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Abstract

Data valuation quantifies the impact of individual data points on model performance,
and Shapley values provide a principled approach to this important task due to
their desirable axiomatic properties, albeit with high computational complexity.
Recent breakthroughs have enabled fast computation of exact Shapley values for
unweighted k-nearest neighbor (kNN) classifiers. However, extending this to
weighted kNN models has remained a significant open challenge. The state-of-the-
art methods either require quadratic time complexity or resort to approximation
via sampling. In this paper, we show that a conceptually simple but overlooked
approach — data duplication — can be applied to this problem, yielding a natural
variant of weighted kNN-Shapley. However, a straightforward application of the
data-duplication idea leads to increased data size and prohibitive computational
and memory costs. We develop an efficient algorithm that avoids materializing
the duplicated dataset by exploiting the structural properties of weighted kNN
models, reducing the complexity to near-linear time in the original data size.
Besides, we establish theoretical foundations for this approach through axiomatic
characterization of the resulting values, and empirically validate the effectiveness
and efficiency of our method.

1 Introduction

In the era of data-driven machine learning, understanding the value and contribution of individual
data points has emerged as a critical challenge. Data valuation—the process of quantifying the impact
of each training instance on model performance—plays a pivotal role in numerous applications,
including identifying influential samples, detecting mislabeled data, and designing data markets [1, 2].
As machine-learning systems continue to proliferate across domains, the development of robust and
scalable data-valuation methods has become increasingly essential.

Among various approaches for data valuation [3, 4, 5], the Shapley value from cooperative game
theory has attracted significant attention due to its unique desirable axiomatic properties [6]. When
applied to machine learning, data Shapley values provide a principled framework for distributing the
model’s performance among training instances, where each data point’s Shapley value represents its
average marginal contribution across all possible subsets of the dataset [1].

Despite its theoretical appeal and desirable properties, the exact computation of data Shapley values
presents substantial challenges, as it requires enumerating and re-training over all possible subsets
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of data points—a task whose complexity grows exponentially with the dataset size. Indeed, the
computation has been proven to be #P-hard in certain games [7]. Fortunately, a notable recent
advancement in this domain by Jia et al. [8] leverages the structural properties of unweighted k-
nearest neighbor (kNN) classifiers to efficiently calculate exact data Shapley values in closed form,
referred to as unweighted kNN-SV hereafter. The kNN approach is a classic algorithm in machine
learning, and it has been shown that running kNN over pre-trained embeddings can yield comparable
performance with more advanced models [9].

However, a significant limitation of the approach by Jia et al. [8] lies in its restriction to unweighted
kNN models. In practice, weighted kNN models, which assign different importance to neighbors
based on their distances, offer greater flexibility and typically yield superior performance. Computing
Shapley values for weighted kNN models poses unique challenges due to the lack of a closed-
form solution analogous to the unweighted case. To date, the only successful attempt has been a
hard-label variant of weighted kNN-SV [10], which invokes a sophisticated and time-consuming
dynamic-programming approach that is similar in spirit to those for power indexes [11].

In this paper, we offer a novel variant of weighted kNN-SV, dubbed as DkNN-SV for duplication-
based weighted kNN-SV, whose underlying classifier is equivalent to the standard weighted kNN
classifier. We demonstrate that this weighted variant can be effectively reduced to the unweighted
case by a duplication technique. Since naïve duplication could significantly increase the dataset
size and computational burden, we further develop an efficient algorithm that exploits the structural
properties of the weighted kNN models, thereby eliminating the additional computational costs
associated with data duplication. In other words, the data duplication has been made conceptual
and does not need to be materialized. Our algorithm runs in near-linear time O(n log n), while the
state-of-the-art methods either require a pseudo-polynomial time complexity of O(Wk2n2) [10] or
settle for approximation by sampling from n! permutations [8], where n is the dataset size and W is
the maximum weight. We analyze the theoretical properties of the proposed DkNN-SV scheme, and
empirically validate its effectiveness and efficiency against other kNN-SV variants. For example,
our algorithm performs better at the task of noisy label detection.

The rest of the paper is organized as follows. First, we review the preliminaries in Section 2 and the
unweighted kNN-SV in Section 3. Next, we introduce the new weighted DkNN-SV in Section 4,
and develop an efficient algorithm for it in Section 5. We discuss the related work in Section 6.
Finally, we empirically evaluate the proposed method in Section 7. We conclude in Section 8. All
proofs are deferred to Appendix A.

2 Preliminaries

In this section, we review the framework for data valuation based on Shapley values (SV) and
establish our notation for applying this concept to the k-nearest neighbor (kNN) model.

2.1 Cooperative game theory and Shapley values

The concept of data valuation can be elegantly formalized through the lens of cooperative game
theory [12]. In this framework, we consider a collection of players who form coalitions to generate
collective utility. Formally, a cooperative game consists of a pair (I, util), where I = {1, . . . , n}
represents a set of n players and util : 2I → R is a utility function that assigns a real value to each
possible coalition S ⊆ I .

A central question in cooperative game theory concerns fair allocation: how should the total utility be
distributed among individual players based on their contributions? The Shapley value, introduced by
Lloyd Shapley [6], provides a rigorous solution to this problem. The Shapley value s(i) for player i
represents their expected marginal contribution when joining the coalition in a random order. Let Π
denote the set of all permutations of players in I . For a permutation π ∈ Π, let πi represent the set of
players that precede player i in π. Then, the Shapley value equals

s(i) =
1

n!

∑
π∈Π

[util(πi ∪ {i})− util(πi)] . (1)
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An equivalent expression represents the Shapley value as the average marginal contribution across all
possible coalition formations, that is,

s(i) =
1

n

∑
S⊆I\{i}

(
n− 1

|S|

)−1

[util(S ∪ {i})− util(S)] . (2)

It is well known that the Shapley value is the unique allocation mechanism that satisfies the following
desirable properties: efficiency, symmetry, null player, and additivity [6]. These properties make the
Shapley values a principled approach for data valuation, relying on an axiomatic framework.

To apply the Shapley-value framework to the data-valuation setting, we interpret individual data
points as players in a coalition game, and a performance measure of a model as a utility function.
The value of the utility function for a coalition of players corresponds to the performance measure
of the model trained on the respective subset of data. This framework allows for quantifying the
contribution of each training data point to the overall model performance.

2.2 kNN-based Shapley values

In this section we discuss how the Shapley-value framework described above can be used for data
valuation with a kNN model [8]. We refer to this method as kNN-SV. The idea is first presented for
a single test data point, and then is extended to multiple test data points.

Consider a dataset D with n training data points, where each point z = (x, y) ∈ D comprises x ∈ Rd

and y ∈ Y , where Y is the label space. Consider also a single test data point ztest = (xtest, ytest). We
want to compute the Shapley value s(z | ztest) of each training point z ∈ D with respect to the test
point ztest. For each point z we consider a rational weight w(z | ztest) ∈ Q+, often determined by the
distance between x and xtest (see discussion below). For a subset S ⊆ D of the training data, the
kNN utility of S is defined as

util(S) =


∑min{|S|,k}

i=1 w(zαi(S)|ztest) 1(yαi(S)=ytest)∑min{|S|,k}
i=1 w(zαi(S)|ztest)

, if |S| > 0

1
C , if |S| = 0,

(3)

where C = |Y| is the number of classes, αi(S) is the index of the i-th closest point of S to xtest, and
i is the rank of zαi(S) in S.

For defining the weight w(z | ztest), in the case of unweighted kNN, we simply set w(z | ztest) = 1.
More generally, by using the distance dist(z, z′) = ∥x− x′∥, we can define the weight w(z | ztest) as
the Gaussian kernel w(z | ztest) = K(dist(z, ztest)) = exp(−dist(z, ztest)

2/2σ2), where σ measures
the width of the kernel. Clearly, any other distance metric can be used.

Having defined the utility function for subsets S ⊆ D, the Shapley value of a data point z ∈ D can
be computed using Eq. (2). Formally, the Shapley value of a training data point z ∈ D concerning a
single test data point ztest is defined as

s(z | ztest) =
1

n

∑
S⊆D\{z}

(
n− 1

|S|

)−1

[util(S ∪ {z})− util(S)] . (4)

In practice, when given multiple test data points, the data Shapley value of a data point z can be
straightforwardly extended as the average over all test points. That is, when given a test dataset Dtest
of ntest data points, we have

s(z) =
1

ntest

∑
ztest∈Dtest

s(z | ztest). (5)

3 Exact computation for unweighted kNN-SV

In this section, we introduce the analytical solution to unweighted kNN-SV, introduced by Jia
et al. [8] and a subsequent note [13]. This solution results in a dramatic improvement in the time
complexity for exact computation, from O(2n) to O(dn+ n log n) for a single test point, over the
naïve approach that enumerates all possible subsets S of the dataset D.
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We fix a test point ztest throughout this section. Given a subset S ⊆ D, recall that αi(S) is the
index of the i-th closest element of S to ztest. When the context is clear, we write zαi(D) as zi and
w(zαi(D) | ztest) as wi for simplicity. Similarly, we denote by si the Shapley value s(zi | ztest) for
data point zi.

We restate the main result from Wang and Jia [13] for unweighted kNN-SV. For ease of exposition,
we assume n ≥ 2 and n ≥ k throughout the paper.

Theorem 1 (Wang and Jia [13]). Assume n ≥ 2 and n ≥ k. For the unweighted kNN classifier, the
Shapley value of a data point zi can be computed as follows.

sn =
1

n

(
1n −

n−1∑
i=1

1i

n− 1

)k−1∑
j=1

1

j + 1

+
1n − C−1

n
, (6)

where 1i = 1[yi = ytest], and for i < n,

si = si+1 +
1i − 1i+1

n− 1

 k∑
j=1

1

j
+

1

k

(
min{k, i}(n− 1)

i
− k

) . (7)

Following Theorem 1, we can compute the Shapley values by first sorting the data points by increasing
distance to ztest, and then iteratively computing the Shapley values in the reverse order, as specified
by Eq. (6) and Eq. (7).

However, extending the previous result to the weighted kNN is challenging. Given a subset S, we
refer to the quantity util(S ∪ {zi})− util(S) as the marginal contribution (MC) of zi to S. The key
principle behind the result in Theorem 1 is that for unweighted kNN, the MC can only take a few
distinct values, which turns kNN-SV problem into a combinatorial counting problem. For example,
for any |S| ≥ k, we have

util(S ∪ {zi}) = util(S) or util(S ∪ {zi})− util(S) =
1

k
(1[yi = ytest]− 1[yαk(S) = ytest]),

the latter of which only takes three possible distinct values. Thus, one can simply count the number
of subsets S for each distinct MC value, and aggregate the results, without evaluating the MC for all
possible subsets. However, for weighted kNN, as in Eq. (3), the MC may take arbitrary values due to
the weights and the normalization term.

4 Weighted kNN-SV via data duplication

In this section, we show how to overcome the challenge in the weighted kNN-SV problem. We do
so by introducing a new variant and reducing it to the unweighted case using a novel data-duplication
technique. We relate the new variant to the concept of Owen values [14], and prove adherence to
axiomatic properties. We further compare it with other kNN-SV variants analytically in Section 4.2.

Our main idea is to create w(z | ztest) − 1 copies of every point z ∈ D. For ease of exposition,
we assume that all weights are integers. This assumption can be easily removed by scaling the
weights appropriately. Let the new dataset containing D and its copies be D′. We will then apply the
unweighted kNN classifier to D′ with parameter k′.

To obtain an equivalent weighted kNN classifier, we adaptively set k′ for each test point ztest [15].
Specifically, we adjust k′ so that it includes the top-k nearest neighbors of ztest in D and their copies.
Formally, we set

k′ =

k∑
i=1

w(zαi(D) | ztest). (8)

We show that this leads to an equivalent weighted kNN classifier.

Proposition 2. Running unweighted kNN classifier on a duplicated dataset D′ with parameter k′
defined in Eq. (8) is equivalent to running weighted kNN classifier on the original dataset D for any
test point ztest.
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Fixing a test point ztest, we define the utility of unweighted kNN on D′ for any subset S′ of D′ as

util′(S′) =


∑min{|S′|,k′}

i=1 1(yαi(S
′)=ytest)

min{|S′|,k′} , if |S′| > 0
1
C , if |S′| = 0.

(9)

The Shapley value of a data point z ∈ D′ concerning a given test point ztest is then simply

s′(z | ztest) =
1

n′

∑
S′⊆D′\{z}

(
n′ − 1

|S′|

)−1 [
util′(S′ ∪ {z})− util′(S′)

]
. (10)

The DkNN-SV of a data point z ∈ D is the sum of the Shapley values of all its copies in D′, i.e.,

ϕ(z | ztest) =
∑

z′∈D′:z′=z

s′(z′ | ztest) = w(z | ztest)s
′(z | ztest). (11)

Note that duplicating data points according to their weights may result in a dataset D′ much larger
than D, which may cause significant scalability issues. We will address this challenge in Section 5 by
proposing an efficient algorithm that avoids materializing D′.

4.1 Duplication-based weighted kNN-SV as group values

An alternative way to interpret the DkNN-SV ϕ(z | ztest) is to view a data point z and its copies as a
“group” with z being the representative of the group, and ϕ(z | ztest) measuring the value of the whole
group. This is similar to the classic concept of Owen values [14], which characterizes the value of
players in a game with coalition structure.

Formally, to compute the Owen values, we are given non-overlapping groups G = {G1, . . . , Gm}
such that ∪mi=1Gi = D′ and Gi ∩Gj = ∅ for all i ̸= j. Owen values are calculated by considering
permutations of players that are compatible with the group structure. A permutation π of the player
set D′ is called group-compatible if players within the same group Gi appear consecutively in the
permutation. The Owen value of a player z′ is its average marginal contribution over all group-
compatible permutations, computed in a way similar to Eq. (1). The only difference is that the Owen
value sums over all group-compatible permutations instead of all permutations. The Owen value of a
group Gi is then the sum of the Owen values of all players z′ ∈ Gi.

In our setting, each group is a set of copies of a single point. The main difference is that we do not
require all players in a group to always act as one unit, and thus do not require the permutations to
be group-compatible. Instead, we allow each player (data point) to act independently in the game,
and eventually aggregate their contributions to obtain the group value in the same manner. This
relaxation allows us to design an efficient algorithm. Our approach can also be justified axiomatically.
These axiomatic properties ensure that data valuation is conducted in a fair, theoretically sound, and
interpretable manner for downstream tasks. Moreover, additional properties about symmetry between
z and its copies enable us to devise a fast algorithm without materializing D′; see Section 5.
Theorem 3. The group value ϕ(z | ztest) defined in Eq. (11) satisfies the following axioms:

1. Efficiency:
∑

z∈D ϕ(z | ztest) = util′(D′)− util′(∅) = util(D)− util(∅), that is, the sum of
all group values equals the total utility.

2. Symmetry: If z1 and z2 are such that util′(S′ ∪ {z′1}) = util′(S′ ∪ {z′2}) for all S′ ⊆
D′ \ {z′1, z′2} where z′1 and z′2 are copies of z1 and z2 respectively, then ϕ(z1 | ztest)/w(z1 |
ztest) = ϕ(z2 | ztest)/w(z2 | ztest).

3. Dummy Player: If z is such that util′(S′ ∪ {z′}) = util′(S′) for all S′ ⊆ D′ \ {z′} where z′
is a copy of z, then ϕ(z | ztest) = 0.

4. Additivity: If util′1 and util′2 are two utility functions, and ϕ1 and ϕ2 are their corresponding
values, then the value ϕ corresponding to util′1 + util′2 satisfies ϕ = ϕ1 + ϕ2.

Theorem 3 can be easily extended to more general settings, where each group is formed by an
arbitrary subset of players instead of a set of copies.
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4.2 Comparison with other kNN-SV

Comparison with standard weighted kNN-SV. Although Proposition 2 shows that the duplica-
tion strategy provides an equivalent weighted kNN classifier, it may not produce the same Shapley
values. This is because we need equivalent classification over all possible subsets instead of merely
the entire dataset D. More generally, we show that their values remain different regardless of the
value of parameter k′. We give a counterexample below. The intuition is that the effect of increasing
the weight of a point and increasing its number of copies on its value is similar over most subsets, but
may differ over certain subsets.
Proposition 4. In the genral case, the group Shapley values in Eq. (11) may be different from the
Shapley values of weighted kNN-SV in Eq. (4).

Hence, our duplication strategy offers a new variant for computing data Shapley values for weighted
kNN-SV. Due to the lack of a closed-form derivation for the vanilla weighted kNN-SV, we compare
the different methods empirically in the experiments, and show that they are correlated, however, the
values in the proposed approach can be computed more efficiently.

Comparison with the scaled unweighted kNN-SV. One might also wonder how the group values
ϕ(z | ztest) compare to simply scaling the unweighted kNN-SV values s(z | ztest) in the original
dataset D. A natural scaling approach might be s(z | ztest) · w(z | ztest). However, such scaling is
fundamentally different from our duplication strategy, and fails to capture the inherent weighted
nature of the weighted kNN-SV, as illustrated in the analysis below.

Given an arbitrary test point ztest, we first examine the scaled value s̃n of the farthest point zn.

s̃n = snwn
n

n′ =
wn

n′

(
1n −

n−1∑
i=1

1i

n− 1

)k−1∑
j=1

1

j + 1

+ wn

1n − 1
C

n′ ,

where wn = w(zn | ztest) and 1i = 1(yi = ytest). To simplify the analysis, we set k′ to be the same
as k. If we compare the scaled value s̃n with the group value ϕ(zn | ztest), we have

s̃n − ϕ(zn | ztest) =
wn

n′


1n −

n−1∑
i=1

1i

n− 1︸ ︷︷ ︸
unweighted avg

−
1n −

(wn − 1)1n +
∑n−1

i=1 wi1i

n′ − 1︸ ︷︷ ︸
weighted avg



k−1∑

j=1

1

j + 1

 .

Thus, the difference is driven by the choice of the reference mean used in the comparison. Define
unweighted and weighted reference means as

µunw :=

n−1∑
i=1

1i

n− 1
, and µw :=

(wn − 1)1n +
∑n−1

i=1 wi1i

n′ − 1
.

Then the scaled value s̃n uses the deviation 1n − µunw, which measures the contribution of zn by the
deviation of its label from this unweighted reference mean, whereas the group value considers the
deviation from the weighted reference mean by using 1n − µw.

Moving on to the scaled value of the i-th closest point zi, we have

s̃i : = siwi
n

n′

= si+1wi
n

n′ + wi
n

n− 1

1i − 1i+1

n′

 k∑
j=1

1

j
+

1

k

(
min{k, i}(n− 1)

i
− k

)
≈ si+1wi

n

n′ + wi
1i − 1i+1

n′ − 1

 k∑
j=1

1

j
+

1

k

(
min{k, i}(n− 1)

i
− k

) ,

where the last approximation follows by taking n−1
n

n′

n′−1 ≈ 1. Then, if we compare the scaled value
s̃i with the group value ϕ(zi | ztest), we have

s̃i − ϕ(zi | ztest)
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Algorithm 1: Fast algorithm for duplicate-based weighted kNN-SV
Input: Integer k, weight function w, datasets D and Dtest

1 Initialize ϕz with default value 0 for every z ∈ D
2 for ztest ∈ Dtest do
3 Let z1, . . . , zn be the points in D sorted by increasing distance to ztest
4 n′ ←

∑n
i=1 w(zi | ztest)

5 k′ =
∑k

i=1 w(zi | ztest)
6 s′zn ←

1
n′

(
1n −

(wn−1)1n+
∑n−1

i=1 wi1i

n′−1

)(∑k′−1
j=1

1
j+1

)
+ 1n−1/C

n′ , where

wi = w(zi | ztest) and 1i = 1[yi = ytest]
7 for i = n− 1, . . . , 1 do
8 i′ ←

∑i
j=1 w(zj | ztest)

9 s′zi ← s′zi+1
+ 1i−1i+1

n′−1

(∑k′

j=1
1
j + 1

k′ (
min(k′,i′)(n′−1)

i′ − k′)
)

10 for i = n, . . . , 1 do
11 ϕzi ← ϕzi + w(zi | ztest)s′zi
12 for z ∈ D do
13 ϕz ← ϕz/ntest

14 Return values {ϕz}z∈D

≈ wi

(
si+1n

n′ − ϕ(zi+1)

wi+1

)
+ wi

1i − 1i+1

n′ − 1

1

k

(
min{k, i}(n− 1)

i
− min{k, i′}(n′ − 1)

i′

)
.

First, the difference between these two values accumulates from the previous (i + 1)-th point. In
addition, the contribution from the i-th point to the scaled value s̃i is roughly weighted by wi(n−1)

i(n′−1) ,
while the contribution to the group value ϕ(zi | ztest) is roughly weighted by wi

i′ . That is, the former
scales up every rank i uniformly by a factor of n′−1

n−1 , while the latter uses the rank i′ of the i-th point
in the duplicated dataset D′. Therefore, the scaled value tends to amplify the contribution of nearest
neighbors with a large weight more than the group value.

5 Fast algorithm for duplication-based weighted kNN-SV

Recall that we duplicate data points in D according to their weights to form a new dataset D′.
However, the size of D′ may be much larger than that of D. This poses a significant challenge to
the computational cost of the recursive computation of the Shapley values. Specifically, it requires
O(n′ log n′) time for each given test point, where n′ is the size of D′. In this section, we propose
a fast algorithm for the duplication-based weighted kNN-SV, with a time complexity as small as
O(n log n). The algorithm successfully obtains the Shapley values while avoiding materializing the
duplicated dataset D′.

The proposed algorithm is displayed in Algorithm 1. The key idea is to leverage the symmetry
property of the Shapley values to avoid materializing the duplicated data points.

Lemma 5. Fix a test point ztest. Let z be a point in D. Then, every copy z′ of z has the same Shapley
value s′(z′ | ztest) as that of z. This continues to hold when the values are obtained by applying the
recursive formula in Theorem 1 with an arbitrary order among z and its copies.

Therefore, when applying the recursive formula in Theorem 1, we only process every point z in D
once, and skip its copies by directly multiplying the Shapley value by the number of its copies. This
is valid as a result of Lemma 5; imagine we are taking an order where z is behind all its copies and
processed first.

Note that the partial sum of the harmonic series can be accurately approximated by the Euler-
Maclaurin formula [16], or retrieved from a pre-computed table. Asymptotically, the Euler-Maclaurin
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formula [16] F (j) below converges to the harmonic series Hj =
∑j

i=1
1
i as j →∞.

F (j) = ln(j) + γ +
1

2j
− 1

12j2
,

where γ ≈ 0.5772156649 is the Euler-Mascheroni constant. In practice, we adopt the following
more accurate approximation scheme. When j is a small constant (e.g., j ≤ 1000), we can afford
to compute Hj exactly. Otherwise, we use F (j)− F (1000) +H1000 as an approximation (in O(1)
time where H1000 is pre-computed) to eliminate the noticeable error when j is relatively small. We
verify that the absolute error is at most 4.167× 10−8 for j up to 1 million and continues to decrease
as j increases. We believe this approximation is sufficient for our purpose.

Hence, the total time complexity is dominated by the sorting step, which is O(n log n). In addition,
distance computations cost O(dn) time. We summarize the results in the following theorem.
Theorem 6. Algorithm 1 computes duplication-based weighted kNN-SV in O(dn+ n log n) time.

6 Related work

Data Valuation. Data valuation aims to assign importance scores to training examples [3, 4, 5]. The
dominant approaches are based on the concept of leave-one-out (LOO), which measures the marginal
contribution of a data point to the utility function (e.g., model accuracy) when it is removed from the
training procedure. DataShapley [1] and its variants such as BetaShapley [17], DataBanzhaf [18],
least core [19], are all based on the LOO principle, but differ in the way the marginal contributions are
aggregated. We discuss several notable options beyond Shapley values below. Feldman and Zhang
[20] simulate the data values by LOO retraining albeit constrained on a small sample of the training
data, while DataModels [21] sacrifice the exactness of LOO to achieve better scalability by model
predictions. Another line of popular methods is gradient-based. TracIn [22] estimates the importance
of a training example by tracing the change in the test loss caused by the example during the training
process. Variations of influence functions [23, 24] have their roots in robust statistics [25], and offer
a gradient-based approximation of the LOO values.

Shapley Values. Shapley values [6] originated in cooperative game theory as a method for fairly
distributing gains among players, and have been widely adopted in multiple fields such as eco-
nomics [26]. Computing exact Shapley values is well-known to be expensive, i.e., #P-hard in
certain games [7]. This computational challenge has motivated various approximation techniques,
including mostly Monte Carlo sampling [27, 28, 29, 30], and specialized algorithms for specific
games [31]. Our work falls into the latter category. Early work on Shapley values with exogenous
coalitions distributes among players from a group G the utility util(G), respecting the so-called
relative efficiency axiom. Owen [14] and subsequent work [32] further consider a game between
coalitions. Our duplication technique creates natural coalitions in the game.

kNN-based Shapley Values (kNN-SV). The k-Nearest Neighbor (kNN) model provides a unique
opportunity for efficient computation of data Shapley values. Jia et al. [8] are the first to discover
an efficient algorithm in time O(ntestn log n) for unweighted kNN-SV. Wang and Jia [13] provide
refinements to the unweighted kNN utility function. The weighted kNN case turns out to be more
challenging due to the normalization factor in the utility function. Wang et al. [10] propose a time-
consuming dynamic-programming algorithm for weighted kNN-SV with a hard-label utility function.
Our work offers a more efficient approach for weighted kNN-SV.

7 Experiments

We investigate the following research questions in the experiments: (1) How does Algorithm 1
perform compared with the existing methods? We study this question with a task of noisy label
detection. See Section 7.1. (2) How does the DkNN-SV deviate from those of the unweighted and
weighted kNN-SV formulations? We visualize and compare them in Section 7.2. (3) How is the
scalability of Algorithm 1? We study this in Fig. 1b and further in Appendix B.3. (4) What is the
effect of the parameters on Algorithm 1? We study this in Fig. 1c and more in Appendix B.4.

Datasets. We evaluate the proposed methods on 11 datasets, whose statistics are listed in Table A1.
The size of the datasets ranges from 5K to 1M. Many of them are chosen to be of a moderate size, so
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Figure 1: Visualization of the Shapley values of different methods concerning a random test point
(Fig. 1a). The running time on a random 1-dimensional dataset of different sizes (Fig. 1b). The effect
of the parameter k on the performance of different methods (Fig. 1c).

as to allow us to compare with more costly baselines. By default, we randomly select 1% the data up
to 100 points as the testing set.

Baselines. We include the following baselines in the experiments: (1) unweighted kNN-SV (un-
weighted), (2) scaled unweighted kNN-SV (scaled) in Section 4.2, (3) weighted kNN-SV (mc) by
fast Monte Carlo sampling [8] with different number of samples, (4) random selection (random),
and finally (5) our duplication-based DkNN-SV in Algorithm 1 (dup). The hard-label weighted
kNN-SV [10] is not included as it fails to finish within 5 hours on small datasets (with default dis-
cretization bits nbits = 3), so we report comparison results with it on tiny datasets in Appendix B.1.
Our code can be found at a Github repository.2 By default, we run each algorithm three times and
report the average results.

7.1 Noisy label detection

To evaluate the performance of different methods, we follow the setup in previous works [8, 13, 10]
and use the task of noisy label detection. For each dataset, we randomly flip the labels of 5% of the
training data points, which forms a noisy subset of size n/20. We predict the noisy subset by the
top-t data points with the lowest Shapley values. We set t = 500 for all methods. Intuitively, stronger
data valuation methods should be able to detect noisy data points more accurately.

We tune the key parameter, kernel width σ, of all algorithms that use a kernel function as follows. We
randomly select 5% of the training data as a validation set. We train a weighted kNN classifier on the
rest of the data, and evaluate its accuracy on the validation set. We select the value σ that gives the
highest accuracy from a list of candidates. Note that no information about the noisy labels is leaked
to the validation process.

The results are shown in Tables 1 and 2 with standard deviation. Our proposed algorithm dup
consistently outperforms all the other methods on most datasets. Its running time is slightly higher
than that of the unweighted kNN-SV due to the additional cost in weighting the data points, but still
very efficient. The weighted kNN-SV (mc) achieves better performance as the number of samples
increases; however, it only reaches the performance of unweighted kNN-SV when the sample number
is as large as 1000 and is nearly 1000 times slower. The scaled kNN-SV (scaled) is comparable to
the unweighted kNN-SV. All methods perform significantly better than random selection.

7.2 Visualization of Shapley values

We visualize the Shapley values of different methods with respect to a random test point ztest as
follows. We sort all data points by an increasing distance to ztest and plot their Shapley values.
Besides, we plot the positive and negative values separately. We limit the number of points to the top
100 as the rest are all close to zero.

2https://github.com/Guangyi-Zhang/weighted-knnsv-via-duplication
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Table 1: F1 scores of different methods on the noisy label detection task. The best one is highlighted
in bold, and the second best is underlined. ‘-’ indicates a timeout.

unweighted dup scaled random mc-10 mc-100 mc-1000

phoneme 0.318 ± 0.074 0.283 ± 0.167 0.232 ± 0.090 0.032 0.225 0.298 0.318 ± 0.074
wind 0.286 ± 0.026 0.357 ± 0.017 0.277 ± 0.009 0.043 0.240 0.283 0.289 ± 0.017
cpu 0.507 ± 0.089 0.565 ± 0.014 0.444 ± 0.000 0.049 0.365 0.486 0.507 ± 0.096
2dplanes 0.342 ± 0.021 0.368 ± 0.017 0.330 ± 0.027 0.055 0.226 0.339 0.351 ± 0.016
apsfail 0.746 ± 0.004 0.795 ± 0.007 0.737 ± 0.020 0.055 0.520 0.732 0.749 ± 0.003
click 0.070 ± 0.021 0.072 ± 0.033 0.059 ± 0.011 0.055 0.054 0.067 0.069 ± 0.017
creditcard 0.119 ± 0.040 0.132 ± 0.050 0.120 ± 0.039 0.055 0.102 0.118 0.118 ± 0.036
fraud 0.879 ± 0.003 0.888 ± 0.010 0.874 ± 0.019 0.055 0.737 0.853 0.881 ± 0.011
pol 0.420 ± 0.003 0.447 ± 0.021 0.425 ± 0.024 0.055 0.266 0.390 0.430 ± 0.000
vehicle 0.140 ± 0.007 0.126 ± 0.024 0.119 ± 0.031 0.055 0.111 0.128 0.138 ± 0.007
poker 0.150 ± 0.002 0.305 ± 0.001 0.137 ± 0.001 0.050 0.069 - -

Table 2: Running time (seconds) of different methods on the noisy label detection task. The best one
is highlighted in bold, and the second best is underlined. ‘-’ indicates a timeout.

unweighted dup scaled random mc-10 mc-100 mc-1000

phoneme 1.2 ± 0.2 1.6 ± 0.2 1.3 ± 0.1 0.0 9.8 92.1 874.1 ± 25.5
wind 1.5 ± 0.0 2.4 ± 0.2 1.9 ± 0.1 0.0 14.9 129.2 1278.2 ± 26.6
cpu 2.3 ± 0.2 3.7 ± 0.2 3.2 ± 0.3 0.0 22.3 206.7 1975.4 ± 12.3
2dplanes 3.5 ± 0.3 5.8 ± 0.0 4.7 ± 0.2 0.0 33.5 307.5 2961.1 ± 69.8
apsfail 3.6 ± 0.4 5.7 ± 0.6 4.7 ± 0.5 0.0 33.7 299.0 2940.1 ± 47.7
click 3.4 ± 0.3 5.5 ± 0.6 4.5 ± 0.3 0.0 33.9 302.4 2931.1 ± 39.7
creditcard 3.4 ± 0.4 5.4 ± 0.4 4.7 ± 0.4 0.0 33.9 305.7 2952.4 ± 49.5
fraud 3.4 ± 0.2 5.3 ± 0.3 4.5 ± 0.3 0.0 33.9 300.0 2923.2 ± 27.9
pol 3.6 ± 0.3 5.6 ± 0.9 4.7 ± 0.5 0.0 33.1 297.2 2937.4 ± 29.1
vehicle 3.5 ± 0.0 5.6 ± 0.8 4.7 ± 0.3 0.0 34.6 307.2 2948.2 ± 4.2
poker 368.7 ± 41.9 637.4 ± 74.3 496.5 ± 36.7 0.0 3606.3 - -

The representative visualization is shown in Fig. 1a and more in Appendix B.2. All methods follow a
similar pattern and assign a larger absolute values to nearer points. One common property that is
shared by dup and mc is that they are able to differentiate the nearest points, while the unweighted
kNN-SV often assigns an equal value to, for example, the top 10 points.

8 Conclusion

In this paper, we introduced a novel variant of weighted kNN-SV that leverages a duplication
technique to reduce the weighted case to the unweighted one effectively. This variant successfully
captures the weighted nature of the kNN models and maintains the desirable axiomatic properties of
Shapley values, while being amenable to efficient computation.

We discuss limitations and directions for future work. Our method does not solve the original
weighted kNN-SV problem but rather a new variant of it. Though the resulting data values can be
justified axiomatically, they are not Shapley values. Several promising directions for future work
include extending our approach to kNN regression tasks, and investigating the applicability of our
duplication technique to other kNN-related scenarios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We believe that the claims made in the abstract and introduction accurately
reflect contributions and scope of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See the discussion in the conclusion (Section 8).
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We have clearly stated every major assumption and provided complete and
correct proofs for all the theorems.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided sufficient information in the paper and the associated source
code to reproduce the main experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released the code with usage instructions, and all data used in the
experiments are publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided all the details necessary to understand the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have reported standard deviation of key metrics in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources in Ap-
pendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and we believe that the research
conducted in the paper conforms to it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We propose a new methodology for the task of data valuation to facilitate fair
and interpretable distribution of the total utility generated by data, which can have a positive
societal impact. We are not aware of any potential negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any models or data that have a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have properly credited and mentioned the license and terms of use of the
data and code used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided sufficient documentation for the released code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs as an important, original, or non-standard component of
the core methods in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Missing proofs

Theorem 3. The group value ϕ(z | ztest) defined in Eq. (11) satisfies the following axioms:

1. Efficiency:
∑

z∈D ϕ(z | ztest) = util′(D′)− util′(∅) = util(D)− util(∅), that is, the sum of
all group values equals the total utility.

2. Symmetry: If z1 and z2 are such that util′(S′ ∪ {z′1}) = util′(S′ ∪ {z′2}) for all S′ ⊆
D′ \ {z′1, z′2} where z′1 and z′2 are copies of z1 and z2 respectively, then ϕ(z1 | ztest)/w(z1 |
ztest) = ϕ(z2 | ztest)/w(z2 | ztest).

3. Dummy Player: If z is such that util′(S′ ∪ {z′}) = util′(S′) for all S′ ⊆ D′ \ {z′} where z′
is a copy of z, then ϕ(z | ztest) = 0.

4. Additivity: If util′1 and util′2 are two utility functions, and ϕ1 and ϕ2 are their corresponding
values, then the value ϕ corresponding to util′1 + util′2 satisfies ϕ = ϕ1 + ϕ2.

Proof of Theorem 3. We prove each property separately.

Efficiency: It directly follows from the efficiency of Shapley values s′(z′ | ztest) in the duplicated
game. The equality util′(D′) = util(D) holds because of Proposition 2.∑

z∈D

ϕ(z | ztest) =
∑
z∈D

∑
z′∈D′:z′=z

s′(z′ | ztest) =
∑

z′∈D′

s′(z′ | ztest) = util′(D′)− util′(∅).

Symmetry: If two points z1 and z2 make identical marginal contributions through their copies, then by
the symmetry of Shapley values, each copy receives the same value, i.e., s′(z′1 | ztest) = s′(z′2 | ztest).
Thus,

ϕ(z1 | ztest)

w(z1 | ztest)
=

w(z1 | ztest)s
′(z′1 | ztest)

w(z1 | ztest)
= s′(z′1 | ztest) = s′(z′2 | ztest) =

ϕ(z2 | ztest)

w(z2 | ztest)
.

Dummy Player: If a point z contributes nothing through any of its copies, then by the dummy player
property of Shapley values, s′(z′ | ztest) = 0 for all copies z′ of z. Therefore,

ϕ(z | ztest) = w(z | ztest)s
′(z | ztest) = w(z | ztest) · 0 = 0.

Additivity: Let util′1 and util′2 be two utility functions with corresponding values ϕ1 and ϕ2. Let s′1
and s′2 be the Shapley values in the duplicated games for util′1 and util′2. By the additivity of Shapley
values, s′(z′) = s′1(z

′) + s′2(z
′) for the combined utility util′ = util′1 + util′2. Therefore:

ϕ(z | ztest) = w(z | ztest)s
′(z | ztest)

= w(z | ztest)(s
′
1(z | ztest) + s′2(z | ztest))

= w(z | ztest)s
′
1(z | ztest) + w(z | ztest)s

′
2(z | ztest)

= ϕ1(z | ztest) + ϕ2(z | ztest).

Proposition 4. In the genral case, the group Shapley values in Eq. (11) may be different from the
Shapley values of weighted kNN-SV in Eq. (4).

Proof of Proposition 4. Consider a dataset D = {z1, . . . , zn} where all points share ztest’s label.
Note that since all points have the correct label, the marginal contribution of adding any point to
a subset S is non-zero only when S is empty, regardless of the value of k. Let w(z1) = 2 and
w(zi) = 1 for i ̸= 1.

We first discuss the weighted kNN-SV on D. It is easy to see that

s1 =
1

n

(
1− 1

C

)
.

Next, we consider the unweighted kNN-SV on D′. By symmetry, we have s′z1 = s′z′
1
, so

ϕ(z1) = s′z1 + s′z′
1
=

2

n+ 1

(
1− 1

C

)
.

Equality s1 = ϕ(z1) holds only when n = 1. For n > 1 it holds 2
n+1 > 1

n .
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Table A1: Statistics of the datasets used in the experiments.
Dataset n d |Y|
phoneme 5404 5 2
wind 6574 14 2
cpu 8192 21 2
2dplanes 10000 10 2
apsfail 10000 170 2
click 10000 11 2
creditcard 10000 23 2
fraud 10000 30 2
pol 10000 48 2
vehicle 10000 100 2
poker 1000000 10 10

Lemma 5. Fix a test point ztest. Let z be a point in D. Then, every copy z′ of z has the same Shapley
value s′(z′ | ztest) as that of z. This continues to hold when the values are obtained by applying the
recursive formula in Theorem 1 with an arbitrary order among z and its copies.

Proof of Lemma 5. The first statement is a direct consequence of the symmetry property of the
Shapley values. The second statement follows by observing that any two copies of z share the same
label, which turns the second term in Eq. (7) into zero. Thus, their values do not depend on the order
of z and its copies.

Theorem 6. Algorithm 1 computes duplication-based weighted kNN-SV in O(dn+ n log n) time.

Proof of Theorem 6. Following Lemma 5, we take an order where each point z is behind all its
copies. Then we apply the recursive formula in Theorem 1 to compute the Shapley values. After
processing each point z ∈ D, we can skip its copies by multiplying s′(z | ztest) by the number of its
copies, as instructed by Lemma 5. Thus, no copies need to be materialized, and the time complexity
is dominated by the sorting step, which is O(dn+ n log n).

B Additional experimental details

Experimental Environment. All algorithms were implemented in Python 3.11. All experiments
were carried out on a Linux server equipped with 64 CPUs of Intel(R) Xeon(R) Platinum 8358P CPU
@ 2.60 GHz and 1511 GB RAM.

See Table A1 for the statistics of the datasets used in the experiments.

B.1 Comparison with hard-label weighted kNN-SV

Instead of resorting to the approximate version, we choose to compare with the exact version of this
baseline [10] over small datasets. The hard-label weighted kNN-SV is denoted as dp below. We
set the data size to be 300 by randomly sampling from the original datasets. We tune the parameter
of kernel width in the same fashion as in the main experiments. Very surprisingly, as reported in
Table A2, the dp is only slightly better than random guessing for the task of noisy label detection, and
is far behind the performance of the unweighted kNN-Shapley and our method. To make sure this is
not caused by bugs in the code, we further verify that its values are indeed consistent with those by
Monte-Carlo sampling with a hard-label utility function.

After careful inspection, we identify the key reason: a hard-label utility function may be less suitable
for the task of noisy label detection, or require stronger signal from distance-based weights. Unlike
the soft-label utility, it is unable to capture the fine-grained contribution of a data point. It requires
the noisy point to be a game changer for the prediction of its neighbors in order to be considered
harmful, which is not the case for most mislabeled points. A mislabeled point is often surrounded by
well-labeled points, and its ability to change the prediction of its neighbors is often negligible. Note
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Table A2: F1 scores of different methods on the noisy label detection task. The best one is highlighted
in bold, and the second best is underlined.

dup unweighted random dp

2dplanes 0.232 ± 0.090 0.250 ± 0.092 0.036 0.071 ± 0.058
apsfail 0.786 ± 0.143 0.696 ± 0.090 0.036 0.071 ± 0.058
click 0.036 ± 0.041 0.036 ± 0.041 0.036 0.036 ± 0.041
cpu 0.607 ± 0.071 0.536 ± 0.149 0.036 0.071 ± 0.101
creditcard 0.107 ± 0.124 0.125 ± 0.036 0.036 0.054 ± 0.068
fraud 0.821 ± 0.137 0.893 ± 0.071 0.036 0.036 ± 0.041
phoneme 0.321 ± 0.092 0.321 ± 0.041 0.000 0.018 ± 0.036
pol 0.339 ± 0.236 0.339 ± 0.147 0.036 0.071 ± 0.058
vehicle 0.143 ± 0.154 0.179 ± 0.189 0.036 0.107 ± 0.092
wind 0.250 ± 0.092 0.214 ± 0.154 0.089 0.036 ± 0.041
poker 0.071 ± 0.000 0.071 ± 0.000 0.054 0.000 ± 0.000

that resorting to a hard-label utility function is the key modification that enables the DP algorithm in
Wang et al. [10] to work.

B.2 Visualization of the Shapley values

See Fig. A1 for more visualization of the Shapley values.

B.3 Scalability

We compare the running time of unweighted and dup with different dataset sizes. We vary the size
of a random 1-dimensional dataset D from 100 to 10 M. The results are shown in Fig. 1b. As we
can see, the running time of dup follows that of the unweighted kNN-SV closely, confirming its
near-linear time complexity.

B.4 Effect of the parameter k

We examine the effect of the parameter k on the performance of representative methods. See Fig. A2
for more results on the effect of the parameter k. Overall, the performance of all methods is robust to
the choice of k.
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Figure A1: Visualization of the Shapley values of different methods concerning a random test point.
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Figure A2: Effect of the parameter k on the performance of different methods.
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