itself is differentiable but the discrete assignment 8; € @); is not. To handle the non-differentiable

components that make the optimization challenging, we reformulate both constraints into forms that
are more amenable to optimization.

We first introduce an auxiliary variable y to separate the sparsity constraint from o, and use 6 =
{él, ...,0 ~ } as the set of quantized Gaussian parameter vectors, which separates the quantization
operation from ©. Then, we take g(-) to be the indicator function of the closed nonempty, non-
convex set defined by the sparsity constraint, i.e., g(y) = 0 for card(y) < « and g(y) = 400
otherwise. In this case, the minimization step in Eq. 5 reduces to solving a sparsity-constrained
optimization problem over the feasible set {S | card(o) < k}. Hence, Eq. 5 can be reformulated
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as an equality-constrained one:

M
. A 2 A
i L(0.©)+9y)+Y > 10:-ql3 st o=y.©=86. ©6)
i=l6,eqQ;
This reformulation allows the differentiable terms o and ©® to be optimized via gradient-based meth-
ods, while the non-differentiable sparsity constraint g(y) and the discrete assignment for quantiza-
tion penalty Z;‘il > 6.c Q; 6; — q;||3 are handled independently.

We solve the equality-constrained problem in Eq. 6 by constructing an augmented Lagrangian with
scaled Lagrange multipliers u, V' and penalty coefficients p1, ps:

M
L)(0,0,y,0,u,V)=L(0,0)+g(y) + > > 16 —qll3
i=16,eQ; (7

P1 P2 A
+ 50—y +ull+ e -6+ V.

Here, the equality constraints are enforced via quadratic penalty terms, yielding an unconstrained,
penalty-based formulation. This unconstrained problem is then solved iteratively: the primal vari-
ables, including o0,®,y,®, are updated by alternately minimizing the augmented Lagrangian

L,(0,0,y, (:), u, V') with respect to each subproblem, while the scaled Lagrange multipliers u, V'
are updated accordingly, as described below:

1 Primal Update. During the first step of iteration ¢, only the model parameters o and ® are up-

dated, with all other variables vy, @, u, V held fixed. The update is then formulated as the following
differentiable subproblem:

(0',0"!) —argmin L(0,0) + Loy +uF+ ZlO@— O + V'3, (3

where L(o,®) is the differentiable training loss, and the remaining quadratic terms are convex.
Consequently, Eq. 8 can be efficiently optimized using standard stochastic gradient descent methods.
Accordingly, the gradients for o and © at iteration ¢ are:

dL\' 0L(o0,®") R
(80) *TJFM(O -y +u), ©))
oL\" 0L(0",©) A
<8®> = OBy (e -6 v, (10)
and 0,0 can be updated by:
oL\’ oL\’
t+1 t t4+1 t_
o o —m (80) , O 0" —n (8@) : (11)

where 71 > 0 and 73 > 0 denote the learning rates for updating o and ©, respectively.

2 Sparsification Update. In this step, the auxiliary variable y is updated by solving min,, g(y) +
£ ||o'*t! — y + u'||3. The closed-form solution (Parikh et al., 2014; Boyd et al., 2011) can be given
by

Yy Ts (o' + ub), (12)

where Il is an operator that enforces the sparsity constraint specified by g(-). In particular, when
S = {y | card(y) < k}, i.e., the set of vectors with at most « nonzero elements, Il retains the x
entries of largest magnitude and sets all others to zero.

Because of the quadratic penalty term £ [0 ™! —y+uf||3, the I1s is applied to o' ™! +u/ rather than
y itself, where the scaled Lagrange multiplier u acts as an accumulated correction term, capturing
the discrepancy between o and y over iterations and steering o toward its sparsified counterpart y.

3 Vector Quantization Update. In the third step, we update the cluster set Q and subsequently
update the quantized Gaussian parameters ® based on the updated clusters.
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Figure 2: Overview of the CoLaSplat framework, illustrating the four updates performed in each
iteration of the optimization loop.

The cluster set @ = {Q1,Qo, ..., Qs } and the associated centroids {q1, g2, - . ., qas } are updated
via the standard k-means procedure. Concretely, each centroid g; is first computed as the mean of
the Gaussian parameter vectors 6; assigned to it, and then each cluster ); is updated by reassigning
every 6; to its nearest centroid, formally:

1
t+1 t+1
QT = — > gtticot 0]
forj=1,...,M: ! ‘Qﬂ 07 €q;

(13)
Qi = {00! | argming_, o 077 — g2 = 7}

Then the quantized Gaussian parameter vectors © are updated by minimizing the corresponding
; .M 7) t+1112 1_ @& 2 ioh
term in Eq. 7: 3,7, ZéieQ;Jrl 10; — ;" [I5 + Z[|©"" — © + V|3, which is computed as

Ot Mg (O + V). (14)

Here, IIg denotes the quantization operator, which replaces each vector with its nearest cluster
centroid in Q. Due to the penalty term £22(|@'*+! — © + V'!||3, IIg is applied to @'+ + V'* rather
than O itself. The scaled Lagrange multiplier V' acts as an accumulated correction term, tracking
the discrepancy between ® and © across iterations and gradually steering © toward its quantized
counterpart ©.

4 Dual Update. In the final step of iteration ¢, the multipliers w and V' are updated as
ut—‘rl — ut 4 Ot—‘rl _ yt+1’ Vt—‘rl — Vt + @t+l _ ét—‘rl' (15)

This update to w ensures that if the constraint o = y is not fully satisfied, the corresponding La-
grange multipliers u is increased, which in turn imposes a larger penalty on o in the subsequent
optimization step, effectively driving it toward the sparse set. Similarly, the update of V' enforces

the alignment between ® and O, gradually optimizing the quantization objective.

The above updates are performed in an alternating manner, and the optimization is considered con-
verged when all variables satisfy their respective conditions, i.e., |[o—y||2 < €1 and ||©® —(':)||2 < €9,
where €; and ey are user-defined hyperparameters, or when the maximum number of iterations
is reached. The overall procedure, integrated into the language 3DGS training, is summarized in
Alg. 1, Appendix B, and illustrated in Figure 2. The theoretical analysis of convergence is provided
in Appendix C.

5 EXPERIMENT

5.1 EXPERIMENTAL SETTINGS

Datasets, Metrics and Baselines. We evaluate CoLaSplat on two benchmark datasets for open-
vocabulary 3D scene understanding, conducting 3D semantic segmentation experiments on 3D-
OVS (Liu et al., 2023) and LERF (Kerr et al., 2023) and object localization experiments on LERF,
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reporting mean Intersection-over-Union (mloU) for segmentation and localization accuracy for lo-
calization. To evaluate visual quality, following the 3DGS (Kerbl et al., 2023) protocol for the novel
view synthesis (NVS) task, we report the peak signal-to-noise ratio (PSNR), structural similarity in-
dex measure (SSIM), and learned perceptual image patch similarity (LPIPS). Regarding model effi-
ciency, we measure the computational and storage costs by reporting the average peak GPU memory
usage, model size, and rendering speed in frames per second (FPS). We compare CoLaSplat with
existing state-of-the-art language 3DGS methods, including Feature-3DGS (Zhou et al., 2024), GS-
Grouping (Ye et al., 2024), OpenGaussian (Wu et al., 2024), LEGaussians (Shi et al., 2024), and
LangSplat (Qin et al., 2024).

Implementation. Ground-truth hierarchical semantic features are extracted from each image using
SAM ViT-H (Kirillov et al., 2023) and OpenCLIP ViT-B/16 (Radford et al., 2021). The initial point
cloud for language 3DGS is generated using the default 3DGS (Kerbl et al., 2023) implementation.
Each scene undergoes 40,000 iterations, with 10,000 for joint optimization and alternating optimiza-
tion (Sec. 4.2) applied every 50 iterations. By selecting appropriate « values, Gaussian points are
reduced by 50% for 3D-OVS and 30% for LERF. For quantization, 8,000 cluster centers are used
to quantize the Spherical Harmonics coefficients, the largest subset of Gaussian parameters. Image
resolutions are set to 1440x 1080 (3D-OVS) and 988 x731 (LERF), consistent with prior works.
Additional details are provided in Appendix D.

5.2 RESULTS ON THE 3D-OVS DATASET

mloU7? (%) Mem| Sizel

Method bed bench lawn room sofa mean PSNRT  SSIMf  LPIPS) (GB) (MB) FPST
Feature-3DGS | 83.5 90.7 934 847 869 878 21.80 0.68 0.31 6.2 828 2
GS-Grouping | 83.0 915 906 859 873 877 24.50 0.80 0.21 6.1 728 130
OpenGaussian | 245 529 594 197 284 370 23.95 0.72 0.26 6.0 381 23
LEGaussians 849 91.1 925 860 87.8 835 24.00 0.72 0.26 20.8 383 95
LangSplat 925 942 9.1 941 900 934 24.13 0.73 0.25 38 900 103

CoLaSplat | 948 950 963 941 928 946 | 2427 0.75 024 | 31 60 294

Table 1: Quantitative comparison of CoLaSplat and baseline methods on the 3D-OVS dataset,
evaluating their performance in 3D semantic segmentation, visual quality, and model efficiency.

Table 1 presents a comprehensive comparison across multiple metrics. CoLaSplat outperforms
all baseline methods in both 3D semantic segmentation and efficiency, while achieving visual fi-
delity second only to GS-Grouping. Specifically, it achieves the highest segmentation mIoU on each
scene. Notably, compared to LangSplat, the baseline with the highest mloU, CoLaSplat reduces
peak GPU memory consumption by 18.4%, decreases model size by 15x, and accelerates rendering
speed by 2.9x. Against the remaining baselines, CoLaSplat demonstrates even greater advan-
tages, achieving a 147 x speedup over Feature-3DGS and reducing peak GPU memory consumption
by up to 6.7x compared to LEGaussians. These improvements stem from unifying pruning and
quantization into a single optimization objective during training, enabling a well-balanced trade-off
between semantic accuracy and visual fidelity.

5.3 RESULTS ON THE LERF DATASET

We further evaluate CoLaSplat on the LERF dataset. Table 2 reports results for 3D semantic
segmentation, visual quality, and model efficiency. Despite substantial compression, it maintains
competitive segmentation performance and visual fidelity while achieving the best overall efficiency.
In particular, it attains the highest mean mloU, and although slightly lower than LangSplat on two
specific scenes, it still surpasses all other baselines. Regarding visual quality, the method performs
on par with LangSplat, exhibiting only a marginally higher LPIPS of 0.01. Moreover, peak GPU
memory consumption is reduced by up to 65.8% compared to LEGaussians and remains 10.7%
lower than the most memory-efficient baseline, LangSplat, while the model size is 3.4x smaller
than that of the most compact competitor, OpenGaussian. Finally, it delivers the fastest rendering
speed, achieving 144 x and 2.8 x improvements over Feature-3DGS and GS-Grouping, respectively.
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mloU7 (%) Mem| Sizel
Method PSNRT SSIM{ LPIPS FPS
etho ramen  figurines teatime  kitchen mean T T v (GB) (MB) T
Feature-3DGS | 43.7 40.5 58.8 396 457 | 2180 0.8 0.27 6.0 664 3
GS-Grouping | 45.5 40.0 60.9 387 463 | 2550  0.89 0.20 8.6 706 154
OpenGaussian | 31.0 39.3 60.4 22.7 38.4 22.88 0.81 0.24 9.3 387 90
LEGaussians 46.0 40.8 60.3 394 469 | 2334 083 0.24 146 393 107
LangSplat 51.2 44.7 65.1 445 514 | 2474 085 0.23 5.6 890 155
CoLaSplat | 512 43.6 64.0 490 520 | 2476 085 024 | 5.0 115 431

Table 2: Quantitative comparison of CoLaSplat and baseline methods on the LERF dataset, eval-
uating their performance in 3D semantic segmentation, visual quality, and model efficiency. The
kitchen label is the waldo_kitchen scene.

Table 3 summarizes the results of 3D object

location on the LERF dataset. For a fair Method ramen_figurines _teatime _kitchen
comparison, we only include methods that re-  LSeg 14.1 8.9 33.9 27.3
ported 3D object location results in their pa- [ ERF 62.0 75.0 84.8 72.7

pers. CoLaSplat achieves the best results | apegplat 73.2 80.4 88.1 95.5
on all scenes except kitchen, where it is 4.6% —
lower than LangSplat. However, this differ- CoLasplat 732 804 915 909
ence is caused by a single mispredicted im-

age, as the kitchen scene contains only 22 test Table 3: Performance comparisons of 3D object
images. This result further demonstrates that location accuracy (%) on the LERF dataset.
CoLaSplat maintains high semantic fidelity

even under a highly compact representation.

6 ABLATION STUDY

mloU? (%) Mem|  Sizel
Method FPS
etho bed bench lawn room sofa (GB) (MB) T
CoLaSplat w/o Pruning 944 946 962 931 923 3.8 111 262
CoLaSplat w/o Quantization 94.8  95.0 96.0 933 927 3.1 165 294
CoLaSplat Full 948 950 963 941 928 3.1 60 294

Table 4: Ablation study results on the 3D-OVS dataset

We present the ablation study results in Table 4, analyzing the effectiveness of the two objectives,
i.e., sparsity and vector quantization, in the unified optimization. We evaluate the performance by
removing one constraint at a time. The results indicate that applying sparsity or vector quantization
constraint individually leads to limited compression efficiency and lower 3D semantic segmentation
performance. CoLaSplat can automatically balance multiple objectives and identify the sweet
spot that maximizes task performance and compression ratio.

7 CONCLUSION

In this work, we propose CoLaSplat, which effectively addresses the challenge of compress-
ing language-embedded 3DGS models that existing methods cannot handle. CoLaSplat unifies
training, pruning, and vector quantization into a single optimization problem. We then develop an
effective primal-dual optimization solution to solve the unified optimization problem, allowing the
training process to identify a sweet spot among multiple compression objectives. Evaluation on two
datasets demonstrates that CoLaSplat substantially improves model compactness and efficiency
while maintaining both high semantic and visual rendering fidelity.
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REPRODUCIBILITY STATEMENT

The datasets used in this work are publicly available. The 3D-OVS dataset can be accessed via Liu
et al. (2023), and the LERF dataset is available from Qin et al. (2024). Experiments were conducted
on an NVIDIA RTX 6000 Ada Generation GPU using Python 3.9.21 and PyTorch 2.5.1. Random
seeds were fixed across all experiments to guarantee reproducibility. Additional details regarding the
parameters are provided in Appendix D. Data preprocessing and the implementation of downstream
tasks strictly follow Qin et al. (2024). The code and training scripts are available at: https:
//anonymous.4open.science/r/ColaSplat-6D46.

ETHICS STATEMENT

This work proposes CoLaSplat, a unified compression framework for language-embedded 3D Gaus-
sian Splatting (3DGS), enabling open-vocabulary 3D scene understanding on resource-constrained
conditions. Our method leverages publicly available 3D datasets, which do not contain person-
ally identifiable information, and complies with the original providers’ guidelines. CoLaSplat is
designed to improve the efficiency and accessibility of 3D scene understanding while preserving
semantic and rendering fidelity. Although we do not foresee direct harm, high-fidelity 3D recon-
structions could potentially be misused for unauthorized replication of 3D content. We encourage
responsible use of this technology and adherence to intellectual property laws. No conflicts of inter-
est are present.
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A USAGE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, we used the GPT-5 mini model solely for grammar cor-
rection and language editing of Sections 4, 5, and 6. Specifically, prompts such as “Are there any
grammatical errors in this paragraph” and “Which parts of this paragraph can be removed” were
employed. LLMs were not used for any other purposes.

B OVERALL OPTIMIZATION ALGORITHM

Algorithm 1 Unified Sparsity and Vector Quantization Optimization for language 3DGS

Input: Language 3DGS variables ©, opacity o, sparsity constraint number x, number of clusters
M, penalty coefficients p;, ps, learning rates 1, , 2, maximum iterations 7", convergence thresh-
olds €1,€2.

Output: Optimized parameters o, ®, quantization codebook Q.

1: Initialize 0%, ®°, /0, 0% 4o vo 9

2: fort=0,1,2,...,7 do

3 o't ot —m 2L, Ol « O — 2L, > Primal update.
4 Yt Tlg (ot + ul); > Sparsification update
5: for ) = 1to M do > Vector quantization update.
6: 4" g Xereg 00

7 Q"+ {6;"" | argminy, 6] — ;" |* = j};

8 end for

9: Ol + TIg (! + V),
100wt ul 4ottt — gyttt Vit VL @it — @, > Dual update
11: if ||Ot+1 — ’yt+1||2 < €; and ||(")t—"_1 — @H_lllg < €5 then
12: break > Convergence reached.
13: end if
14: end for

15: return o'*!, @i+l Qi1

C CONVERGENCE ANALYSIS AND PROOF

This section provides a formal convergence analysis for the optimization scheme. The objective is
to demonstrate that the sequence of iterates generated by the algorithm converges to a critical point
of the constrained optimization problem defined in Eq. 6.

Our proof strategy follows the theoretical framework for non-convex and non-smooth optimization
problems. The core is to show that a Lyapunov function built upon the augmented Lagrangian L,
Eq.7 is monotonically non-increasing and bounded from below, which implies that iterates are well-
behaved and any limit point satisfies first-order optimality (generalized KKT) conditions for the
original problem.

Theoretical Assumptions. We adopt following standard assumptions, which are common in non-
convex optimization analysis:

1. Assumption 1 (Properties of the Loss Function). The loss L(o, ®) is continuously differ-
entiable and L-smooth in (o, ®), i.e.,

IVL(01,©1) = VL(02,©2)|| < L|[(01,01) — (02, 0,)]|.
2. Assumption 2 (Lower Boundedness). The objective function, including the non-smooth
terms, is bounded below by 0.

3. Assumption 3 (Penalty and Stepsize). The penalty parameters p1, po > 0 and the learning
rates 7, 2 > 0O satisfy

y M2 <

2
< .
ST L+ p2
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4. Assumption 4 (Limit Point). The sequence {(o’, ', y*, ©' u’, V!)},cn generated by
Algorithm 1 has at least one limit point.

Augmented Lagrangian and Lyapunov function. The augmented Lagrangian is defined in Eq. (7)
as L,(0,0,y,0,u, V). We will work with the Lyapunov function:

ot = L,(of, 0! yt, 0 ul, VY, (16)

For brevity, we write
Aot = o't — o,
t t+1 t
AOt =0 — e,

,r,(t)+1 +1 t+1

: a7)
= oftl _ gtt1,

Tgrl — @it _ @i+l
C.1 LEMMA 1 (MODEL PARAMETERS UPDATE YIELDS SUFFICIENT DECREASE)

Statement. Let the updates for o'*! and ®**! be performed as in Eq.11. Under Assumptions 1 and
3, the following holds:

Lp(oHl, ®t+1’yt7@t7ut’ Vi) < Lp(ot, ®t’yt’é)t’ut7 VY — ¢, HAotnz —co HA@tHz :
(

with explicit positive constants

1 L
ot L_om
m 2 2
(19)
c—i—é—p—z>0
T 2 27

Proof. Following standard descent lemma for gradient updates on an L-smooth function, the update
for o gives:

P p
L(o"!,0") + T[0! —y' +u!|} < L(o',8") + Tllo' —y' +u'5 — o Ao'[5. 20)

A similar inequality holds for the ® update. Combining these proves the statement.

C.2 LEMMA 2 (AUXILIARY UPDATES ARE NON-INCREASING)

Statement. The minimizations in the updates for y and C) satisfy:
Lp(ot-s-l’@t+1,yt+1)@t+17ut’Vt) < Lp(0t+1’®t+1’yt7@t)ut7Vt). Q1)

Proof. Update for y*** in Eq. 12 is a minimization of g(y) + & [|o"™! — y 4+ u||3 (g(-) is defined
in Section 4.2). Therefore, by definition of argmin, the value of the objective at y**! must be less

than or equal to the value at y®. The same logic applies to the €] update. Chaining these two
non-increasing steps proves the lemma.

C.3 LEMMA 3 (DUAL ASCENT AND LYAPUNOV ACCOUNTING)

Statement. Let ©¢*1/2 denote the Lyapunov value after finishing Lemmas 1 and 2 (i.e., after the x-

and z-updates) and before the dual step. With the scaled dual updates:
u?i—‘rl — ui + (at—H _ z?i-ﬁ—l) — utl + ,r,i-&—l’
uh™ =+ (O — 2t = uh o rh,

we have the following explicit expression for the change of the augmented Lagrangian across the
dual step:

(22)

t+1 t+1 t+1 t+1 t+1 t+1 t+1 t+1 t+1 t+1 t t
L51752(a ,© Y1 R U Uy )_L51,52(a ,© yRZ1 22 7u1’u2)

o 23
= 3 S (2t ) ), h
=1
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Consequently,
ot = et+l/2+z (20t ) ), (24)

because the Lyapunov addenda 3 ||a — 21 ||*> and 3:||® — 23||* remain unchanged during the dual
step (the residuals /™" do not change).
Proof. Only the quadratic penalty terms that involve u; change in the dual step. For each block

i€ {1,2} with /™" fixed and u! ™ = u} + r!*!, then we have:

. S (o L (2<rt“+u D). @)

by the identity ||z + % — ||z]|? = 2(x,y) + ||y||? withz = 7! ™' 4 uf and y = w! T —ul = I
Summing over ¢ gives us the Eq.23, and adding the Lyapunov addenda yields Eq.24.

C.4 LEMMA 4 (MONOTONICITY, SUMMABILITY, AND VANISHING RESIDUALS)

Statement. Under the Lemmas 1 to 3 and the standing assumptions, there exist positive constants
C1, C5 (depending on ¢, cg, 6;,7;) such that

e AL A I 20

and hence {9} is monotonically nonincreasing and converges to a finite limit ©*. Moreover,

> (laa'|l; + [lae’];) < oo

t=0 a7
hm Ha fz1||2*0
lim ||©f — 2 =0.
HOOH 2l
Proof. From Lemma 1 we have
t+1 t+l t bt .t ot
L51752(a * 76 + ’zlaz27u17u2) < (28)
t @t t ot ot ot )2 |2
Ls, 5,(a",©% 21, z5,uj, us) —caHAa H2 —cGHAG H2
By Lemma 2, updating z1, 2o is nonincreasing:
t+1 ot+1 t+1 _t+1 _t .t t+1 ot+l t t .t ot
L51752(a+ 76 + az1+ 22+ ul?u’2) §L51752(a+ 79 + azlaz2au17u2)' (29)

Combining these two and then applying Lemma 3 (Eq.24) gives

277

2
et <o’ - caHAatH§ — C@HA@tH; + Z%( it ol )+ HTfHH;), (30)
i=1

Because 7; l— g+l — zf“ and u! are fixed at this point, the inner products can be controlled by

2(ul, rf“) < aif|ut||3+ L|lr; "3 forany o;; > 0. Choosing v; € (0, 6;) and absorbing [|r!™||3
into the Lyapunov weights (recall that © contains 3||r;(|3) yields constants Cy,Cy > 0 for which
the net effect is a strict decrease of the form Eq.26. Summing Eq.26 over k gives the summability

of |Aal||3 and || A®?||3 and, via the Lyapunov addenda, |7tz — 0, ||r%|2 — O.

C.5 MAIN THEOREM (CONVERGENCE TO A STATIONARY POINT)

Theorem 1. Suppose the standing assumptions hold. Let {(o?, ©, 3, ©', u’, V*)},cn be gener-
ated by Algorithm 1. Then:

1. Lyapunov s{®'} is monotonically non-increasing and converges to a finite limit ®*.

2. The successive differences of the model parameters vanish: lim;_, ||o’5+1 —o ||2 = 0 and
lim, [|©" — ©F||, = 0.
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3. The primal residuals vanish: lim; o [|of — %!||, = 0 and lim;_,.[|©®* — ©*||, = 0.

4. Any limit point (o*, @*, y*, 6* u*, V™) is a stationary point (generalized KKT point) of
the optimization problem in Eq. 6. Specifically, it satisfies:

 Stationarity for Model Parameters:
VoL(0*,0%) + pyu* =0
VelL(0*,0)+ pV*=0
¢ Optimality for Auxiliary Variables:
0€dg(y") — pr(0” —y" +u”)

0" =g (O* + V*)
* Primal Feasibility:
O* — y*’ @* — @*

Proof. Items 1-3 are direct consequences of Lemma 4. For Item 4, let (o*, ..., V*) be a limit point
of a subsequence {t;};en. The gradient update step for o is 0%t «+— ofi — 1 (V,L(0%,©%) +
p1(0% — y' + ub)). Since successive differences vanish (Item 2), the gradient term must go to
zero. Taking the limit as j — oo and using the vanishing residuals (Item 3) yields the stationarity
condition for o*. The same logic applies to ®*. The optimality conditions for the auxiliary variables
and primal feasibility follow directly from their update rules and Item 3. This shows the limit point
satisfies the KKT conditions for the problem in Eq. 6.

D MORE IMPLEMENTATION DETAILS

During training, the learning rates are set as follows: 0.05 for opacity and 0.0025 for language
features, while all other parameters follow the default learning rate schedule of 3DGS. For the loss
functions, the rendering loss and language loss serve as the baseline with equal weights of 1.0. To
balance the relative scales of the losses, the language-guided supervision loss is scaled by 1 x 1074,
rather than treated as a sensitive hyperparameter. Additionally, the quantization regularization term
is assigned a weight of 100 to ensure its sufficient influence during joint optimization. The 512-
channel features are then compressed into a 3-dimensional latent space via a multi-layer perceptron
(MLP). For the iterative optimization process, the parameters are set as follows: learning rates
11 = 0.05 and 72 = 0.0025, and penalty coefficients p; = ps = 0.0005.
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