
Self-Improving Embodied Foundation Models

Seyed Kamyar Seyed Ghasemipour ∗

Generalist AI
kamyar@generalistai.com

Ayzaan Wahid & Jonathan Tompson & Pannag Sanketi†& Igor Mordatch†

Google DeepMind
{ayzaan, tompson, psanketi, imordatch}@google.com

Abstract

Foundation models trained on web-scale data have revolutionized robotics, but
their application to low-level control remains largely limited to behavioral cloning.
Drawing inspiration from the success of the reinforcement learning stage in fine-
tuning large language models, we propose a two-stage post-training approach for
robotics. The first stage, Supervised Fine-Tuning (SFT), fine-tunes pretrained
foundation models using both: a) behavioral cloning, and b) steps-to-go prediction
objectives. In the second stage, Self-Improvement, steps-to-go prediction enables
the extraction of a well-shaped reward function and a robust success detector,
enabling a fleet of robots to autonomously practice downstream tasks with minimal
human supervision. Through extensive experiments on real-world and simulated
robot embodiments, our novel post-training recipe unveils significant results on
Embodied Foundation Models. First, we demonstrate that the combination of
SFT and Self-Improvement is significantly more sample-efficient than scaling
imitation data collection for supervised learning, and that it leads to policies with
significantly higher success rates. Further ablations highlight that the combination
of web-scale pretraining and Self-Improvement is the key to this sample-efficiency.
Next, we demonstrate that our proposed combination uniquely unlocks a capability
that current methods cannot achieve: autonomously practicing and acquiring novel
skills that generalize far beyond the behaviors observed in the imitation learning
datasets used during training. These findings highlight the transformative potential
of combining pretrained foundation models with online Self-Improvement to enable
autonomous skill acquisition in robotics.

1 Introduction

Recent works have demonstrated that foundation models can be effectively fine-tuned to directly act
as low-level robot policies [9, 41, 45, 39, 31, 21, 7], and that they inherit significant generalization
and robustness capabilities due to the web-scale pretraining of the foundation models from which
they were derived. Thus far the training regime for Embodied Foundation Models (EFMs) has been
limited to behavioral cloning (i.e. supervised learning) [9, 41, 45, 39, 31, 21, 7]. In contrast, from the
literature on large language models (LLMs) we observe that after the initial pretraining, post-training
for downstream tasks is typically divided into two stages: 1) Supervised Fine-Tuning (SFT), followed
by 2) Reinforcement Learning (RL). RL-tuning of LLMs has been shown to markedly, and rapidly,
improve downstream task performance beyond SFT [47, 40], and has become a critical stage in the
training recipe of foundation models [25, 1, 50, 20].

∗Founding Member of Technical Staff at Generalist AI. Project completed April 2024 at Google DeepMind.
†Equal supervision.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Figure 1: Overview of our proposed two-stage fine-tuning approach. Stage 1 (Supervised Fine-Tuning):
Starting from a pretrained multimodal foundation model, using robot imitation learning datasets with fine-tune
EFMs with a) behavioral cloning, and b) steps-to-go prediction objectives. Stage 2 (Self-Improvement):
Self-predicted rewards and success detection enable a fleet of robots to autonomously practice downstream tasks
with minimal human supervision. Leveraging these self-predicted signals, online reinforcement learning rapidly
improves policies and enables the acquisition of novel out-of-distribution tasks.

Despite the unique algorithmic and engineering challenges of investigating RL-tuning of foundation
models in the context of real-world robotics, the aforementioned sample-efficiency and performance
gains from the LLM literature strongly motivate its investigation. In this work we directly tackle these
challenges and design a two-stage framework inspired by LLM post-training processes: In Stage
1 “Supervised Fine-Tuning" (SFT), given an imitation learning dataset we fine-tune EFMs using
two objectives: a) behavioral cloning, and b) predicting the number of “steps-to-go" to accomplish
desired goals. In Stage 2 “Self-Improvement", we leverage the model’s steps-to-go predictions to
extract a well-shaped reward function as well as a robust success detector. These key components
enable one human operator to monitor multiple robots as they autonomously practice downstream
tasks. Critically, our data-driven reward design eliminates the need for ground-truth rewards, and
leverages the robustness and generalization properties of the underlying foundation models.

Through extensive experiments on two robot embodiments, LanguageTable [34] and Aloha [57, 3],
in the real-world and simulations, we demonstrate the surprising efficacy of our novel post-training
framework. First, we demonstrate that not only does Self-Improvement robustly improve policy
performance beyond behavioral cloning, but the combination of SFT and Self-Improvement is
significantly more sample-efficient than scaling imitation data collection for supervised learning
alone. As an example, on the LanguageTable domain [34], 10% additional robot time in the form
of Self-Improvement increases policy success rates from 45% → 75%. In constrast, increasing
the amount of robot imitation data by 8× leads to a meager 45% → 60% improvement. Further
ablations highlight the key role of foundation model pretraining in enabling this sample-efficiency
and robustness.

Excitingly, our novel combination of online Self-Improvement and web-scale pretraining also unlocks
a unique capability not afforded by prior methods: enabling robots to autonomously practice and
acquire new skills. In contrast to prior works that have demonstrated semantic generalization – such
as executing the same pick-and-place motions in new contexts [9] – we show that this combination
enables behavioral generalization that extends far beyond the imitation data used in Stage 1. Our
work highlights the transformative potential of combining pretrained foundation models with online
Self-Improvement to unlock autonomous skill acquisition in robotics. Our project website can be
found at: self-improving-efms.github.io.

2

self-improving-efms.github.io


2 Methodology

Our focus in this work is to investigate the efficacy of RL post-training for embodied foundation
models in the context of robotics. However, a critical challenge of reinforcement learning for robotics,
and in particular for manipulation tasks, is the problem of reward engineering. Designing effective
reward functions requires repeated trial-and-error iterations of training policies and patching reward
definitions to mitigate unintended outcomes. Furthermore, even with a perfect definition, measuring
rewards in the real-world requires significant engineering effort. Thus, as we move towards a future
where we train robots to accomplish increasingly broad sets of tasks, manual reward design becomes
untenable for real-world robotics.

We overcome this obstacle via learning data-driven reward functions that also inherit robustness
and generalization properties from the web-scale pretraining of the underlying foundation models.
Our proposed post-training framework is composed of two stages: 1) Supervised Fine-Tuning (SFT)
wherein we fine-tune EFMs using behavioral cloning as well as “steps-to-go" prediction objectives,
and 2) Self-Improvement (Online RL) wherein EFMs autonomously practice downstream tasks and
rapidly improve via optimizing self-predicted rewards.

2.1 Stage 1: Supervised Fine-Tuning (SFT)

The first stage of our framework is the Supervised Fine-Tuning (SFT) stage. LetD denote an imitation
learning dataset. We assume that we can sample tuples (ot, at, gt′) ∼ D, where ot and at denote the
observation and action at a timestep t respectively, and gt′ denotes a goal, event, or outcome that
occurs in the future (i.e. t ≤ t′) within the same trajectory as (ot, at). This assumption subsumes
most imitation learning datasets, including hindsight-relabelled as well as single-task datasets3. We
make no assumptions regarding the optimality of the trajectories in the dataset. Given D, we initialize
the EFM using a pre-trained foundation model and perform supervised fine-tuning using the following
objectives:

LBC(EFM) = −E(ot,at,gt′ )∼D

[
log pEFMaction

(
at | ot, gt′

)]
Lsteps-to-go(EFM) = −E(ot,at,gt′ )∼D

[
log pEFMsteps-to-go

(
t′ − t | ot, gt′

)]
LBC denotes a goal conditioned behavioral cloning loss, where we maximize the log-likelihood of a
dataset action conditioned on the observation and the goal. The second objective, Lsteps-to-go teaches
the EFM to predict how many timesteps away the policy is from accomplishing the intended goal,
given the current observations. This objective plays a critical role in enabling the second post-training
stage, Self-Improvement4.

2.2 Stage 2: Self-Improvement

In Stage 2, our goal is to fine-tune the EFM on downstream tasks using online RL in order to rapidly
improve policy performance. As we will see later on in our experiments (Sections 4.3.1 and 4.3.2),
downstream tasks may even be significantly different than those that appeared in the dataset D used
for Stage 1 training.

Reward Function Let,

d(o, g) := EpEFMsteps-to-go(steps-to-go|o,g)

[
steps-to-go

]
(1)

denote the expected value of “steps-to-go" in order to accomplish goal g given observation o, as
predicted by the model. The reward function we use for online RL fine-tuning is defined as follows,

r(ot, at, ot+1, g) := d(ot, g)− d(ot+1, g) (2)

3As an example, we can treat a single-task datasets a a goal-conditioned dataset where all episodes share the
same goal, and that goal is accomplised at the last timestep of every episode.

4In Stage 1 we can include additional auxiliary supervised objectives as well. As an example, in our
experiments with the LanguageTable domain, conditioned on the first and last image of an episode we ask the
model to predict the instruction that was executed in that episode.

3



Algorithm 1: Self-Improvement

Input: Initialize the policy pEFM
action from a Stage 1 checkpoint. Initialize and freeze a separate

Stage 1 checkpoint for reward computation and success detection.
while true do

Initialize empty replay buffer;
while replay buffer smaller than N ×B do

Sample instruction g;
Execute current policy pEFM

action(at|ot, g) and end the episode if one of the following
conditions is met:

• The success detector indicates success: success(ot, g) == 1

• The maximum episode length is reached
• The human operator manually terminates the episode

Compute Monte Carlo returns using Equation 2: Rt ←
∑T

i=t γ
i−t · r(ot, at, ot+1, g);

Place (ot, at, g, Rt) tuples in the replay buffer;
end
Perform N policy updates using REINFORCE loss

[
− c ·Rt · log pEFMaction(at|ot, g)

]
;

end

Intuitively, this reward function predicts how much closer the robot got towards accomplishing goal
g after taking action at. As the reward function is derived from d(o, g), which is a function of the
EFM itself, we refer to our RL fine-tuning process as “Self-Improvement". The choice of using the
expected value in Equation 1 is for simplicity and alignment with the notion of a value function in
RL (Section G). We leave investigations of alternative definitions such as CVaR [4] for risk-aware
policies, or distributional RL [5], to future work.

Success Detection It is important for robot episodes to terminate upon successfully accomplishing
the intended goal. Otherwise, a significant portion of the collected data will include the robot resting
in a successful state. In settings where we do not have a ground-truth success detector, as in real-world
experiments, we use the following success indicator derived from the model,

success(o, g) := 1[d(o, g) ≤ s] (3)

with s being a very small number of timesteps . We found this formulation of success detection to
be very robust even in low data regimes, and significantly more reliable than explicitly including a
success detection binary classification objective in Stage 1.

Self-Improvement With the above reward function and success detector in place, we can perform
online RL fine-tuning of the EFM on desired downstream tasks. We take a frozen Stage 1 checkpoint
for reward function computation and success detection, and initialize the Stage 2 policy from a Stage
1 checkpoint as well 5. Each iteration of our Self-Improvement loop proceeds as follows: Using
the current policy we collect a set of robot trajectories by sampling an instruction g, executing the
robot policy, and terminating the episode when either 1) the success detector indicates success (i.e.
success(o, g) == 1), 2) a pre-specified maximum episode length is reached, or 3) a human operator
manually terminates an episode (for example if the robot station gets into a bad configuration).
Subsequently, for each timestep in the collected trajectories we compute the Monte Carlo returns
Rt ←

∑T
i=t γ

i−t · r(ot, at, ot+1, g) and place elements (ot, at, g, Rt) in a replay buffer . Once
enough data has been collected, we perform N policy updates using the REINFORCE loss,

−c ·Rt · log pEFAaction(at|ot, g) (4)

sampling minibatches from the replay buffer without replacement6. After N updates, the remaining
items in the replay buffer are cleared out and the next iteration begins. Algorithm 1 above presents
psuedocode of our proposed Stage 2 Self-Improvement procedure. Although sample-efficiency is

5Note that these checkpoints are not necessarily identical. For a discussion on checkpoint selection we refer
the interested reader to Appendix B.

6We use γ = 0.9, c = 5e-2. Please refer to Appendix C for further discussion.

4



Figure 2: An example trajectory from the Aloha Single Insertion Task and a plot representing E[steps-to-go]
under the model’s prediction (i.e. d(o, g)). Key moments: 1) Model believes the episode is about to complete
successfully, 2) Policy accidentally drops the peg and d(o, g) increases, 3) Policy regrasps the peg from a bad
angle not suitable for insertion so d(o, g) remains high, 4) Policy drops the peg, providing an opportunity to
regrasp correctly which reduces d(o, g), 5) Policy is pushing the peg inside and d(o, g) marks that the policy is
about to succeed, 6) The right hand knocks the socket out of the left hand’s grip which increases d(o, g).

a key consideration of our work, we chose to perform on-policy RL without data reuse. On-policy
methods enjoy better training stability, and using REINFORCE specifically obviates the need for
training value functions. These choices eliminate two vertices of the deadly triad [51], Off-Policy
Learning and Bootstrapping. In Section G we discuss how our choice of reward function leads to a
well-shaped objective that reduces the need for baselines in the REINFORCE estimator. We leave the
investigation of alternative RL algorithms, including off-policy methods, to future work.

3 Intuition on Reward Function

Visual Intuition We can begin to build our intuition regarding the efficacy of steps-to-go prediction
by visualizing model predictions on domains of interest. Figures 2 and 8 present visualizations on the
Aloha Single Insertion task. In this task, the left arm must first pick up a blue socket, after which the
right arm must pick up the red peg and fully insert it into the socket. The captions in these figures
walk the reader through the level of intricate details that be can learned during Stage 1 training from
the steps-to-go objective. We also encourage readers to visit our supplementary materials website to
view additional visualizations such as videos, including on the LanguageTable domain.

Due to space limitations, we continue our discussion in Appendix G. First we discuss the mathe-
matical intuition behind why our algorithmic choices above lead to a well-shaped reward function.
Subsequently, we discuss the python notebook in our supplementary material, and demonstrate the
efficacy of Self-Improvement on a pedagogical 2D pointmass domain.

4 Experiments

In our experiments we seek to validate our proposed Self-Improvement framework and answer the
following questions:

• Q1: Does Self-Improvement improve performance on downstream tasks beyond the super-
vised learning stage?

• Q2: Is the combination of supervised learning and Self-Improvement more sample-efficient
than supervised learning alone?

• Q3: Is Self-Improvement, which depends on RL, reliable and reproducible enough to be
employed in real-world robotics?

• Q4: What is the contribution of pretraining to our Self-Improvement procedure?
• Q5: Does web-scale foundation model pretraining enable Self-Improvement on tasks that

generalize beyond what was seen in the imitation dataset?

We study these questions using the LanguageTable [34] and Aloha [57, 3] robot embodiments, with
experiments in both simulation and the real-world. Throughout this work we use the PaLI 3 billion
parameter vision-language model [13, 14] as our base pretrained foundation model. The inputs to
our PaLI EFM are images alongside a text sequence representing relevant information such as the
instruction, auxiliary information (e.g. joint positions), and whether to predict actions or steps-to-go.

5



Figure 3: Stage 2 Self-Improvement Results. Orange: Stage 1 behavioral cloning policies (equivalent to RT-2
baseline [9]). Blue: Policies after Stage 2 online Self-Improvement with a minimal amount of additional episodes.
Results in simulated and real LanguageTable, as well as the Aloha domain, demonstrate that our proposed two-
stage post-training approach achieves higher success rates significantly more sample-efficiently than supervised
learning alone. Our Real2Sim LanguageTable, and in particular BananaTable results, demonstrate that our novel
combination of online Self-Improvement and web-scale pre-training enables policies to rapidly acquire novel
skills far outside the Stage 1 imitation learning dataset. Variations across random seeds are small, highlighting
the robustness of our approach. Values above are averaged across 3 seeds (unaggregated results in Figures 10 &
11). While Stage 1 LanguageTable datasets contain varied tasks, for fairness the x-axes in the LanguageTable
plots above count the number of Block2Block episodes (as a percentage of the total number of Block2Block
episodes in the full imitation learning dataset).

The output is a sequence of tokens. To employ PaLI models as policies, we follow the RT-2 [9] policy
parameterization and predict tokenized actions. Thus, our Stage 1 behavioral cloning policies are
exactly equivalent RT-2 policies which will serve as key baselines. For full details and visualizations
regarding models, environments, tokenization, and training we refer readers to Appendix A.

4.1 Self-Improvement is Effective, Robust, and More Efficient Than SFT Alone

4.1.1 Simulated LanguageTable

The dataset we use to train Stage 1 policies for the simulated LanguageTable domain is the one
provided by the original work [34]. This dataset consists of 181,020 human-generated trajectories,
with 78,623 unique instructions describing the goals of the trajectories. We subsample this dataset
to create 3 new datasets 10%, 20%, and 80% of the original size. For each dataset size, following
Stage 1 training we perform Stage 2 fine-tuning with 3 seeds to validate the reliability of our
Self-Improvement procedure. We perform Stage 2 fine-tuning on the Block2Block subset of tasks
(e.g. "move the blue moon to the red pentagon")7. We stop Stage 2 training when policy
success rates appear to plateau.

Results Figure 3 (first plot) presents our results on the simulated LanguageTable domain, where
orange markers represent BC policy performance after Stage 1 (equivalent to RT-2), and blue markers
represent policy performance after Stage 2 Self-Improvement. As can be observed, across all dataset
sizes (10%, 20%, 80%), our proposed Self-Improvement procedure leads to very significant increase
in success rates (minimum 1.5x performance boost), with incredible sample-efficiency in terms
of number of episodes (less than 2% extra episodes collected in the Self-Improvement stage). Of
particular note, Self-Improvement with 1% additional episodes on top of the 10% dataset size leads to
policies that significantly outperform BC policies trained on 20% and 80% dataset sizes. In Appendix
K we also show that Self-Improvement is robust and reproducible across random seeds.

4.1.2 Real-World LanguageTable

The significant sample-efficiency and robustness of our results above suggest that our Self-
Improvement procedure may indeed be applicable for real-world robotics. We apply our proposed
approach to the real-world LanguageTable domain, in two settings of using 20% and 80% of the
imitation learning dataset [34]8. As in the simulated setting, we perform Stage 2 fine-tuning on the

7Our analysis in Appendix L shows that Block2Block instructions make up ∼47% and ∼49% of the
instructions in the simulated and real LanguageTable datasets respectively.

8We run the 80% data experiment once using 3 robot stations, and run the 20% data experiment twice, once
with 3 and once with 4 robot stations.

6



Block2Block subset of tasks. Given that instruction sampling, reward labeling, and success detection
are entirely automated processes, during Self-Improvement a single human operator is able to
monitor our full fleet of LanguageTable robot stations. The sole responsibility of the human operator
is to reset a station if a block falls off the table, or if a station has not been shuffled for 5 minutes.
Each experiments is run for approximately 20 hours. For details on the real-world LanguageTable
experimentation protocol we refer the interested reader to Appendix F.

Results Figure 3 (second plot) presents our results. For both the 20% and 80% data
settings, our Stage 2 Self-Improvement procedure improves policy success rate from ∼62-
63% up to ∼87%-88%, with only ∼3% additional Block2Block episodes collected. To
put this into perspective, this means that with a total amount of experience equivalent to
20% (imitation dataset size) + 3% (Self-Improvement episodes), we obtain policies that far exceed
BC (RT-2) policies trained with 80% imitation dataset size! Furthermore, as opposed to the 1-to-1
human-to-robot ratio needed for teleop imitation data collection, Self-Improvement requires only
a fraction of the human effort due to the 1-to-many human-to-robot ratio enabled by our proposed
approach.

4.1.3 Simulated Aloha Single Insertion Task

We also validate our proposed fine-tuning framework on a second robot embodiment, the bimanual
Aloha manipulation platform [57, 3]. We design and collect data for a bimanual insertion task, where
the left gripper must pick up a socket, and the right gripper must pick up a peg and insert it into the
socket. Figure 7 presents a visualization of this task, with videos available on our supplementary
materials website. Due to the much more complex observations, 70-dim action space, and much
smaller imitation datasets, this presents a challenging setting for further validation of our proposed
approach. For details on the environment and data collection process, we refer readers to Appendix
D.3. We create 3 imitation dataset sizes of 5K, 10K, and 15K episodes. We apply our two-stage
fine-tuning on 5K and 10K dataset sizes, and report results for supervised learning on the 15K dataset
as well to better situate the numbers. The differences in methodology compared to experiments in the
LanguageTable domain are the following: 1) Checkpoint selection for Stage 2 policy initialization
(Appendix B), 2) We noticed that the success condition (the peg fully reaching the end of the socket)
is not observable from the cameras, so we add a small positive constant to the reward function when
the success condition is met.

Results Figure 3 (middle) presents our results. As can be seen, for both dataset sizes Self-
Improvement significantly improves policy success rates. As before, we also notice significant
sample-efficiency gains where policies trained with 5K (imitation) + 2.5K (Self-Improvement)
episodes outperform policies trained with 10K imitation episodes (i.e. RT-2), and rival the success
rate of those trained with 15K imitation episodes.

A1 Self-Improvement significantly improves policy performance beyond the supervised
learning stage.
A2 The combination of supervised learning + Self-Improvement is much more sample-
efficient than supervised learning alone.
A3 Self-Improvement is robust and effective for real-world robot learning.

4.2 Importance of Foundation Model Pretraining

It is critical to study to what extent the success of our proposed Self-Improvement procedure is
afforded by the web-scale pretraining of the PaLI [13, 14] vision-language foundation model we start
from. To ablate the effect of the multimodal knowledge embedded into PaLI, we run our proposed
two-stage fine-tuning process starting from alternative variations of the PaLI model:

• Scratch: where we use the PaLI architecture but with randomly initialized parameters.
• Uni-PaLI: where the PaLI parameters are initialized from a vision model and language model,

each pretrained separately, unimodally, without any joint multimodal vision-language fine-tuning.
For details please refer to Section A.1.

We compare these variations using an identical setup as Section 4.1.1 on the Simulated LanguageTable
domain. Despite our best efforts and very long training runs, we observed that Stage 1 BC policies

7



Figure 4: Left Ablation results demonstrate the critical role of the web-scale pretraining of foundation models
for enabling effective Stage 2 training, in particular in the small dataset size regime. Right “Success Rate" plots
during Stage 2 Self-Improvement on the LanguageTable Real2Sim domain transfer task. Reward labels from the
PaLI model lead to significantly faster Self-Improvement in comparison to the Uni-PaLI model.

derived from the Scratch and Uni-PaLI variations very significantly underperformed PaLI BC policies.
Hence, we focus our ablations on the Self-Improvement stage, where we initialize policies from PaLI
Stage 1 checkpoints, and use Scratch or Uni-PaLI checkpoints for reward computation.

Results Figure 4 (left) presents our results. There is a clear ordering in performance: PaLI reward
models are best, followed by Uni-PaLI, and then Scratch. Scratch reward models lead to high variance
results across random seeds, and struggle to provide any meaningful improvements in low-data (10%
& 20%) regimes. While better than Scratch, Uni-PaLI reward models perform significantly worse
than PaLI reward models across the board, with the gaps more pronounced at lower data settings. In
fact, Self-Improvement with the PaLI reward model in the 20% dataset size regime leads to better
policies than Self-Improvement with the Uni-PaLI reward model in the 80% regime! These results
clearly demonstrate the immense value of multimodal pretraining for Self-Improvement.

A4: Multimodal pretraining leads to significantly better Self-Improved policies, and is a
key enabler of sample-efficiency.

4.3 Generalization

The novel combination of our proposed online Self-Improvement process and the use of pretrained
multimodal foundation models unlocks a unique capability: enabling policies to practice novel tasks
that generalize beyond what was covered by the Stage 1 imitation learning datasets. In this section
we present results for two increasingly difficult forms of generalization.

4.3.1 Domain Transfer Between Simulation and Real

Starting with a simpler form of generalization, in this section we investigate domain transfer between
simulation and real. Sim2Real is an important class of approaches that can significantly reduce the
amount of real-world experience needed to train performant robot policies, and has been successfully
applied in many settings [43, 48, 2, 44, 30]. To make experimentation simpler, in this section we
investigate the inverse problem, Real2Sim transfer, on the LanguageTable domain. We train Stage 1
models using 80% of the real-world LanguageTable dataset, and perform Stage 2 Self-Improvement
in the simulated LanguageTable environment. Similar to our ablation in Section 4.2, we also train
Stage 2 models using the Uni-PaLI reward model variant to highlight the role of foundation model
pretraining in enabling domain transfer.

Results Figure 4 (right) presents our results. With only 3% extra episodes in the target domain
(simulated LanguageTable), our Self-Improvement procedure improves policy performance from
∼22% to ∼59%. This performance is equivalent to BC policies trained with 80% of target domain’s
imitation dataset. Additionally, Figure 4 (right) demonstrates that the Uni-PaLI reward model leads
to a significantly slower Self-Improvement procedure, highlighting the key advantage of pretraining.
Given our strong real-world LanguageTable results in section 4.1.2, we expect our Real2Sim results
to be strongly indicative of Sim2Real transfer as well.

8



Figure 5: Strong Generalization to BananaTable. Top Before Stage 2 fine-tuning on the BananaTable
domain, the policy struggles to effectively maneuver a banana across the table due to the difficult geometry.
Bottom Left After Stage 2 fine-tuning policies are visibly more proficient at the BananaTable task (videos on
our supplementary website). Bottom Right Prior to Stage 2 BananaTable fine-tuning, the policy and reward
models have never seen the BananaTable task, creating a very challenging generalization problem.

4.3.2 Strong Generalization to Learning Novel Skills

Moving towards a stronger form of generalization, we investigate whether Self-Improvement with
pretrained foundation models enables policies to practice and acquire novel behavioral skills beyond
those observed in the imitation learning datasets used in Stage 1. Starting from a policy and reward
model trained with the real-world LanguageTable dataset9, we perform Self-Improvement on a new
task we dub “BananaTable" (Figure 5). In this task we replace the LanguageTable blocks with a
single prosthetic banana and request policies to push the banana to various locations on the board
(e.g. “move the banana to the left center of the board"). The LanguageTable dataset contains no
bananas, nor any episodes where the blocks are not on the table. Thus we are solely relying on
the generalization abilities of the underlying PaLI foundation model from which the policy, reward
function, and success detector are derived.

In contrast to prior works that have demonstrated semantic generalization abilities of robot foundation
models (e.g. executing the same pick and place motions in novel contexts in RT-2 [9]), transfer to the
BananaTable task requires behavioral generalization, necessitating policies to learn new skills. As an
example, due to its elongated geometry, inaccurate pushing of the banana results in it rotating around
itself instead of moving in the intended direction (Figure 5, top).

Results Within ∼8 hours of Self-Improvement using 2 robot stations, the policy success rate
improves from∼63% to∼85%. Beyond the quantitative results, videos on our supplementary website
(as well as Figure 5) demonstrate that the policy becomes visibly more proficient at accomplishing
the BananaTable tasks, as it picks up on effective strategies for moving the banana around the table.
After Self-Improvement, the policy learns to push from either the middle or the tips rather than the
rest of the banana to prevent it from rotating around itself.

A5: The novel combination of our proposed online Self-Improvement procedure and
web-scale pretrained foundation models enables policies to rapidly acquire new skills that
generalize far beyond the tasks covered by the imitation learning datasets they are provided.

5 Related Works
Due to space limitations, here we include a more concise overview of related works. For a more
detailed discussion, please refer to Appendix I.

Embodied Foundation Models A number of prior works have leveraged pretrained multimodal
foundation models as robot policies, by incorporating action prediction heads. Brohan et al. [9]
discretize continuous robot actions and map them onto language model token spaces. Other exam-
ples architectures include diffusion models [39, 54] (building on diffusion policies [15, 28]), flow
matching [7, 29] (building on [33]), and regression [31]. Critically, these prior works only leverage
supervised learning, and the delineation between pretraining and post-training is the task and data

9We initialize the BananaTable Self-Improvement procedure using the reward model and Self-Improved
policy from the 80%-data experiment in Section 4.1.2.

9



mixture used. To the best of our knowledge, our work is the first to move past supervised learning for
training robot foundation models. The key contribution of our work is to present a general-purpose,
reward-engineering-free, online Self-Improvement procedure that not only leads to rapid policy
improvement, but enables acquisition of novel behaviors outside of what the models have seen in their
training data. This form of behavioral generalization is only achievable through online post-training.

Improving Robot Policies Without Ground-Truth Rewards A key obstacle of general-purpose
Self-Improvement through RL is that commonly we do not have access to ground-truth reward
functions and success metrics, either due to the challenge of designing one (reward engineering),
or difficulty in measuring them in the real world (reward instrumentation). A line of prior work,
dubbed "Code-As-Rewards", leverages LLMs to write code for reward engineering [36, 56, 53].
Such approaches have a number of downsides that make them impractical for general-purpose robot
learning in the real world (Appendix I). Aside from Code-As-Rewards, there exists a rich literature
on data-driven reward functions. An important class of works [6, 35, 46, 12] learn latent observation
representations on top of which reward and value functions can be defined (e.g. via L2 distance in la-
tent space to target goals). Other approaches include creative relabeling techniques [32, 11, 8] and RL
objectives [22, 11]. In comparison, the key advantage of our proposed approach is the straightforward
integration with web-scale pretrained foundation models. The closest related works to ours are those
based on learning distances in timesteps [26, 27]. Aside from key differences in settings, our focus
in this work is on post-training Embodied Foundation Models and generalization, demonstrating
that steps-to-go policy improvement is a viable path towards general-purpose Self-Improving robot
policies. Additionally, we present steps-to-go thresholding as a novel path towards obtaining robust
open-ended success detectors, which have typically been trained via binary classification [19]. Lastly,
Yang et al. [55] extend our approach to real-world simulators built on generative video foundation
models, and Ma et al. [37] present an extension to an in-context learning formulation.

6 Future Work and Limitations
Due to space limitations, here we include a more concise overview of future work and limitations.
For a more detailed discussion, please refer to Appendix J. Our work has clearly demonstrated
the immense potential of the novel combination of pretrained multimodal foundation models with
online Self-Improvement. This combination not only enables very efficient policy improvement on
real-world robots, but also unlocks strong generalization capabilities and autonomous acquisition
of new skills. There still exist, however, many important avenues for future work. Algorithmic: In
this work we leveraged on-policy REINFORCE for simplicity which does not reuse any collected
data during Self-Improvement. Off-policy methods have the potential to even more substantially
boost sample-efficiency. Skill-Chaining: How can Self-Improvement and our proposed success
detector be extended to enable skill-chaining and solving long-horizon tasks? Robustness: Since
imitation datasets typically contain expert behavior, they do not contain many forms of failure cases
and recovery behaviors. How can our post-training approach be extended to ensure the reliability of
reward models and success detectors on out-of-distribution failure cases? We hope that the strong
results presented in this work motivate investigation of these fruitful research avenues.

7 Conclusion
Drawing inspiration from the success of the reinforcement learning stage in fine-tuning large language
models, in this work we proposed a two-stage post-training approach for Embodied Foundation
Models. The first stage, Supervised Fine-Tuning (SFT), fine-tunes pretrained multimodal foundation
models using two objectives: a) behavioral cloning, and b) steps-to-go prediction. The second stage,
online Self-Improvement, leverages steps-to-go prediction for RL post-training. With no task-specific
reward engineering and minimal human supervision, this stage enables a fleet of robots to autonmously
practice downstream tasks and aquire new skills. Through extensive experiments in the real-world
and simulated domains we have demonstrated that Self-Improvement significantly improves policy
performance beyond the supervised learning stage, and that the combination of supervised learning
and Self-Improvement is much more sample-efficient than supervised learning alone. We then
showed that combining web-scale pretraining with Self-Improvement leads to significantly better
Self-Improved policies, and is a key enabler of sample-efficiency. Finally, we demonstrated that this
novel combination uniquely unlocks a capability not possible by current methods: autonomously
aquiring new skills that generalize far beyond the tasks covered in the imitation learning datasets.
These findings highlight the transformative potential of combining pretrained foundation models with
online Self-Improvement to enable autonomous skill acquisition in robotics.

10



References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, et al. Solving rubik’s cube
with a robot hand. arXiv preprint arXiv:1910.07113, 2019.

[3] Jorge Aldaco, Travis Armstrong, Robert Baruch, Jeff Bingham, Sanky Chan, Kenneth Draper,
Debidatta Dwibedi, Chelsea Finn, Pete Florence, Spencer Goodrich, et al. Aloha 2: An enhanced
low-cost hardware for bimanual teleoperation. arXiv preprint arXiv:2405.02292, 2024.

[4] Gordon J Alexander and Alexandre M Baptista. A comparison of var and cvar constraints on
portfolio selection with the mean-variance model. Management science, 50(9):1261–1273,
2004.

[5] Marc G. Bellemare, Will Dabney, and Mark Rowland. Distributional Reinforcement Learning.
MIT Press, 2023. http://www.distributional-rl.org.

[6] Chethan Bhateja, Derek Guo, Dibya Ghosh, Anikait Singh, Manan Tomar, Quan Vuong, Yevgen
Chebotar, Sergey Levine, and Aviral Kumar. Robotic offline rl from internet videos via value-
function pre-training. arXiv preprint arXiv:2309.13041, 2023.

[7] Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

[8] Konstantinos Bousmalis, Giulia Vezzani, Dushyant Rao, Coline Devin, Alex X Lee, Maria
Bauza, Todor Davchev, Yuxiang Zhou, Agrim Gupta, Akhil Raju, et al. Robocat: A self-
improving foundation agent for robotic manipulation. arXiv preprint arXiv:2306.11706, 2023.

[9] Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-
action models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818,
2023.

[10] Albin Cassirer, Gabriel Barth-Maron, Eugene Brevdo, Sabela Ramos, Toby Boyd, Thibault
Sottiaux, and Manuel Kroiss. Reverb: A framework for experience replay, 2021.

[11] Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jake Varley, Alex
Irpan, Benjamin Eysenbach, Ryan Julian, Chelsea Finn, et al. Actionable models: Unsupervised
offline reinforcement learning of robotic skills. arXiv preprint arXiv:2104.07749, 2021.

[12] Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions
from" in-the-wild" human videos. arXiv preprint arXiv:2103.16817, 2021.

[13] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz,
Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-scaled
multilingual language-image model. arXiv preprint arXiv:2209.06794, 2022.

[14] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa, Soravit Changpinyo, Jialin Wu,
Carlos Riquelme Ruiz, Sebastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scaling up a
multilingual vision and language model. arXiv preprint arXiv:2305.18565, 2023.

[15] Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and
Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

[16] Cheng Chi, Zhenjia Xu, Chuer Pan, Eric Cousineau, Benjamin Burchfiel, Siyuan Feng, Russ
Tedrake, and Shuran Song. Universal manipulation interface: In-the-wild robot teaching without
in-the-wild robots. arXiv preprint arXiv:2402.10329, 2024.

11

http://www.distributional-rl.org


[17] Open X-Embodiment Collaboration, Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Ab-
hishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar,
Ajinkya Jain, Albert Tung, Alex Bewley, Alex Herzog, Alex Irpan, Alexander Khazatsky, Anant
Rai, Anchit Gupta, Andrew Wang, Andrey Kolobov, Anikait Singh, Animesh Garg, Aniruddha
Kembhavi, Annie Xie, Anthony Brohan, Antonin Raffin, Archit Sharma, Arefeh Yavary, Arhan
Jain, Ashwin Balakrishna, Ayzaan Wahid, Ben Burgess-Limerick, Beomjoon Kim, Bernhard
Schölkopf, Blake Wulfe, Brian Ichter, Cewu Lu, Charles Xu, Charlotte Le, Chelsea Finn, Chen
Wang, Chenfeng Xu, Cheng Chi, Chenguang Huang, Christine Chan, Christopher Agia, Chuer
Pan, Chuyuan Fu, Coline Devin, Danfei Xu, Daniel Morton, Danny Driess, Daphne Chen,
Deepak Pathak, Dhruv Shah, Dieter Büchler, Dinesh Jayaraman, Dmitry Kalashnikov, Dorsa
Sadigh, Edward Johns, Ethan Foster, Fangchen Liu, Federico Ceola, Fei Xia, Feiyu Zhao, Fe-
lipe Vieira Frujeri, Freek Stulp, Gaoyue Zhou, Gaurav S. Sukhatme, Gautam Salhotra, Ge Yan,
Gilbert Feng, Giulio Schiavi, Glen Berseth, Gregory Kahn, Guangwen Yang, Guanzhi Wang,
Hao Su, Hao-Shu Fang, Haochen Shi, Henghui Bao, Heni Ben Amor, Henrik I Christensen,
Hiroki Furuta, Homer Walke, Hongjie Fang, Huy Ha, Igor Mordatch, Ilija Radosavovic, Isabel
Leal, Jacky Liang, Jad Abou-Chakra, Jaehyung Kim, Jaimyn Drake, Jan Peters, Jan Schneider,
Jasmine Hsu, Jeannette Bohg, Jeffrey Bingham, Jeffrey Wu, Jensen Gao, Jiaheng Hu, Jiajun Wu,
Jialin Wu, Jiankai Sun, Jianlan Luo, Jiayuan Gu, Jie Tan, Jihoon Oh, Jimmy Wu, Jingpei Lu,
Jingyun Yang, Jitendra Malik, João Silvério, Joey Hejna, Jonathan Booher, Jonathan Tompson,
Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan Wang, Kanishka Rao, Karl
Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken Goldberg, Kendra Byrne,
Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin Zhang, Kiana Ehsani,
Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan Fang, Kunal Pratap
Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yunliang Chen, Lerrel
Pinto, Li Fei-Fei, Liam Tan, Linxi "Jim" Fan, Lionel Ott, Lisa Lee, Luca Weihs, Magnum Chen,
Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina, Mateo Guaman Castro,
Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong Zhang, Mingyu Ding,
Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki Kanazawa, Nicklas
Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Norman Di Palo, Nur
Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani, Pannag R Sanketi,
Patrick "Tree" Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David Fagan, Peter Mitrano,
Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan Vuong, Rafael Rafailov,
Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario Scalise, Rose Hendrix,
Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah, Ryan Hoque, Ryan
Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry Moore, Shikhar
Bahl, Shivin Dass, Shubham Sonawani, Shuran Song, Sichun Xu, Siddhant Haldar, Siddharth
Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany, Stefan Schaal, Stefan Welker,
Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel Belkhale, Sungjae Park,
Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya Harada, Tatsuya Mat-
sushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev, Tony Z. Zhao,
Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vincent Vanhoucke, Wei Zhan,
Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong Wang, Xinghao Zhu,
Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao Lu, Yecheng Ja-
son Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying Xu, Yixuan
Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen Cui, Yue Cao,
Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang Li, Yunzhu
Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen Zhang,
Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X models.
https://arxiv.org/abs/2310.08864, 2023.

[18] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied
multimodal language model. arXiv preprint arXiv:2303.03378, 2023.

[19] Yuqing Du, Ksenia Konyushkova, Misha Denil, Akhil Raju, Jessica Landon, Felix Hill, Nando
de Freitas, and Serkan Cabi. Vision-language models as success detectors. arXiv preprint
arXiv:2303.07280, 2023.

[20] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd

12

https://arxiv.org/abs/2310.08864


of models. arXiv preprint arXiv:2407.21783, 2024.

[21] Zane Durante, Bidipta Sarkar, Ran Gong, Rohan Taori, Yusuke Noda, Paul Tang, Ehsan Adeli,
Shrinidhi Kowshika Lakshmikanth, Kevin Schulman, Arnold Milstein, et al. An interactive
agent foundation model. arXiv preprint arXiv:2402.05929, 2024.

[22] Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive
learning as goal-conditioned reinforcement learning. Advances in Neural Information Process-
ing Systems, 35:35603–35620, 2022.

[23] Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao,
Alex Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing:
Training value functions via classification for scalable deep rl. arXiv preprint arXiv:2403.03950,
2024.

[24] Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap
between td learning and supervised learning–a generalisation point of view. arXiv preprint
arXiv:2401.11237, 2024.

[25] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[26] Kristian Hartikainen, Xinyang Geng, Tuomas Haarnoja, and Sergey Levine. Dynamical distance
learning for semi-supervised and unsupervised skill discovery. arXiv preprint arXiv:1907.08225,
2019.

[27] Joey Hejna, Jensen Gao, and Dorsa Sadigh. Distance weighted supervised learning for offline
interaction data. In International Conference on Machine Learning, pp. 12882–12906. PMLR,
2023.

[28] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[29] Physical Intelligence, Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny
Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0.5: a vision-
language-action model with open-world generalization. arXiv preprint arXiv:2504.16054,
2025.

[30] Satoshi Kataoka, Youngseog Chung, Seyed Kamyar Seyed Ghasemipour, Pannag Sanketi,
Shixiang Shane Gu, and Igor Mordatch. Bi-manual block assembly via sim-to-real reinforcement
learning. arXiv preprint arXiv:2303.14870, 2023.

[31] Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

[32] Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn,
and Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful
of trials. arXiv preprint arXiv:2210.05178, 2022.

[33] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

[34] Corey Lynch, Ayzaan Wahid, Jonathan Tompson, Tianli Ding, James Betker, Robert Baruch,
Travis Armstrong, and Pete Florence. Interactive language: Talking to robots in real time. IEEE
Robotics and Automation Letters, 2023.

[35] Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and
Amy Zhang. Vip: Towards universal visual reward and representation via value-implicit
pre-training. arXiv preprint arXiv:2210.00030, 2022.

[36] Yecheng Jason Ma, William Liang, Guanzhi Wang, De-An Huang, Osbert Bastani, Dinesh
Jayaraman, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Eureka: Human-level reward design
via coding large language models. arXiv preprint arXiv:2310.12931, 2023.

13



[37] Yecheng Jason Ma, Joey Hejna, Chuyuan Fu, Dhruv Shah, Jacky Liang, Zhuo Xu, Sean Kirmani,
Peng Xu, Danny Driess, Ted Xiao, et al. Vision language models are in-context value learners.
In The Thirteenth International Conference on Learning Representations, 2024.

[38] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transforma-
tions: Theory and application to reward shaping. In Icml, volume 99, pp. 278–287, 1999.

[39] Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yun-
liang Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey
Levine. Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and
Systems, Delft, Netherlands, 2024.

[40] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730–27744, 2022.

[41] Abhishek Padalkar, Acorn Pooley, Ajinkya Jain, Alex Bewley, Alex Herzog, Alex Irpan,
Alexander Khazatsky, Anant Rai, Anikait Singh, Anthony Brohan, et al. Open x-embodiment:
Robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

[42] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander Ku,
and Dustin Tran. Image transformer. In International conference on machine learning, pp.
4055–4064. PMLR, 2018.

[43] Lerrel Pinto, Marcin Andrychowicz, Peter Welinder, Wojciech Zaremba, and Pieter Abbeel.
Asymmetric actor critic for image-based robot learning. arXiv preprint arXiv:1710.06542,
2017.

[44] Kanishka Rao, Chris Harris, Alex Irpan, Sergey Levine, Julian Ibarz, and Mohi Khansari. Rl-
cyclegan: Reinforcement learning aware simulation-to-real. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11157–11166, 2020.

[45] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

[46] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 1134–1141. IEEE,
2018.

[47] Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback.
Advances in Neural Information Processing Systems, 33:3008–3021, 2020.

[48] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner, Steven Bohez,
and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for quadruped robots. arXiv
preprint arXiv:1804.10332, 2018.

[49] Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, et al. Gemini robotics: Bringing ai into the physical world. arXiv preprint
arXiv:2503.20020, 2025.

[50] Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

[51] Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

14



[52] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[53] David Venuto, Sami Nur Islam, Martin Klissarov, Doina Precup, Sherry Yang, and Ankit
Anand. Code as reward: Empowering reinforcement learning with vlms. arXiv preprint
arXiv:2402.04764, 2024.

[54] Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ning Liu, Ran Cheng,
Chaomin Shen, Yaxin Peng, et al. Tinyvla: Towards fast, data-efficient vision-language-action
models for robotic manipulation. arXiv preprint arXiv:2409.12514, 2024.

[55] Mengjiao Yang, Yilun Du, Kamyar Ghasemipour, Jonathan Tompson, Dale Schuurmans, and
Pieter Abbeel. Learning interactive real-world simulators. arXiv preprint arXiv:2310.06114,
2023.

[56] Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kirmani, Kuang-Huei Lee, Montse Gonzalez
Arenas, Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasenclever, Jan Humplik, et al. Language
to rewards for robotic skill synthesis. arXiv preprint arXiv:2306.08647, 2023.

[57] Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[58] Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea
Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. arXiv preprint
arXiv:2410.13126, 2024.

15



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide extensive experiments for each claim made, and answer all of the
key questions laid out in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

16



Justification: Please refer to Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: Our work does not provide any major theoretical results. Our discussion on
Mathematical Intuition discusses simple algebraic manipulations.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We present our method in full detail, with further experimental details in
the Appendix. We also include a Colab notebook as a pedagogical implementation of our
algorithm.

17



Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We are unable to opensource our code. However, we include a Colab notebook
as a pedagogical implementation of our algorithm. The datasets we use for imitation learning
are existing opensourced datasets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide extensive details in the main text as well as Appendix sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments in the simulated domains were run with a minimum of 3
random seeds. Aside from Figure 3, all plots (including the ones in the Appendix) contain
either raw data or error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a discussion in Appendix A.4.

Guidelines:

19



• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and conform to the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a discussion in Appendix O.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

20

https://neurips.cc/public/EthicsGuidelines


Justification: We do not release any models or datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide citations for data, model, and simulation sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: In our supplementary materials we include a Colab notebook with a pedagogi-
cal implementation of our proposed method. We discuss the setup in our manuscript.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

21

paperswithcode.com/datasets


Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have crowdsourcing or experiments with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not have experiments requiring such approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Pretrained multimodal foundation models are a key component of our work
and we provide detailed discussions in our manuscript.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM


A Implementation Details

A.1 Background

PaLI Vision-Language Foundation Model Our investigations in this work are independent of the
choice of underlying foundation model used. Throughout this work we use the 3 billion parameter
PaLI-3B [13, 14] vision-language model as the base pretrained foundation model that we fine-tune
for robotics tasks. A PaLI model receives as input one or more images alongside text, and provides
text as output. At a high level, the PaLI architecture is comprised of two components: 1) a Vision
Transformer (ViT) [42], and 2) an encoder-decoder Transformer [52]. Input images are processed by
the ViT into a sequence of “visual tokens". The sequence of visual tokens is concatenated with the
tokenized text input and fed into the Transformer which outputs text tokens. The weights of the PaLI
model are initialized from a Transformer language model and ViT vision model that are pretrained
separately in a unimodal fashion. Following this initialization, the model is fine-tuned with a variety
of vision-language training objectives to obtain a multimodal foundation model. For further details
regarding the PaLI model, we refer the interested reader to [13, 14].

RT-2 Brohan et al. [9] introduce a model family, dubbed RT-2, that enables vision-language
foundation models (VLMs) to directly produce low-level robot actions for closed-loop control. The
two VLMs considered in that work are PaLI [13, 14] and PaLM-E [18], both of which take images
alongside text as input, and provide output in the form of text tokens. To enable these VLMs to act as
robot policies, continuous robot actions are discretized and mapped onto the text token space of the
VLMs. Given image and text inputs, the VLMs are fine-tuned via behavioral cloning (i.e. supervised
learning) to predict the tokenized robot actions. While the methods we present in this work are
independent of the choice of underlying model, throughout this work our robot policy architectures
are equivalent to RT-2 using the PaLI VLM.

As we use the RT-2 policy representation, we also decided to model steps-to-go predictions by
discretizing the range of possible number of steps, and mapping them onto the PaLI VLM token
space.

A.2 Environments, Tasks, and Tokenization

For details about the environments and tasks used in this work, please refer to Appendix D.

For details about tokenization, please refer to Appendix E.

A.3 Training Details

Stage 1 (Supervised Fine-Tuning) During the supervised training stage we uniformly distribute
each training batch amongst the objectives used in Stage 1. For all domains considered in this work
this includes the a) behavioral cloning, and b) steps-to-go prediction objectives. In the real-world
and simulated LanguageTable domain experiments, we have an additional objective c) predicting
the episode instruction given the first and last frame of an episode. We did not ablate the value
of incorporating this objective during training. We used batch size 128 during this stage, used the
AdamW optimizer, and trained the entire PaLI model (i.e. kept no component frozen).

Stage 2 (Self-Improvement) During this stage we used batch size 64 to require less real-world
rollouts for a given number of desired training steps. We kept the ViT portion of the model frozen,
intuitively believing that the model has already learned visual features for the task, and that freezing
the ViT may potentially help with model stability. We did not ablate this decision. We used the same
AdamW optimizer as in Stage 1. The algorithm box in Section 2.2 presents the psuedocode for our
proposed Stage 2 Self-Improvement procedure. In each RL loop, we collect enough robot trajectories
to perform 16 model update steps (N = 16). Intuitively, decreasing N reduces off-policiness of the
RL updates, while increasing N improves the diversity of data in the replay buffer due to the larger
number of trajectories being collected before performing N RL updates.

A.4 Compute Resources

Stage 1 (SFT) training was done using one of the following configurations, interchangeably:

23



• 64 TPUv4 (2x4x4)
• 128 TPUv3

For Stage 2 (Self-Improvement) we used:

• Half of SFT stage resources for the learner job (since we used half batch size)
• 4 TPUv4 (2x2x1) for the reward model
• 4 TPUv4 (2x2x1) for the success detector

B Checkpoint Selection for Stage 2 Initialization

The frozen checkpoint used for reward computation and success detection is not necessarily identical
to the checkpoint used for policy initialization since the best performance for steps-to-go and
behavioral cloning (BC) objectives can happen at different points over the course of Stage 1 training.
For the most part throughout this work we took the checkpoints at the best validation loss for the
corresponding objective. An exception to this was how we chose the policy initialization checkpoint
in the Aloha domain. We observed that at the best validation loss (∼5K-10K steps into training)
the BC policy did not have a reasonable success rate. Allowing the model to continue training for
much longer and overfitting the validation loss (∼100K-300K steps into training) improved the policy
success rate substantially.

C REINFORCE Multiplicative Constant

We perform policy updates using the REINFORCE loss,

−c ·Rt · log pEFAaction(at|ot, g)

In simulation experiments we found that using a small positive multiplicative factor c in the RE-
INFORCE loss plays a significant role in ensuring the model trains stably. Note that this is not
equivalent to scaling the learning rate due to interactions with regularizers such as weight decay.
Throughout this work we use c = 5e-2. We did not perform any careful tuning of c, and chose its
approximate scale using the following intuition: Let γ denote the discount factor being used. If we
assume the policy gets N steps closer to the goal after every timestep, we have,

Rt =

T∑
i=t

γi−t ·N ≃ N

1− γ

Intuitively, we would like to make the weights on the log probability fall approximately into the range
-1 to 1 (i.e. −c · Rt ∈ [−1, 1]). Thus we have c = 1−γ

N . We use γ = 0.9 throughout this work,
and hypothetically assume that the range of N is approximately [−2, 2] (e.g. we believe the Stage 2
policy can become twice as efficient as the BC policy)10. This results in our choice of c = 5e-2.

D Environments and Tasks

D.1 LanguageTable

Figure 6 shows the real-world and simulated LanguageTable environments used in this work. The
LanguageTable domain [34] has a 2D action space representing delta movement in the x-y plane. The
dataset we used in Stage 1 (SFT) are the ones provided by the original work [34] introducing this
domain. This dataset consists of 181,020 human-generated trajectories, with 78,623 unique instruc-
tions describing the goals of the trajectories. The tasks we perform Stage 2 (Self-Improvement) on
are the Block2Block subset of tasks which contain instructions of the form “move the blue cube
to the green star". As noted in Appendix L, for the simulated and real dataset respectively,
47% and 49% of the instructions fall under the Block2Block tasks. The two images given to PaLI
represent the current and previous frame as viewed by the LanguageTable robot camera.

10Note that this is an approximate intuitive guess and does not need to be precise. A poor guess simply affects
the scale of the loss and does not constrain policy learning in any manner.

24



Figure 6: LanguageTable Environments. Left The four LanguageTable robot stations used for our real-world
experiments. Right, Top Camera view of the real-world LanguageTable robot station. Right, Bottom Camera
view of the simulated LanguageTable robot station.

D.2 BananaTable

In the BananaTable task we remove all blocks from the LanguageTable stations and replace
them with a single banana. The instructions for the BananaTable task have the form, “X the
banana to the Y of the table.", where X is a set of verbs synonomous with pushing, and
Y is one of left, top left, top center, top right, right, bottom right, bottom,
bottom left, center.

D.3 Aloha

The Aloha domain [57] is a bimanual robot station with 14 degrees of freedom and controlled via
joint position commands. As opposed to the default of predicting 50Hz actions, we predict 10Hz
actions. A common design choice in the Aloha domain is to train policies to predict N actions into
the future. This is commonly referred to as action-chunking [57], or action horizon [15]. We use
N = 5 which results in an action space that is 70-dimensional (14 × 5). During rollouts, we execute
the full action-chunk. In the Aloha domain, as input we also provide the model with the current
joint positions, i.e. we append 14 tokens to the input text instructions, where each token represents a
number from 0-255. For details on tokenization, please refer to Appendix E.

Figure 7: The four camera views in the simulated Aloha
Single-Insertion task.

The Aloha environment has 4 cameras (Figure 7,
right). To turn them into two images to pass to
our PaLI models, we vertically stack two images
into one image with a black buffer in between.
We stack the top and table view images to form
the first image, and stack the left and right wrist
view to form the second image. We add a small
black band between the stacked views inside
each image in hopes of better delineating them.
Since we pass 224×224 images to PaLI, this
means that each Aloha camera view appears
with an effective resolution of about 100×100.
This is significantly less resolution than the typ-
ical Aloha resolution of 480×640 [58].

We designed and collected data for a bimanual insertion task, where the left gripper must pick up
a socket, and the right gripper must pick up a peg and insert that peg into the socket. We collected
800 demonstrations using a VR headset to display the Mujoco simulation, and using the real-world
Aloha leader robots to control the virtual robots. We then trained a small diffusion policy [15] on
the 800 demonstrations and used the model to generate 3 datasets of size, 5K, 10K, and 15K. Note
that these datasets only contain successful rollouts, and max episode lengths was chosen generously
(1500 steps) to allow for recovery from mistakes.

25



Critical to successful PaLI policies was to employ semi-global action representations as in Chi et al.
[16], as well as training Stage 1 (SFT) far beyond the point at which the best validation loss was
obtained for the behavioral cloning loss (Appendix B).

E Tokenization

E.1 Real/Sim LanguageTable & BananaTable

We use the same tokenization approach for the real-world and simulated LanguageTable, as well as
the BananaTable domains.

Action Tokenization As noted in Appendix D.1, the above domains have a 2D continuous action
space. We represent LanguageTable actions via a sequence of 4 tokens:

1. token for +/−
2. token representing a number in the range [0, 10]

3. token for +/−
4. token representing a number in the range [0, 10]

The continuous 2D actions are binned to fall into this representation.

Steps-to-go Tokenization We computed the upper percentile of episode lengths in the imitation
dataset to be 100 steps. We discretized the range from 0 to 100 steps into 50 bins, and represented
each bin using a single token.

E.2 Aloha

Action Tokenization As discussed in D.3 our action space is 5 × 14 dimensions. We represent
each dimension with 1 token, meaning the model outputs 70 tokens. Each token represents a number
from 0-255. The continuous Aloha actions which are in the range [−1, 1] are discretized and binned
into these 256 bins.

Steps-to-go Tokenization The upper bound on episode lengths in the imitation dataset was 1500
steps. Since we train policies with action-chunk 5 [57] and execute the full action-chunk during
rollouts, this reduces the maximum episode length to 300 steps. We represent the range from 0 to 300
using a single token per number.

Joints Tokenization In the Aloha domain, as input we also provide the model with the current joint
positions. We append 14 tokens to the input text instructions, where each token represents a number
from 0-255. The continuous Aloha joints which are in the range [−1, 1] are discretized and binned
into these 256 bins, in an identical manner as the actions.

F Real-World LanguageTable Experimentation Procedure

For all real-world experiments, 1 human was responsible for monitoring all robots and performing
resets. They did not provide any form of labels or success indicators to the models. Operators were
instructed to perform resets either when a block drops off the table, or if a station has not been
shuffled and reset in the past 3-5 minutes of operation.

26



Figure 8: The two figures above demonstrate the intricate level of detail that a model learns from the steps-to-go
prediction objective in Stage 1. Each figure captures an interesting moment in an Aloha Single Insertion task
rollout. Each is comprised of 5 consecutive frames, where below each frame we visualize the probability
distribution of the model’s prediction for steps-to-go until success. The x-axis represents the number of steps-to-
go, and the y-axis represents the probability mass. Top In the first frame, the policy is about to successfully
insert the peg and complete the task, so the model predicts that with high likelihood the policy will succeed soon.
However, in the next frame the policy lets go of the peg too soon and the peg is about to fall. Thus the predicted
steps-to-go widens drastically into a multimodal distribution, considering the spectrum of possibilities from
a quick recovery to longer recovery times. As the policy recovers in the fourth and fifth frames, the model’s
prediction narrows back to a unimodal distribution, with high likelihood of success in the near horizon. Bottom
In the first two frames the policy is on track to successfully complete the task, so the model predicts that with
high likelihood the policy will succeed soon. However, in the third frame the socket begins to slip out of the
left gripper. Despite this slippage being barely visible from the left wrist camera, and not visible in any of the
other camera views, the model immediately picks up on this event and its predictions widen significantly with
multiple modes. Specifically, the model places some probability mass on an immediate save, and distributes the
rest of the probability mass over a range of possible recovery times. In the fourth and fifth frames the socket
fully slips out of the gripper, so the model removes the probability mass on the immediate save outcome.

G Intuition on Reward Function (Continued)

Visual Intuition (Continued) We invite readers to study Figure 8, which demonstrates the intricate
level of detail that a model learns from the steps-to-go prediction objective in Stage 1.

Mathematical Intuition Let µ denote the policy corresponding to the imitation learning dataset D
(e.g. if the dataset was collected via tele-operation, µ would represent the “human policy"). Consider
the reward function −1

[
ot satisfies g

]
that is 0 when the goal is satisfied, and -1 elsewhere. Let V µ

denote the undiscounted value function of policy µ for this reward function. We have,

V µ(ot, g) = Eµ

[
T∑
i=t

−1
[
oi satisfies g

]]
= Eµ

[
− 1 · steps-to-go

]
=: −d(ot, g)

27



Figure 9: Pointmass Navigation Domain. Sample trajectories from the imitation learning dataset, as well as
BC (Stage 1) and Self-Improved (Stage 2) policies.

Substituting V µ in Equation 2 we obtain,

r(ot, at, ot+1, g) = V µ(ot+1, g)− V µ(ot, g) = (1− γ) · V µ(ot+1, g)︸ ︷︷ ︸
core reward

+
[
γ · V µ(ot+1, g)− V µ(ot, g)

]
︸ ︷︷ ︸

reward shaping

(5)

where γ is the discount factor used in the Stage 2 RL updates. We see that r(ot, at, ot+1, g) is
implicitly a shaped reward function [38] that provides higher rewards in states where µ knows how
to perform well (i.e. core reward (1 − γ) · V µ(ot+1, g) is high). Thus, Self-Improvement leads to
policies that achieve intended goals more efficiently than the dataset policy µ, while being implicitly
regularized to stay close to regions of the state space where µ is proficient!

Using Equation 5 to simplify the telescoping sum in the Monte Carlo returns we have,

Rt =

T∑
i=t

γi−t · r(oi, ai, oi+1, g) =
[
(1− γ) ·

T∑
i=t

γi−t · V µ(oi+1, g)
]
− V µ(ot, g)︸ ︷︷ ︸

baseline

The baseline V µ(ot, g) leads to lower variance estimates that are particularly useful in our case of
using the REINFORCE estimator. When γ is close to 0, we have Rt = V µ(ot+1, g) − V µ(ot, g)
which is closely similar to a single-step policy improvement for the −1[ot satisfies g] reward. As
γ → 1, Rt encourages policies to traverse trajectories along which the states have high value under
the dataset policy µ (i.e. high V µ).

Pointmass Navigation Domain In our supplementary materials website we include a self-contained
python notebook implementing Self-Improvement on a pointmass navigation domain. In each episode
the pointmass starts in a random position, and the goal is for the pointmass to reach a different
randomly sampled target position. We create a purposely sub-optimal imitation learning dataset
for this task, where using a PD-controller we navigate to 5 waypoints before heading to the goal
position. We then execute our proposed fine-tuning procedure on this imitation dataset using MLP
policy and steps-to-go prediction models. Figure 9 shows sample trajectories from the dataset, as
well as BC (Stage 1) and Self-Improved (Stage 2) policies. As anticipated, BC policies mimic the
sub-optimalities of the dataset. However, in the second stage, and without access to ground-truth
rewards, our proposed Self-Improvement procedure very rapidly brings policies close to optimality.
For reproduction using our self-contained Colab notebook, as well as videos visualizing trajectories
and steps-to-go predictions, please refer our supplementary materials website.

H Future Work and Limitations

Episode Boundaries & Skill–Chaining The steps-to-go auxiliary loss that underpins our Self-
Improvement stage naturally lends itself to hierarchical control. By explicitly annotating the start

28



and termination of sub-skills, the same progress estimator can be reused to produce dense sub-task
rewards, enabling long-horizon skill-chaining reminiscent of option-based RL. At inference time, a
high-level planner — whether a finite-state machine, a human tele-operator, or a reasoning foundation
model — can invoke the learned sub-policies and rely on the steps-to-go predictions to decide when
to transition to the next skill. The chief obstacle is scalable episode and skill boundary annotation:
manual labeling is prohibitively expensive, calling for creative strategies — such as those leveraging
existing multi-modal foundation models — that recover consistent boundaries from raw interaction
logs. Exploring such automated segmentation is an exciting avenue for future research.

Reward Models Because reward inference does not have real-time requirements in our framework,
latency constraints are minimal; we can therefore allocate far larger models — or even iterative,
chain-of-thought style reasoning [25] — to obtain higher-fidelity labels. A key challenge of learning
reward models from imitation-based datasets is handling settings where failure states fall outside
the support of the datasets, and the absence of recovery trajectories for those out-of-distribution
(OOD) states. More expressive steps-to-go estimators leveraging broader data sources — robotics
or otherwise — could recognise these OOD states and either assign appropriate shaped rewards or
trigger a switch to a recovery skill, thereby improving robustness at deployment. Another potentially
promising avenue to handle OOD states is to collect a dataset of robot rollouts using robot policies,
and labeling those trajectories for training the steps-to-go estimator.

Embodied Foundation Models Our study fine-tunes general-purpose vision-language backbones
that were never exposed to robotics data during pretraining. As larger multimodal corpora of robot
experience become available, it will be crucial to design pretraining curricula that endow Embodied
Foundation Models with strong priors for physical reasoning, while preserving their broad visual-
semantic knowledge [29, 49]. On the post-training side, as opposed to post-training for specific
downstream tasks as done in our work, a general-purpose post-training stage analogous to language
models could render the resulting policies effective in a purely zero-shot manner, reducing or even
eliminating the need for task-specific downstream fine-tuning. As an encouraging sign, preliminary
evidence from our LanguageTable experiments hints that strengthening one task (Block2Block) via
Self-Improvement can noticeably boost success rates for other instructions (e.g. moving a block to
specific locations).

RL Algorithms For simplicity and stability we elected to use on-policy REINFORCE with no data
reuse. This choice eliminates two vertices of the deadly triad [51], Bootstrapping and Off-Policy
Learning. However, this choice forgoes the data-reuse benefits of modern off-policy algorithms.
Investigating off-policy variants that scale to large models [23] stands to further curb robot-hour
requirements. Theoretical investigations into our choice of reward function and policy update proce-
dure are also promising avenues for future work. As discussed in Section G, our Self-Improvement
algorithm implicitly regularizes policies to remain close to the behvaior cloned policy, but with a
distincly different mechanism than the often-used KL regularization approach [25]. Our approach is
more broadly applicable to any value function, not just steps-to-go. Lastly, we observe that pushing
Self-Improvement beyond its performance peak can degrade success rates, suggesting that better
stopping criteria or adaptive regularisers are required to prevent over-optimisation of the shaped
reward. Theoretical investigations into our choice of reward function may also uncover the causes of
such degradation.

Summary Our proposed Self-Improvement recipe already unlocks substantial gains, with minimal
reward engineering and a single human supervising multiple robots. However, addressing the
challenges above is essential for scaling towards general-purpose autonomous skill acquisition. We
look forward to future research efforts that extend our groundwork to long-horizon tasks, richer
reward inference, domain-aligned pretraining, and more sample-efficient reinforcement learning.

I Related Works

Embodied Foundation Models A number of prior works have leveraged pretrained multimodal
foundation models as robot policies. Driess et al. [18] demonstrate how separately pretrained vision
and language foundation models can be co-trained to create multimodal foundation models. They
highlight how these multimodal models can learn to query low-level robot controllers towards

29



accomplishing high-level objectives. Building on this direction Brohan et al. [9] discretize continuous
robot actions and map them onto language model token spaces. This method, dubbed RT-2, enables
pretrained vision-language foundation models (VLMs) to be fine-tuned as robot policies. This
approach was further validated by applying to the Open X Embodiment [17] dataset containing over
1M robot trajectories from 21 institutions, and is the policy architecture we base our work off of. Since
RT-2, a variety of works have extended pretrained VLMs by incorporating action prediction heads.
Example action head architectures include diffusion models [39, 54] (building on Chi et al. [15], Ho
et al. [28]), flow matching [7, 29] (building on Lipman et al. [33]), and L1 regression [31]. Critically,
in prior works the delineation between pretraining and post-training is the task and data mixture used
to perform offline supervised fine-tuning. To the best of our knowledge, our work is the first to move
past supervised learning for training robot foundation models. The key contribution of our work is
to present a general-purpose, reward-engineering-free, online Self-Improvement procedure that not
only leads to rapid policy improvement, but enables acquisition of novel behaviors outside of what
the models have seen in their training data. This form of behavioral generalization is only possible
through an online post-training mechanism.

Improving Robot Policies Without Ground-Truth Rewards Our goal is to design methods that
enable generalist robot foundation models to autonomously become proficient on any downstream
task. A key obstacle of general-purpose Self-Improvement through reinforcement learning is that
commonly we do not have access to ground-truth reward functions and success metrics, either due
to the challenge of designing one (reward engineering), or difficulty in measuring them in the real
world (reward instrumentation). A line of prior work, that we dub “Code-As-Rewards", leverages
LLMs to write code for reward engineering [36, 56, 53]. Policies are then trained with the designed
reward, and the success rates and other feedback are provided to the LLMs for improving the
reward function. Such approaches have a number of downsides that make them impractical for
general-purpose robot learning in the real world: 1) It is notoriously difficult to arrive at intended
policies through reward engineering, in particular for dexterous manipulation tasks, 2) The iteration
loop of training a policy with a given reward and patching the reward function based on outcomes
is impractical for real-world robotics, 3) The variables needed in such reward functions require
bespoke instrumentation to be measurable outside of simulation domains, 4) We still require a
ground-truth success detector to provide feedback to the LLM designing the rewards. Aside from
Code-As-Rewards, there exists a rich literature on obtaining data-driven reward functions. Such
approaches forego manual reward engineering and instead design expressive representations that
scale with increasing data. An important class of works [6, 35, 46, 12] learn latent observation
representations on top of which rewards and value functions can be defined (e.g. via L2 distance in
latent space to target goals). Kumar et al. [32] use a heuristic of labeling imitation learning datasets
with +1 rewards near successful states, and 0 elsewhere. They demonstrate that offline and online
RL, using the combination of target task and pre-existing data, can be used to sample-efficiently
improve robot policy performance. Eysenbach et al. [22] design a contrastive learning objective that
corresponds to a form of goal-conditioned Q-Learning. Chebotar et al. [11] demonstrate that offline
goal-conditioned RL with relabeled goals can lead to sample-efficient downstream fine-tuning for new
tasks. In comparison to the above, the key advantage of our proposed approach is the straightforward
integration with web-scale pretrained foundation models. RoboCat [8] trains a large behavioral
cloning (BC) Transformer with a similar architecture as Gato [45] on a diverse set of robotics tasks.
They demonstrate that policy performance can be improved by rolling out BC policies, hindsight
relabeling episodes with accomplished goals, and adding the trajectories back into the imitation
dataset. However, it is important to note that using hindsight relabeled supervised learning as a policy
improvement procedure can have important failure cases [24]. The closest related works to ours are
those based on learning distances in terms of timesteps. Hartikainen et al. [26] present an iterative
procedure where 1) policies are rolled out to collect trajectories, 2) steps-to-go prediction between
states is updated through supervised learning, and 3) the negative distance reward function is used for
updating policies through RL. In an offline setting, Hejna et al. [27] also learn steps-to-go between
states using supervised learning, estimate shortest paths between states and goals, and use weighted
behavioral cloning to obtain improved policies. Aside from important differences in settings, our
focus in this work is on foundation models and generalization, demonstrating that steps-to-go policy
improvement is a viable path towards general-purpose Self-Improving robot policies. In addition
to providing a dense reward signal, our work presents steps-to-go thresholding as a novel path
towards obtaining robust open-ended success detectors, which have typically been trained via binary
classification [19]. Lastly, we highlight two extensions of our work. Yang et al. [55] demonstrate that

30



our approach is effective in real-world simulators built on generative video foundation models. Ma
et al. [37] present an extension our work. They demonstrate that the long context capabilities of state-
of-the-art foundation models enables in-context steps-to-go prediction, which can be used for offline
RL, success detection, and dataset filtering, without necessitating foundation model fine-tuning.

J Future Work and Limitations

Episode Boundaries & Skill–Chaining The steps-to-go auxiliary loss that underpins our Self-
Improvement stage naturally lends itself to hierarchical control. By explicitly annotating the start
and termination of sub-skills, the same progress estimator can be reused to produce dense sub-task
rewards, enabling long-horizon skill-chaining reminiscent of option-based RL. At inference time, a
high-level planner — whether a finite-state machine, a human tele-operator, or a reasoning foundation
model — can invoke the learned sub-policies and rely on the steps-to-go predictions to decide when
to transition to the next skill. The chief obstacle is scalable episode and skill boundary annotation:
manual labeling is prohibitively expensive, calling for creative strategies — such as those leveraging
existing multi-modal foundation models — that recover consistent boundaries from raw interaction
logs. Exploring such automated segmentation is an exciting avenue for future research.

Reward Models Because reward inference does not have real-time requirements in our framework,
latency constraints are minimal; we can therefore allocate far larger models — or even iterative,
chain-of-thought style reasoning [25] — to obtain higher-fidelity labels. A key challenge of learning
reward models from imitation-based datasets is handling settings where failure states fall outside
the support of the datasets, and the absence of recovery trajectories for those out-of-distribution
(OOD) states. More expressive steps-to-go estimators leveraging broader data sources — robotics
or otherwise — could recognise these OOD states and either assign appropriate shaped rewards or
trigger a switch to a recovery skill, thereby improving robustness at deployment. Another potentially
promising avenue to handle OOD states is to collect a dataset of robot rollouts using robot policies,
and labeling those trajectories for training the steps-to-go estimator.

Embodied Foundation Models Our study fine-tunes general-purpose vision-language backbones
that were never exposed to robotics data during pretraining. As larger multimodal corpora of robot
experience become available, it will be crucial to design pretraining curricula that endow Embodied
Foundation Models with strong priors for physical reasoning, while preserving their broad visual-
semantic knowledge [29, 49]. On the post-training side, as opposed to post-training for specific
downstream tasks as done in our work, a general-purpose post-training stage analogous to language
models could render the resulting policies effective in a purely zero-shot manner, reducing or even
eliminating the need for task-specific downstream fine-tuning. As an encouraging sign, preliminary
evidence from our LanguageTable experiments hints that strengthening one task (Block2Block) via
Self-Improvement can noticeably boost success rates for other instructions (e.g. moving a block to
specific locations).

RL Algorithms For simplicity and stability we elected to use on-policy REINFORCE with no data
reuse. This choice eliminates two vertices of the deadly triad [51], Bootstrapping and Off-Policy
Learning. However, this choice forgoes the data-reuse benefits of modern off-policy algorithms.
Investigating off-policy variants that scale to large models [23] stands to further curb robot-hour
requirements. Theoretical investigations into our choice of reward function and policy update proce-
dure are also promising avenues for future work. As discussed in Section G, our Self-Improvement
algorithm implicitly regularizes policies to remain close to the behvaior cloned policy, but with a
distincly different mechanism than the often-used KL regularization approach [25]. Our approach is
more broadly applicable to any value function, not just steps-to-go. Lastly, we observe that pushing
Self-Improvement beyond its performance peak can degrade success rates, suggesting that better
stopping criteria or adaptive regularisers are required to prevent over-optimisation of the shaped
reward. Theoretical investigations into our choice of reward function may also uncover the causes of
such degradation.

Summary Our proposed Self-Improvement recipe already unlocks substantial gains, with minimal
reward engineering and a single human supervising multiple robots. However, addressing the
challenges above is essential for scaling towards general-purpose autonomous skill acquisition. We

31



look forward to future research efforts that extend our groundwork to long-horizon tasks, richer
reward inference, domain-aligned pretraining, and more sample-efficient reinforcement learning.

K Additional Plots

Figure 10: Self-Improvement “Success Rate" plots during Stage 2 Self-Improvement on the real-world
LanguageTable domain. We conducted real-world experiment 3 times: 1) 80% imitation dataset size in Stage 1,
Stage 2 fine-tuned on 3 robots simultaneously, 2) 20% data in Stage 1, Stage 2 with 3 robots, 3) 20% data in
Stage 1, Stage 2 with 4 robots. In all Stage 2 experiments a single human monitored and performed periodic
resets for all robots. Each experiment took approximately 20 hours (4 hours × 5 days). The x-axis in the plots
aboves shows the amount of extra episodes collected during the Stage 2 online Self-Improvement process, as a
percentage of the total number of Block2Block episodes in the LanugageTable dataset.

Figure 11: Left Results and ablations on the simulated LanguageTable domain. We emphasize to the reader
that while it appears that the Stage 1 and Stage 2 plots have identical x-axis values, there is no bug in the plot
and they are in fact different. The Stage 2 Self-Improvement process is simply so sample-efficient that the
difference in x-axis is not observable in this plot. The first plot in Figure 3 in the main text presents a different
view that makes the difference more apparent. Right “Success Rate" and “Mean Episode Length" plots during
Stage 2 Self-Improvement on the Aloha Single Insertion Task (5K and 10K data settings, 3 random seeds each
setting). Similar to the discussion in Section 4.1, the above plots demonstrate that the combination of SFT +
Self-Improvement is more sample-efficient than allocating the full robot time budget to collecting imitation data
for SFT.

32



L Computing Percentage of Block2Block Instruction in LanguageTable

To get a sense of the percentage of the LanguageTable datasets corresponding to Block2Block tasks,
we used Gemini 1.5 Pro and its structured outputs feature to label LanguageTable instructions as
being Block2Block or not. For both the simulation and real datasets we randomly sampled N = 5000
of the instructions in the dataset, and used the following prompt to classify them as Block2Block.
Using the structured outputs feature of Gemini enables us to enforce the LLM responses to be either
Yes or No.

You are a language model with expertise in determining the structure and type of robotic
instructions. Your task is to identify whether a given instruction is a “block to block” type
instruction or not. A “block to block” instruction involves moving or pushing one block
towards another specific block on a board. This does not include separating two blocks,
putting one block in between two blocks, or putting a block near a group of blocks.
Please analyze the following instruction and respond with either “yes” or “no” based on
whether it fits the definition of a “block to block” instruction:
Examples where the answer is “yes”:

• “push the red circle towards the blue triangle”
• “push blue cube to the right of green cube”
• “move the red moon towards the bottom left side of the red pentagon”
• “push red pentagon into the green cube”
• “place the yellow star to the left of the red moon”
• “push the green cube vertically below the yellow pentagon”
• “drag green star into blue cube”
• “slide the red star at the bottom right of the green star”

Examples where the answer is “no”:
• “push the blue cube in between yellow star and green star”
• “push the red crescent away from the blue crescent”
• “place the arm to the left of the yellow star”
• “move the blue crescent to the center of the board”
• “adjust the group of blocks to form a circle”
• “separate the green star and the blue cube”
• “push blue moon along with yellow star to the left side”
• “move yellow star and blue moon together slightly to the top side of the board”
• “place the blue cube at the top center”
• “slide blue cube a bit right”

The instruction for you to label as “yes” or “no” is:

For the simulated and real dataset respectively, 47% and 49% of the instructions were labeled as
Block2Block. Using Hoeffding’s Inequality we can see that with N = 5000, these estimates are
within 2.8% error margin with 99.9% confidence.

M Interesting Observations & Incomplete Experiments

In this section we note interesting observations, and highlight results of experiments that we were
unable to complete due a change of institution affiliation of the lead author.

Positive Transfer of Self-Improvement In Section 4.1 we note that we perform Self-Improvement
on the Block2Block subset of the LanguageTable tasks. We have observed through real-world

33



Figure 12: Real-world replica of our simulated Aloha Single-Insertion task

rollouts that Self-Improvement not only significantly improves performance on Block2Block tasks,
but actually improves the model across all LanguageTable tasks.

All-Instructions Experiment in the Real-World LanguageTable Domain In the real-world
LanguageTable domain we conducted an experiment where after Self-Improvement on Block2Block
tasks, we ran Self-Improvement on all possible instructions. Prior to conducting this experiment, we
trained a separate PaLI model to produce a goal instruction given the current image. We then started
the all-instructions Self-Improvemnet by mixing instructions at a 50-50 ratio between Block2Block
and model-generated instructions. Over time we decayed the rate of Block2Block instructions down
to zero. We noticed a clear improvement in success rate metrics for all tasks. However, we noticed
that for portions of the training time some human operators had improperly set up the robot stations.
Thus, we decided to not include these results in our paper. We were unable to retry this experiment
due to time constraints.

Real-World Aloha Single-Insertion We recreated our simulated Aloha Single-Insertion task in
the real world by 3D printing identical assets, and collecting an imitation dataset using Aloha
teleoperation. We then trained the Stage 1 (SFT) model with an identical setup (Appendix D.3)
and tokenization (Appendix E.2) as the simulated Aloha task. We also built a second variant of our
real-world Self-Improvement infrastructure better suited to higher rate control (Appendix N.2). We
verified that our Stage 1 BC policies demonstrated reasonable success rates, but we were unable to
complete a full Self-Improvement experiment before we had to conclude our project.

N Infrastructure Overview

Below we discuss two variations of the infrastructure we implemented for online Self-Improvement.
All experiments presented in this work were conducted using Version 1, which proved effective for
both simulated and real-world environments operating at control frequencies up to 5Hz.

However, when we attempted to extend our approach to the Real-World Aloha Single-Insertion task
(Appendix M), we discovered that the remote action inference server design of Version 1 could not
reliably support the 10Hz control frequency required by the Aloha platform. This limitation motivated
the development of Version 2, which performs policy inference locally on the actor machines to
eliminate network latency. We successfully verified that our Stage 1 behavioral cloning policies
performed well on the real robot and briefly tested the Version 2 infrastructure, but time constraints

34



prevented us from completing a full Self-Improvement experiment for the Aloha Single-Insertion
task in the real world.

N.1 Version 1: Non-Local Policy

Our first infrastructure implementation for Stage 2 Self-Improvement employs a distributed architec-
ture designed to handle both simulated and real-world robot environments. This version separates the
computational components from the actors (robots) and uses a client-server model for inference. The
system comprises the following key components:

Dual-Purpose TPU Nodes For Learning and Action Inference The same set of TPUs serves dual
functionality, alternating between serving as learner nodes and action inference servers depending on
the current phase of the RL iteration. During the data collection phase, these TPUs operate as action
inference servers, processing observation-goal pairs (ot, g) and returning actions at ∼ pEFMaction(at|ot, g).
During the learning phase, they switch to performing policy updates using the data from the replay
buffer.

Steps-to-Go Inference Nodes A separate set of inference nodes is dedicated to computing the
steps-to-go predictions d(o, g) from Equation 1. These nodes host frozen Stage 1 checkpoints and
respond to queries with steps-to-go predictions. The recipients of these predictions then use them for
two purposes: (1) computing rewards using Equation 2 by taking differences between consecutive
predictions for episode labeling, or (2) evaluating the success condition success(o, g) := 1[d(o, g) ≤
s] during episode execution to determine termination.

Actors and Environment Loop The actors, which can be either real-world robot stations or
simulated environments, execute the following environment loop. At the start of each episode, a goal
instruction g is sampled. The actor then iteratively: (1) obtains the current observation ot from the
environment, (2) queries the action inference server to obtain action at, and (3) executes the action in
the environment.

In parallel, a background process continuously queries the steps-to-go inference nodes with the most
recent observation to check the success condition. This asynchronous design accounts for inference
latency—the success condition may not be evaluated for every single observation due to query time,
but rather checks the most recent available observation. The episode terminates when either the
success threshold is met, the maximum episode length is reached, or a human operator manually
intervenes (particularly important for real-world experiments).

Once an episode completes, still within the environment loop, each observation is labeled with
its steps-to-go prediction by querying the steps-to-go inference nodes. These predictions are used
to compute rewards according to Equation 2 by taking differences between consecutive predic-
tions: r(ot, at, ot+1, g) = d(ot, g) − d(ot+1, g). The Monte Carlo returns Rt =

∑T
i=t γ

i−t ·
r(oi, ai, oi+1, g) are then calculated, and the labeled tuples (ot, at, g, Rt) are sent to the replay buffer
server.

Replay Buffer Server The replay buffer is implemented as a standalone server using Google
DeepMind’s Reverb [10], which provides efficient distributed data storage and sampling. This server
receives labeled experience tuples from all actors and maintains them for training. The learner nodes
sample minibatches from this server during the learning phase.

Central Coordinator A central controller orchestrates the entire system, monitoring the replay
buffer server’s size and coordinating phase transitions. When the replay buffer accumulates sufficient
data for N policy updates with batch size B (i.e., N ×B samples), the controller signals all actors to
pause data collection and instructs the TPU nodes to switch from inference mode to learning mode.
After completing the N RL policy updates, the replay buffer is cleared, and the system transitions
back to data collection with the updated policy.

N.2 Version 2: Local Policy

Our second infrastructure implementation maintains the same overall architecture as Version 1, with
one critical difference: policy inference is performed locally on the actor machines rather than

35



through remote inference servers. This design reduces network latency during episode execution and
decouples the learning infrastructure from the inference workload.

Key Architectural Change In this version, the TPU nodes are dedicated exclusively to learning.
After completing N RL policy updates, the updated model weights are distributed to all actor
machines, where they are loaded for local inference. Each actor machine maintains its own copy of
the policy model and performs action inference locally during data collection.

Actor Machines with Local Inference The actors now handle both environment interaction and
policy inference. During episode execution, when an action is needed, the actor queries its local
policy model rather than making a network request to a remote server. This eliminates the latency
associated with network communication for action inference, which can be particularly beneficial in
real-world robotics settings where low-latency control is critical. The background process for success
detection remains unchanged—it continues to query the steps-to-go inference nodes with the most
recent observation to check the success condition and determine episode termination. Similarly, after
episode completion, the actors still query the steps-to-go inference nodes to label each observation
for reward computation, exactly as in Version 1.

Weight Distribution After each learning iteration, the central coordinator instructs the learner
nodes to broadcast the updated model weights to all actor machines. This weight synchronization
ensures that all actors use the same policy version during the subsequent data collection phase. The
actors pause briefly to load the new weights before resuming episode collection.

Remaining Infrastructure All other components remain identical to Version 1:

• The steps-to-go inference nodes continue to operate as separate servers, providing predictions
for reward computation and success detection

• The replay buffer server, implemented using Google DeepMind’s Reverb [10], continues to
centrally manage experience storage and sampling

• The central coordinator maintains its role in orchestrating phase transitions and monitoring
the replay buffer size

• Episode labeling with rewards and Monte Carlo returns computation remains unchanged

This local inference approach trades increased memory usage on actor machines (each must hold the
full policy model) for reduced inference latency and decreased network traffic during data collection.
The design is particularly advantageous when actor machines have sufficient computational resources
or when network reliability is a concern.

O Broader Impacts

In this work we present a novel Self-Improvement approach that enables Embodied Foundation
Models to sample-efficiently improve their task performance, as well as autonomously practice and
acquire novel skills. Enabling autonomous Self-Improvement may have significant positive and
negative societal impacts that should be carefully considered.

Potential Positive Impacts Our approach fundamentally improves policy success rates and can
unlock new capabilities. This enables robotics to be applicable in new domains and industries
that previously lacked robotic solutions. We also demonstrated that the combination of SFT and
Self-Improvement is significantly more sample-efficient that supervised learning alone. This sample-
efficiency directly translates to more effective use of resources.

Potential Negative Impacts More effective robotic solutions may lead to job loss. Thus, careful
attention to opportunity creation is key for the long term stability of society. Enabling robots to more
efficiently acquire a broader skillset may also enable unacceptable applications of robots by bad
actors.

36


	Introduction
	Methodology
	Stage 1: Supervised Fine-Tuning (SFT)
	Stage 2: Self-Improvement

	Intuition on Reward Function
	Experiments
	Self-Improvement is Effective, Robust, and More Efficient Than SFT Alone
	Simulated LanguageTable
	Real-World LanguageTable
	Simulated Aloha Single Insertion Task

	Importance of Foundation Model Pretraining
	Generalization
	Domain Transfer Between Simulation and Real
	Strong Generalization to Learning Novel Skills


	Related Works
	Future Work and Limitations
	Conclusion
	Implementation Details
	Background
	Environments, Tasks, and Tokenization
	Training Details
	Compute Resources

	Checkpoint Selection for Stage 2 Initialization
	REINFORCE Multiplicative Constant
	Environments and Tasks
	LanguageTable
	BananaTable
	Aloha

	Tokenization
	Real/Sim LanguageTable & BananaTable
	Aloha

	Real-World LanguageTable Experimentation Procedure
	Intuition on Reward Function (Continued)
	Future Work and Limitations
	Related Works
	Future Work and Limitations
	Additional Plots
	Computing Percentage of Block2Block Instruction in LanguageTable
	Interesting Observations & Incomplete Experiments
	Infrastructure Overview
	Version 1: Non-Local Policy
	Version 2: Local Policy

	Broader Impacts

