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Abstract

Unsupervised Skill Discovery aims to learn diverse skills without extrinsic rewards,
often using them as priors for downstream tasks, while also potentially aiding
exploration and representation learning. Existing methods focus on empowerment
or entropy maximization but often result in static or non-discriminable skills.
Instead, our method, Hilbert Unsupervised Skill Discovery (HUSD), combines
f -divergence with Integral Probability Metrics to promote behavioral diversity and
disentanglement. HUSD maximizes the Maximum Mean Discrepancy between the
joint distribution of skills and states and their marginals in Reproducing Kernel
Hilbert Space, leading to better exploration and skill separability. Our results
on Unsupervised RL Benchmark (URLB) show HUSD outperforms previous
exploration algorithms on state-based tasks.

1 Introduction

Reinforcement Learning (RL) has excelled in various tasks such as game playing (Mnih et al. 2015;
Silver et al. 2016; Vinyals et al. 2019), autonomous control (Lillicrap et al. 2015; Smith, Cao,
and Levine 2023; Team et al. 2024), and autonomous driving (Kendall et al. 2019; Jiang et al.
2023). However, RL algorithms typically optimize task-specific reward functions, leading to highly
specialized policies with limited generalizability to new tasks (Cobbe et al. 2019; Zhang et al. 2018;
Packer et al. 2019). In contrast, humans possess the ability to independently learn skills, explore
new domains, and select and refine learned skill primitives to utilize them in complex downstream
tasks, demonstrating remarkable adaptability and versatility in diverse environments (Lövdén et al.
2020). Although intrinsically motivated RL has made significant progress (Colas et al. 2022; Aubret,
Matignon, and Hassas 2023; Lidayan, Dennis, and Russell 2024), the question remains: Can we
better harness this behavior to further enhance our agents’ versatility?

Many unsupervised skill discovery approaches have been proposed to provide good skill prior for the
downstream tasks in the absence of extrinsic rewards (Srinivas and Abbeel 2022). Mutual Information
Skill Learning (MISL)(Eysenbach, Salakhutdinov, and Levine 2022) addresses Unsupervised Skill
Discovery by maximizing the Mutual Information (MI) between state representations and skill vectors.
This approach promotes diverse behaviors and extensive exploration of the state space by associating
different skills with different state representations(Gregor et al. 2016; Eysenbach et al. 2019). Due to
the intractability of this MI, the methods either optimize the Reverse-MI formulation by assuming a
fixed skill prior distribution (Gregor et al. 2016; Eysenbach et al. 2019; Achiam et al. 2018; Hansen
et al. 2019) or optimize the Forward-MI and explicitly maximize the state entropy to generate diverse
states conditioned on skills (Sharma et al. 2020; Campos et al. 2020; Liu et al. 2021b,a; Laskin et al.
2022; Zhao et al. 2022). Despite these efforts, MI-based objectives do not necessarily guarantee wide
state-space coverage, often leading to static (limited in exploration) or redundant (overlapping) skills
that focus on a limited subset of the environment (Strouse et al. 2021; Yang et al. 2023, 2024b).
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This is primarily due to the reason that KL divergence is completely invariant to the underlying data
distribution or any invertible transformation i.e. for any invertible function f , I(s; z) = I(f(s); z)
(Kraskov, Stoegbauer, and Grassberger 2004; Ozair et al. 2019; Park et al. 2022). KL-divergence is
also highly sensitive to minor variations in data samples, resulting in minute perturbations in state-
space to significantly impact the maximization of KL divergence (Arjovsky, Chintala, and Bottou
2017) and produce near-static skills, as observed in (Laskin et al. 2022; Yang et al. 2023). Some
approaches increase state coverage by focusing on long-stretched trajectories or using the Wasserstein
metric for state representation (Zhao et al. 2021; Park et al. 2022, 2023; Park, Rybkin, and Levine
2024), but they often rely on strong assumptions about the underlying space (coordinates) and may
not fully capture the diversity of skills. Additionally, balancing exploration and skill disentanglement
remains a challenge, with explorative methods often hindering skill discriminability (Do and Tran
2020; Kim et al. 2021; Yang et al. 2024a,b). These explorative methods often assume that maximizing
state coverage will naturally lead to the discovery of novel skills, which isn’t always true. For
example, a quadruped could cover a large area by rolling, but only learn the rolling behavior (Park
et al. 2022; Park, Rybkin, and Levine 2024). While Kim et al. (2021) introduce disentanglement
with WSEPIN (Do and Tran 2020), they don’t explicitly address state-space coverage. Balancing
exploration and disentanglement remains challenging (Yang et al. 2024a). Recently, Yang et al.
(2024b) analyzed adding a separability objective to enhance skill diversity, highlighting the trade-off
between exploration and skill discriminability.

Our work, Hilbert Unsupervised Skill Discovery (HUSD), introduces a novel MI objective that
emphasizes skill discriminability alongside state entropy-driven exploration. The goal is to ensure
that the distribution of learned state-skill pairs is distinctly separable, maintaining clear distinctions
between different skills in the representation space. We use Maximum Mean Discrepancy (MMD) as
a metric to quantify this separation, which serves as an intrinsic reward. A greater distribution shift
between joint and marginal distributions yields higher rewards, incentivizing the agent to differentiate
clearly between states generated by different skills.

2 Related Work

In this section, we explore the broader landscape of Unsupervised RL and delve into one of its key
areas, Unsupervised Skill Discovery, in detail. We discuss the Integral Probability Metrics in the
Supplementary Material.

2.1 Unsupervised RL and Skill Discovery

Unsupervised Reinforcement Learning focuses on interacting with the environment with no extrin-
sic reward, only using intrinsic rewards to enhance their adaptability for a range of downstream
tasks (Xie et al. 2022; Li et al. 2023; Lidayan, Dennis, and Russell 2024). Unsupervised RL algo-
rithms can be classified into three categories: knowledge-based, data-based, and competence-based
methods (Oudeyer et al. 2007; Srinivas and Abbeel 2022). The knowledge-based approaches aims at
maximising some output value like prediction error, surprise, uncertainty etc. (Salge, Glackin, and
Polani 2014; Pathak et al. 2019; Burda et al. 2019; Sekar et al. 2020; Bai et al. 2021). Data-based
methods aims to maximize the state coverage by maximizing the state entropy (Liu et al. 2021b;
Yarats et al. 2021; Laskin et al. 2022). The Competence-based approaches maximize agent empower-
ment within the environment and learns skills that generate diverse behaviours (Gregor et al. 2016;
Eysenbach et al. 2019; Sharma et al. 2020; Zhao et al. 2022; Yang et al. 2023). However, these
methods does not guarantee far-reaching states, due to which some methods explicitly maximise the
state coverage (Park et al. 2022, 2023; Park, Rybkin, and Levine 2024; Liu, Chen, and Zhao 2023).
METRA (Park, Rybkin, and Levine 2024) replaces KL divergence with the Wasserstein Metric, but
under strong assumptions, reduces it to a Euclidean space and constrains temporal differences between
state representations for obtaining meaningful representations. They cover a large state-space but
suffer from the issue of not learning sufficiently diverse skills. Kim et al. (2021) leverages WSEPIN
metric from Do and Tran (2020) to learn disentangled representations and enforce separability and
informativeness between different dimensions of the skill. Recently, Yang et al. (2024b) uses a binary
indicator function to learn separable skills, but overlooks state coverage. Our approach is classified
as data and competence-based, and it aims at ensuring separability by adding additional objective
that explicitly rewards the agent for separating the skills and ensures entropy-based exploration.
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3 Hilbert Unsupervised Skill Discovery (HUSD) Method

To complement Mutual Information based skill discovery, we propose a novel metric to explicitly
enforce the behavioural diversity and separability of learned skills,

IMMD(S;Z)
def
= MMD(p(s, z), p(s)p(z)) (1)

Maximum Mean Discrepancy (MMD) can only be zero iff all the moments (including higher-order
moments) of the two distributions are equal. It helps us in testing null hypothesis H0 : p = q against
the alternative H1 : p ̸= q, i.e. if two samples are coming from the same distribution. Therefore,
MMD is zero for identical distributions, while even a small change in the state distribution will result
in a small, non-zero MMD, with larger discrepancies leading to higher MMD values. Intuitively, the
more separation between the two skills for one state representation, the higher reward the agent will
yield. An unbiased estimator of the squared MMD (Gretton et al. (2012), Lemma 6) can be written
as,

MMD2(A,B) = 1

m(m− 1)

m∑
i ̸=j

k(ai, aj) +
1

n(n− 1)

n∑
i ̸=j

k(bi, bj)−
2

mn

m∑
i=1

n∑
j=1

k(ai, bj), (2)

whereA andB represents the joint and marginal distributions of p(s) and p(z) respectively and a and b
are their samples. Among the various kernel options available (Fukumizu et al. 2009; Sriperumbudur
et al. 2010), we select the widely recognized characteristic kernel — the exponentiated quadratic
kernel, commonly referred to as the Gaussian RBF kernel krbf(x, y) = exp

(
−∥x− y∥2/2σ2

)
.

Selecting the kernel bandwidth can lead to significant issues and inconsistent results if not done
correctly. In order to circumvent this issue, many aggregated tests have been proposed that combines
tests with different bandwidths for two-sample tests (Fromont et al. 2012; Kim et al. 2022; Schrab
et al. 2023). While these methods enhance robustness, their computational cost increases quadratically
with sample size due to the use of U -statistics estimators (Blom 1976; Hoeffding 1992). In order to
achieve a linear-time approximation, we utilise the second-order incomplete U−statistics to compute
the MMD (Schrab et al. 2022), MMD

2
(A,B;DN ) = 1

|DN |
∑
i∈DN

MMD2(Ai, Bi), where DN is a
subset of samples drawn from the distribution without replacement and N is chosen to be fixed for
our case. The details about its parameters are provided in the Supplementary Material.

3.1 HUSD with Mutual Information Skill Learning

As we want the agent to maximize the disentanglement and state coverage at the same time, we
propose a novel objective that learns from multiple rewards,

I(S;Z)︸ ︷︷ ︸
Skill-discovery

+λ IMMD(S;Z)︸ ︷︷ ︸
Disentanglement

(3)

where λ is the weighing parameter for tuning the state coverage and disentanglement. The first
objective is the standard MI objective, addressed by approximating the KL-divergence, with the
goal of maximizing state entropy and promoting exploration. The second objective focuses on
disentanglement, explicitly working to separate the state-skill distributions, ensuring that different
skills are distinctly represented within the model. By utilizing MMD, we directly measure the distance
between the joint distribution of states and skills and the product of their marginals. This allows us to
quantify and maximize the discrepancy between how states and skills are associated versus how they
would be if they were independent. By incentivizing larger MMD values, the agent is encouraged to
learn skill-specific behaviors that are statistically distinct, leading to clearer differentiation between
skills. This approach enhances the model’s ability to capture unique skill dynamics without relying
on assumptions about the underlying data distribution. By ensuring that skills are disentangled and
distinct, we encourage the agent to explore different regions of the state space associated with each
skill. This leads to improved overall state coverage, as each skill drives the agent to visit new and
diverse states without redundancy.

3.1.1 Entropy Estimation

To calculate the intrinsic reward, we adopt a particle-based entropy estimation algorithm (Beirlant
et al. 1997; Singh et al. 2003) that was utilised in previous methods (Liu et al. 2021b; Laskin et al.
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2022). However, this disentanglement approach can theoretically be applied to any method. This
entropy estimate is proportional to the sum of the log distance between each particle and its k-th
nearest neighbor, Hk(s) ∝ 1

Nk

∑
h∗
i ∈Nk

log ∥hi − h∗
i ∥, where hi is the embedding of si, h∗

i is the
KNN embedding and Nk is the number of particles.

3.1.2 Intrinsic Reward

To this diversity maximising reward, we add our disentanglement reward. Initially, we sample a
skill-state pair (τ, z) from the buffer. Subsequently, we randomly select an independent skill z′ from
the replay buffer, effectively decoupling the direct relationship between states and skills. Here, τ
represents the state transition tuple i.e. (s, s′).Then we compute the aggregated MMD and combined
reward is denoted as,

rint = Hk(τ) + λ MMD
2
(τ, z; τ, z′) (4)

3.1.3 Representation Learning

Our reward function combines entropy maximization with disentanglement and is adaptable to
various representation learning methods. For effectiveness, the representation must compress state
information. Similar strategies, like in APT (Liu et al. 2021b), CIC (Laskin et al. 2022), and
BeCL (Yang et al. 2023), use Contrastive Predictive Coding (van den Oord, Li, and Vinyals 2019)
to capture the relationship between state transitions τ and skill vector z. The loss can be defined
as LNCE(τ) =

ϕ1(τi)
⊤ϕ2(zi)

∥ϕ1(τi)∥∥ϕ2(zi)∥T − log 1
N

∑N
j=1 exp

(
ϕ1(τj)

⊤ϕ2(zi)
∥ϕ1(τj)∥∥ϕ2(zi)∥T

)
, where ϕk are the encoders

and T is the temperature.

4 Experiments

4.1 Continuous 2D Maze

In this section, we first conduct a qualitative analysis of the behaviors exhibited by different skills
learned with HUSD and recent relevant competence-based methods (Laskin et al. 2022; Zhao et al.
2022; Yang et al. 2023) on a 2D continuous maze (Campos et al. 2020; Kim et al. 2024).

4.1.1 Evaluation

For experiments, we select two different shaped grids: Square-a and Square-Tree. To ensure a fair
comparison, each method is evaluated using 10 skills for 2500 episodes, with each episode having
50 environmental interactions, with all other training parameters kept the same (except MOSS).
Additionally, we sample 20 trajectories from each skill for every method to maintain consistency in
the evaluation process. As seen in Figure 2, entropy-driven methods such as CIC and MOSS are
effective in spanning a wide range of the state space. However, they struggle to generate distinct
and discriminable skills because they lack mechanisms to clearly differentiate between these skills.
Consequently, trajectories from multiple skills often become intermixed, making it challenging to
distinguish between them. On the other hand, Contrastive learning methods like BeCL excel at
separating skills but fail to achieve comprehensive state-space coverage. In contrast, HUSD balances
state-space coverage, driven by its entropy-based reward, while maintaining clear distinction between
trajectories from multiple skills through the incorporation of an additional disentanglement objective.

4.2 URLB Environments

We perform unsupervised training of agents on Deepmind Control Suite (DMC) (Tassa et al. 2018)
and then evaluate the adaptation efficiency of these learned skills in 12 downstream tasks using
the Unsupervised Reinforcement Learning Benchmark (URLB) (Laskin et al. 2021). More details
regarding the baselines and the environment are provided in the Supplementary Material. All these
methods are pretrained for 2M steps with their respective intrinsic rewards and finetuned for 100K
steps on every task with the extrinsic reward for adaption. To remain consistent with the baseline
approaches, we choose DDPG (Lillicrap et al. 2015) as the base RL algorithm. We evaluated 12
seeds for every task and method, resulting in 12 methods × 12 tasks × 12 seeds = 1728 runs.
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4.2.1 Skill Selection

To select the appropriate skill for a downstream task, we implement the same strategy as in
CIC (Laskin et al. 2022). Specifically, we perform a grid sweep during the first 4K finetuning
steps to identify the skill that achieves the highest reward. Once the skill is selected, the agent is
then trained for the remaining 96K steps using extrinsic rewards. This method is adopted due to the
limited number of steps available for finetuning, ensuring efficient skill selection within a constrained
timeframe.

4.2.2 Evaluation

As shown in Table 4, HUSD consistently surpasses CIC across 11/12 tasks. Furthermore, it not only
demonstrates superior performance but also remains highly competitive with, and in many cases
(9/12) outperforms, the other methods evaluated on the state-based URLB benchmark (with clear
advantage on 7/12 tasks and within variance of the best baseline in 2/12 tasks). This consistent trend
across diverse domains highlights the robustness of HUSD in adapting to varying environments and
its overall effectiveness, outperforming its counterparts across a wide range of tasks.

For evaluation, we adhere to the guidelines in Reliable (Agarwal et al. 2021), employing the in-
terquartile mean (IQM) and optimality gap (OG) metrics, using stratified bootstrap sampling for
aggregation, as our primary evaluation metrics across all runs. The IQM metric calculates the mean
score by excluding the lowest and highest 25% of the runs, focusing on the middle 50%. The OG
metric assesses the extent to which the algorithm falls short of a specified target (expert) score. The
expert score is determined by running DDPG with 2M steps on the corresponding tasks, and we
reference the expert scores provided by Laskin et al. (2022). We normalize all scores relative to the
expert score, with the statistical results presented in Figure 1. In the IQM metric, HUSD outperforms
all the algorithms by achieving 79.62% score, with the next best algorithms CIC, APT and BeCL
achieving achieving 73.78%, 73.32% and 70.58% respectively. In the OG metric, HUSD achieves
a performance close to that of the expert, with approximately 22.33%, while CIC, APT and BeCL
scores 27.32%, 28.10% and 30.98% respectively.

Figure 1: The aggregate statistics for 12 downstream tasks on URLB, with 12 seeds each.

5 Conclusion

In this paper, we introduced Hilbert Unsupervised Skill Discovery (HUSD), a novel approach to
enhancing skill discovery in unsupervised reinforcement learning. HUSD combines skill discrim-
inability with state entropy-driven exploration using Maximum Mean Discrepancy (MMD) to separate
state-skill pairs, promoting the development of distinct skills. Our results demonstrate that HUSD
offers an effective addition to traditional KL-divergence-based methods by framing skill discrim-
inability through distance between distributions. The experiments on maze tasks and the URLB show
that HUSD effectively learns diverse skills, outperforming traditional methods. While HUSD excels
in state-based tasks, extending it to pixel-based tasks remains an open challenge. We also leave the
exploration of using MMD as an alternative approximation for Mutual Information as a promising
direction for future work. This approach offers a flexible framework that can be integrated with
existing methods, supporting further advancements in unsupervised skill learning.
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Supplementary Material

A Theoretical Preliminary

A.1 Tensor product of Hilbert spaces

LetH1 andH2 be separable Hilbert spaces. The algebraic tensor productH1 ⊗H2 can be endowed
with an inner product, defined by extending the following relation:

⟨x1 ⊗ y1, x2 ⊗ y2⟩⊗ = ⟨x1, x2⟩H1⟨y1, y2⟩H2 , x1, x2 ∈ H1, y1, y2 ∈ H2, (5)

which turns H1 ⊗ H2 into a Hilbert space. We denote this Hilbert space by H1 ⊗ H2 and the
associated norm by ∥ · ∥⊗, defined as ∥ · ∥⊗ =

√
⟨·, ·⟩⊗.

Furthermore, the spaceH1 ⊗H2 is unitarily isomorphic to the space of Hilbert-Schmidt operators
HS(H2,H1) (Conway 1990).

A.2 MMD for State-Skill pairs

MMD can quantify the disparity between the joint distributions of skills and actions, denoted as
p(s, z), and the product of their marginal distributions, p(s)p(z),

MMD
(
p(s, z), p(s)⊗ p(z)

)
= sup

f∈H
||f ||H≤1

Es,z∼p(s,z)
[
f(s, z)

]
− Es∼p(s),z∼p(z)

[
f(s)f(z)

]
. (6)

Note that f is an element of the witness functions F in RKHS H. The states s ∈ S and skills
z ∈ Z are defined on a measurable spaces S and Z respectively. The states of the agent and the
skills correspond to two completely different components of agent’s behavious. Thus, we construct a
kernel on S × Z that involves the tensor product of individual kernels ks and kz , which expressed
as k = ks ⊗ kz . The tensor product of two kernels ks and kz can be mathematically written as
k((s, z), (s′, z′)) = ks(s, s

′) kz(z, z
′) ∀ s, s′ ∈ S and z, z′ ∈ Z with the corresponding RKHS

Hk = HkS ⊗HkZ being the tensor product space generated byHkS andHkZ (Berlinet and Thomas-
Agnan 2011; Szabó and Sriperumbudur 2018).

To further simplify our objective in Eq 6, we use the reproducing property of RKHS i.e. ⟨f, k(·, x)⟩ =
f(x) ∀x ∈ X, f ∈ H . The first term in Eq 6 can be written as f(s, z) = ⟨f, k(s, z)⟩ =
⟨f, ks(s, .) kz(z, .)⟩ = ⟨fs, ks(s, .)⟩⟨fz, kz(z, .)⟩ = fs(s) fz(z). This derivation leverages the
theorem on tensor products in Hilbert spaces (Details to the theorem are provided in the Supplemen-
tary Material Theorem 1). For clarity, we define function f = fs ⊗ fz that maps the states S and
skills Z to their respective Hilbert spacesHkS andHkZ . We can write the Eq. 6 as

MMD
(
p(s, z), p(s)⊗ p(z)

)
= sup

f∈H
||f ||H≤1

Es,z∼p(s,z)
[
f(s)f(z)

]
− Es∼p(s)

[
fs(s)

]
Ez∼p(z)

[
fz(z)

]
= ||Es,z∼p(s,z)Ψsz − Es∼p(s)Ψs Ez∼p(z)Ψz||H

(7)

where Ψsz,Ψs and Ψz are the feature mean embeddings in RKHS (Muandet et al. 2017).

B Related Work

In this section, we discuss the Integral Probability Metrics and its application across various domains,
highlighting their significance and usage in prior research.

B.1 Integral Probability Metrics for Representation Learning

Amongst several IPMs (Zolotarev 1976; Rachev 1991; Müller 1997; Sriperumbudur et al. 2009), for
representation learning, the most widely used are Wasserstein Measures (Kantorovich and Rubinstein
1958) and Maximum Mean Discrepancy (Gretton et al. 2012). These metrics have been particularly
effective in Generative Adversarial Networks for preventing mode collapse and the learning of
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meaningful representation (Arjovsky, Chintala, and Bottou 2017; Bińkowski et al. 2018; Adler and
Lunz 2018). A significant amount of research has focused on addressing the limitations of KL
divergence to enable the learning of complete and fair representations (Ozair et al. 2019; Oneto et al.
2020; Kim et al. 2022). Dezfouli et al. (2019) combines KL divergence and MMD to learn informative
and disentangles representations. Recently, Colombo et al. (2022) demonstrated that MMD and
Sinkhorn Divergences significantly outperform KL divergence for disentanglement. However, despite
their potential, these approaches remain relatively underutilized in the field of Unsupervised Skill
Discovery, where KL divergence-based objectives continue to be the predominant choice (Kim et al.
2021; Yang et al. 2024b).

C Preliminaries and Notations

C.1 Skill Learning in RL setting

An agent operates in a Markov Decision Process (MDP), which is characterised by (S,A,P, r, γ),
consisting of the state space S with states s, action space A with actions a, transition dynamics
p(s′|s, a) ∼ P , reward function r and discount factor γ ∈ [0, 1]. We denote the skill space by Z and
sample skill vector z, which can be either discrete or continuous space. At every timestep t, the agent
selects the action from a skill-conditioned policy a ∼ π( · |s, z) and then moves to the next state s′

and acquires a reward r.

During the unsupervised learning stage, the agent acquires intrinsic rewards rint and samples action
from a skill-conditioned policy a ∼ π( · |s, z) and aims at maximizing the cumulative intrinsic reward∑t=T
t=0 γtrt. This phase allows the agent to explore various behaviors and develop diverse skills.

Once this pretraining stage is complete, the learned skill z is adapted to a downstream task, aiming
to maximize the extrinsic rewards. A skill vector z∗ is initialized based on some selected criteria
in order to optimally fit to the downstream task. Then we finetune on this skill with task-specific
rewards rint with a small number of interactions.

C.2 Integral Probability Metrics

Integral Probability Metrics (IPMs) (Sriperumbudur et al. 2009) are defined as a measure of the
distance between two probability distributions, P and Q. This metric operates by selecting a witness
function f with the largest discrepancy in expectation over these two distributions,

DF (P,Q) = sup
f∈F

EP[f(X)]− EQ[f(Y )]. (8)

With this criterion, several divergences can be defined based on the selection of th witness function
F . For example, selecting F as 1-Lipschitz functions leads to the Kantorovich Metric [Dudley
(2018);Theorem 11.8.2], while the total variation is defined by functions whose absolute value
is bounded by 1, and the Kolmogorov metric arises from functions with bounded variation 1. If
the witness function is the unit ball in a Reproducing Kernel Hilbert Space H (RKHS) i.e. f ∈
H, ∥f∥H ≤ 1, we obtain a metric called Maximum Mean Discrepancy (Gretton et al. 2012).

D Experimental Details

In this section, we explain the underlying environments on which the evaluations are performed.
Next, we establish the baselines which are utilised for a comprehensive comparison.

D.1 Continuous 2D Maze

To explore skill discovery, we carried out experiments within a 2D maze setting from (Campos et al.
2020; Kim et al. 2024). In this environment, the agent perceives its location as observations S ∈ R2

and takes action A ∈ R2, which is responsible for controlling both the speed and direction of its
movement. For experiments, we select two different shaped grids: Square-a and Square-Tree. We
selected three of the most recent and top-performing methods: CIC (Laskin et al. 2022), MOSS (Zhao
et al. 2022), and BeCL (Yang et al. 2023). We chose not to include DIAYN (Eysenbach et al. 2019)
or DADS (Sharma et al. 2020) in our comparisons, despite their foundational contribution, as they
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have consistently been shown in the literature to have inferior performance compared to more recent
approaches (Yang et al. 2023; Bai et al. 2024). To ensure a fair comparison, each method is evaluated
using 10 skills for 2500 episodes, with each episode having 50 environmental interactions, with all
other training parameters kept the same (except MOSS). Additionally, we sample 20 trajectories
from each skill for every method to maintain consistency in the evaluation process. The visual
demonstrations on both the mazes are provided below.

D.1.1 a-Square Maze

As seen in the image below, HUSD not only achieves diverse skills, but also spans the entire maze.

(a) CIC (b) MOSS (c) BeCL (d) HUSD

Figure 2: Visualization of skill discovery in a maze environment (a-square) shows state trajectories
represented by different colors, each corresponding to a distinct skill vector. The agent begins its
movement from the same location (black dot) in the top corner, with 20 trajectories sampled for each
skill to illustrate the behavior

D.1.2 Tree Maze with multiple skill dimensions

(a) CIC (b) MOSS

(c) BeCL (d) HUSD

Figure 3: Visualization of skill discovery in a Tree environment shows state trajectories represented
by different colors, each corresponding to a distinct skill vector from 10 skills. The agent begins its
movement from the same location (black dot) in the top corner, with 20 trajectories sampled for each
skill to illustrate the behavior.
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(a) CIC (b) MOSS

(c) BeCL (d) HUSD

Figure 4: Visualization of skill discovery in a Tree environment, each corresponding to a distinct skill
vector from 30 skills and 20 trajectories each.

D.2 URLB Environments

We evaluate HUSD on DMC tasks from the URLB benchmark (Laskin et al. 2021), which consists of
three distinct domains: Walker, Quadruped, and Jaco Arm, each with varying dynamics and control
strategies. Walker Walk is a biped locomotion task in a 2D plane with S ∈ R24 and A ∈ R6 and
includes tasks like Stand, Walk, Flip and Run. Quadruped is more challenging with larger state-space
S ∈ R78 and action space A ∈ R16, and consists of tasks like Stand, Walk, Jump and Run. Jaco
Arm is a 6-DoF Robot arm with a three-finger gripper with S ∈ R55 and A ∈ R9, and tasks to reach
top-left, top-right, bottom-left and bottom-right of the environment.

D.2.1 Baselines

For our baselines, we selected a set of established unsupervised RL algorithms benchmarked on
URLB (Laskin et al. 2021), along with few others. Below, we offer a brief overview of each method.

Knowledge-based methods. In our evaluation of knowledge-based baselines, we examine several
well-established methods, including ICM (Pathak et al. 2017), Disagreement (Pathak et al. 2019),
and RND (Burda et al. 2019). These approaches commonly utilize predictive models to determine
intrinsic rewards. Specifically, these methods reward the agent by either training a dynamics model
f(st+1|st, at) to predict the next state (ICM), calculating the divergence between the output of a
random network f(st, at) (RND), or by training an ensemble of dynamics models, where the intrinsic
reward is proportional to the uncertainty within the ensemble (Disagreement).

Data-based methods. For data-based baselines, we compare APT (Liu et al. 2021b) and Proto (Yarats
et al. 2021). Both of these methods employ a particle estimator to maximize the entropy of state
visitations. Proto additionally incorporates discrete contrastive clustering, as an auxiliary task,
utilizing the resulting clusters to compute particle entropy.

Competence-based methods. For baselines, we compare our approach to DIAYN (Eysenbach et al.
2019), SMM (Lee et al. 2019), APS (Liu et al. 2021b), CIC (Laskin et al. 2022), MOSS (Zhao et al.
2022) and BeCL (Yang et al. 2023). CIC can be considered as both, Data-based and Competence-
based method as it uses entropy estimator and NCE based rewards. MOSS is an extension of CIC,
which uses a heuristics to either maximize or minimize entropy for half of the episode. Other methods
are described in the Table 1.
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Table 1: BeCL and other unsupervised RL baselines.

Name Algo. Type Intrinsic Reward Explicit max H(s)

ICM (Pathak et al. 2017) Knowledge ∥f(st+1|st, at)− st+1∥2 No
Disagreement (Pathak et al. 2019) Knowledge Var{fi(st+1|st, at)}Ni=1 No
RND (Burda et al. 2019) Knowledge ∥f(st, at)− f̃(st, at)∥2 No

APT (Liu et al. 2021b) Data Hparticle(s) Yes
Proto (Yarats et al. 2021) Data Hproto(s) Yes

DIAYN (Eysenbach et al. 2019) Competence log q(z|s)− log p(z) No

SMM (Lee et al. 2019) Competence log p∗(s)− log qz(s)
− log p(z) + log d(z|s) Yes

APS (Liu et al. 2021b) Competence Hparticle(s) + Fsuccessor(s|z) Yes
CIC (Laskin et al. 2022) Competence Hparticle(s) + FCPC(s|z) Yes
MOSS (Zhao et al. 2022) Competence (−1)kHparticle(s); k = {−1, 1} Yes
BeCL (Yang et al. 2023) Competence FCPC(s1, s2) No
HUSD (Ours) Competence Hparticle(s) + λ MMD(s, z, z′) Yes

D.2.2 Computational Costs

All the experiments were done on a single GPU, that required atmost 6GB memory for all the tasks.
We use mainly a single 4090 GPU. Single seed of each method on average takes following time:
Disagreement, APS:∼ 2 hours; ICM, DIAYN, APT: ∼ 3 hours; SMM: ∼ 4 hours; HUSD: ∼ 7
hours; MOSS, BeCL: ∼ 8 hours; Proto: ∼ 10 hours.

D.2.3 Skill Visualizations

Figure 5: An illustration of the skills learned in Walker and Quadruped. As seen in the top, the walker
learns to flip and in the bottom, the quadruped learns to jump during unsupervised pretraining, which
can be later utilised during finetuning.

Figure 6: Additional illustration of the skills learned Quadruped.
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Figure 7: Additional illustration of the skills learned Quadruped.

E Implementation Details on URLB

In this section, we discuss the implementation details of our algorithm along with the hyperparameters.
We also discuss our baselines in detail.

E.1 Algorithm

We provide the complete algorithm description for HUSD in Algorithm 1.

Algorithm 1: Hilbert Unsupervised Skill Discovery

1: Input: Number of pretraining steps NPT , finetuning steps NFT , skill dimension |z|, batch size
B, random action steps t0, dowmstream tasks Tk ∈ [T1, ..., TM ]

2: Initialize Environment, actor πθ(a|s, z), critic Qψ(s, z, a), encoders ϕs,ϕz , and replay buffer D
3: for t = 1 to NPT do ▷ Unsupervised Pre-training.
4: Sample and encode skill, z ∼ p(z) and z ← ϕz(z)
5: Encode state st ← ϕs(st) and sample action at ← πθ(st, z)
6: Observe next state st+1 ∼ p(·|st, at)
7: Add transition to replay buffer D ← D ∪ (st, at, st+1)
8: Sample a batch from D: {(ai, si, zi, z′i)}Bi=1.
9: Compute contrastive loss with Eq.11 and update the encoders ϕs and ϕz .

10: Compute the intrinsic reward rint by computing rent(st, st+1) and rmmd(st, st+1, zt, z
′
t+1)

with Eq.10.
11: Update actor πθ(a|s, z) and critic Qψ(s, z, a) using intrinsic reward rint.

end for
12: for t = 1 to NFT do ▷ Supervised Fine-tuning
13: Choose an action by at ∼ πθ(a|st, z⋆).
14: Select skill with grid sweep over unit interval [0, 1] every 50 steps.
15: Add transition to replay buffer D ← D ∪ (st, at, st+1).
16: if t ≥ t0 then
17: Sample a batch from D: {(ai, si, zi)}Bi=1.
18: Update actor πθ(a|s, z⋆) and critic Qψ(s, a, z

⋆) using extrinsic reward rext.
end if

end for

E.2 Hyperparameters

Our implementation of Deep Deterministic Policy Gradient (DDPG, Lillicrap et al. (2016)) is
implemented in PyTorch and is based on the implementation of URLB.

To ensure a fair comparison, we maintained the original hyperparameters for each method and used
the code as provided by the authors. The complete set of Hyperpameters essential to implement our
approach are provided in the Table 2.
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Table 2: Hyperparameter settings and descriptions for DDPG implementation
Hyper-Parameter Value Description
Scaling Factor (λ) [102, 104] The value with which the MMD reward is scaled.
Replay buffer capacity 106 The maximum number of experiences stored in the replay

buffer, used for training the agent.
Action repeat 1 The number of times an action is repeated in the environ-

ment.
Seed frames 4000 The initial number of frames used to seed the replay buffer

before training starts.
n-step returns 3 The number of steps used in the n-step return method for

calculating target Q-values.
Mini-batch size 1024 The number of samples drawn from the replay buffer for

each training update.
Discount (γ) 0.99 The discount factor used in the Bellman equation to weigh

future rewards.
Optimizer Adam The optimization algorithm used for updating the neural

network weights.
Learning rate 10−4 The step size used by the optimizer for each update.
Agent update frequency 2 The number of environment steps between each update of

the agent’s parameters.
Critic target EMA rate (τQ) 0.01 The rate at which the target critic network is updated using

Exponential Moving Average (EMA) of the critic network.
Features dimensions 1024 The dimensionality of the feature space used for encoding

observations.
Hidden dimensions 1024 The dimensionality of the hidden layers in the neural net-

work.
Exploration stddev clip 0.3 The maximum standard deviation allowed for exploration

noise.
Exploration stddev value 0.2 The standard deviation used for the exploration noise in

the action space.
Number pretraining frames 2× 106 The number of frames used for pretraining the agent.
Number finetuning frames 1× 105 The number of frames used for fine-tuning the agent on

the target task.

Table 3: Hyperparameter settings and descriptions for MMD with Incomplete U−Statistics
Hyper-Parameter Value Description
Kernels 5 The number of kernels used in aggregated statistics.
R 250 Number of superdiagonals to consider in the U-statistic

calculation.
Weight Type wλ = 1

N Uniform weights for bandwidths λ ∈ Λ, where N is the
total number of bandwidths.

Bandwidth Range [0.1, 1.0] The range for the kernel bandwidths, sampled uniformly.
Sample Size 1000 Number of samples drawn from the uniform distribution.
Bootstrap Samples 500 Number of wild bootstrap samples to approximate the

quantiles.

F Ablation Study

In this section, we see the effect of the λ parameter (weighing the MMD) on the actual results.
The final reward is the combination of two rewards: State-Entropy and Disentanglement. We
conducted the study using different values of alpha to show its effect on the state coverage and
skill-discriminability (Figure 8). (i) When λ is zero or even small, the trajectories are intermixed and
it shows behaviour very simialr to CIC. (ii) On increasing the value of λ i.e. λ ∈ [10, 103], the skills
starts to differentiate as the MMD reward increases which will push the state-skill distributions apart.
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(iii) Selecting a very large value of λ i.e. λ ∈ [104, 105] will let the MMD reward dominate and the
agent will form discrete clusters. However, this comes at the expense of exploration, as the entropy
reward becomes less influential.

Figure 8: An ablation study that shows the impact of the weighing factor λ in the maze task. Lower
values of λ lead to broader state-space coverage, while increasing λ enhances the distinguishability
of skills as the MMD reward becomes more prominent. However, excessively large λ values result in
highly discriminable skills but at the cost of reduced state coverage.
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674±
82

116±
9

122±
6

122±
10

133±
10

SM
M

(L
ee

etal.2019)
472±

16
394±

32
854±

25
686±

32
178±

37
194±

34
336±

76
176±

30
50±

6
57±

8
45±

4
52±

8
D

IA
Y

N
(E

ysenbach
etal.2019)

331±
11

178±
7

750±
42

444±
36

493±
51

391±
33

727±
52

472±
63

38±
9

29±
3

14±
4

16±
2

A
PS

(L
iu

etal.2021a)
462±

36
161±

27
743±

56
601±

49
433±

44
311±

28
538±

49
464±

66
83±

9
86±

11
71±

7
78±

6
C

IC
(L

askin
etal.2022)

566±
31

418±
25

938±
7

826±
42

590±
8

428±
9

763±
17

608±
21

144±
6

148±
11

141±
13

159±
8

M
O

SS
(Z

hao
etal.2022)

772±
35

478±
14

956±
4

924±
7

313±
21

250±
15

421±
20

202±
6

115±
9

132±
6

105±
9

120±
9

B
eC

L
(Y

ang
etal.2023)

593±
18

450±
20

952±
4

861±
34

584±
49

366±
47

685±
64

607±
82

134±
7

135±
8

125±
12

132±
12

H
U

SD
(O

urs)
625±

25
394±

36
964±

4
874±

34
660±

44
502±

25
852±

30
740±

62
158±

5
151±

5
152±

5
166±

7

Table
4:Perform

ance
com

parison
ofH

U
SD

and
various

baselines
on

the
state-based

U
R

L
B

(L
askin

etal.2021)across
12

seeds
pertask.A

llbaselines
undergo

2M
steps

ofpretraining
using

theirintrinsic
rew

ards,follow
ed

by
100K

steps
offinetuning

foreach
dow

nstream
task

w
ith

extrinsic
rew

ards.T
he

top-perform
ing

scores
are

highlighted.
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