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ABSTRACT

Low-rank adapters have become standard for efficiently fine-tuning large language
models, but they often fall short of achieving the performance of full fine-tuning.
We propose a method, LoRA Silver Bullet or LoRA-SB, that approximates full
fine-tuning within low-rank subspaces using a carefully designed initialization
strategy. We theoretically demonstrate that the architecture of LoRA-XS, which
inserts a learnable r × r matrix between B and A while keeping other matrices
fixed, provides the precise conditions needed for this approximation. We leverage
its constrained update space to achieve optimal scaling for high-rank gradient
updates while removing the need for scaling factor tuning. We prove that our
initialization offers an optimal low-rank approximation of the initial gradient and
preserves update directions throughout training. Concretely, LoRA-SB combines
this initialization with a constrained low-rank adaptation mechanism, forming a co-
designed system where both the update subspace and its optimization dynamics are
jointly aligned with full fine-tuning. Extensive experiments across mathematical
reasoning, commonsense reasoning, and language understanding tasks demonstrate
that our approach exceeds the performance of LoRA (and baselines) while using
27-90 times fewer learnable parameters, and comprehensively outperforms LoRA-
XS. Our findings establish that it is possible to simulate full fine-tuning in low-rank
subspaces, and achieve significant parameter efficiency gains without sacrificing
performance. Anonymous code is available at: https://anonymous.4open.
science/r/lora-sb-anonymous-5BEE.

1 INTRODUCTION

Pre-trained language models have become central to natural language processing, achieving state-of-
the-art performance across diverse tasks (35; 21; 1). While these models excel at general-purpose
capabilities (4; 14), adapting them to specific downstream tasks often requires fine-tuning (FT). At
the same time, full FT, while highly effective, is computationally expensive and impractical at scale.

Parameter-efficient fine-tuning (PEFT) has become vital for adapting large language models (LLMs)
under computational constraints. Low-rank methods like LoRA (17) address this by reducing
learnable parameters via low-rank updates, sparking advancements in optimization, initialization,
structured matrices, and adaptive rank selection (52; 46; 45). However, these methods face trade-offs:
either retain many parameters to match full FT or sacrifice performance for extreme efficiency
(17; 10; 46). This raises a critical question: Can we design low-rank methods that achieve full
FT-level performance while drastically reducing parameter counts?

Low-rank decomposition methods operate on a fundamental premise: FT requires learning only a
low-rank update to the pre-trained weights. However, the gradients computed by these methods do
not inherently possess this property. For instance, LoRA’s gradients need explicit optimization at
each step to better approximate the full FT gradient (46). Additionally, initialization has emerged as
a critical factor in low-rank adaptation, as highlighted by recent works like PiSSA-LoRA (30) and
LoRA-GA (45).

We analyze these limitations in the context of the architecture of LoRA-XS (2), which inserts a
learnable r × r matrix between B and A while keeping other matrices fixed, and demonstrate that
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Figure 1: LoRA-SB. LoRA-XS (2) reduces parameters compared to LoRA (17) by inserting a
learnable r × r matrix R between B and A, while keeping other matrices fixed, leading to W =
W0 + sBRA. Our method, LoRA-SB, uses the same architecture. We find that updating R using
its gradients gR is equivalent to updating the full FT matrix W with an equivalent gradient g̃SB =
sBgRA. We initialize B, R, and A such that the equivalent gradient g̃SB provably best approximates
the full FT gradient g in low rank subspaces at each step. In essence, we simulate the entire full FT
process optimally within low-rank subspaces by utilizing only the first full FT gradient g1.

these challenges are even more pronounced. While exploring solutions inspired by LoRA-based
methods, we discover a remarkable property unique to LoRA-XS: through careful initialization of
A and B, we can simulate the full FT optimization in low rank subspaces through entire training,
as shown in Figure 1. Our initialization provides optimal scaling for approximating high-rank full
FT gradients and eliminates need for tuning the hyperparameter α. While initialization plays a
critical role, LoRA-SB is fundamentally a co-design of (1) the low-rank subspace itself, chosen via
approximation of the first full-FT update, and (2) the optimization dynamics that use this constrained
subspace with provably optimal gradient projection. As shown in Table 1, LoRA-SB is the only
approach that jointly optimizes the low-rank subspace via FT-aligned initialization and the adaptation
dynamics via FT-projected gradients, forming a principled co-design. The peak memory usage of
LoRA-SB never exceeds that of LoRA or other baselines, and its training-time overhead relative to
LoRA is negligible (≈ 1.1%− 1.3%). Our key contributions are:

• We formalize the limitations of LoRA-XS, showing how its constrained update space leads to
suboptimal gradient approximation, initialization sensitivity, and scaling dependence.

• We propose an initialization strategy derived from using the first step of full FT, which provides an
optimal approximation of the initial gradient and preserves update directions throughout.

• We prove our initialization makes gradient optimization scaling-independent and guarantees con-
vergence by maintaining orthonormal bases, eliminating need for tuning the scaling factor α.

• Through extensive experiments on 4 models across 16 datasets covering mathematical reasoning,
commonsense reasoning, and language understanding, we demonstrate that LoRA-SB surpasses
LoRA while using 27-90x less learnable parameters, and comprehensively outperforms LoRA-XS.

2 METHODOLOGY

2.1 PRELIMINARIES

In standard FT, a pre-trained weight matrix W ∈ Rm×n is updated using the update matrix ∆W as:

W = W0 +∆W, (1)

where W0 is the pre-trained weight. This requires updating mn parameters per layer. LoRA posits
that updates lie in a low-dimensional subspace, parameterizing ∆W as:

W = W0 + sBA, (2)
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Method Higher–Rank Updates
Feasible?

Do Gradients Approxi-
mate Full Fine–Tuning?

Is Initialization Opti-
mal (FT–Aligned)?

LoRA
(17)

No - the number of learn-
able parameters scales as
r(m+n), making large r
prohibitively expensive.

No - LoRA uses raw
adapter gradients that
do not match full
fine–tuning and lack
FT–aware correction.

No - initialization
is standard ran-
dom/zero/Kaiming
and does not capture FT
update directions.

LoRA-XS
(2)

Yes - only r2 parameters
are learned, so r can be
set much higher while
remaining parameter–
efficient.

No - gradients are re-
stricted to the fixed sub-
space defined by frozen
A and B, which may not
reflect FT geometry.

No - initialization is
derived from pretrained
weight statistics rather
than FT-aligned updates.

LoRA-
Pro (46)

No - same r(m+n) scal-
ing as LoRA, so r cannot
be increased cheaply.

Yes - applies a closed-
form gradient transforma-
tion at every step to better
approximate full FT.

No - initialization does
not change and is not
aligned with FT update
directions.

LoRA-
GA (45)

No - shares LoRA’s
r(m + n) parameter
scaling, so increasing r
significantly is expen-
sive.

No - after initialization, it
relies on standard LoRA
gradients without per-
step FT-aware correction.

Yes - provides an opti-
mized initialization de-
signed to align the update
subspace with FT at the
start of training.

LoRA-SB
(Ours)

Yes - same r2 architec-
ture as LoRA-XS, en-
abling much larger r at
minimal parameter cost.

Yes - uses an equivalent
gradient that matches the
projection of full FT up-
dates onto the low-rank
subspace.

Yes - initialization uses
the truncated SVD of the
first FT update, giving
the optimal rank-r FT-
aligned subspace.

Table 1: Comparison of LoRA variants along three axes: (1) whether large ranks are feasible under
their parameter scaling, (2) whether their gradients approximate full fine-tuning updates, and (3)
whether their initialization is optimally aligned with full fine-tuning signals.

where B ∈ Rm×r and A ∈ Rr×n are trainable low-rank matrices with rank r ≪ min(m,n), and s
is a scaling factor (α/r) to stabilize training. This reduces the number of parameters from mn to
r(m+ n). LoRA-XS efficiently parameterizes as:

W = W0 + sBRA, (3)

where B and A are fixed, and only R ∈ Rr×r is trainable, reducing the number of parameters to r2.
We denote the full FT gradient: g = ∂L

∂W ; LoRA-XS gradient: gRLoRA-XS = ∂L
∂R ; L is the loss function.

2.2 MOTIVATION

LoRA-XS (2) has significantly fewer learnable parameters than LoRA but performs suboptimally.
LoRA-XS’s architecture causes constraints on the type of updates it can learn. The subspace of
learned updates is characterized in Lemma 1. This implies that while ∆W is constrained to be rank
≤ r, it also needs to have column and row spaces defined by those of B and A, respectively. In
contrast, LoRA can learn any update ∆W as long as rank(∆W ) ≤ r. Thus, the low expressivity of
LoRA-XS as compared to LoRA can account for the performance drop.

3
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Lemma 1. Let ∆W be an update learned with LoRA-XS. Then, the set of all possible ∆W ,
sayWLoRA−XS , is given as:

WLoRA−XS = {M ∈ Rm×n|Col(M) ⊆ Col(B) ∧ Row(M) ⊆ Row(A)},

where Col(M) and Row(M) are column and row spaces of matrix M respectively.

Proof. See Appendix B.1.

We identify three key limitations, which arise due to this and otherwise:

1) Inadequate Gradient Approximation: LoRA optimization is mathematically equivalent to full
FT using a constrained low-rank gradient. The gradient of LoRA does not optimally approximate the
full gradient, and needs to be tuned at each step. LoRA-Pro (46) finds that this results in suboptimal
performances, and provides a closed form solution to optimize the gradients. In LoRA-XS, the
gradient updates are restricted to an even more constrained low-rank space since A and B are fixed.
We posit that the limitation becomes particularly severe when the ideal updates lie outside the space
spanned by fixed A and B, and consequently has a larger impact on performance.

2) Suboptimal Initialization: While initialization impacts all low-rank methods, it becomes critical
in LoRA-XS where A and B are frozen. Unlike LoRA where poor initialization can be compensated
through training, LoRA-XS relies entirely on its initial subspace defined by A and B. Consider the
zero initialization of the B matrix, for example. While LoRA may experience some performance
degradation in this case (45; 30), the ideal low-rank update ∆W can still be reached through gradient
descent. In fact, zero initialization for the B matrix is commonly used, including in the original
LoRA paper (17). However, in LoRA-XS, this results in no learning, as the product BRA remains
zero. LoRA-XS uses the most significant subspaces spanned by the columns of pre-trained weights
for initialization, inspired by PiSSA (30). This initialization is not aligned well with FT because it
fails to capture the specific subspaces relevant to the FT task.

3) Scaling Factor Sensitivity: The scaling factor s, present in almost every LoRA based method,
requires tuning to maintain stability during training. This factor acts as a bridge between the low-rank
and full-rank spaces, compensating for the dimensional mismatch in gradients. Poor tuning of s
can lead to unstable training or slow convergence (rsLoRA (20)), adding complexity and potentially
limiting practical deployment.

2.3 APPROXIMATION OF THE FULL FT GRADIENT

As mentioned, LoRA optimization is equivalent to full FT using a constrained low-rank gradient.
However, the update generated using the gradients of LoRA does not result in the same update which
the low-rank gradient would have generated. The following holds true for LoRA-XS as well. To
understand this, let us look at the change in weight W and its relationship with changing of low-rank
matrix R, which can be simply given by dW = −sB(dR)A. This implies that updating R with
gradient gR is equivalent to updating W with low rank equivalent gradient g̃ in full FT (Definition 1).

Definition 1. We define the equivalent gradient in LoRA-XS as: g̃ = sBgRA, where gR is the
gradient of L with respect to R.

The equivalent gradient describes the virtual low-rank gradient of matrix W in LoRA-XS optimization
process, despite W not being directly trainable. This gradient determines how updates to R affect W .
To bridge the performance gap between LoRA-XS and full FT, we aim to minimize the discrepancy
between the equivalent gradient g̃ and the full gradient g. First, we establish the relationship between
gradients in LoRA-XS optimization in Lemma 2.

Lemma 2. The gradient of the loss with respect to matrix R can be expressed in terms of the
gradient with respect to the weight matrix W as: gRLoRA−XS = sB⊤gA⊤.

Proof. See Appendix B.2.
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We now formulate our objective to minimize the distance between the equivalent gradient and the full
gradient. We do not have access to the full FT gradient g during LoRA-XS based FT. Thus we need
to find the ideal gradient with respect to R, given by gR, and subsequently the optimal approximation
g̃, in terms of the gradient which is available to us during training: gRLoRA−XS . Fortunately, this
optimization problem admits a closed-form solution independent of g as described in Theorem 3.

Theorem 3. For full-rank A and B matrices, the optimal solution for the objective

mingR ||g̃ − g||2F , such that g̃ = sBgRA, is: gR =
1

s2
(B⊤B)−1gRLoRA−XS(AA⊤)−1.

Proof. See Appendix B.3.

The closed-form solution in Theorem 3 solves the optimization problem mingR ||g̃ − g||2F , but by
itself doesn’t ensure the loss will decrease when updating R. Through Theorem 4, we prove that
the change in loss is non-positive (∆L ≤ 0). This property is fundamental to optimization as it
guarantees consistent loss minimization throughout training.

Theorem 4. Consider the update for matrix R using the solution derived in Theorem 3:
R← R− ηgR, where η > 0 is the (sufficiently small) learning rate. This update guarantees a
reduction in the loss ∆L, given by: ∆L = −η⟨gRLoRA−XS , g

R⟩F + o(η) ≤ 0.

Proof. See Appendix B.4.

2.4 INITIALIZATION USING UPDATE APPROXIMATION

In FT, the primary goal is to update weights to better suit the target task. The initial gradient steps are
particularly informative, as they indicate the direction of desired adaptation. We leverage this insight
by using the first update step from full FT for initialization.

This approach offers two key advantages. First, it ensures the low-rank space captures the most
relevant subspace for the target task rather than relying on pre-trained properties. Second, since A
and B are fixed, initializing them to span the subspace of early adaptation increases the likelihood of
capturing useful updates throughout training. This also ensures that the final update is learnt in the
correct subspace, of which we have no apriori information besides the first full FT step. Our method
is summarized as: set such initialization that best approximates the first step of full FT. Given a full
FT update ∆Wfirst−step, our initialization satisfies:

sBinitRinitAinit ≈ ∆Wfirst−step (4)
The first step of full FT, for Adam-based optimizers such as AdamW, for sample xi is:

∆Wfirst−step = −η × sign(∇WL(W0, xi)) (5)
However, the usage of a single sample may lead to noisy estimates. Instead, we compute a more
stable initialization by averaging gradients over a subset of the training data:

∆Wavg = −ηsign(
n≤|X|∑
i=0

∇WL(W0, xi)), xi ∈ X (6)

Since AdamW is used as the optimizer for both full FT and LoRA-SB training, we approximate its
first update step using the sign of the summed gradients rather than their raw values (see Appendix
C for details). This better captures the direction of adaptation required for the target task while
being less sensitive to individual sample variations. We then use truncated SVD to obtain a low-rank
approximation of ∆Wavg, and express it as sBRA. There exist infinite combinations of B and A

which can obey this relationship. For instance, we can initialize B and A as US and V ⊤ and keep
R as I/s. This is equivalent to the B and A initialization in LoRA-XS but by approximating the
update rather than the pre-trained matrix. The above process can be computed for any optimizer, by
approximating the corresponding first step. We compute this specifically for AdamW since we use it.

2.5 SCALING FACTOR INDEPENDENCE

The hyperparameter α is used in LoRA and other decomposition-based methods to tackle instability
caused to improper scaling of the updates. The gradient scaling is accounted for, by adding a

5
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hyperparameter to normalize the updates. The importance of scaling is shown in methods like rank
stabilization (20). However, the full FT gradient g needs no such tuning. We claim that approximating
the full FT gradient removes the need for introducing a scaling factor, as shown in Theorem 5.

Theorem 5. The equivalent gradient g̃ is hyperparameter s independent for g̃ = sBgRA, but
not for g̃ = sBgRLoRA−XSA.

Proof. See Appendix B.5.

The scaling factor independence of the equivalent gradient eliminates the need for manual gradient
scaling. Updates to W depend solely on this gradient (modulo learning rate), making any additional
scaling redundant. This can be understood by examining the relationship with the full FT gradient g.
Since g is naturally scaled for optimal weight updates, and our method approximates g in a constrained
subspace, the equivalent gradient inherits appropriate scaling automatically. This property is unique
to our gradient approximation approach and does not hold for standard LoRA-XS.

2.6 LORA-SB: UPDATE APPROXIMATION INITIALIZATION IS A silver bullet

The solutions discussed independently address the gradient approximation and initialization problems,
while also providing scaling factor independence. LoRA-SB, elegantly combines these solutions
through a simple initialization strategy, derived from approximating the first full FT step:

U, S, V ⊤ ← SVD(∆Wavg) (7)

Binit ← U [1 : r], Ainit ← V [1 : r], Rinit ←
1

s
S[1 : r, 1 : r] (8)

By the Eckart-Young theorem (13; 32), this gives the optimal rank-r approximation of the full FT
update. where U , S, V are obtained from truncated SVD of the averaged first update ∆Wavg. This
initialization leads to several key advantages.

Simplified Gradient Optimization. Our initialization ensures Binit and Ainit form orthonormal bases
in Rm and Rn respectively, leading to B⊤B = AA⊤ = I . With fixed B and A matrices being
orthonormal, the need for complex matrix inversions during training is eliminated, , as the optimal
update step, derived in Equation 3, simplifies to:

gR =
1

s2
(B⊤B)−1gRLoRA−XS(AA⊤)−1 =

1

s2
gRLoRA−XS

Optimal Update Approximation. Our initialization guarantees that the first update optimally
approximates the full FT weight updates: sBinitRinitAinit ≈ ∆Wavg. By the Eckart-Young theorem,
this is the optimal rank-r approximation of the initial full FT update.

Scaling Factor Independence. As shown in Theorem 5, when gradient approximation is applied
with orthonormal B and A, the hyperparameter s can be set to 1, resulting in guaranteed optimal
gradient approximation at every step, without requiring any scaling factor:

gR = gRLoRA-XS (9)

Guaranteed Loss Reduction. Since B is a tall orthonormal and A a wide orthonormal matrix,
they remain full rank throughout training. This ensures that dL remains negative (Theorem 4),
guaranteeing stable optimization and convergence.

∆(sBinitRinitAinit) ≈ γ∆W (10)
Another heuristic which might lead to a good initialization is setting B and A, such that the first
update also approximately matches the ∆W direction (Equation 10). Thankfully, we don’t have to
choose between the two. For SGD, we prove that setting Binit and Ainit using Equations 7-8, results
in the first update of LoRA-XS to best approximate the direction of the full FT update (Theorem 6).

Theorem 6. If Ainit and Binit are initialized using LoRA-SB for the first step of SGD optimizer,
then the update given by LoRA-SB, ∆(BinitRinitAinit) , is the best low-rank approximation of
full fine-tuning update, ∆W .

Proof. See Appendix B.6.
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While Theorem 6 is stated for SGD, the result extends to other SGD-based optimizers such as AdamW.
In practice, we use AdamW and approximate the first update by taking the sign of the averaged
gradients, consistent with AdamW’s first-step behavior. This produces an initialization whose SVD
still yields the optimal rank-r approximation of the simulated full FT update.

Initialization Memory. To optimize GPU memory during initialization, we hook into the backward
pass and compute the gradients layerwise, immediately discarding the computed gradients (29; 45).
This ensures O(1) memory usage, independent of the number of layers, keeping GPU memory well
within limits. This guarantees that the memory required for LoRA-SB initialization never exceeds
the memory needed for subsequent LoRA-SB fine-tuning, and that the peak memory usage of the
entire LoRA-SB algorithm never exceeds that of standard LoRA and other baselines.

LoRA-SB Advantages over LoRA. Many properties described above are not achievable with
standard LoRA methods. Even if B and A are initialized as orthonormal in LoRA, subsequent
updates do not preserve this property because B and A are trainable. This results in several challenges
in using LoRA (even with optimal gradient approximation) compared to LoRA-SB:

• Potential instability of (B⊤B)−1 and (AA⊤)−1, not guaranteed to remain non-singular throughout.

• Inability to ensure consistent loss reduction due to potential rank deficiency, B and A may not
remain full-rank throughout training.

• Necessity to fine-tune the scaling factor hyperparameter α.

• Repeated re-computation of B⊤B and AA⊤ is required at each optimizer step for accurate gradient
approximation.

3 EXPERIMENTS

We evaluate over 16 different datasets on 3 widely-used benchmarks, using models ranging from
the 355 M RoBERTa-large model to the 9 B Gemma-2 model. Our setup spans both masked and
autoregressive architectures, allowing us to comprehensively assess the effectiveness of LoRA-SB.
Specifically, we fine-tune RoBERTa-large (27), Llama-3.2 3B (12), Mistral-7B (19), and Gemma-2
9B (43). We compute the update approximation using only 1/1000 (0.1%) of each dataset’s
total size. This ensures that the training time overhead is minimal and has a negligible effect on
efficiency. Detailed hyperparameter and dataset details are given in Appendix I and J, respectively.

Baselines. We compare LoRA-SB against full FT, LoRA (17), LoRA-XS (2), and several popular
variants of LoRA - rsLoRA (20), PiSSA (30), DoRA (26), and LoRA-Pro (46).

Table 2: Comparison of FT methods on Mistral-7B and Gemma-2 9B across arithmetic benchmarks.
# Params denotes the number of trainable parameters. Best results among PEFT methods are in bold.

Method Rank Mistral-7B Gemma-2 9B

# Params GSM8K (↑) MATH (↑) # Params GSM8K (↑) MATH (↑)

Full FT - 7.24 B 63.87 17.65 9.24 B 79.23 38.02
LoRA 32 83.88 M 61.94 15.98 108.04 M 76.19 36.56
rsLoRA 32 83.88 M 62.15 16.24 108.04 M 76.84 36.88
PiSSA 32 83.88 M 62.43 16.52 108.04 M 77.12 37.04
DoRA 32 85.26 M 62.65 16.64 109.88 M 77.58 37.04
LoRA-GA 32 85.26 M 62.87 16.66 109.88 M 77.28 37.13
LoRA-Pro 32 83.88 M 63.07 17.32 108.04 M 78.26 37.53

LoRA-XS 32 0.23 M 54.28 13.36 0.30 M 74.07 34.62
LoRA-XS 64 0.92 M 57.08 15.62 1.20 M 75.02 36.46
LoRA-XS 96 2.06 M 58.53 16.42 2.71 M 75.21 36.98

LoRA-SB 32 0.23 M 58.91 15.28 0.30 M 75.44 36.66
LoRA-SB 64 0.92 M 60.73 16.28 1.20 M 76.65 37.14
LoRA-SB 96 2.06 M 63.38 17.44 2.71 M 78.40 37.70
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Table 3: Comparison of FT methods on Llama-3.2 3B across eight commonsense reasoning datasets.
# Params denotes the number of trainable parameters. Best results among PEFT methods are in bold.

Method Rank # Params Accuracy (↑)

BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

Full FT - 3.21 B 70.43 85.64 80.45 91.92 85.02 88.52 75.29 81.88 82.39
LoRA 32 48.63 M 70.03 85.20 79.12 90.71 82.24 86.91 74.32 81.87 81.30
rsLoRA 32 48.63 M 69.81 85.63 78.92 90.45 82.02 86.71 74.18 81.72 81.11
PiSSA 32 48.63 M 70.12 85.42 79.44 90.88 82.68 87.23 74.61 81.79 81.52
DoRA 32 49.40 M 70.43 85.63 79.68 90.76 82.90 87.61 74.87 82.04 81.74
LoRA-Pro 32 48.63 M 71.28 85.81 79.35 90.90 83.42 87.24 75.32 81.74 81.88

LoRA-XS 32 0.20 M 65.01 82.87 76.17 87.32 80.12 84.78 70.31 75.71 77.79
LoRA-XS 64 0.80 M 66.53 83.12 77.98 88.53 81.76 85.15 72.04 77.14 79.03
LoRA-XS 96 1.81 M 67.28 83.35 78.66 88.99 82.08 85.18 72.61 78.88 79.63

LoRA-SB 32 0.20 M 66.33 84.06 78.91 89.04 81.37 86.62 72.44 76.97 79.47
LoRA-SB 64 0.80 M 68.35 84.55 79.94 91.68 83.03 87.84 74.83 80.12 81.29
LoRA-SB 96 1.81 M 70.34 84.76 80.19 91.62 84.61 87.92 74.74 81.20 81.92

Table 4: Comparison of FT methods on RoBERTa-large across GLUE datasets. # Params denotes
the number of trainable parameters. Best results among PEFT methods are in bold. We use Pearson
correlation for STS-B, Matthew’s correlation for CoLA, and accuracy for others.

Method Rank # Params CoLA RTE MRPC STS-B QNLI SST-2 All
Mcc ↑ Acc ↑ Acc ↑ Corr ↑ Acc ↑ Acc ↑ Avg. ↑

Full FT - 355.36 M 68.44 83.42 90.21 91.76 93.92 96.21 87.33
LoRA 8 2162.69 K 68.02 82.98 90.05 91.43 93.42 95.98 86.98
rsLoRA 8 2162.69 K 67.87 82.84 89.97 91.30 93.29 95.87 86.85
PiSSA 8 2162.69 K 68.22 83.14 90.10 91.59 93.55 96.03 87.10
DoRA 8 2260.99 K 68.05 83.04 89.93 91.34 93.11 95.82 86.88
LoRA-Pro 8 2162.69 K 67.98 83.40 90.49 91.38 93.37 95.98 87.10

LoRA-XS 8 6.14 K 61.07 75.23 86.21 89.29 92.44 94.72 83.16
LoRA-XS 16 24.57 K 63.32 79.06 86.28 90.36 93.69 95.76 84.70
LoRA-XS 24 55.20 K 66.27 80.14 88.48 90.77 93.21 95.89 85.79

LoRA-SB 8 6.14 K 63.57 78.43 88.72 90.59 92.95 95.07 84.88
LoRA-SB 16 24.57 K 64.36 82.31 89.71 91.24 93.89 95.87 86.23
LoRA-SB 24 55.20 K 68.28 83.03 90.12 91.65 93.75 96.11 87.16

3.1 ARITHMETIC REASONING

We fine-tune Mistral-7B (19) and Gemma-2 9B (43) on 50K samples from MetaMathQA (50) and
evaluate on GSM8K (8) and MATH (16). We apply LoRA modules to the key, value, query, attention
output, and all fully connected weight matrices, training with ranks r = {32, 64, 96}. We present
results in Table 2. LoRA-SB significantly outperforms LoRA-XS across all settings. LoRA-SB
outperforms LoRA-based methods (r = 32) while using 40x fewer trainable parameters for Mistral-
7B and 90x fewer for Gemma-2 9B at ranks r = 96 and r = 64, respectively. We present training loss
curves comparing LoRA-SB and LoRA-XS in Figure 2. Thanks to superior initialization, LoRA-SB
starts with a lower initial loss compared to LoRA-XS. Further, due to optimal gradient approximation,
LoRA-SB maintains a consistently better loss throughout and converges to a superior final value.

3.2 COMMONSENSE REASONING

We fine-tune Llama-3.2 3B (12) on COMMONSENSE170K, a dataset with eight commonsense
reasoning tasks (18). LoRA modules are applied to the key, value, query, attention output, and all
fully connected weight matrices, training with ranks r = {32, 64, 96}. We present the results in Table
3. LoRA-SB consistently outperforms LoRA-XS across all settings. In addition, LoRA-SB (r = 96)
outperforms LoRA-based methods (r = 32) with 27x fewer trainable parameters.
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Figure 2: Training loss curves for Mistral-7B and Gemma-2 9B, comparing LoRA-SB and LoRA-XS.

3.3 NATURAL LANGUAGE UNDERSTANDING

We fine-tune RoBERTa-large (27) on GLUE, a popular language understanding benchmark. LoRA
modules are applied only to the self-attention layers, with ranks r = {8, 16, 24}. Results are shown
in Table 4. LoRA-SB consistently outperforms LoRA-XS across all settings. Additionally, LoRA-SB
(r = 24) outperforms LoRA-based methods (r = 8) with 39x lesser trainable parameters.

4 ANALYSIS

Optimal Initialization is Important!

To isolate the impact of initialization, we take truncated SVD on various matrices, including Kaiming
initialization (15) and ∆Wavg with varying levels of Gaussian noise, as shown in Table 5. By applying
truncated SVD, we ensure optimal gradient approximation, leading to initialization matrices Binit
and Ainit that form orthonormal bases in Rm and Rn, respectively. This results in BTB = AAT = I ,
allowing us to isolate the effect of initialization. The results clearly demonstrate the significance of
initialization, our approach consistently outperforms other variants.

Table 5: Comparison of initialization strategies using Mistral-7B on GSM8K and MATH. All methods
ensure optimal gradient approximation, with differences arising solely from the initialization.

Initialization Method Accuracy (↑)

GSM8K MATH

trunc SVD (Kaiming) 00.00 00.00
trunc SVD (∆Wavg +Nµ=10−2 ) 00.00 00.00
trunc SVD (∆Wavg +Nµ=10−3 ) 58.83 14.76
trunc SVD (∆Wavg +Nµ=10−4 ) 60.19 15.96
trunc SVD (∆Wavg +Nµ=10−5 ) 60.65 15.98
LoRA-SB; trunc SVD (∆Wavg) 63.38 17.44

Why Do We Use 0.1% of the Dataset Size for Initialization?

We selected the 0.1% initialization dataset-size heuristic based on experiments that suggested it
provides a good tradeoff between quality and efficiency. Specifically, we conducted ablations varying
the number of samples used for initialization when fine-tuning Mistral-7B and Gemma-2 9B on 50k
samples from MetaMathQA. The results (Table 6) show that once the sample count exceeds a modest
threshold (25 samples or 0.05%), performance quickly plateaus, indicating that the learned subspace
is already sufficiently representative. Using 0.1% of the training data (50 samples) consistently
exceeds this threshold across tasks and models, while incurring negligible training time overhead.

Optimal Gradient Approximation is Important!

9
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Table 6: Performance effect of number of samples used for initialization.

# Samples Mistral-7B Gemma-2 9B

GSM8K (↑) MATH (↑) GSM8K (↑) MATH (↑)

1 62.13 15.55 76.03 35.77
5 62.78 16.86 77.49 37.24
25 63.28 17.30 78.18 37.70
50 63.38 17.44 78.40 37.70
100 63.34 17.25 78.22 37.45
200 63.45 17.36 78.43 37.87
500 63.40 17.52 78.54 37.63

We aim to examine the effect of optimal gradient approximation. Specifically, we want
BinitRinitAinit ≈ ∆Wavg without enforcing BTB = AAT = I . We achieve this through:

U, S, V T ← SVD(∆Wavg) (11)
Binit ← U [1 : r]S[1 : r, 1 : r], Ainit ← V [1 : r], Rinit ← I (12)

This ensures that BinitRinitAinit ≈ ∆Wavg, but only AAT = I , while BTB ̸= I . The setup is
suboptimal for gradient approximation since we do not explicity use the closed-form solution derived
in Theorem 3. We compare the resulting loss curves against LoRA-SB (which uses optimal gradient
approximation) for Mistral-7B, as shown in Figure 3 in Appendix E. Although both start similarly
due to effective initialization, LoRA-SB converges to significantly better values, demonstrating the
advantage of optimal gradient approximation. Furthermore, LoRA-SB achieves higher accuracies on
GSM8K and MATH, with scores of 63.38 and 17.44 compared to 55.87 and 12.74, respectively.

Training Time and Inference.

We provide detailed benchmarks of training time and inference performance in Appendix F and G,
respectively. As shown, the initialization step in LoRA-SB introduces only a negligible training-time
overhead compared to LoRA (≈ 1.1%− 1.3%).

5 CONCLUSION

In this work, we introduced LoRA-SB, which bridges the gap between low-rank PEFT and full
FT. This is enabled by our initialization strategy, which approximates the first step of full FT and
ensures that the most relevant subspaces for task-specific adaptation are captured. We achieve optimal
gradient scaling and preserve update directions throughout training. Our approach ensures scaling
factor independence by approximating the full FT gradient, thereby eliminating potential instability
issues. Through extensive experiments, we demonstrate that our method outperforms LoRA (and
baselines) using upto 90x less parameters, and comprehensively outperforms LoRA-XS.

REPRODUCIBILITY STATEMENT

We have taken great care to guarantee the reproducibility of our work. Our open-
source code is anonymously available at https://anonymous.4open.science/r/
lora-sb-anonymous-5BEE and is also included in the supplementary material. Comprehensive
details of the experimental setup are presented in Section 3 and Appendix I. All datasets used in this
study are standard, publicly accessible benchmarks (see Appendix J for further information).
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Adapterfusion: Non-destructive task composition for transfer learning. (arXiv:2005.00247),
January 2021. arXiv:2005.00247 [cs].

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

[35] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Interna-
tional Conference on Machine Learning, 2021.

[36] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable
questions for squad. arXiv preprint arXiv:1806.03822, 2018.

[37] Adithya Renduchintala, Tugrul Konuk, and Oleksii Kuchaiev. Tied-lora: Enhancing parameter
efficiency of lora with weight tying. (arXiv:2311.09578), April 2024. arXiv:2311.09578 [cs].

[38] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[39] Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Com-
monsense reasoning about social interactions. arXiv preprint arXiv:1904.09728, 2019.

[40] Raghav Singhal, Kaustubh Ponkshe, and Praneeth Vepakomma. Exact aggregation for federated
and efficient fine-tuning of foundation models. arXiv preprint arXiv:2410.09432, 2024.

[41] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for semantic compositionality over a
sentiment treebank. In Proceedings of the 2013 conference on empirical methods in natural
language processing, pages 1631–1642, 2013.

[42] Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving
federated learning, 2024.

[43] Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin,
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A RELATED WORK

Parameter-Efficient Fine-Tuning (PEFT). PEFT methods have become essential for adapting large
pre-trained models under computational constraints. Early techniques like AdapterFusion (34) and
Prefix-Tuning (24) enabled task-specific adaptation with minimal parameter updates. Advances like
soft prompts (23) further reduced trainable parameter counts while maintaining strong performance.
Recent approaches have explored operating directly on model representations (49).

Low-Rank Decomposition Methods. LoRA (17) demonstrated that weight updates during FT could
be efficiently approximated using low-rank matrices, drastically reducing parameter counts. Building
on this insight, variants such as QLoRA (9) and AdaLoRA (52) extended the paradigm through
quantization and adaptive allocation strategies. The applicability of low-rank techniques has also
been explored in pretraining with GaLore (53) and ReLoRA (25), highlighting the versatility of
low-rank adaptation methods. LoRA-based methods have also been applied in other domains, such
as efficient federated FT (42; 40).
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Enhancing LoRA Performance. Recent efforts have focused on optimizing LoRA’s performance.
PiSSA (30) demonstrated improvements by initializing matrices with principal components of pre-
trained weights. LoRA-Pro (46) and LoRA-GA (45) improved gradient approximation, aligning
low-rank updates more closely with full FT. Methods like DoRA (26) and rsLoRA (20) introduced
decomposition-based and scaling stabilization techniques to enhance learning stability and expand
LoRA’s utility.

Improving Efficiency in LoRA Variants. Efficiency-focused innovations have pushed LoRA toward
more parameter savings. LoRA-XS (2) achieves this by inserting a small trainable weight matrix
into frozen low-rank matrices. VeRA (22) shares low-rank matrices across layers, relying on scaling
vectors for task-specific adaptation. Tied-LoRA (37) leverages weight tying to reduce parameter usage
at higher ranks, while HydraLoRA (44) introduces an asymmetric architecture for improvement.

B PROOFS

In all the proofs below, we will use the notations defined in Section 2.

B.1 PROOF OF LEMMA 1

Lemma. Let ∆W be an update learned with LoRA-XS. Then, the set of all possible ∆W ,
sayWLoRA−XS , is given as:

WLoRA−XS = {M ∈ Rm×n|Col(M) ⊆ Col(B) ∧ Row(M) ⊆ Row(A)},

where Col(M) and Row(M) are column and row spaces of matrix M respectively.

Proof. Since ∆W = BRA, we have

Col(∆W ) = {y ∈ Rm | y = BRAx, x ∈ Rn} =⇒
Col(∆W ) = {y ∈ Rm | y = Bz, z ∈ Col(RA)} ⊆ Col(B).

That is, we proved that

Col(∆W ) ⊆ Col(B). (13)

Following similar arguments, one can also show Row(∆W ) ⊆ Row(A).

B.2 PROOF OF LEMMA 2

Lemma. The gradient of the loss with respect to matrix R can be expressed in terms of the
gradient with respect to the weight matrix W as:

gRLoRA−XS = sB⊤gA⊤.

Proof. Let L be the loss function. We have already defined g and gRLoRA-XS as:

g :=
∂L

∂W
& gRLoRA-XS :=

∂L

∂R
. (14)

The chain rule gives

∂L

∂R
=

∂L

∂W

∂W

∂R
=⇒ ∂L

∂R
=

∂L

∂W

∂W

∂X

∂X

∂R
for X = RA (15)

We know that for W = sBX:

∂L

∂W

∂W

∂X
= sB⊤g =⇒ ∂L

∂R
= sB⊤g

∂X

∂R
(16)
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Let sB⊤g = y. We know that when X = RA:

y
∂X

∂R
= yA⊤ =⇒ ∂L

∂R
= yA⊤ = sB⊤gA⊤ (17)

Therefore, gRLoRA-XS = sB⊤gA⊤ (18)

B.3 PROOF OF THEOREM 3

Theorem. For full-rank A and B matrices, the optimal solution for the objective

mingR ||g̃ − g||2F , such that g̃ = sBgRA, is: gR =
1

s2
(B⊤B)−1gRLoRA−XS(AA⊤)−1.

Proof. Since we already defined the equivalent gradient g̃ := sBgRA, the minimization problem
can be denoted as:

argmin
gR

F = ∥sBgRA− g∥2F (19)

For differentiable F ,

∂F

∂gR
= 0 =⇒ 2(g̃ − g) · ∂g̃

∂gR
= 0 =⇒ 2(sBgRA− g) · ∂(sBgRA)

∂gR
= 0 (20)

Using the same trick from before and substituting gRA = X , we get:

2sB⊤(sBgRA− g)A⊤ = 0 =⇒ B⊤(sBgRA− g)A⊤ = 0 =⇒ B⊤sBgRAA⊤ = B⊤gA⊤

(21)

From Lemma 2, we get:

B⊤gA⊤ = gRLoRA-XS/s =⇒ B⊤sBgRAA⊤ = gRLoRA-XS/s =⇒ B⊤BgRAA⊤ = gRLoRA-XS/s
2

(22)

Now since B and A are full rank, multiplying both sides by (B⊤B)−1 and (AA⊤)−1 on the left and
right side respectively gives:

(B⊤B)−1(B⊤BgRAA⊤)(AA⊤)−1 = (B⊤B)−1gRLoRA-XS(AA⊤)−1/s2 (23)

Therefore, gR =
1

s2
(B⊤B)−1gRLoRA-XS(AA⊤)−1 (24)

B.4 PROOF OF THEOREM 4

Theorem. Consider the update for matrix R using the solution derived in Theorem 3:

R← R− ηgR

where η > 0 is the (sufficiently small) learning rate. This update guarantees a reduction in
the loss ∆L, given by:

∆L := L(W0 + sB(R− ηgR)A)− L(W0 + sBRA) = −η⟨gRLoRA−XS , g
R⟩F + o(η) ≤ 0.
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Proof. Assuming that L is differentiable, we use Taylor’s theorem and get

∆L := L(W0 + sB(R− ηgR)A)− L(W0 + sBRA)

=

〈
∂L

∂R
,−ηgR

〉
F

+ o(η)

= − η

s2
⟨gRLoRA-XS, (B

⊤B)−1gRLoRA-XS(AA⊤)−1⟩F + o(η), (25)

where in the last step we also used the definition of gRLoRA-XS and the result of Theorem 3. To prove
∆L ≤ 0 for small enough η, it is sufficient to show that

⟨gRLoRA-XS, (B
⊤B)−1gRLoRA-XS(AA⊤)−1⟩F ≥ 0. (26)

Next, we note that matrices B⊤B ∈ Rr×r and AA⊤ ∈ Rr×r are positive definite since they
are positive semi-definite and matrices B and A are full-rank (i.e., with rank r) matrices, which
means that B⊤B and AA⊤ have non-zero eigenvalues. Therefore, (B⊤B)−1 and (AA⊤)−1 are
also positive definite, implying that there exist matrices X and Y such that (B⊤B)−1 = Y Y ⊤ and
(AA⊤)−1 = XX⊤ (e.g., one can find such matrices using Cholesky decomposition). Then, we have

⟨gRLoRA-XS, (B
⊤B)−1gRLoRA-XS(AA⊤)−1⟩F = ⟨gRLoRA-XS, Y Y ⊤gRLoRA-XSXX⊤⟩F

= ⟨Y ⊤gRLoRA-XSX,Y ⊤gRLoRA-XSX⟩F
= ∥Y ⊤gRLoRA-XSX∥2F ≥ 0.

This concludes the proof.

For our specific initialization where (B⊤B) = I , (AA⊤) = I , and s = 1, the result simplifies to:

∆L = −η⟨gRLoRA-XS, g
R
LoRA-XS⟩F + o(η) ≤ 0. (27)

B.5 PROOF OF THEOREM 5

Theorem. The equivalent gradient g̃ is hyperparameter s independent when

g̃ = sBgRA but not when g̃ = sBgRLoRA−XSA.

Proof. Let g be the full fine-tuning gradient. We want to prove that g̃ does not depend on s, so
we try to express it in terms of g which does not depend on the LoRA-XS training process or
reparameterization.

1) For g̃ = sBgRA:

gR =
1

s2
(B⊤B)−1gRLoRA-XS(AA⊤)−1 =⇒ g̃ =

s

s2
B(B⊤B−1)gRLoRA-XS(AA⊤)−1A (28)

Now since gRLoRA-XS = sB⊤gA⊤:

g̃ =
1

s
B(B⊤B−1)sB⊤gA⊤(AA⊤)−1A = B(B⊤B−1)B⊤gA⊤(AA⊤)−1A. (29)

which is s-independent.

2) For g̃ = sBgRLoRA-XSA

gRLoRA-XS = sB⊤gA⊤ =⇒ g̃ = sB(sB⊤gA⊤)A =⇒ g̃ = s2BB⊤gA⊤A (30)

which is not s-independent.
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B.6 PROOF OF THEOREM 6

Theorem. If Ainit and Binit are initialized using LoRA-SB for the first step of SGD optimizer,
then the update given by LoRA-SB, ∆(BinitRinitAinit) , is the best low-rank approximation
of full fine-tuning update, ∆W.

Proof. Consider a gradient descent step with learning rate η and updates for R:
∆R = −η∇RL(R) =⇒ B∆RA = −ηB∇RL(R)A. (31)

To measure its approximation quality of update of the weights in full finetuning:
∆W = −η∇WL(W0). (32)

We use Frobenius norm of the difference between these two updates as a criterion:
∥B∆RA− η∇LW (W0)∥F = η∥B∇RL(R)A−∇LW (W0)∥F . (33)

We have shown before that:
∇RL = B⊤∇WLA⊤. (34)

The problem now becomes:

min
Ainit,Binit

∥B⊤(B⊤∇WLA⊤)A−∇WL∥F where ∇WL = USV ⊤. (35)

Using our initialization, we get:

∥BB⊤∇WLA⊤A−∇WL∥F = ∥UIRU
⊤
IRUSV ⊤VIRV

⊤
IR − USV ⊤∥F . (36)

Moreover, we also have

UIRU
⊤
IRUSV ⊤VIRV

⊤
IR =

r∑
i=1

σiuiv
⊤
i . (37)

The rank of W ′ such that
W ′ = UIRU

⊤
IRUSV ⊤VIRV

⊤
IR (38)

is ≤ r, since the corresponding ranks of Binit and Ainit is r. Using the Eckart-Young Theorem, we
find the optimal low-rank solution as:

W ′∗ = arg min
rank(W ′)=r

∥W ′ −∇WL∥F =

r∑
i=1

σiuiv
⊤
i . (39)

Since we also get an identical expression, our solution is optimal.

C SIMULATING THE FIRST STEP OF FULL FINE-TUNING UNDER ADAMW

Our initialization is designed to approximate the first update step that would occur during full fine-
tuning using the AdamW optimizer, which is also used in LoRA-SB training. AdamW computes
the parameter update using both first and second moment estimates of the gradient. At the first step,
these moments are initialized to zero, so the update becomes:

θ1 = θ0 − α · g1√
g21 + ϵ

≈ −α · sign(g1)

where g1 is the gradient at the first step, ϵ is a small constant for numerical stability, and α is
the learning rate. Due to zero-initialization and bias correction, the direction of the update is
approximately the element-wise sign of the gradient.

To simulate this behavior in our low-rank initialization, we use:

∆Wavg = −η · sign

(
n∑

i=1

∇WL(W0, xi)

)
This reflects the direction of the first AdamW step averaged over a mini-batch. By using the sign
of the gradient sum, we ensure our initialization aligns with the dynamics of AdamW, leading to a
consistent and faithful approximation of full fine-tuning updates within the low-rank subspace.
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D ALGORITHM

We provide a pseudo-code implementation of our method in Algorithm 1.

Algorithm 1 LoRA-SB, PyTorch-like

1: def initSB(model, D)
2: # Estimate gradient with n samples
3: ∆Wavg ← est grad(model, D, n)
4: # Initialize B, R, A
5: (B,R,A)← trunc SVD(∆Wavg)
6: # Convert to LoRA-SB model
7: sb model← lora SB(model, B, R, A)
8: returnsb model
9:

10: # Load pre-trained model
11: model ← AutoModel(base model)
12: # Initialize LoRA-SB with D
13: sb model ← initSB(model, D)
14: # Train, only R trainable
15: trainer ← Trainer(sb model,...)
16: trainer.train()

E OPTIMAL GRADIENT APPROXIMATION IS IMPORTANT!

As discussed in Section 4, optimal gradient approximation plays a key role in the effectiveness
of LoRA-SB. In Figure 3, we compare the loss curves of models trained with and without this
component on Mistral-7B. While both variants begin with similar performance due to effective
initialization, LoRA-SB with optimal gradient approximation converges to substantially lower loss
values, highlighting its contribution to improved optimization.

Figure 3: Training loss for Mistral-7B, highlighting the impact of optimal gradient approximation.

F TRAINING TIME OVERHEAD VS LORA-XS

As previously mentioned, we compute the update approximation using only 1/1000 of the total
training samples for each dataset. Table 7 presents the associated training time overhead for these
computations, compared to LoRA-XS. The results show that the additional overhead is negligible,
adding just 2–4 minutes compared to the total training time of 3–5 hours per epoch (≈ 1.1% to 1.3%).
Additionally, the update computation is performed only once, at the beginning of the first epoch, prior
to training. Notably, the initialization step is highly efficient, as we directly compute the truncated
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SVD using optimized PyTorch libraries (torch.svd lowrank). For reference, this computation
takes less than one second for each of the entire LLMs used in our experiments.

Table 7: Training time overhead due to the initialization for various models on their respective tasks.

Model Overhead Training Time/Epoch

Mistral-7B 0:02:01 3:03:57
Gemma-2 9B 0:03:46 4:13:24
Llama-3.2 3B 0:03:54 4:54:31

G INFERENCE OVERHEAD VS LORA

LoRA-SB introduces a minimal inference cost overhead due to the insertion of the r × r matrix R
between B and A, and the need for higher ranks to achieve comparable performance to LoRA. We
benchmark the inference-time FLOPs and MACs across various models and find that the overhead
is negligible. This comparison is presented in Table 8, showing that the additional overhead of
LoRA-SB is negligible.

Table 8: Inference cost comparison between LoRA-SB and LoRA across various models for a
sequence length of 256. The minimum rank at which LoRA-SB matches or exceeds LoRA’s perfor-
mance is highlighted in bold.

Model Method Rank MACs FLOPs

RoBERTa-large
LoRA 8 77.86 G 155.79 G

LoRA-SB 16 78.42 G 156.91 G
LoRA-SB 24 78.97 G 158.01 G

Llama-3.2 3B
LoRA 32 0.84 T 1.67 T

LoRA-SB 64 0.85 T 1.70 T
LoRA-SB 96 0.86 T 1.72 T

Mistral 7B
LoRA 32 1.84 T 3.69 T

LoRA-SB 64 1.86 T 3.73 T
LoRA-SB 92 1.88 T 3.77 T

Gemma-2 9B
LoRA 32 3.89 T 7.77 T

LoRA-SB 64 3.93 T 7.86 T
LoRA-SB 96 3.97 T 7.94 T

H ADDITIONAL RESULTS

We present the standard deviation results across multiple runs in Tables 9 and 10.

I EXPERIMENT DETAILS

We use PyTorch (33) and the HuggingFace Transformers library (48) for our implementations. We
run all experiments on a single NVIDIA A6000 GPU and report results as the average of three
random seeds. To save memory, we initialize base models in torch.bfloat16 precision. We
trained all models using the AdamW optimizer (28). We compute the update approximation using
only 1/1000 of each dataset’s total number of samples. The samples are randomly selected from
the training set in each run.

For arithmetic and commonsense reasoning tasks, we set up Mistral-7B, Gemma-2 9B, and Llama-3.2
3B with hyperparameters and configurations listed in Table 11. We adopted most settings from
previous studies (18) but conducted our own learning rate sweep. Following LoRA-XS guidelines,
we set α = r for their baseline configuration.
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Table 9: Standard deviation results on Mistral-7B and Gemma-2 9B across arithmetic reasoning
benchmarks.

Method Rank Mistral-7B Gemma-2 9B

# Params GSM8K MATH # Params GSM8K MATH

Full FT - 7.24 B 0.32 0.22 9.24 B 0.27 0.19
LoRA 32 83.88 M 0.58 0.49 108.04 M 0.50 0.41
rsLoRA 32 83.88 M 0.64 0.44 108.04 M 0.46 0.39
PiSSA 32 83.88 M 0.56 0.47 108.04 M 0.53 0.36
DoRA 32 85.26 M 0.49 0.41 109.88 M 0.45 0.38
LoRA-GA 32 85.26 M 0.72 0.59 109.88 M 0.63 0.48
LoRA-Pro 32 83.88 M 0.44 0.33 108.04 M 0.38 0.31

LoRA-XS 32 0.23 M 0.92 0.77 0.30 M 0.78 0.63
LoRA-XS 64 0.92 M 0.85 0.70 1.20 M 0.72 0.57
LoRA-XS 96 2.06 M 0.78 0.66 2.71 M 0.68 0.52

LoRA-SB 32 0.23 M 0.70 0.52 0.30 M 0.58 0.45
LoRA-SB 64 0.92 M 0.60 0.47 1.20 M 0.50 0.39
LoRA-SB 96 2.06 M 0.52 0.39 2.71 M 0.43 0.33

Table 10: Standard deviation results for each metric on Llama-3.2 3B across commonsense reasoning
benchmarks.

Method Rank # Params BoolQ PIQA SIQA HellaS. WinoG. ARC-e ARC-c OBQA Avg.

Full FT - 3.21 B 0.92 0.71 0.78 0.63 0.58 0.74 0.88 0.82 0.76
LoRA 32 48.63 M 1.24 1.05 0.96 0.88 0.83 1.02 1.16 1.11 1.03
rsLoRA 32 48.63 M 1.28 1.01 0.91 0.84 0.79 0.98 1.13 1.07 1.00
PiSSA 32 48.63 M 1.21 0.97 0.88 0.82 0.77 0.93 1.08 1.04 0.96
DoRA 32 49.40 M 1.15 0.93 0.85 0.80 0.76 0.92 1.05 1.02 0.94
LoRA-Pro 32 48.63 M 1.10 0.90 0.83 0.78 0.74 0.88 1.01 0.99 0.91

LoRA-XS 32 0.20 M 1.66 1.41 1.28 1.14 1.09 1.32 1.44 1.37 1.34
LoRA-XS 64 0.80 M 1.54 1.32 1.21 1.09 1.03 1.26 1.38 1.31 1.27
LoRA-XS 96 1.81 M 1.48 1.25 1.17 1.05 0.99 1.22 1.34 1.26 1.22

LoRA-SB 32 0.20 M 1.42 1.18 1.10 0.98 0.94 1.14 1.26 1.19 1.15
LoRA-SB 64 0.80 M 1.33 1.11 1.05 0.93 0.91 1.10 1.22 1.16 1.12
LoRA-SB 96 1.81 M 1.27 1.06 1.01 0.90 0.88 1.07 1.18 1.13 1.09

For the GLUE benchmark using RoBERTa-large, you can find the hyperparameter details in Table 12.
We mostly adhered to the original configurations from the LoRA paper (17) but adjusted the learning
rate through a sweep. In line with LoRA-XS settings, we fixed α at 16 for their baseline.

For all tasks, we followed the baseline configurations provided in the PiSSA (30), rsLoRA (20),
DoRA (26), and LoRA-Pro (46) papers for our comparisons.

J DATASET DETAILS

The MetaMathQA dataset (50) creates mathematical questions by rephrasing existing ones from
different viewpoints, without adding new information. We assess this dataset using two benchmarks:
GSM8K (8), which consists of grade-school math problems requiring multi-step reasoning, and
MATH (16), which presents difficult, competition-level math problems. Evaluation focuses solely on
the final numeric answer.

COMMONSENSE170K is a comprehensive dataset that consolidates eight commonsense reasoning
datasets (18). Each example is framed as a multiple-choice question where the model generates the
correct answer without explanations. We use the prompt template from (18). The individual datasets
used are described below:
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Table 11: Hyperparameter settings for training Mistral-7B and Gemma-2 9B on MetaMathQA, and
Llama-3.2 3B on COMMONSENSE170K.

Mistral-7B / Gemma-2 9B Llama-3.2 3B
Optimizer AdamW AdamW
Batch size 1 6
Max. Seq. Len 512 256
Grad Acc. Steps 32 24
Epochs 1 2
Dropout 0 0.05
Learning Rate 1× 10−4 2× 10−3

LR Scheduler Cosine Linear
Warmup Ratio 0.02 0.02

Table 12: Hyperparameter settings for RoBERTa-large on GLUE.

CoLA RTE MRPC SST-2 QNLI STS-B
Optimizer AdamW
Batch size 128
Max Seq. Len. 256
Epochs 30 30 30 15 15 30
Dropout 0
Learning Rate 1× 10−3

LR Scheduler Linear
Warmup Ratio 0.06

1. HellaSwag (51) challenges models to select the most plausible continuation of a given
scenario from multiple possible endings.

2. ARC Easy (or ARC-e) (7) includes basic science questions at a grade-school level, offering
simpler tasks to assess fundamental reasoning abilities.

3. PIQA (3) evaluates physical commonsense reasoning, where models must choose the best
action to take in a hypothetical scenario.

4. SIQA (39) tests social commonsense reasoning by asking models to predict the social
consequences of human actions.

5. WinoGrande (38) presents sentence completion tasks requiring commonsense reasoning to
select the correct binary option.

6. ARC Challenge (or ARC-c) (7) consists of more complex science questions designed to
challenge models with sophisticated reasoning, beyond simple co-occurrence patterns.

7. OBQA (31) features open-book, knowledge-intensive QA tasks that require multi-hop
reasoning across multiple information sources.

8. BoolQ (6) involves answering yes/no questions based on real-world, naturally occurring
queries.

The GLUE Benchmark is a comprehensive collection of tasks designed to evaluate natural language
understanding (NLU) abilities. It included various datasets, including STS-B for measuring semantic
textual similarity (5), RTE for recognizing textual entailment, MRPC for detecting paraphrases (11),
CoLA for assessing linguistic acceptability (47), SST-2 for sentiment analysis (41), and QNLI for
question-answer inference (36). GLUE’s broad scope makes it a standard benchmark for evaluating
models like RoBERTa.

K USE OF LARGE LANGUAGE MODELS

LLMs are only used for small writing improvements, like polishing grammar and smoothing out
phrasing.
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