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Abstract

While instructions fine-tuning of large lan-001
guage models (LLMs) has been proven to en-002
hance performance across various applications,003
the influence of the instruction dataset mixture004
on LLMs has not been thoroughly explored. In005
this study, we classify instructions into three006
main types: NLP downstream tasks, coding,007
and general chatting, and investigate their im-008
pact on LLMs. Our findings reveal that specific009
types of instructions are more beneficial for010
particular uses, while it may cause harms to011
other aspects, emphasizing the importance of012
meticulously designing the instruction mixture013
to maximize model performance. This study014
sheds light on the instruction mixture and paves015
the way for future research.016

1 Introduction017

Supervised fine-tuning (SFT) has been proven to be018

an effective approach to align large language mod-019

els (LLMs) with human instructions, enhancing020

downstream task performance, and facilitating code021

generation (Touvron et al., 2023; Muennighoff022

et al., 2023; Gunasekar et al., 2023). Previous re-023

search has demonstrated that directly transforming024

NLP downstream tasks (e.g., coreference resolu-025

tion) into instruction-response pairs, followed by026

fine-tuning models on such datasets, leads to im-027

provements in performance across various bench-028

marks (Sanh et al., 2022). Recent studies show that029

general-purpose instructions can enhance both the030

performance of LLMs on downstream tasks and031

their alignment with human intents (Taori et al.,032

2023; Touvron et al., 2023; Zeng et al., 2023). Ad-033

ditionally, incorporating code datasets has been034

shown to enhance a model’s logical reasoning abil-035

ities (Fu and Khot, 2022; Gunasekar et al., 2023).036

As LLMs continue to advance, researchers are037

keen to endow a single model with diverse abilities.038

One straightforward approach is to combine mul-039

tiple specialized instruction datasets. For instance,040

P3 Alpaca

Figure 1: Instruction type distribution of P3 and Alpaca.
For P3, the statistics come from the original dataset. For
Alpaca, we utilize a dependency parsing approach to
extract the root verb of each instruction.

to enhance a model’s code generation ability, we 041

might incorporate CodeAlpaca into the SFT data 042

(Chaudhary, 2023). However, there is no standard 043

way of selecting instruction datasets explicitly. The 044

process of mixing different datasets and understand- 045

ing how various instruction types interact with each 046

other remains underexplored. 047

In this paper, our focus is on evaluating the 048

model’s performance in three key areas: NLP 049

downstream task performance, coding ability, and 050

chat capabilities. We aim to investigate how dif- 051

ferent distributions of instruction datasets can im- 052

pact model performance across these diverse as- 053

pects. Our selected representative SFT datasets are 054

P3 (Sanh et al., 2022) for NLP downstream tasks, 055

CodeAlpaca (Chaudhary, 2023) for code genera- 056

tion, and Alpaca for general-purpose instructions. 057

According to Figure 1, P3 mainly contains five 058

types of tasks (including QA, classification, sum- 059

marization, etc.), while Alpaca can be classified 060

into about 1K types based on the root verb of each 061

instruction, where the top 3 root verbs are gener- 062

ate, create and describe. Additionally, codeAlpaca 063

is exclusively focused on code-related tasks. No- 064

tably, when compared to the general instructions in 065

Alpaca, instruction-response pairs in both P3 and 066

CodeAlpaca exhibit narrower variations, whether 067

in format or content. 068
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We conduct experiments with eight differ-069

ent mixture settings involving these instruction070

datasets, assessing model performance in NLP071

downstream tasks, coding proficiency, and align-072

ment skills (i.e., chat abilities). Our extensive ex-073

periments yield the following insights:: (1) Using074

a single type of STF data consistently improves075

the performance of the model on the correspond-076

ing task, while all three types of instructions can077

be used to improve NLP downstream task perfor-078

mance. (2) Incorporating instructions that are sim-079

ply reformatted from NLP downstream tasks (e.g.,080

P3) downgrades the model’s alignment skills, re-081

sulting in a worse chat experience. (3) Exploiting082

code instructions can improve the model’s coding083

ability and boost the alignment skills.084

Based on our findings, we suggest that re-085

searchers should carefully design the instruction086

mixture to maximize the model’s performance on087

the target usage while taking model size into con-088

sideration. We also appeal to the community to089

evaluate LLMs not only based on the benchmark090

performance but also on the alignment skills.091

2 Related Work092

Recent work has demonstrated that vanilla LLMs093

can be effective at following general language in-094

structions if tuned with instructions alongside their095

corresponding outcomes (Mishra et al., 2022; Sanh096

et al., 2022; Wang et al., 2022). To construct such097

instructional datasets, researchers have used a vari-098

ety of approaches. For example, Sanh et al. (2022)099

reformat a large set of supervised datasets using100

multiple prompt templates to create P3, a dataset of101

instruction-response pairs covering a wide range of102

NLP downstream tasks. Even though such LLMs103

perform well on NLP downstream tasks, they do104

not align well with human behavior as chatbots.105

To facilitate the general-purpose LLMs fine-106

tuning, Conover et al. (2023) introduced a high-107

quality human-annotated instruction dataset tai-108

lored for LLMs. However, this method is resource-109

intensive and lacks scalability. To address such110

issue, Wang et al. (2023) and Taori et al. (2023)111

firstly use an automatic data collection approach112

to collect a large-scale general instruction dataset.113

Based on the proposed datasets or approaches, later114

work expands the dataset size (Wu et al., 2023),115

language coverage (Li et al., 2023), and task types116

(Chaudhary, 2023; Yue et al., 2023).117

With the increasing capability of LLMs and118

availability of instruction datasets, researchers aim 119

to imbue a single model with diverse capabilities. 120

Sengupta et al. (2023) have attempted to blend dif- 121

ferent instruction datasets without considering the 122

data volume and task types. Longpre et al. (2023) 123

propose that increasing the number of tasks and 124

instruction diversity can enhance performance. In 125

contrast, Anand et al. (2023) excluded P3 from their 126

fine-tuning dataset, seemingly to enhance align- 127

ment skills. 128

Nevertheless, none of these works systematically 129

investigate the impact of instruction mixture on 130

LLMs. Our work aims to find the impact of mixing 131

together different instructions to align models. 132

3 Experimental Setup 133

SFT Datasets We select Alpaca (Taori et al., 134

2023) as the general instruction dataset for align- 135

ing models, which contains 52K instruction- 136

response pairs. We use P3 (Sanh et al., 2022) as our 137

NLP task instruction dataset, which is reformatted 138

for a wide range of NLP downstream tasks using di- 139

verse human-written templates. Since the number 140

of samples in each task varies vastly, we randomly 141

sample 1K data from each subtask formatted with 142

several corresponding prompts for diversity, result- 143

ing in 660K samples. For coding data, we choose 144

CodeAlpaca (Chaudhary, 2023), which is an in- 145

struction dataset focusing on code generation. It 146

contains 20K samples with different programming 147

languages. To ensure a balanced comparison, we 148

utilize a 20K subset from each type of dataset, ran- 149

domly sampled. Unless explicitly mentioned, the 150

experiments and discussions will be based on these 151

subsets for the rest of this paper. 152

Evaluation We divide the evaluation into three 153

parts: NLP benchmark performance, code gen- 154

eration, and alignment evaluation (i.e., chat abil- 155

ity evaluation). For NLP benchmarks, we use 156

ARC (Clark et al., 2018), Winogrande (Sakaguchi 157

et al., 2021), PIQA (Bisk et al., 2020), MMLU 158

(Hendrycks et al., 2020), RACE (Lai et al., 2017), 159

and HellaSwag (Zellers et al., 2019) datasets. For 160

coding, we use HumanEval (Chen et al., 2021), 161

which tests the pass rate of generated codes. For 162

alignment evaluation, we utilize FLASK (Ye et al., 163

2023) framework to score models’ alignment skills. 164

We keep the eight most frequent alignment skills 165

from the original evaluation set, resulting in 1,180 166

samples. Then we employ GPT-4 to assess mod- 167

els’ responses to each instruction sample based 168
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Model Data ARC Wino- PIQA MMLU Race Hella- Average HumanEval
(challenge) grande Swag @1 @10

LLaMA-2-7B

None 43.09 69.53 77.97 40.81 39.23 57.20 54.64 13.72 21.34
A 47.78 67.64 78.24 42.19 44.50 61.09 56.91 13.48 17.07
C 46.08 69.46 78.50 40.99 41.05 60.96 56.17 16.22 24.39
P 49.57 71.43 79.00 45.98 43.45 59.44 58.15 4.63 7.93
AC 47.10 66.93 78.13 40.42 44.21 59.70 56.08 17.50 25.00
AP 48.38 70.01 78.07 43.84 42.87 58.46 56.94 13.84 17.68
CP 47.95 71.27 78.40 44.91 44.40 60.69 57.94 16.77 20.12
ACP 49.66 68.03 77.86 43.52 44.59 58.73 57.07 15.98 23.78

LLaMA-2-13B

None 48.55 71.90 79.16 52.12 40.67 60.12 58.75 15.43 26.22
A 54.10 71.19 80.03 47.86 47.08 65.58 60.97 15.06 20.73
C 49.66 73.40 80.79 51.50 45.36 63.63 60.72 17.87 24.39
P 54.27 74.19 80.03 50.30 45.55 62.46 61.13 0.30 1.83
AC 51.62 68.75 80.58 48.68 44.40 62.97 59.50 17.07 27.44
AP 54.79 71.74 80.30 51.15 45.17 62.72 60.98 8.29 14.63
CP 55.38 74.59 80.52 51.42 45.55 63.85 61.89 18.23 25.00
ACP 54.44 71.51 80.03 49.98 47.08 63.14 61.03 20.24 32.93

Table 1: Results on NLP and code generation benchmarks. All experiments are done in a zero-shot setting. The best
result is in bold, and the second best result is underlined.
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Figure 2: NLP benchmark scores (avg) and Code bench-
mark (HumanEval) scores for LLaMA-2-7B tuned with
different mixing ratios and different number of data. We
keep the number of Alpaca to 20K and change the num-
ber of P3 and CodeAlpaca to get different ratios.

on human-written principles. See appendix A for169

demonstrations of these skills.170

SFT Setup We employ LLaMA-2 (7B, and 13B)171

models (Touvron et al., 2023). We fine-tune the172

models for two epochs in a generative way as in173

Radford et al. (2018). We use a linear scheduler174

with a 3% warmup rate and a batch size of 64. The175

maximum learning rate is 5× 10−5.176

4 Results177

For short, we denote Alpaca, CodeAlpaca, and P3178

datasets as A, C, P, respectively. For each model,179

we compare eight different data mixing strategies,180

denoted as None, A, C, P, AC, AP, CP, ACP, where181

None represents the vanilla model without fine- 182

tuning, and each of the other settings represents the 183

model fine-tuned with the corresponding dataset. 184

For example, AC means the model is fine-tuned 185

with both Alpaca and CodeAlpaca. We use the 186

same naming convention for the rest of the paper. 187

4.1 NLP Tasks and Code Benchmark Results 188

Table 1 shows the zero-shot results on NLP and 189

code generation benchmarks. Notably each type of 190

specialized instructions improve the performance 191

on the benchmarks they are designed for. In the 192

no-mixture setting (comparing A, C, and P), mod- 193

els fine-tuned on P3 achieve the highest average 194

score for NLP tasks, while models fine-tuned on 195

CodeAlpaca excel in code generation benchmarks. 196

Examining specific tasks reveals that a model’s 197

performance on specific task heavily relies on the 198

similarity between the target task and the tasks it 199

was fine-tuned on. For instance, Alpaca fine-tuned 200

models excel in Race and HellaSwag, which in- 201

volve story completion task similar to the Alpaca 202

instruction format. On the other hand, P3 fine- 203

tuned models outperform in ARC and Winogrande, 204

which involve multiple-choice QA and cloze tests, 205

aligning with P3’s data. 206

In the mixture setting, it’s evident that including 207

specialized data consistently boosts model perfor- 208

mance in corresponding benchmarks compared to 209

models without such data. For example, P, PA, 210

PC, and PCA perform better than None, A, C, and 211

CA on NLP downstream tasks. Focusing on code 212

benchmarks, incorporating general instructions 213
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Model Data Corr. Fact. Comm. Compr. Compl. Insight. Read. Conc. Avg.

LLaMA-2-7B

A 47.6 55.4 58.8 54.8 48.0 50.4 88.0 81.6 60.6
C 48.8 52.0 58.4 52.0 40.2 46.2 83.8 78.4 57.4
P 47.2 40.0 48.8 38.4 29.0 30.4 64.4 68.6 45.8
AC 49.0 54.4 59.6 56.4 48.2 49.8 86.6 85.6 61.2
AP 48.4 51.4 57.6 52.6 45.0 46.0 84.2 80.8 58.2
CP 47.0 49.6 54.2 48.8 36.2 41.8 78.2 77.2 54.2
ACP 50.4 53.0 59.0 53.8 47.2 46.8 85.0 81.8 59.6

LLaMA-2-13B

A 53.6 58.8 63.8 60.0 47.6 55.2 89.2 84.0 64.0
C 57.2 58.8 61.0 57.8 43.8 52.4 85.6 82.2 62.4
P 49.4 42.4 51.8 42.0 28.2 32.0 66.8 70.4 47.8
AC 55.6 61.0 66.6 61.2 51.4 54.0 88.4 86.6 65.6
AP 53.0 55.4 60.6 56.2 47.0 48.0 85.0 83.4 61.0
CP 53.0 53.2 57.4 53.4 39.0 45.2 81.2 82.6 58.2
ACP 51.6 55.6 61.8 57.0 47.0 48.6 87.0 83.0 61.4

Table 2: GPT-4 evaluation results on alignment skill accessment. We report eight dimensions, i.e., logical correctness,
factuality, commonsense understanding, comprehension, completeness, insightfulness, readability, and conciseness,
as well as average scores. Since vanilla model cannot follow instructions, we exclude its result here. The best result
is in bold, and the second best result is underlined.

consistently improves coding performance. For214

the 7B model, AC improves performance by +1.28215

and +0.61 compared to C, while the improvements216

are -0.80 (outlier) and +3.05 for the 13B models.217

Another intereting finding is that the 13B models218

achieve their best results with the ACP mixture,219

while the 7B models perform best with AC. This220

suggests that larger models have greater capacities221

and can better leverage various instructions.222

These findings highlight the importance of con-223

sidering model size and target usage when design-224

ing instruction mixture plans.225

Mixing with Different Ratios Despite knowing226

mixing specialized instructions are vital for bet-227

ter benchmark performance, how the mixing ratio228

correlates with the performance is also important229

for the best training strategy. As Figure 2 shows,230

given the number of general instructions fixed to231

20K, scores of both NLP task benchmarks and code232

benchmarks first decrease and then increase as the233

ratio of specialized instructions increases. They234

both reach the maximum when the ratio is 1.5,235

while slightly decrease when the ratio continues to236

increase to 2.0. We think this is because the model237

is overfitted to the specialized instructions when238

there are too many such instructions.239

Number of data Figure 2 also shows the perfor-240

mance change with respect to the number of fine-241

tuning data. We mix each type of instruction with242

the same number. We find that the performance of243

both benchmarks reaches a relatively stable state244

when the number of data is larger than 10K.245

4.2 Alignment Skills Results 246

Table 2 shows the alignment skills evaluation re- 247

sults. We adopt the same setup as FLASK, using 248

GPT-4-0613 to access the alignment skills and scal- 249

ing the scores to the range of [0, 100]. 250

From Table 2 we have the following findings: 251

(1) All three types of instructions improves model 252

alignment compared to the vanilla LLM. Among 253

these instructions, Alpaca stands out as the most 254

effective. It contains general-purpose instructions 255

and human-like responses, making it a better fit for 256

aligning models with humans. (2) While CodeAl- 257

paca alone doesn’t significantly enhance alignment 258

abilities, combining it with general instructions re- 259

sults in a substantial improvement of +0.6 (7B) and 260

+1.6 (13B) points These improvements are mainly 261

attributed to better compression, commonsense un- 262

derstanding, completeness, and conciseness. (2) 263

Mixing P3 data causes a drop of -2.8 (7B) and 264

-3.6 (13B) in average alignment skills. This indi- 265

cates that P3 tends to have a negative impact on 266

fine-tuning chatbot LLMs. 267

5 Conclusion 268

In this paper, we investigated different data mixing 269

strategies in instruction fine-tuning. We measured 270

models with diverse benchmarks and alignment 271

skills. We find that general instructions provide bet- 272

ter alignment skills as well as performance on NLP 273

benchmarks, code instructions improve coding and 274

alignment skills, while NLP task reformated in- 275

structions hinder alignment skills when combined 276

with other instruction types. 277
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Limitation278

Our work is subject to several limitations that279

should be addressed in future research:280

• We only use LLaMA-2 7B and 13B models281

in our experiments. Other models in various282

sizes can be used to verify our findings. We283

acknowledge that the model’s behavior may284

vary with different sizes, usually, larger mod-285

els have better capabilities, and hence may286

be able to handle more instructions without287

performance drop in any evaluation setting.288

• In this paper, we limit our instruction dataset289

to 20K and mainly compare the 1:1 ratio of290

all instruction types. We leave the exploration291

of the impact of more instructions and mixing292

ratios to future work.293

We acknowledge these limitations and propose that294

future work should focus on addressing them to295

help the community better understand the impact296

of instruction mixture on LLMs.297
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A Alignment Skills Demonstration 487

The FLASK framework annotates each instruction 488

with three skills that is needed to respond to the 489

instruction. We select 8 most frequent skills and 490

filter out instructions annotated with other skills, re- 491

sulting 1,180 instructions in the evaluation set. The 492

following are demonstrations of each alignment 493

skill from the annotation prompt. 494

Logical Correctness Is the final answer provided 495

by the response logically accurate and correct for 496

an instruction that has a deterministic answer? 497
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Factuality Did the model extract pertinent and498

accurate background knowledge without any mis-499

information when factual knowledge retrieval is500

needed? Is the response supported by reliable evi-501

dence or citation of the source of its information?502

Commonse Understanding Is the model accu-503

rately interpreting world concepts for instructions504

that require a simulation of the expected result or505

necessitate commonsense or spatial reasoning?506

Comprehension Does the response fulfill the re-507

quirements of the instruction by providing relevant508

information especially when the instruction is com-509

plex and includes multiple requirements? This in-510

cludes responding in accordance with the explicit511

and implicit purpose of given instruction.512

Completeness Does the response provide a suf-513

ficient explanation? Comprehensiveness and thor-514

oughness of the response should be considered,515

which depends on the breadth of topics covered516

and the level of detail provided within each topic.517

Insightfulness Is the response creative, original518

or novel, including new perspectives or interpreta-519

tions of existing information?520

Readability Is the response structured to pro-521

mote readability and coherence? Does the response522

exhibit excellent organization?523

Conciseness Is the response presented in a con-524

cise manner for the reader without any unnecessary525

information?526

For how a response corresponds to a specific527

level of an alignment skill and other details, please528

refer to their repository 1.529

1https://github.com/kaistAI/FLASK
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