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Deep Reinforcement Learning-Based
Joint Optimization of Delay and Privacy
in Multiple-User MEC Systems

Ping Zhao“, Member, IEEE, Jiawei Tao, Kangjie Lui, Guanglin Zhang™, Member, IEEE, and Fei Gao

Abstract—Multi-access Edge Computing (MEC) enables mobile users to run various delay-sensitive applications via offloading
computation tasks to MEC servers. However, the location privacy and the usage pattern privacy are disclosed to the untrusted MEC
servers. The most related work concerning privacy-preserving offloading schemes in MEC either consider an impractical MEC scenario
consisting of a single user or take a large amount of computation and communication cost. In this article, we propose a deep
reinforcement learning based joint optimization of delay and privacy preservation during offloading for multiple-user wireless powered
MEC systems, preserving users’ both location privacy and usage pattern privacy. The main idea is that, to protect both the two kinds of
privacy, we propose to disguise users’ offloading decisions and deliberately offloading redundant tasks along with the actual tasks to
the MEC servers. On this basis, we further formalize the task offloading as an optimization problem of computation rate and privacy
preservation. Then, we design a deep reinforcement learning based offloading algorithm to solve such an non-convex problem, aiming
to obtain the better tradeoff between the computation rate and the privacy preservation. Finally, extensive simulation results
demonstrate that our algorithm can maintain a high level of computation rate while protecting users’ usage pattern privacy and location
privacy, compared with two learning-based methods and two Baselines.

Index Terms—Mobile edge computing, task offloading, privacy preservation, deep reinforcement learning, computation rate
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1 INTRODUCTION Users’ location privacy and usage pattern privacy are

ULTI-ACCESs Edge Computing (MEC), as an alternative
Msolution of the centralized mobile cloud computing,
enables the resource-constrained mobile devices to offload
the computation tasks generated by various delay-sensitive
applications, e.g., face recognition, interactive gaming, aug-
mented reality and healthcare monitoring [1], [2], to resource-
rich MEC servers, thereby significantly reducing both the
workload and the execution latency of mobile devices. None-
theless, the task offloading in MEC entails privacy risks of
mobile users [3], [4], [5], [6], [7].
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breached by the untrusted MEC servers during task offload-
ing [3]. Specifically, as shown in Fig. 1, the MEC server S;
can infer that the mobile user u3 is moving away from it
during time period (t1,t3) via analyzing the size of the off-
loaded tasks from w3, since a user away from the MEC
server, is very likely to locally computes the computation
tasks under the severe radio channel condition [3], [4]. More
seriously, more accurate moving trajectory of uz can be
inferred when several MEC servers collude with each other,
e.g., S; and S,. As a result, the location privacy of mobile
user us is disclosed to the untrusted MEC servers S; and Ss.
To make matters worse, the user u3 may be thereby vulnera-
ble to serious attacks, e.g., spams, or even blackmails and
physical violence, etc. In addition, MEC servers S; and S,
can evaluate the usage pattern of users u, and us respec-
tively via estimating the size of the offloaded tasks, when u;
and us offload the tasks to the servers under good radio
channel state [3]. Therefore, it is necessary to design the pri-
vacy-preserving offloading scheme in MEC systems.

While a great deal of studies concerning offloading in
MEC have concentrated on minimizing both the energy con-
sumption and the delay, there is less attention in the equally
important problem of privacy preservation in task offload-
ing. Specifically, most related work investigated the offload-
ing schemes in single-user [8], [9], [10], [11], [12], [13] or
multiple-user [14], [15], [16], [17], [18], [19], [20], [21] MEC
systems. However, these work neither considered the pri-
vacy disclosure during task offloading nor proposed the cor-
responding privacy-preserving algorithms to defend such
privacy risks. Another kind of work [22], [23], [24], [25], [26],
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Fig. 1. The illustration of mobile edge computing (MEC) and the privacy
disclosure during the task offloading in MEC.

[27], [28], [29], [30] focused on privacy-preserving MEC sys-
tems. Nevertheless, these work mainly concentrated on pri-
vacy preservation inherited from the conventional cloud
computing architecture, without studying the privacy issues
unique to MEC (i.e., the optimization of computation delay
and the privacy preservation in task offloading). The third
kind of related work concerning privacy-preserving offload-
ing scheme in MEC is largely classified into studies based on
encryption [31], [32], [33], [34], physical-layer techniques [12],
[35], [36], and learning [3], [37], [38]. Unfortunately, these
schemes based on encryption take a large amount of compu-
tation and communication cost, which is not applicable to
the resource-constrained mobile devices in practical MEC
scenarios. Studies based on physical-layer techniques pre-
vent the privacy disclosure from another perspective, physi-
cal layer, which is another research topic. Studies based on
learning only considered the MEC system consisting of a sin-
gle user and a single edge server, which is quite impossible
in the practical MEC scenarios. Overall, it is necessary to
design privacy-preserving offloading algorithm that is light-
weight, specifically intended for the MEC architecture, and
applicable to more practical MEC scenarios consisting of
more users and servers.

To address the above-mentioned problems, we propose a
deep reinforcement learning based joint optimization of
delay and privacy preservation during offloading for multi-
ple-user MEC systems, preserving users’ both location pri-
vacy and usage pattern privacy. The main idea is that, to
protect both the two kinds of privacy, we propose to dis-
guise users’ offloading decisions especially when users are
moving away from the MEC server and suffering from the
severe radio channel condition, and moreover deliberately
send redundant tasks (i.e., redundant information) along
with the actual tasks to the MEC server. On this basis, we
further formalize the task offloading as an optimization
problem to obtain the better tradeoff between the computa-
tion rate and the privacy preservation.

Specifically, we first take into account the wireless channel
power gains between the MEC server with multiple devices,
the computation capacities and energy constraints of multiple
devices, and further build the local computation model and
edge computation model. Then, we formalize the privacy pro-
tection model via disguising users’ offloading decisions and
deliberately offloading redundant tasks. Thereafter, on this
basis, we formalize a joint optimization problem of delay and
privacy, and design a deep reinforcement learning based
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privacy-aware task offloading scheme to solve such a prob-
lem, aiming to achieve a larger computation rate and a larger
privacy level. At last, we evaluate the performance of our
algorithm via comparing our work with the two learning-
based methods and two Baselines.

However, we are facing the following two challenges:

e We formalize the joint optimization of computation
rate and privacy preservation as a non-convex mixed
integer programming problem, since the offloading
decisions are unknown.

e It is difficult to deal with the continuous channel
gains while preserving privacy.

To addressing these challenges, we make the following

main contributions:

e To deal with the first challenge, we propose deep
reinforcement learning based privacy-aware task
assignment algorithm to joint optimize the comput-
ing mode decision, the privacy protection and the
system time allocation. Specifically, the decision and
the size of redundant information can be obtained
by the proposed neural network, and then, the opti-
mization problem can be reduced to a convex one.

e To addressing the second challenge, we introduce a
new reward for privacy protection. To concrete, the
reward for protecting privacy depends on the lost
computation rate and the weights of the location pri-
vacy and the usage pattern privacy.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. Then, Section 3 presents
some preliminary knowledge. Section 4 introduces the sys-
tem models and the problem formalization. Thereafter, Sec-
tion 5 presents the proposed offloading scheme in detail,
following by the performance evaluation in Section 6.
Finally, Section 7 concludes the paper.

2 RELATED WORK

2.1 Task Offloading in MEC Systems

Task Offloading in Single-User MEC Systems. The work [8]
designed a partial computation offloading model, minimizing
the latency and energy cost. Likewise, the follow-up work [9],
[10], [11] took the task queues and decomposing the tasks into
consideration respectively. The latest work [12], [13] proposed
to use physical-layer approaches and a powerful hierarchical
layered offloading mechanism respectively.

Task Offloading in Multiple-User MEC Systems. The work [16],
[17], [18], [19] considered task dependency between the two
devices, code-oriented partitioning, cached data, and users’
mobility in offloading respectively. The works [20], [21], [39]
proposed fine-grained task offloading and studied the offload-
ing in hierarchical MEC architecture respectively. The latest
works [40], [41], [42] focused on the multi-server multi-access
edge computing environment.

However, both the two kind of work above only investigated the
offloading schemes in MEC systems, and neither considered the
privacy disclosure during task offloading nor proposed the corre-
sponding privacy-preserving algorithms to defend such privacy
risks. In contrast, this paper proposed the privacy-preserving off-
loading scheme that optimizes both the privacy preservation and
the cost in task offloading.
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2.2 Privacy-Preserving MEC Systems

Work [22], [23] and the references therein aimed at the pri-
vate information risk imparted from the traditional MEC
computing structure. The follow-up studies [24], [25] uti-
lized chaff services to guard against eavesdropping. There-
after, literatures [26], [43], [44], [45] studied machine
learning based privacy preservation, and another work [27]
used asymmetric encryption to guarantees data privacy,
authentication, and integrity. The work [28] introduced an
economics model for MEC bearing physical layer offloading
intuition. The latest work [30] used feature learning
deduced from the social graph.

However, these work above mainly concentrated on privacy
preservation imparted from the traditional cloud offloading struc-
ture, without studying the privacy disclosure risks distinctive to
MEC (i.e., the optimization of computation delay and the privacy
preservation in task offloading). In contrast, in our work, we take
both the location privacy and the usage pattern privacy in task off-
loading into consideration, then formalize the computation delay
and the two kind of privacy during task offloading as an joint opti-
mization problem, and finally design an deep reinforcement learn-
ing-based algorithm to solve such an optimization problem.

2.3 Privacy-Preserving Offloading in MEC Systems
Several work focused on privacy-preserving offloading
scheme in MEC, which is largely classified into three kinds:
studies based on encryption, physical-layer techniques, and
learning. Studies based on encryption [31], [32], [33], [34]
take a large amount of computation and communication cost,
which is not applicable to the resource-constrained mobile devices
in practical MEC scenarios. In this work, we design an light-
weight deep reinforcement learning-based algorithm, concentrat-
ing on reducing the computation delay of task offloading and
guarantee both the usage pattern privacy and the location privacy.
After the training, the machine learning of our algorithm can get
the offloading decision quickly. Studies based on physical-layer
techniques [12], [35], [36] prevent the privacy disclosure from
another perspective, physical layer, which is another research
topic. In contrast, our work aims at protecting private information
in the data flow when tasks are offloaded to MEC servers. Studies
based on learning [3], [37], [38] considered the MEC system
with only one user and one edge server, which is quite impossible
in the practical MEC scenarios. In contrast, we consider the mul-
tiple-user MEC system which consists of multiple users, and one
edge server.

3 PRELIMINARY

3.1 Privacy Disclosure in MEC

In MEC, users’ location privacy and usage pattern privacy
may be breached by the untrusted MEC servers. To make
matters worse, users will suffer from various attacks, in the
event of the disclosure of the location privacy and usage
pattern privacy.

Disclosure of Location Privacy. As shown in Fig. 1, the
mobile user uj offloads tasks to the MEC server S; at time
t1, and locally computes tasks at time ¢;. Then, the MEC
server S; can infer that the mobile user u3 is moving away
from it during the time period (¢, ¢), since a user far away
from the MEC server is likely to locally compute the tasks
under bad radio channel condition [46]. To make matters
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worse, when MEC servers S;, S» and S3 collude, the accu-
rate trajectory of us can be inferred. Specifically, us offloads
tasks to the MEC server S; at time t3. In such a case, MEC
servers S1, S» and S3 can infer that u3 moves from the cover-
age area of MEC server S; to the coverage area of MEC
server S, without passing the coverage area of MEC server
Ss. As a result, the trajectory of us is disclosed to MEC serv-
ers Si, S, and Ss.

Disclosure of Usage Pattern Privacy. As shown in Fig. 1, the
MEC server S; can record and analyse the size of the off-
loaded tasks from mobile users u;, us within time ¢; ~ t3
and wus at time ¢;, since users running different applications
on mobile devices exhibit different usage pattern pri-
vacy [47]. For example, a specific pregnant woman running
the baby-care apps will have different usage patterns with
the office workers. Moreover, a young man addicted to
games exhibits different usage pattern with a patient who
runs the health monitoring APP on mobile phone. In a nut-
shell, users exhibit the unique usage patterns, and such
unique usage patterns can help the untrusted MEC servers
to identify a specific user from a set of anonymous users.

3.2 Adversary Model

In this paper, we assume that the MEC server is untrusted
and regarded as an adversary, as in the existing work [48],
[49], [50], [51], [52]. It means that, on one hand, the MEC
server honestly receives the offloaded tasks from users, per-
forms the computations, and returns the corresponding
results to users. On the other hand, it may try to reveal the
location privacy and usage pattern privacy of users for, e.g.,
commercial interests, and so on. In the following, the back-
ground knowledge and goal of the adversary are presented
in detail.

Adversary’s Knowledge. Users offload their tasks to the
adversary (i.e., MEC server), and the adversary computes
the results and returns these results to users. In this process,
the adversary is assumed to know the source device which
sends the tasks to the adversary, and also get the knowledge
of the size of the arrival tasks (in bits). To concrete, when the
adversary receives a task, it can know where the task is sent
from, and also know the the size of the task.

Adversary’s Goal. The adversary dedicates to reveal the
two kinds of privacy information of users, i.e., usage pattern
privacy and location privacy. Specifically, when the adver-
sary receives a task, it first has to obtain the current channel
condition. If the observed channel condition is good
enough, the adversary could reveal the usage pattern pri-
vacy of the user, with the help of the background informa-
tion, i.e., the source device and the size of the arrival task. In
such a case, the level of privacy leakage depends on the size
of the offloaded task. When the channel condition is bad
and the adversary does not receive the task, the adversary
could infer the user’s location privacy. Namely, the adver-
sary can infer that the user is far away from it, since the user
is very likely to locally computes the task with the bad chan-
nel condition.

3.3 Goal of Design

In this paper, our goal is to achieve the joint optimization of
delay and privacy preservation in the process of task
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Fig. 2. lllustration of system model and time allocation.

offloading in MEC systems. Specifically, the usage pattern
privacy and location privacy may be revealed in task offload-
ing and further be utilized by the adversary to infer more
personal information of users. For example, the usage pat-
tern privacy of a specific user will enable the adversary to
identify the user from a set of anonymous users. The patient
who runs the health monitoring APP on mobile phone tends
to own the unique usage pattern in contrast to other average
users [35]. Likewise, when the channel condition is bad and
the adversary does not receive the task, the adversary could
infer the user’s location privacy. Then, with the help of loca-
tion privacy, the adversary can infer users’ religious belief,
habits, health status, and so on [47]. Therefore, it is important
to protect the usage pattern privacy and location privacy. In
addition, in process of task offloading, locally computation
and task transmission definitely incur the computation
delay. Therefore, we design the optimal offloading scheme
to minimize delay and obtain the highest privacy level. This
algorithm can be deployed to run on an MEC server with
rich computation resources.

4 SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 2, the MEC system consists of one MEC
server and M wireless mobile devices. The MEC server
links to a stable power supply, and the wireless mobile
devices can be powered by the MEC server through Radio
Frequency(RF) wireless charging technology. It is worth
noting that the MEC server can charge multiple wireless
mobile devices at the same time, and the wireless devices
can store the power for computation tasks. For the stability
of our system, the wireless devices only harvest energy
once at the begin of each time slot. We assume that the
length of a time slot is 7', and the set of time slots can be
denoted by 7 = {0,1,...,}. The set of wireless devices is
denoted by M = {1,2,...,M}. At each time slot, all wire-
less devices will generate computation tasks locally, and
these tasks need to be computed locally or be offloaded to
the MEC server. We assume that the tasks created by the
wireless devices in our system are indivisible for the sake of
data security. So tasks can be only executed locally or be off-
loaded to the MEC server. We define M, and M; as two
mutually exclusive sets, where M, contains the wireless
devices executing tasks locally and M; consists of the
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TABLE 1

List of Notations
Symbol Description
M Set of wireless devices
T Set of time slots
Am Channel power gain at device m
ok Device m executes tasks locally
a{)l m offloads task to protect usage pattern privacy
0(5 m offloads task to protect two kinds of privacy
E, Energy obtained by the mth wireless device
T m Maximum local computation rate in a time slot
D,, Size of offloaded tasks of device m
b, Time the device m needs to offload tasks
Py The transmit power of the device m
™o Maximum computation rate at MEC server
P, The reward of protecting location privacy
Py The reward of protecting usage pattern privacy
P, Level of privacy preservation for device m

wireless devices offloading tasks to the MEC server. There-
fore, we can get Mo U M; = M.

Each device in our system can have five kinds of offload-
ing decisions at one time slot. We introduce five indicators to
denote the five decisions, i.e., o , o? , o?, &} and o, respec-
tively. Offloading decision &}, = 1 means that the wireless
device m executes the tasks locally. Offloading decision o?,
means that the wireless device m offloads tasks to the MEC
server but does not protect privacy. Offloading decision o3,
means that the wireless device m offloads tasks to the MEC
server and only protects the location privacy. The offloading
decision o}, means that the wireless device m offloads tasks
to the MEC server and only protects the usage pattern pri-
vacy. The offloading decision ), means that the wireless
device m offloads tasks to the MEC server and protects both
the usage pattern privacy and the location privacy simulta-
neously. So the decision set of the wireless device m at one
time slot can be described as a,, 2{a} o2 a3 ot od},
where o} Ud? Udd Ual Ul =1 and o) No? Nad N
o Na’ = @. Furthermore, the decision indicators should
satisfy the following operation constraints.

> an =M, M

meM

where «,,, € a,,.

At the beginning of each time slot, wireless devices har-
vest energy for computation or transmitting tasks. The
energy obtained by the mth wireless device is

E, = puPhpaT (m=1,...,M), 2)

where p denotes the effectiveness factor of harvesting
energy, P is the energy power transported by wireless
charging equipment at one time slot, h,, denotes the wire-
less channel power gain between the mth device and the
MEC server, a(0 < a<1) represents the protortion of charg-
ing time in a time slot, and a7" denotes the charging time.
We assumed that h,, is same for downlink and uplink, and
that h,, is static within one time slot. Wireless devices can
execute tasks locally while charging energy. The important
notations in this paper are listed in Table 1.
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4.1 Local Computation Model

At a certain time slot, when the tasks are executed locally,
according to the Law of Conservation of Energty, the con-
sumed energy k, fﬁer must be less than or equal to £,
where k,, denotes energy efficiency factor, f,, is the local
CPU’s process rate, and t,, denotes the time spent on com-
putation. Then, we can easily get the amount of data (i.e.,
tasks) locally computed f,,7,,/¢ where ¢ is the needed CPU
cycles for computing one bit of data. Thus, we could get the
local computation rate in one time slot

. f’”l, TTII

TLm = ¢T . (3)

In order to maximize the amount of data computed locally
as well as the local computing rate, we assume the wireless
device exhausts its harvested energy, ie., k, ,f;;m =FE,,
and it can continuously run all over the time slot as a device
can harvest energy and compute tasks at the same time, i.e.,
7, = T. Therefore, on the basis of Eq. (3), by substituting

fm = (ﬁ)% and 1, =T into Eq. (3), we can get the local

kmTm

computation rate

Em i Phuy i
* _ (km'l'm)J _ (M k:n a).j — hm L} 3
TLm = ) = o =M (k‘_) as, (4)
m

4.2 Edge Computation Model

We assume that all devices communicate with the MEC
server in the same frequency band. One MEC server just
can receive the tasks from one wireless device at the same
time, because of the limitation of time-division-multiplex-
ing. So, after harvesting energy, these wireless devices off-
load their tasks to the MEC server one by one. At a certain
time slot, the time that wireless device m needs to offload
tasks is denoted by b,, T where b,, € [0, 1) represents the pro-
portion of offloading time in a time slot. Therefore, we can
obtain the size of the offloaded tasks of the wireless device
m (in bits)

Bb,, T P°h,
Dm — m lo 1 + m'tm
Um 82 ( N 0

)s (5)

where B denotes the communication bandwidth between
the wireless device m and the MEC server, P denotes the
transmit power of the device m, N, denotes the power of
noise, and v, > 1 denotes the redundancy of offloaded
tasks, such as overhead message. Obviously, the interfer-
ence free environment is unrealistic. So we simulate the
channel quality in different environments through different
hm. When we encrypt the transmitted tasks, the redundancy
will increase inevitably.

Based on our research, we assume that both the comput-
ing resources and the transmitting ability of the MEC server
are much better than that of these wireless devices. So we
ignore the time of computation on MEC server, the time of
downloading feedback from the MEC server, and the con-
sumed energy for receiving the feedback. In a word, it fol-
lows the relationship between a and b,,,:
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Z b, +a<1. (6)

meMy

Hence, we can see that the MEC server’s computation rate
that can be supplied to one device equals to the task offload-
ing rate. To maximize the task offloading rate, we assume
that the device uses up the harvested energy in offloading.
This suggests that P? = b]i’”T', and we can obtain the maxi-
mum computation rate of the wireless device m

D m Bbm ,LLPO ah2
SA— — 1 14 E2m™m
TO,m T Um Og 2( + bm,NO ) (7)
= ebm In(1+ nQ&h’Q”L
m b7ﬂ,
where 7, £ %, e = %. Therefore, the whole computation

rate of all M wireless devices is
noah?

R= Z nl(%)%a% + Z In(1 +T’”) ®

mEMO kﬁl meM] U?TL m

eb,

To unify the equation above, we introduce one indicator
variable z,,

B 0,m € My,
IHL_{LmGM]' (9)

In this way, we can turn Eq. (8) into the following equation:

M hm 11
R= Z((l - xm)nl(k_)ga‘3

m=1

Bb,), ah?
F gy 2 (1 4 22 myy

vTTl m

(10)

4.3 Privacy Protection Model
4.3.1 Location Privacy

Based on the system model we proposed above, users are
more likely to offload the tasks to MEC server when wireless
channel gain between the MEC server and the devices are
large enough. So, wireless devices’” location information is
associated with the wireless channel gain. Since the untrusted
MEC server knows the offloaded tasks from a specific wireless
device, it can obtain the distance between the wireless device
and the MEC server. Moreover, by comparing the offloaded
tasks of the wireless user at different time, the untrusted MEC
server can obtain the moving trajectory of the device. To make
matters worse, when several MEC servers collude, they can
get the accurate location of the wireless device. To protect the
location privacy, the wireless devices can offload some tasks
deliberately when the channel condition is not good enough
to offload tasks. Accordingly, the reward of protecting loca-
tion privacy can be formalized as

an

m

2
P = B2 (1 +558) - 1wy, = 1) -1z}, = 0),

where 2/, denotes the task allocation strategy without pri-
vacy protection. Parameter !, is only related to the wireless
channel gain h,,. E means the mathematical expectation of
the improvement of computation rate from z/, = 0to z,, = 1
divided by the offload computation rate. The process of
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obtaining parameter E is shown in Algorithm 1. The compu-
tation complexity of Algorithm 1 is mainly affected by the
two for loops. Obviously, the computation complexity is
O(|T| | M|) at most, where |7 | and | M | mean the num-
ber of parameters ¢t and m respectively.

Algorithm 1. How to get E

Require: Wireless channel gain h, task allocation strategy !,
1: Create an empty array £
2: fortin 7 do
3: for m in M do
if z;, = 0 then
Compute AR between x
Add Tg_]? to the array
7: E is equal to the mathematical expectation of all elements
in B

=0and z,, =1

/
m

SANS L

4.3.2 Usage Pattern Privacy

During a time slot, the channel energy gain between the
wireless device m and the MEC server is relatively stable.
Moreover, the tasks created by one function or APP have
the same format. As a result, the wireless device m’s usage
pattern information is associated with the size of the off-
loaded tasks. Thus, by analyzing the tasks’ size of the device
m within a time period, the untrusted MEC server can
obtain the user’s usage pattern easily. To protect the user’s
usage pattern privacy, we propose to deliberately transmit
some redundant tasks when the user offloads tasks to the
MEC server. Note that the redundant tasks are the exact his-
torical tasks of users. Accordingly, the reward of protecting
usage pattern privacy can be formalized as

1 1 n ah?
Pu,nz :(f — 7)5bm ln(l =+ M) . ]I((L‘m = ]_)
m Um bm
h2
:AEb,n ln(l =+ T’Z;L—m) . I[(Im = 1)7 (12)
where A = % —-L . Parameter v/, denotes the initial redun-

dancy without pfi'Vacy protection.

In summary, on the basis of the location privacy and the
usage pattern privacy, the level of privacy preservation for
the wireless device m can be formalized as

Rn = ﬂlPlJn + ﬂZPu,mv (13)

where 8, and B, denote the weight of location privacy and
usage pattern privacy. By adjusting g, and 8,, we can bal-
ance the computing rate and the level of privacy protection,
which will be introduced in detail in the following.

4.4 Problem Formulation

Based on the models above, enhancing the privacy preser-
vation definitely decreases the computation rate, and vice
versa. To obtain the better balance between the privacy
preservation and the computation rate, we first formalize
the weighted sum of the computation rate and the privacy
level at a certain time slot
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M
hm 11
h x,v,b,a) = 1—2, Yab
Q( ) mz::l(( )nl(km)
Ebm 7)20[’1,2
m _1 1 m
T Um n( + bm )
Bb ah?
+:811'm(1 *inn)E m 1n(1+b)
Um m
pah; (14)
+ By Achy, In(1 + W—M)

m

s.t. Eq- (6)aU7n,>1abm207a207xm S {07 1}7

where h = {h,,|m e M}, x={z,lme M}, v={v,|lme
M} and b = {b,,|m € M} are vectors of h,,, x,, v, and by,
respectively, and other parameters are fixed (e.g., P, B and
so on). As it can be seen from the problem above, there is a
tradeoff between the privacy protecting and the computa-
tion rate. So, in our work, the objective is to find a better bal-
ance which achieves a higher computation rate and a higher
privacy level at the same time. Therefore, with the given
wireless channel gain h, we formulate the problem that
maximizes the sum of local computation rate, offloading
computation rate, and the reward of privacy protection as

Pl: maxxvp.Q(h,x,v,b,a), (15)

s.t. (6),v, 21,020,020, 1z, € {0,1}.

Therefore, Equ. (15) can take into account the constraints
on energy and delay while improving the computing power
of the system and protecting user privacy. For example, a
larger a seems to lead to a larger result. But in fact, a larger
a means more charging time, i.e., delay. At the same time,
this also means that the device can harvest more energy. In
the scenario of MEC, this will make the device tend to local
computing rather than offloading to the edge server with
stronger computing power, which will lead to the decline of
computing power. But P1 is a mixed integer programming
non-convex problem. It's very difficult to solve such an opti-
mization problem. Nevertheless, once x and v are given, P1
can be modified to a convex problem

P2 : maxy, ,Q(h, b, a) (16)

s.t. (6),vm=1,0,,>0,a>0,2,, € {0,1}.

This observation motivates us to propose a deep reinforce-
ment learning based privacy-aware task assignment algo-
rithm to solve such an optimization problem, which will be
introduced in the next section.

5 DEEP RL BASED PRIVACY-AWARE TASK
OFFLOADING ALGORITHM

In this section, to solve the optimization problem P2, we
propose a deep reinforcement learning based privacy-aware
task offloading algorithm. Specifically, as shown in Fig. 3,
the proposed offloading algorithm consists of two steps.
The first step is to seek appropriate b and a that maximize
Q(h, b, a), with the given hy, x, and v. The corresponding h;,
and optimal output {x,v} of Deep Neural Networks
(DNNs) that maximize Q(h, b, a) will be stored in training
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L. batch of
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as training set

Every &
time slot B

Training set

Fig. 3. Work flow of the deep reinforcement learning based privacy-
aware task offloading algorithm.

set. The second step is to train the DNNs with the training
set obtained in the first step every § time slots.

5.1 FindOutbanda
In this part, we will find out b and a by solving P2, given x
and v. To solve P2, we introduce a Lagrangian multiplier £

to constrain Eq. (6). Then, we can obtain the Lagrangian
form of P2

hm 11
L(a,b,&) = Y m(")ad

k,
meMg m

+ ) (BAT+ Ui)ebm In(1 +-—=2—"=

meMi m m

Bb,, r;Qah?n ;o
+B Y (Ev—mln(l +b—m)) 1(z, = 0)
meMy
17
+€(1_a_ Z bm)§ ( )
meMy
s.t. a,by,=0.

The Lagrangian dual function is

ming{max,pL(a,b,)|{=0}. (18)

Given v and x, P2 is a convex problem, and thereby the
dual problem in Eq. (18) can be solved. The final result satis-
fies the following conditions:

Zme/\/ll bm +a=1 (19)

Therefore, we can obtain the following results. With the
help of the following results, I can further get the relation-
ship between a and b,,, and find out the value of a and b,,.

Theorem 1. The relationship between parameters b,,, a and £ is

2
bT = nﬂi" ,Vm e My,
—WY ) -1 (20)
eXp(l + 5Vm)
where v, = 1/vy, + BoA + BE /vy, - I(z), =0), W(z)

denotes the Lambert-W function.

Proof. See Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TCC.2022.3140231. 0

Then we get the proportional relationship between a and
b,. It helps us find out the value of a and b,,. By taking a

1493

simple transformation of Eq. (20), we can obtain b,,
bm = 772h2 a- q)m(g)v

m (21)
where @, (&) 2 (—W(

-1
exp(1+ )
that >°, 1, bm +a =1 holds based on the analysis above.
Accordingly, by combining Eqs. (19) and (21), we achieve a
closed-form a

a= L
141, Z h?nq)m(g)

meMy

) —1)"". It can be seen

AT ().
© ©2)

We can see that both ®,,(£) and I'(€) are functions about &.

There is no doubt that the key to find out the value of a and
by, is to find £. The following Theorem 2 can help us find &.

Theorem 2. The optimal value of £ should satisfy the fol-
lowing equation:

2 3@ty 3 @)

meMy M

hQ
+7/m€772 Z — (23)
meMy 1+ 1/(I)m(§)

—-¢=0.
Proof. See Appendix B, available in the online supplemen-
tal material. 0

By solving Egs. (23), we can get the value of { and further
get the values of ¢ and b.

5.2 Create Training Set

Based on the analysis above, we can see that x and v are
crucial in solving P2. Hence, we train two deep neural net-
works that can provide best x and v based on h respec-
tively. When t =1, the parameters of both DNNs are
randomly initialized following a zero-mean normal distri-
bution, and the biases of both DNNs are initialized to 0.1.
There is no doubt that x=! and v'~! are not good solutions.
But, based on the parameters x! and v!, we can obtain more
suitable solutions. In the following, we will propose an algo-
rithm to find better x’ and v’ base on the wrong ones.

5.2.1 Find a Betterv

When the user needs to protect its usage pattern privacy,
the wireless device m can generate two sizes of redundant
data which correspond to two different levels of usage pri-
vacy protection. So, we use sigmoid as the activation func-
tion in the output layer, ie., S(x) = 1=, and we can get
the output v, € (0,1). Consequently, we can divide the
results into two categories, i.e., low and high levels of usage
pattern privacy preservation. Based on the parameter v,
i.e., the output of the deep neural network at time slot ¢, we
can create K different alternative optimal v;;, and we will
find the best solution from these different v;;. In theory, K;
meets the constraint K; <M + 1. The first privacy decision
v' can be obtained through the v/

my if vin > 0.5,
Vim = . 4
my if ), <0.5,

form=1,...,M. (24)
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mp and m; represent two different usage pattern privacy
protection levels respectively. Then, based on the first deci-
sion, the remaining v;;s can be generated though v;, which
is formalized as

my  if Uy > V1

my if v, =) and v, <0.5,
Pkt = mo if ), =}, and v}, >0.5,

my  if Uy < U1
form=1....M; ky=2,...,K;. (25)

For example, suppose that v! = [0.1,0.3,0.6,0.9] and K; =
4. Accordingly, the 4 usage privacy protection actions gener-
ated form Vt arev; = [7’)’7,()7 mo, My, ml], Vo = [ml, mi,mi, ml],
V3 = [mo,m07m1,m1}, and V4 = [mo,mmmo,ml]. Compared
with the exhaustive method which can generates 2"/ actions
at most, the complexity of our method has been greatly
reduced while maintaining the similar performance. The rea-
son is that the distance between v and vy, in our method is
more large than that of exhaustive method. Thus, we can
find a better v;, more easily than the exhaustive method.

5.2.2 Find a Betterx

The activation function of the deep neural network that out-
puts x is identical with that of the deep neural network that
outputs v. Thus, the method to find an optimal x is same to
v. Therefore, based on the x, i.e., the output of our deep
neural network at time slot ¢, we can create K, different x».
We could find the best x* from these K5 solutions.

1 if 2!, > 0.5 and ky = 1,

0 if xt <0.5 and ky = 1,
- 1 if Ty, > Th, ;s
Tham =1 f zt = ,CL; _, and z!, <0.5,

0 if zf = :er L and zt, >0.5,

0 if )y, < Th,
form=1... . M; ko =2,...,Ks. (26)

Generally, a larger K, or a larger K> is more likely to find a
better solution. But, it will also bring more computation dif-
ficulty, and vice versa. Hence, we choose large K, and K at
first to find the best solution among the solutions that we
can find. However, after long training period, small K; and
K, are enough to achieve a good computation rate. There-
fore, it is desirable to gradually reduce K; and K, with the
progress of training. For example, at the beginning, we set
K to be the maximum value of 10, and we will record the
value of k£ which obtain the optimal solution. At each time
slot, K is set to be ky.« + 1, where k. is the maximum
value of £ in the previous 50 time slots.

5.2.3 Create Training Set

We can achieve Q(h, x, v, b, a) by solving P2 through candi-
date xz; and vgp. Then, the (h,x* v*) which maximizes
Q(h,x,v,b,a) will be stored in or be used to update the
training set.
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5.3 Learning Training Set

In our system, there are two DNNS which are used to learn
the distribution of x and v respectively with the given h.
Once the number of data in the training set is larger than
the batch size, the two DNNs will be trained immediately.
We train the DNNs with a batch of training data to improve
the efficiency of learning. When the training set is full, the
newly generated training data replace the previously gener-
ated training data. Hence, the DNNSs only learn from the lat-
est training data which is better than the old one. As it can
be seen that there is almost no difference between the adja-
cent time slots, because we just add or update one training
data at one time slot. It will be very inefficient and useless
to train the DNNs every time slot. Therefore, the pseudo-
code of our algorithm can be expressed as Algorithm 2. The
for loop takes the majority computation cost of Algorithm 2,
and thus the computation complexity of Algorithm 2 is
O(|7T|) at most.

Algorithm 2. Online Deep RL Algorithm to Solve the
Offloading Decision Problem

Require: Wireless channel gain h
Ensure: x, v, b, a that maximize Q(h,x,v, b, a)
1: Initialize DNNs’ parameters
2: fortin 7 do
3:  Select right value of K and K, according to ¢
Select suitable batch size € and learning interval §
Input h to DNNSs to get x' and v*
Generate spare x;, and vy,
Compute Q@ for all x;, and vy, by solving P2
Select (xj, , v*kz? that maximize @
9:  Use (h, x’,;l ,v,’gz to update training set
10:  if t>e AND Remainder(¢/§) = 0 then
11: Randomly choose € training datas
12: Train the DNNs with chosen batch of training datas

6 SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
task offloading scheme by using tensorflow in python.

6.1 Experimental Setup

Existing Work for Comparisons. We compare our method with
the existing work [53] (hereafter DROO) which utilized rein-
forcement learning to investigate the task offloading in MEC
without privacy preservation. Moreover, we adapt our algo-
rithm to the neural network, and hereafter we call such
method as Neural Network. Neural Network preserves both
the two kinds of privacy, and it is based on neural network
while our work is based on deep reinforcement learning. In
addition, we also compare our work with two Baselines,
i.e., Baselinel and Baseline2. Specifically, Baselinel means
that at each time slot, the user device executes computation
tasks locally. Likewise, Baseline2 means that the tasks are
offloaded to MEC server at each time slot.

Metrics. We mainly use the following metrics to evaluate
the performance of our proposed method. Specifically, we
first use the metrics, Loss of learning x, Normalized Compu-
tation Rate R, Normalized @, to evaluate the convergence of
our algorithm. Then, we also investigate the offloading
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TABLE 2
Simulation Parameter Setting

Parameter Numerical value Parameter Numerical value
M 5 N 10

" 0.7 k 1026

P 3W ¢ 100 cycles/bit
B 2 x 10° Hz Ny 1070w

Ay 4.11 fe 915 MHZ

d, 2.8Hz ) 40

decisions, level of privacy preservation, and computation
rate of our proposed method, and further compare our work
with the two learning-based methods and two Baselines.

Parameter Setting. We consider ten wireless devices com-
municating with the MEC server at the same time. The com-
putation tasks generated by these devices can be offloaded to
MEC server or be executed locally. There are 30000 time slots
in our system, and we set § = 40, K = 10 and Ky =5 in the
default setting. The wireless channel gain h follows the free
space path loss model h,, = Aq(& }?Zi)d"’, where h,, denotes
the average channel gain, A; = 4.11 denotes the antenna gain,
fe =915 MHZ denotes the carrier frequency, and d. = 2.8
denotes the path loss exponent. The wireless channel gain of
each device at one time slot is generated from a Rayleigh fad-
ing channel model h,, = B Am, where ), is the independent
random channel fading factor following an exponential distri-
bution with unit mean. The values of other simulation param-
eters are listed in the following Table 2.
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» '
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6.2 Simulation Results

6.2.1 Convergence

We first investigate the learning speed of our DNNs by
adjusting the learning interval 8. The so-called learning
interval means that our algorithm will be trained once every
certain time slot. So, we can choose a certain § to balance the
relationship between the algorithm efficiency and the learn-
ing speed, via comparing the learning loss under different 6.
In Fig. 4a, with the increase of §, the decrease of the loss of
learning v slow down gradually. Likewise, in Fig. 4b, the
loss of learning x decreases with the increasing §. When § =
10, the loss of learning v and x decrease to 0 quickly, but the
operation efficiency of our algorithm will be at a low stan-
dard. When § = 80, the loss of learning v and x decrease
slowly, and the loss of learning v can not be reduced to 0 at
about 9000 time slot. But the operation efficiency of our
algorithm can be improved at present. So, choosing a
medium value for §, e.g, 40, is a good idea. Thus, we will set
8 to 40, set the learning rate v to 0.1, and the learning rate x
to 0.02 in the default settings. It is important to noted that
we set the weights of privacy w; and w, to 50% to balance
the location privacy and the usage pattern privacy.

In different scenarios, the wireless channel gains will alter
greatly, which can have a great effect on the results of the
whole computation rate R. So, it is wise to introduce R =
- g'( + to make the results easier observed, where the best solu-
tion maxR can be obtained by the exhaustive algorithm in
advance. As depicted in Fig. 4c, with the progress of the

—— Learning Interval=10
= = Learning Interval=20
-------- Learning Interval=40
—===Learning Interval=80 | |

Loss of learning v

5000 7000 9000
Time Slot

0 1000

3000

(b) Loss of Learning v versus §.

Normalized Q

0 5000 10000 15000 20000 25000 30000
Time Frames

(d) Normalized @ versus t.

Fig. 4. The convergence of our method in terms of loss of learning x, normalized Computation Rate R, and normalized weighted sum of computation

rate and privacy level Q.
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Fig. 5. The impact of privacy weight g1, 82 and needed cycles for processing one bit data ¢ on the offloading decisions.

learning of DNNss, the average normalized Rtends to 1 grad-
ually. We can observe that R is higher than 95% after about
3000 time slots. In addition, the light purple shadow in
Fig. 4c denotes the range of R over the past 50 time slots.
With the time slot moving on, the fluctuation of purple
shadow decreases gradually To better observe the variation
of @, we introduce Q = @ - As it can be seen in Fig. 4d, the
value of Q fluctuates greatly at first to balance computation
rate and the weighted privacy. But, with the processing of
our deep reinforcement learning, we find the balance
between computation rate and the weighted privacy. As a
result, the swing of the Q stabilized gradually and keep
slightly greater than 1. It proves that our algorithm can
obtain as much computation rate as possible while protect-
ing the privacy of wireless devices.

6.2.2 Offloading Decisions

Fig. 5 shows the impact of privacy weight 8,/8, and the
need cycles of one bit ¢ on the offloading decisions o, o?,

o3, al of . As it can be seen in Fig. 5a, in the last 6000 time
slots of test set, the number of devices that choose the off-
loading decision «?, has not changed a lot with the varying
weights. But, with the enlarging weight of location privacy,

the proportion of devices that choose the offloading

decision «!, decreases and devices that choose the offload-
ing decision o, increases gradually. In Fig. 5b, with the
enlarging weight of usage pattern privacy, the proportion
of devices that choose the offloading decision a?n decreases
and devices that choose the offloading decision !, increases
gradually. In Fig. 5c, with the enlarging weights of the two
kind of privacy, the number of devices that choose the off-
loading decision &}, o? decreases and devices that choose
the offloading decision o , o} , o> increases gradually. This
suggests that our algorithm can adjust the devices’ offload-
ing decisions to maximize (), with respect to users’ different
demands of privacy preservation. In addition, as depicted
in Figs. 6a and 6b, with the increase of the needed CPU
cycles for processing one bit, less devices choose to execute
locally, and more devices choose to offload tasks. But, when
task offloaded, the more CPU cycles required, more devices

will choose to offload without privacy protection.

6.2.3 Level of Privacy Preservation

We change the value of g;, 8, or ¢ and keep other factors
fixed to evaluate the level of privacy preservation of our
algorithm. Since literature [53] only concentrated on the
computation rate without privacy, we compare our work
with Neural Network, Baselinel, Baseline2. As it can be
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Fig. 6. The impact of privacy weight 1, 82 and needed cycles for processing one bit data ¢ on the offloading decisions.
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seen in Fig. 7, the average privacy protection reward of the
test set increases with the increment of the value of 8;, 8, or
B1 and B,. With the change of the value of 8, the average
privacy protection reward has little change. However, with
the change of the value of B,, the reward changes a lot,
which means that usage pattern privacy has a greater effect
on the average privacy protection reward. Obviously,
increasing the value of 8, and B, at the same time can get
the maximum average privacy protection reward. As it can
be seen in Fig. 8, in the case of 8; =6, B, = 1.0, the average
privacy protection reward of the test set increases with the
increment of the required CPU cycles ¢ for executing one
bit data at first. However, when the needed cycle ¢ contin-
ues to increase, the average privacy protection reward
decreases and gradually close to line baseline2. The reasons
for this phenomenon is that with the increases of the privacy
weights, our strategy tends to offload tasks, and with the
increases of local computation energy, our strategy tends to
offload tasks too, which makes the average privacy protec-
tion reward more and more close to that of baseline2. In the
case of B, =5, B, =0.95, a low privacy weight case, the
average privacy protection reward increases continuously
in the limited range of ¢ and gradually close to line base-
line2 too. That is because tasks are more likely to be exe-
cuted locally in a low privacy weight. These experimental
results show that our algorithm can adjust the offloading
decisions to adapt to the different privacy and computing
capabilities. Both our algorithm and Neural Network have
the same trend. But more importantly, average privacy
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Fig. 8. The impact of ¢ on the normalized weighted sum of computation
rate and privacy level Q.
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protection reward in our algorithm is larger. Moreover, the
average privacy protection reward in Baselinel and Base-
line2 is not affected by the increasing needed cycles ¢. That
is owing to that the two methods do not update offloading
decisions with the increasing needed cycles ¢.

6.2.4 Computation Rate

We investigate the impact of the required CPU cycles ¢ for
executing one bit data. We compare our work with Neural
Network, Baselinel, Baseline2, and DROO. As depicted in
Fig. 9, the normalized weighted sum of computation rate
and privacy level @ in these five algorithms decreases with
the increasing ¢. Moreover, it can be seen that the normal-
ized @ in our algorithm, Neural Network, and DROO is
more robust to the increasing ¢. In addition, the normalized
@ in our algorithm is larger than that in the other algo-
rithms, which means that our algorithm has better perfor-
mance in joint optimization of privacy protection and
computation rate. It is worth noting that the maxR in Q =
mg{ - 18 obtaAined when ¢ equals to 100. In addition, it can be
seen that () in Baselinel decreases continuously, and @ in
Baseline? is not affected by ¢. The reasons are that Baselinel
is only related to the local computing power, and that Base-
line2 is not constrained by the local computing power.

6.2.5 Computation Delay

In our deep reinforcement learning, the structure of neural
network is [10, 120, 80, 10], and the number of training sets
is 30000. We train with 10 training sets as a batch. The com-
putation delay of our work is 7.5 ms, 9.6 ms, 11.8 ms, 14 ms,
15 ms, 155 ms, 14.9 ms, and 14.5 ms respectively when
parameter ® is 85 cycles/bit, 95 cycles/bit, 105 cycles/bit,
115 cycles/bit, 125 cycles/bit, 135 cycles/bit, 145 cycles/bit,
and 155 cycles/bit. We can see that the computation delay
is linearly increasing with respect to the increment of
parameter @ at first, and then is little affected by the increas-
ing @. The reasons are that the computing capacity of edge
server is powerful, and that the computation delay is mainly
affected by the amount of the tasks.

7 CONCLUSION

In this paper, we investigated the tradeoff of computation rate
and privacy preservation for task offloading in a multi-user
MEC system. We first formalize the task offloading as an
optimization problem of computation rate and privacy
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preservation. Then, we design a deep reinforcement learning
based offloading algorithm to solve such an non-convex prob-
lem, aiming to obtain the better tradeoff between the computa-
tion rate and the privacy preservation. Finally, extensive
simulation results demonstrate that our algorithm can main-
tain a high level of computation rate while protecting users’
privacy, compared with existing work and Baselines.

Note that the untrusted MEC server may have other
kinds of background information, e.g., social relationship,
home address, and so on, which may enable the untrusted
MEC server to infer a special user’s more sensitive informa-
tion. What's more, based on these side information, there
may be other kinds of attacks. So in terms of the future
work, we plan to explore the privacy-preserving offloading
schemes against the untrusted MEC server with more kinds
of background information, and investigate other kinds of
attacks in task offloading.
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