
Deep Homomorphism Networks

Takanori Maehara*

Roku, Inc.
Cambridge, UK

tmaehara@roku.com

Hoang NT
University of Tokyo

Tokyo, Japan
hoangnt@g.ecc.u-tokyo.ac.jp

Abstract

Many real-world graphs are large and have some characteristic subgraph patterns,
such as triangles in social networks, cliques in web graphs, and cycles in molecular
networks. Detecting such subgraph patterns is important in many applications;
therefore, establishing graph neural networks (GNNs) that can detect such patterns
and run fast on large graphs is demanding. In this study, we propose a new GNN
layer, named graph homomorphism layer. It enumerates local subgraph patterns
that match the predefined set of patterns P‚, applies non-linear transformations
to node features, and aggregates them along with the patterns. By stacking these
layers, we obtain a deep GNN model called deep homomorphism network (DHN).
The expressive power of the DHN is completely characterised by the set of patterns
generated from P‚ by graph-theoretic operations; hence, it serves as a useful
theoretical tool to analyse the expressive power of many GNN models. Furthermore,
the model runs in the same time complexity as the graph homomorphisms, which
is fast in many real-word graphs. Thus, it serves as a practical and lightweight
model that solves difficult problems using domain knowledge.

1 Introduction

1.1 Background

Graph neural network (GNN) is a type of neural network that takes a graph as input. It has been applied
to many problems in various domains, such as influence prediction in social networks [60], page
ranking in web graphs [65], and chemical prediction in biological networks [39]. See textbooks [46,
32, 71] for the basics of GNN.

The expressive power of GNNs is the central research topic in GNN [63, 75]. A recent interest in
this topic is the detectability of subgraph patterns. Many graphs that appear in practice have typical
subgraph patterns. For example, social networks have many triangles, which indicates the clustering
structure of the society. Web graphs have many cliques that represent clusters of websites, such as
link farms. Molecular networks have benzene structures. Since detecting these subgraph patterns is a
common strategy in network science [52] and graph data mining [15], we expect that GNNs applied
in these fields equip expressive power to detect such patterns. Furthermore, since the graphs in these
applications are typically large, we also expect that the GNNs applied in these fields run fast.

Unfortunately, most of the existing GNN models do not meet these expectations. The commonly used
GNNs, called message-passing GNNs (MPGNNs), do not meet the expectation of expressive power,
as they can only detect tree-shaped patterns [72, 19]. More complex GNNs can detect subgraph
patterns, but typically do not meet either expectation: Higher-order GNNs assign values to k-tuples
of nodes instead of nodes [53, 50, 36]. They have the same expressive power as the k-dimensional

*Authors are listed in alphabetical order.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Weisfeiler–Lehman (k-WL) test1, which detects subgraphs of treewidth at most k [23]; however,
their complexity is typically Ωpnkq, which is not applicable to large graphs. Subgraph GNNs take a
small subgraph for each node and apply a GNN to compute an embedding [77]. Its expressive power
depends on the choice of the subgraph selection policy and the base GNN, and the standard choice of
the policy and the base GNN, it is strictly more expressive than the 1-WL test but less expressive
than the 2-WL or 3-WL tests [77, 25], which is often insufficient to capture the patterns of interest.

One promising direction is explicit pattern detection, which explicitly scans the patterns in the graph
and uses that information. This approach has been studied and applied in practice for a long time
before the GNN era [15, 52, 69, 26], and recent studies combine them with GNN [47, 56, 4, 9, 78, 49,
57]. This approach requires domain knowledge (or “subgraph feature engineering”) of what patterns
will be important, but often provides a more effective and efficient solution.

Amongst multiple notions of pattern enumeration, here we focus on graph homomorphisms, which
is the adjacency-preserving mappings from a pattern to the target graph (see Section 2.2 for the
definition). We focus on the following two theoretical GNN studies based on graph homomorphisms.
The first is by NT and Maehara [56], who extended the homomorphism number to graphs with
features and proposed using them as features of downstream models such as support vector machines.
The limitation of this approach is that it is inefficient in achieving a higher expressive power — Their
approach specifies a set of patterns P and computes the generalised homomorphism number for each
P P P . This detects all P P P (finite number of patterns) using Ωp|P|q time. On the other hand,
MPGNNs such as GIN detect all T P T , where T is the set of trees (infinite set of patterns) without
incurring a time complexity of Ωp|T |q. The second is by Barceló et al. [4], who proposed to add
the precomputed rooted homomorphism numbers from the specified patterns P‚ as node features of
the graph and to apply MPGNN. The important finding is that such a simple approach boosts that
the model detects all F P F‚ where where F‚ is a set of graphs obtained by attaching a pattern
P P P‚ to nodes of a tree (called P‚-trees) while keeping the time complexity of Op|P‚|q instead
of Op|F‚|q. This approach cannot capture the features of the patterns, which are important in many
GNN applications, and the patterns it captures are limited.

Our goal is to establish a connection with the GNN architecture and homomorphisms by extending
this line of studies. We observe that, according to the proof of [4], the method of [56] is inefficient
in achieving a higher expressive power because it is not “deep” (see Remark 5.4). Therefore, our
strategy to achieve more expressive GNNs is to deeply stack homomorphism-based layers.

1.2 Our Contribution

In this study, we propose generalised rooted graph homomorphism number, which applies a non-linear
transform to node features and then aggregates them along with graph homomorphisms (Section 3).
We then propose graph homomorphism layer that computes the generalised rooted homomorphism
numbers with learnable non-linear transforms from a set of patterns P‚ specified as a hyperparameter.
We refer to a GNN that stacks this layer deep homomorphism network (DHN or P‚-DHN to clarify
the patterns). See Figure 1 for an illustration and Section 4 for the details of our model.

By construction, our layer is trained and evaluated in the same time complexity as the generalised
rooted homomorphism numbers. Computing the homomorphism number is W[1]-hard in general [17];
however, in many practical cases, such as bounded degree graphs and bounded degeneracy graphs,
we can obtain faster algorithms by using the technique in graph homomorphisms (Section 4.2).

The expressive power of the model is analysed using a methodology similar to that in [4]. Let P‚

be a set of graphs obtained by iteratively attaching P ‚ P P‚ to the singleton (e.g., the set of trees is
obtained from an edge by this construction). Then, we can show that the expressive power of P‚-DHN
is characterised by the F‚-homomorphism distinguishability (Theorem 5.2). This characterisation
is useful for establishing the expressive power hierarchy of the GNN models. In particular, we
can discuss its relationship with k-GNN and subgraph GNNs using the underlying homomorphism
patterns. Another important consequence of this theorem is that it reveals the advantage of stacking
multiple GNN layers. Simply put, adding one layer corresponds to adding base patterns to each node
in the current set of patterns. Hence, GNN can detect exponentially many patterns and linearly deeper
patterns with respect to the number of GNN layers (Remark 5.4 in Section 5.1).

1There are a few definitions of WL tests with inconsistent dimension counts. We follow [13]’s definition,
which is also called the folklore Weisfeiler–Lehman test.

2

receptive field
(recognizable pattern)

Figure 1: Example Deep Homomorphism Network (DHN) built from two P‚-homomorphism layers:
C‚

3 and C‚
2 . By stacking different homomorphism patterns, DHN can detect new patterns without

explicit specifications. This figure demonstrates that the “spoon” pattern can be detected by stacking
C3 and C2 homomorphism layers.

Essentially, P‚-DHN is a “deep” version of NT and Maehara [56]’s method. Barceló et al. [4]’s
method is a DHN that uses the P‚-homomorphism layer for the first layer and the MPGNN layer for
the subsequent layers. This generalisation elucidates the relationship between the GNN architecture
and the corresponding homomorphisms, thereby facilitating a better understanding of the expressive
power hierarchy among different GNN architectures (Section 5.3).

The DHN model takes advantage of pattern enumeration and deep learning. Hence, we expect
the model to solve difficult graph problems that require the capture of subgraph patterns at reason-
able computational costs. We conducted experiments and observed that the DHN solved difficult
benchmark problems (CSL, EXP, and SR25) with fewer parameters than the existing models. For
real-world datasets, the proposed model showed promising results, but was still not competitive to
the state-of-the-art models that involve a lot of engineering (see Section 6 for discussion).

2 Preliminaries

2.1 Graphs

A graph G “ pV pGq, EpGqq is a pair of nodes V pGq and edges EpGq. We denote by e “ pu, vq

an edge between u and v 2 and Npuq “ tv : pu, vq P EpGqu the neighbours of u. An isomorphism
from G1 to G2 is a bijection π : V pG1q Ñ V pG2q such that pu1, v1q P EpG1q if and only if
pπpu1q, πpv1qq P EpG2q. Two graphs G1 and G2 are isomorphic if there exists an isomorphism.

We fix a compact set X Ď Rdin for the feature space. A graph with features is a pair pG, xq of
a graph G and a collection rxu P X : u P V pGqs Ď X V pGq of node features. Two graphs with
features, pG1, x1q and pG2, x2q, are isomorphic if there is an isomorphism π from G1 to G2 such
that x1,u1 “ x2,πpu1q for all u1 P V pG1q.

In this study, we mainly consider the node classification as it is a building block of all other GNN
applications. We employ rooted graph formulation [47, 56]. A rooted graph Gr is a graph G “

pV pGq, EpGqq with a distinguished node r P V pGq. We denote by G‚ if there is no need to specify
the name of the root node. Two rooted graphs Gr1

1 and Gr2
2 are isomorphic if there is an isomorphism

π from G1 to G2 such that r2 “ πpr1q. The isomorphism of rooted graphs with features is defined
similarly. A function f that takes a rooted graph with features pG, xq and produces some quantity
is said to be equivariant if fppG‚

1, x1qq “ fppG‚
2, x2qq if pG‚

1, x1q and pG‚
2, x2q are isomorphic.

This study only considers equivariant functions because it is a natural and desirable property for
the task (otherwise, the output depends on a synthetic ordering of nodes). Note that if we drop the
equivariance, it is easy to construct arbitrary expressive models [54, 64, 43, 18].
Remark 2.1 (Advantage of Rooted Graph Formulation). Many existing studies formulate a node
classification function as a function that takes a graph G as input and produces RV pGqˆd matrix as
an output. Therefore, mathematically, its codomain is the disjoint union

Ť

GPG RV pGqˆd where G is

2We consider simple undirected graphs, which is the standard setting in the theory of graph homomorphisms.
The proposed method can be easily extended to nonsimple directed graphs.

3

the set of all graphs. Existing studies mitigated such a complex codomain by assuming that all G
share the same node set, V pGq “ t1, . . . , nu, but this creates a limitation on the number of nodes.
The rooted graph formulation has no such issue as the domain is the set of rooted graphs and the
codomain is Rd. Note that the statement for rooted graphs is easily converted to non-rooted graphs.

2.2 Graph Homomorphism

A graph homomorphism from a graph F to a graph G is a mapping π : V pF q Ñ V pGq such that
pi, jq P EpF q implies pπpiq, πpjqq P EpGq; we refer to F as pattern graph and G as host graph.
As each homomorphism defines a subgraph of G as a homomorphism image πpF q Ď G, we can
recognise that a homomorphism represents a F -pattern in G.

We denote by HompF,Gq the set of graph homomorphisms from F to G and hompF,Gq by its
cardinality, called graph homomorphism number. If we know hompF,Gq for multiple F , we can
obtain a lot of information on the structure of G. For example, hompC,G1q “ hompC,G2q for
all cycles C means that G1 and G2 are cospectral and hompF,G1q “ hompF,G2q for all graphs
F means that G1 and G2 are isomorphic [44]. See Hell and Nesetril [33] for the basics of graph
homomorphisms.

For rooted graphs F r and Gs, a rooted graph homomorphism3 is a homomorphism from F to G that
maps r to s. We denote by HompF r, Gsq the set of rooted homomorphisms from F s to Gs.

2.3 Weisfeiler-Lehman Test

The (one-dimensional) Weisfeiler-Lehman test (WL test or 1-WL test) is a procedure to identify
whether given two graphs (with features) are non-isomorphic or potentially isomorphic [30]. The
WL-test calculates the “colour cu” of nodes u using the following recursive procedure:

cp0q
u “ xu, cpk`1q

u “

´

cpkq
u ,

!!

cpkq
v : v P Npuq

))¯

, (1)

where ttuu denotes the multiset. Here, each colour is a nested tuple of vectors and multisets; a
practical implementation applies a hash function to them, but they are equivalent in theory. Let
cpkqpGq “

!!

c
pkq
u : u P V pGq

))

be the multiset of colours in the k-th step. If cpkqpG1q ‰ cpkqpG2q

for some k, then G1 and G2 are not isomorphic. Dvořák [23] proved that two graphs G1 and G2 are
indistinguishable by the WL-test if and only if hompT,G1q “ hompT,G2q for all trees T .

2.4 Graph Neural Networks

Graph neural network (GNN) is a neural network that takes a graph as input. The most commonly
used GNN is a message-passing GNN (MPGNN), which computes the node values by

hp0q
u “ ρp0qpxuq, hpk`1q

u “ ρpk`1q
´

hpkq
u , ϕpkq

´!!

hpkq
v : v P Npuq

))¯¯

, (2)

where ρpkq is a learnable function and ϕpkq is a (learnable) multi-set function, i.e., a permutation-
invariant function for the arguments, for each k. It is easy to see that the MPGNN defines equivariant
functions. A typical implementation of MPGNN is graph isomorphism network (GIN) [72], which
uses the summation for ϕpkq.

Due to the similarity between the WL test (1) and the MPGNN (2), it can be proved that the expressive
power of the MPGNN is identical to the WL test [72]. As the WL-indistinguishability is equivalent
to the homomorphism-indistinguishability from all trees, as mentioned above, we can conclude that
MPGNN can only detect tree-shaped patterns.

3 Generalised Homomorphism Numbers for Rooted Graphs with Features

A pattern graph with transformations is a pair pF ‚, µq of a rooted graph F ‚ and a collection of
continuous functions µ “ tµp : p P V pF ‚qu defined on the nodes of F ‚, where each µp maps their

3Paul-Pena and Seshadhri [58] called this vertex homomorphism.

4

inputs to Rd. The generalised rooted homomorphism number homppF ‚, µq, pG‚, xqq from a pattern
graph with transformations pF ‚, µq to a rooted graph with features pG‚, xq is then defined by

homppF ‚, µq, pG‚, xqq :“
ÿ

πPHompF ‚,G‚q

ź

pPV pF ‚q

µppxπppqq, (3)

where the product in the right-hand side is the element-wise product. Note that NT and Maehara
[56]’s generalised homomorphism is our special case, which uses the same transformation to all
nodes.

A generalised homomorphism number maps a graph with features to a real vector (not necessarily a
number). By definition, two isomorphic graphs with features have the same generalised homomor-
phism numbers for any pattern graph with transformations. Here, the converse also holds.
Theorem 3.1. Let pG‚

1, x1q and pG‚
2, x2q be rooted graphs with features. pG‚

1, x1q and pG‚
2, x2q are

isomorphic if and only if homppF ‚, µq, pG‚
1, x1qq “ homppF ‚, µq, pG‚

2, x2qq for any pattern graphs
with transformations pF ‚, µq.

Proof Sketch. We use the Lovasz theorem that any finite relational structure is determined from the
number of homomorphisms [44]. First, we recognise graphs with features as a relational structure
consists of the adjacency relation and feature value relation. Then, we show that the number of
homomorphisms as the relational structure (i.e., the number of mappings that preserve the edges and
feature values) is computed using our generalised homomorphism by suitably choosing µ.

Let F‚ be a set of pattern graphs with transformations. We say that two rooted graphs with fea-
tures, pG‚

1, x1q and pG‚
2, x2q, are F‚-homomorphism indistinguishable if homppF ‚, µq, pG‚

1, x1qq “

homppF ‚, µq, pG‚
2, x2qq for all pF ‚, µq P F‚; Theorem 3.1 states that F˚-homomorphism indistin-

guishability coincides with the isomorphism if F˚ is the set of all pattern graphs with transformations.
In general, homomorphism indistinguishability forms an equivalence relation.
Remark 3.2. In graph homomorphism literature, weighted homomorphism number [45] is studied
more frequently. It is essentially a generalised homomorphism number with linear transformations,
and it cannot distinguish some non-isomorphic graphs [12, 70]. However, as shown in the above, our
generalised homomorphism mitigates this issue by introducing the non-linearity of µ.

4 Deep Homomorphism Networks

4.1 Definition

Let P‚ be a set of rooted graphs. A graph homomorphism layer with respect to P‚ is a GNN layer
defined using the generalised homomorphism number as follows:

GHLP‚ ppGu, xq; ρ, tµP ‚ : P ‚ P P‚uq “ ρ phomppP ‚, µP ‚ q, pGu, xqq : P ‚ P P‚q , (4)

where pGu, xq is the input rooted graph with features, and ρ and µP ‚,p for all P ‚ P P‚ and p P V pP ‚q

are neural networks. We often omit neural network parameters and write it as GHLP‚ ppGu, xqq.
The input dimensionality of ρ is the sum of the output dimensionalities of µP ‚,u, and the input
dimensionality of µP ‚,u is the dimensionality of the input h. The layer defines an equivariant function
since the graph homomorphism numbers are equivariant functions.

Deep homomorphism network (DHN) is a neural network obtained by “deeply” stacking the graph
homomorphism layers as follows:

hp0q “ x, hpk`1q “ GHLPpkq‚ ppGu, hpkqqq. (5)

We denote by pPp1q‚,Pp2q‚, . . . q-DHN if we want to emphasize the pattern sets, and we denote
P‚-DHN for pP‚,P‚, . . . q-DHN. By definition, a DHN is an equivariant function. The number of
parameters in DHN is proportional to the number of nodes in the pattern graphs.
Example 4.1 (DHN generalises MPGNN). Let P‚ “ t‚, ‚ ´ ˝u be the patterns consisting of
single-node and single-edge graphs. Here, we see that the P‚-DHN is a MPGNN.

We first consider the single-node graph ‚. There is the unique homomorphism from ‚ to Gu given by
πp‚q “ u; hence,

hompp‚, tµ‚,‚uq, pGu, xqq “ µ‚,‚pxuq. (6)

5

We then consider the single-edge graph ‚ ´ ˝. As the set of homomorphisms from ‚ ´ ˝ to Gu

corresponds to the set of edges incident to u, we have

hompp‚ ´ ˝, tµ‚´˝,‚, µ‚´˝,˝uq, pGu, xqq “
ÿ

vPNpuq

µ‚´˝,‚pxuqµ‚´˝,˝pxvq. (7)

By setting µ‚,‚pxq “ x, µ‚´˝,‚pxq “ 1, and µ‚´˝,˝pxq “ x for some µ˝, we obtain the MPGNN:

GHLP‚ ppGu, xqq “ ρ

¨

˝xu,
ÿ

vPNpuq

xv

˛

‚. (8)

DHN generalises several existing models. We review such results in Sections 5.2.

4.2 Computational Complexity

Evaluating a graph homomorphism layer with respect to P‚ on pG, xq takes the same time complexity
as evaluating homppP ‚, µq, pGu, xqq for all P ‚ P P‚ and u P V pGq; therefore, its computational
complexity is at least that of hompP,Gq for some P ‚ P P‚. We cannot expect a linear-time
algorithm to evaluate this quantity without any assumption because computing hompP,Gq is a W r1s-
hard problem parameterised by |V pP q| [29]. However, there are several cases that admit efficient
algorithms for computing hompP,Gq. We see that these results can be generalised to our generalised
homomorphism numbers as follows.

Case 1: P has a bounded treewidth Treewidth is a parameter that represents how far the graph
is from being a tree; see [21] about treewidth. If P has a bounded treewidth, we can compute
hompP,Gq in OpntwpP q`1q time using the dynamic programming algorithm [20]. The algorithm is
easily extended to generalised rooted graph homomorphism numbers; see Section A.1. Hence, we
can evaluate the graph homomorphism number in polynomial time in this situation.

Case 2: G has a bounded degree In some examples, such as molecular networks, the host graph
G has a small maximum degree. In this case, we can enumerate HompP ‚, Guq in constant time by
brute-force enumeration. Therefore, we can evaluate the graph homomorphism layer in linear time.

Case 3: G has a bounded degeneracy and P has a bounded DAG-treewidth A graph G has
degeneracy at most k if there is an ordering of nodes u1, . . . , un such that |tj : uj P Npuiq, j ě

iu| ď k for all i “ 1, . . . , n [41]. Many real-world graphs have small degeneracy [7]. Hence, it is
practically important to have algorithms that run fast on graphs of bounded degeneracy. Bressan [10]
introduced DAG-treewidth, and proposed an algorithm for computing the homomorphisms number in
OpndagtwpP qq time using the dynamic programming algorithm. An important special case is that P
has no induced cycles of length greater than five. In this case, the DAG treewidth is one [58] (the
converse is also true); hence, we can evaluate the homomorphism numbers in linear time. To clarify
the procedure, we put a linear-time algorithm for the quadrangle C4; see Section A.2 in Appendix.

5 Theoretical Analysis of P‚-DHN Model

5.1 Expressive Power of P‚-DHN Model

In Example 4.1, we observed that a DHN with simple patterns t‚, ‚ ´ ˝u contains a MPGNN. Here,
we focus to the phenomenon that, although it aggregates local information along with such simple
patterns, it has a great expressive power specified as the 1-WL test [72], which distinguishes all T ‚

homomorphism-distinguishable graphs, where T ‚ is the set of all trees [23]. The goal of this section
is to generalise this relation to arbitrary patterns.

Let F ‚ and P r be rooted graphs. The rooted product of F ‚ and P r at p P V pF ‚q is the rooted graph
obtained by attaching r at p, i.e., F ‚ ˚p P

r :“ F ‚ YP r{tp, ru [28]; see Figure 2 for an example. Let
F‚ and P‚ be sets of rooted graphs. We denote by F‚ ˚P‚ “ tF ‚ ˚u P

‚ : u P V pF ‚qu the set of all
rooted products. We denote by P‚ “

Ť

l“0,1,...pP‚q˚l the set of all graphs obtained by the iterated
rooted products, where pP‚q˚0 “ t‚u and pP‚q˚l “ P‚ ¨ ¨ ¨ ˚ P‚ (l times). We can easily verify the
following example.

6

p

˚ “

Figure 2: Rooted product of two graphs, the triangle and the edge, at p.

Example 5.1. t‚ ´ ˝u is the set of all rooted trees T ‚.

Now Example 4.1 and Example 5.1 lead to the conjecture that the expressive power of P‚-DHN is
characterised by the iterated rooted product P‚ of the pattern graph. We prove this as follows, which
is the main theorem in this paper.
Theorem 5.2. Let P‚ be a set of rooted graphs. For any two rooted graphs with features pG‚

1, x1q

and pG‚
2, x2q, the following are equivalent.

1. For any P‚-DHN h, we have hpG‚
1, x1q “ hpG‚

2, x2q.

2. pG‚
1, x1q and pG‚

2, x2q are P‚-homomorphism indistinguishable.

The key lemma to prove this theorem is the following lemma, which decomposes the homomorphism
from rooted product into the homomorphisms from the factors.
Lemma 5.3 (Chain Rule). Let F ‚ be a rooted graph obtained by taking the rooted product of P ‚

and F ‚
p at node p for each p P V pP ‚q. Then, for any µ, there exists µp such that

homppF ‚, µq, pG‚, xqq “
ÿ

πPHompP ‚,G‚q

ź

pPV pP q

homppF ‚
p , µpq, pGπppq, xqq. (9)

for any rooted graph with features pG‚, xq.

Proof Sketch of Theorem 5.2. Instead of proving the equivalence between 1 and 2, we introduce a
variant of WL-test, named P‚-WL test, and introduce the third statement: pG‚

1, x1q and pG‚
2, x2q are

P‚-WL indistinguishable, and prove the equivalence of 1, 2, and 3. Here, 3 ñ 2 is clear from the
definition of the P‚-WL test, which is similar to that of [72]. 1 ñ 2 is straightforward by seeing that
a generalised homomorphism from any F ‚ P P‚ is expressed by a DHN. To prove 2 ñ 3, we prove
that the colour assigned by P‚-WL test is uniquely identified by evaluating suitably-chosen pattern
graphs F ‚ P P‚ with transformations. This part is similar to [4] but we use the chain rule above and
a basic results from multi-symmetric polynomials.

Remark 5.4. Establishing deeper GNN models is a central challenge in GNN community [42].
Although deeper models do not necessarily perform well in practice [37, 62], in theory, Theorem 5.2
and its proof clearly show the advantage of deeper GNNs in terms of the number of pattern graphs —
From the proof of Theorem 5.2, we see that l-layer DHN models can count homomorphisms from
2Oplq different patterns. In this sense, one could say that “the expressive power of a GNN grows
exponentially in the number of layers.”

5.2 Relationship with Existing Models

In this section, we review the relationship between the proposed DHN and some existing models.
Example 5.5 (DHN generalises NT and Maehara [56]). Our first-motivated paper, NT and Maehara
[56], proposed to compute (their version of) generalised homomorphism number and use it as a
feature of downstream models for graph classification. By definition, our DHN can be seen as a
multi-layer version of their approach.
Example 5.6 (DHN generalises Barceló et al. [4]). Our second motivated paper, Barceló et al. [4],
proposed to append homomorphism numbers from arbitrary pattern P‚ as node features. This can be
seen as a DHN that uses an arbitrary pattern P‚ in the first layer and the MPGNN pattern t‚, ‚ ´ ˝u

in the subsequent layers, i.e., it is the pP‚, t‚, ‚ ´ ˝u, t‚, ‚ ´ ˝u, . . . q-DHN. They showed that their
model can detect graphs called P‚-patterns, which is obtained by attaching P‚ to nodes of a tree.
This follows from our theorem, as the P‚-patterns are exactly the graphs obtained by the rooted
product to a tree and P‚.

7

Example 5.7 (DHN generalises Paolino et al. [57]). Recently, Paolino et al. [57] proposed a GNN
that aggregates information over cycles. Their model is a DHN that uses the set of cycles C‚

l “

tC‚
1 , . . . , C

‚
l u of lengths at most l as a pattern set, i.e., it is the C‚

l -DHN. They showed that their
model can detect cactus graphs with a maximum cycle length of l. This follows from our theorem
since C‚

l are the set of such cactus graphs.

Example 5.8 (DHN generalises the most expressive subgraph GNNs). For each layer, a subgraph
GNN takes the l-hop neighbours and applies a GNN to compute the value of the root node [77]. The
most expressive GNN in this class uses the universal GNN on the subgraph. If the underlying graphs
have a bounded degree, such a GNN is an instance of DHN — Let G‚

d,l be the set of all rooted graphs
of degree at most d and radius at most l. Then, the G‚

d,l homomorphisms identify G‚
d,l [44]. Therefore,

G‚
d,l-DHN has the same expressive power as the subgraph GNN with universal GNN if the underlying

graphs have degree at most d.

5.3 Applications: Expressive Power Hierarchy

Theorem 5.2 is a powerful tool for comparing the expressive power of different GNN models. Let
A and B be two GNN models. We say that A is more expressive than B (denoted by A ľ B)
if hAppG‚

1, x1qq “ hAppG‚
2, x2qq for all hA P A implies hBppG‚

1, x1qq “ hBppG‚
2, x2qq for all

hB P B, and A is strictly more expressive than B (denoted by A ŋ B) if the A ľ B but B ń A.
To prove A ŋ B, we typically show that A can implement B, and find a pair of instances pG‚

1, x1q,
pG‚

2, x2q, separating these classes. However, finding such a pair often requires nontrivial work.

Theorem 5.2 reduces the expressive power of P‚-DHN model to P‚-homomorphism indistinguishabil-
ity, and allows us to use lots of existing work established in graph theory literature [44, 19, 61, 55, 31].
For example, after some preparation (Section D.6), we can easily prove the following hierarchy in a
unified way. See also Figure D.6 in Appendix showing hierarchy of some models.

Corollary 5.9. Let C‚
k be a set of cycles of size at most k (where we identify the cycles of length one

and two as a singleton and an edge, respectively), K‚
k be the set of cliques of size at most k, and S‚

k
be the set of connected graphs of size at most k. Then, the following holds.

• C‚
k-DHN model ň C‚

k`1-DHN model, K‚
k-DHN model ň K‚

k`1-DHN model, and S‚
k-DHN

model ň S‚
k`1-DHN model for all k ě 2.

• C‚
k-DHN model ň S‚

k-DHN model for all k ě 4, and S‚
k-DHN model is incomparable with

C‚
k`1-DHN model for all k ě 3.

• K‚
k-DHN model ň S‚

k-DHN model for all k ě 4, and S‚
k-DHN model is incomparable with

K‚
k`1-DHN model for k ě 3

• C‚
k-DHN model and K‚

k-DHN model are incomparable for k ě 4.

We can also prove the relations of expressive powers of existing architectures using our framework as
follows. See Section B in the Appendix for a detailed discussion of the existing models.

Corollary 5.10. If t‚, ‚ ´ ˝u Ď P‚ and P‚ contains a graph with a cycle, then the P‚-DHN model
is strictly more expressive than the MPGNN model.

Corollary 5.11. If the maximum treewidth of P ‚ P P‚ is k, then the P‚-DHN model is less expressive
than the k-WL equivalent models such as pk ` 1q-GNN and pk ` 1q-IGN models.

Corollary 5.12. If the maximum chordless cycle length of P ‚ P P‚ is finite, then P‚-DHN model is
incomparable with 2-WL equivalent models such as 3-GNN and 3-IGN models.

Corollary 5.13. The subgraph GNN model using the k-hop egograph selection policy and universal
GNN as a base encoder is strictly more expressive than S‚

k-DHN model, and is incomparable with
2-WL models such as 3-GNN and 3-IGN models.

Remark 5.14. Recently, [78] provided homomorphism characterisation of GNN models based on
k-WL-like tests for k ě 2. As all of these models can capture arbitrary long cycles, they are not less
expressive than any DHN model.

8

5.4 Continuity and universality of P‚-DHN

One of the desired properties of graph algorithms is the continuty. Graphs appear in network science
applications are often very large and almost impossible to obtain the full structure. In a such case,
we usually sample a smaller graph, conduct analysis, and expect the outcome approximates for the
original graph [38]. The continuity guarantees the validity of such a procedure so that the outcomes
of the original graph and the sampled graph are close. Such property is referred to as the size
generalisability in GNN literature [73].

Different sampling procedure introduces different notion of continuity (i.e., topology) in the graph
space [48]. Here, we consider the BFS sampling, which randomly samples a node, performs k-hop
breadth-first search (BFS), and select the subgraph induced by the nodes. The topology induced
by the BFS sampling is called Benjamini–Schramm topology [6, 68]. We claim that P‚-DHN is
continuous with respect to this topology.

Formally, we consider the set G‚
d of rooted graphs with features whose degrees are at most d. Let G‚

d
be the Cauchy completion of G‚

d with respect to the Benjamini–Schramm distance; see Appendix for
the precise definition. Then, we can prove the following.
Lemma 5.15. For any finite P‚, a P‚-DHN is a continuous function on G‚

d with respect to the
Bejnamini–Schramm topology.

This lemma has some applications. The first one is the universal approximation. We say that a function
f is F‚-homomorphism indistinguishable if fppG‚

1, x1qq “ fppG‚
2, x2qq for any F‚-homomorphism

indistinguishable pG‚
1, x1q and pG‚

2, x2q. We can show that any P‚-homomprhism indistinguishable
function is arbitrary accurately approximated by the DHN model as follows, which guarantees the
validity of using P‚-DHN model for tasks that P‚ substructure is relevant.
Theorem 5.16. For any integer d and a finite P‚, the P‚-DHN model is dense in the set of all
P‚-indistinguishable continuous functions on G‚

d.

Another application is the comparison with existing GNN models as follows.
Example 5.17 (DHN is incomparable with Zhang et al. [76]). Recently, Zhang et al. [76] observed
that many linear-time GNN models could not detect biconnectivity, and they proposed a new model
that can detect biconnectivity. Their observation is true because the biconnectivity is not a continuous
property in the Benjamini–Schramm topology, and most linear-time models, including DHN, are
continuous in this topology. That is, for any continuous model, there are sufficiently close biconnected
graph G1 and non-biconnected graph G2 such that the continuous model fails to detect their difference.
Conversely, any model that can detect the biconnectivity must be non-continuous in the Benjamini–
Schramm topology. Therefore, such models might not have size-generalisability, which is not suitable
for large graph applications.

6 Experiments

Experimental Setting We present the experimental results on the three most common synthetic
benchmark datasets for GNN expressivity and two real-world graph classification datasets. The
Circular Skip Links (CSL) dataset consists of 150 undirected regular graphs of degree four [54].
EXP [1] and SR25 [2, 56] are datasets not distinguishable by 1-WL (EXP) and 3-WL (SR25). The
ENZYMES [66, 8] and PROTEINS [8, 22] datasets represent the protein function prediction task
formulated as the graph classification problem4 We set the same experimental setting as previous
works [1, 34, 24], see the Appendix C for more details of these datasets. For our DHN, we use two
sets of patterns as the building blocks. Ci:j “ tCi, . . . , Cju denotes the sets of cycles of lengths
i to j. Similarly, Ki:j “ tKi, . . . ,Kju denotes the set of cliques of size i to j. We use 3-layer
MLPs for both ρ and µp for the homomorphism layer (Eq. (4)). In Table 1, we present the models’
configurations inside the single brackets. For example, DHN–pC2K3:5, C2K3:5q means the model
has two layers, and each layer consists of 4 kernels: C2,K3,K4, and K5. Note that K4 has the
treewidth of four; hence, the DHN with K4 is incomparable with PPGN, I2-GNN, and N2-GNN.

Results Overall, we see that the performance of DHN depends on the choice of the pattern graphs.
For a suitable choice (i.e., the last row), it can solve all the benchmark problems. CSL is easy and

4These datasets are parts of the TUDataset collection.

9

Table 1: Experimental results on synthetic and real-world datasets for GNN expressivity (Acc.%)

#params CSL EXP SR25 ENZYMES PROTEINS

MPNN (4 layers) [72] 27k 0 0 0 54.6 ˘ 4.5 72.0 ˘ 4.0
PPGN (4 layers) [51] 96k 100 100 0 58.2 ˘ 5.7 77.2 ˘ 3.7
I2-GNN (4 layers) [34] 143k 100 100 100 - -
N2-GNN (4 layers) [24] 355k 100 100 100 - -

DHN–pC2:4q 5k 100 50 0 64.3 ˘ 5.5 76.5 ˘ 3.0
DHN–pC2:5q 7k 100 81 0 63.7 ˘ 5.4 77.0 ˘ 3.2
DHN–pC2:10q 27k 100 98 0 58.0 ˘ 5.3 78.5 ˘ 2.5
DHN–pC2K3:5q 7k 100 50 53 63.3 ˘ 5.5 76.0 ˘ 2.7

DHN–pC2:4, C2q 8k 100 50 0 64.4 ˘ 5.9 77.1 ˘ 2.8
DHN–pC2:5, C2q 11k 100 99 0 62.0 ˘ 5.5 77.0 ˘ 2.5
DHN–pC2:5, C2:5q 36k 100 99 0 59.9 ˘ 5.2 76.7 ˘ 3.3
DHN–pC5:10, C2q 27k 100 100 0 63.5 ˘ 6.1 78.2 ˘ 3.3
DHN–pC2K3:5, C2K3:5q 36k 100 100 100 57.5 ˘ 6.6 77.4 ˘ 3.4

can be solved with any model (except the MPNN, aka. GIN). EXP is not co-spectral; hence, we
can detect the difference by using cycles; as shown in the table, using more cycles improves the
performance. An important observation here is that stacking layer often boosts the expressive power
of the DHN models — the single-layer model DHN–pC2:5q can only achieve 81% while adding
one extra layer, DHN–pC2:5, C2q achieves 99% accuracy. The same phenomenon is observed in
other models except DHN–pC2:4q. SR25 is co-spectral; hence, adding cycles does not help solve
the problem. Experimentally, we found that adding K3:5 solved the problem. Furthermore, stacking
layers helped both in training convergence and achieving better results. In general, the DHN models
have fewer parameters than the existing highly expressive GNNs because they are designed to capture
a limited set of patterns, which leads to fast and low-memory training.5

We report the stratified 10-fold cross-validation accuracies for ENZYMES and PROTEINS datasets in
Table 1. Our proposed models performed comparably to other much larger high-expressivity models
on these real-world datasets. Although our results are still far from the reported state-of-the-art results
(78% for ENZYMES and 84% for PROTEINS), we believe DHN has the potential to be improved
beyond the theoretical context of this paper.

7 Conclusion

In this study, we developed a new GNN named deep homomorphism network (DHN). DHN is
parameterised by a set of base patterns P‚, which is typically specified by the domain knowledge and
computational complexity. The expressive power of the model is completely characterised by the
homomorphism numbers from any patterns generated from P‚. Moreover, the model is evaluated
efficiently in several cases, including the patterns having bounded treewidth, graphs having bounded
degree, the patterns having bounded DAG-treewidth, and the graphs having bounded degeneracy.

Limitation The DHN model is motivated by network science applications that involve large and
sparse graphs. Therefore, it might not be suitable for other applications. More specifically, using
DHN might not be competitive in the following situations: (1) when the graphs are small so that
Opnkq time complexity of k-WL graph neural networks is acceptable. This is commonly seen in
graph classification tasks. (2) when the graphs are dense so that pattern enumeration takes Ωpnkq

time. Simple models such as MPGNN would be more suitable for such case.

Future Work Essentially, our DHN is a “homomorphism extension” of the MPGNN model;
therefore, it is fundamentally impossible to capture arbitrary long cycles. A promising future work
is to establish the corresponding theory for the local k-GNN for k ě 2, which allows us to capture
arbitrary long cycles attached to small complex patterns which appear in biological networks. Such
work will require combining our construction on top of the recently established homomorphism
characterisation of local WLs [78].

5The source code for DHN is provided at https://github.com/gear/dhn

10

https://github.com/gear/dhn

References
[1] Ralph Abboud, Ismail Ilkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surpris-

ing power of graph neural networks with random node initialization. In International Joint
Conference on Artificial Intelligence (IJCAI’21), 2021.

[2] Muhammet Balcilar, Pierre Héroux, Benoit Gauzere, Pascal Vasseur, Sébastien Adam, and
Paul Honeine. Breaking the limits of message passing graph neural networks. In International
Conference on Machine Learning, pages 599–608. PMLR, 2021.

[3] Albert-László Barabási. The new science of networks. Cambridge MA. Perseus, 2002.

[4] Pablo Barceló, Floris Geerts, Juan Reutter, and Maksimilian Ryschkov. Graph neural networks
with local graph parameters. Advances in Neural Information Processing Systems, 34:25280–
25293, 2021.

[5] Paul Beaujean, Florian Sikora, and Florian Yger. Graph homomorphism features: Why not
sample? In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 216–222. Springer, 2021.

[6] Itai Benjamini and Oded Schramm. Recurrence of distributional limits of finite planar graphs.
Selected Works of Oded Schramm, pages 533–545, 2011.

[7] Suman K Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in
streaming and other space-conscious models. In 47th International Colloquium on Automata,
Languages, and Programming (ICALP 2020). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2020.

[8] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola,
and Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21
(suppl_1):i47–i56, 2005.

[9] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1):657–668, 2022.

[10] Marco Bressan. Faster subgraph counting in sparse graphs. In 14th International Symposium
on Parameterized and Exact Computation (IPEC 2019). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2019.

[11] Emmanuel Briand. When is the algebra of multisymmetric polynomials generated by the
elementary multisymmetric polynomials? Beiträge zur Algebra und Geometrie: Contributions
to Algebra and Geometry, 45 (2), 353-368., 2004.

[12] Jin-Yi Cai and Artem Govorov. On a theorem of lovász that (&sdot, h) determines the isomor-
phism type of h. ACM Transactions on Computation Theory (TOCT), 13(2):1–25, 2021.

[13] Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12(4):389–410, 1992.

[14] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on computing, 14(1):210–223, 1985.

[15] Diane J Cook and Lawrence B Holder. Graph-based data mining. IEEE Intelligent Systems and
Their Applications, 15(2):32–41, 2000.

[16] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, pages 210–223, 2017.

[17] Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theoretical Computer Science, 329(1-3):315–323, 2004.

[18] George Dasoulas, Ludovic Dos Santos, Kevin Scaman, and Aladin Virmaux. Coloring graph
neural networks for node disambiguation. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pages 2126–2132,
2021.

[19] Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász meets weisfeiler and leman. In 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

11

[20] Josep Díaz, Maria Serna, and Dimitrios M Thilikos. Counting h-colorings of partial k-trees.
Theoretical Computer Science, 281(1-2):291–309, 2002.

[21] Reinhard Diestel. Graph Theory. Springer, 2017.

[22] Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of molecular biology, 330(4):771–783, 2003.

[23] Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph
Theory, 64(4):330–342, 2010.

[24] Jiarui Feng, Lecheng Kong, Hao Liu, Dacheng Tao, Fuhai Li, Muhan Zhang, and Yixin Chen.
Extending the design space of graph neural networks by rethinking folklore weisfeiler-lehman.
Advances in Neural Information Processing Systems, 36, 2024.

[25] Fabrizio Frasca, Beatrice Bevilacqua, Michael Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. Advances in Neural Information
Processing Systems, 35:31376–31390, 2022.

[26] Thomas Gärtner, Peter Flach, and Stefan Wrobel. On graph kernels: Hardness results and
efficient alternatives. In Learning Theory and Kernel Machines: 16th Annual Conference on
Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington, DC, USA, August
24-27, 2003. Proceedings, pages 129–143. Springer, 2003.

[27] Floris Geerts. The expressive power of kth-order invariant graph networks. arXiv preprint
arXiv:2007.12035, 2020.

[28] CD Godsil and BD McKay. A new graph product and its spectrum. Bulletin of the Australian
Mathematical Society, 18(1):21–28, 1978.

[29] Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM (JACM), 54(1):1–24, 2007.

[30] Martin Grohe, Kristian Kersting, Martin Mladenov, and Pascal Schweitzer. Color refinement
and its applications. Van den Broeck, G.; Kersting, K.; Natarajan, S, 30, 2017.

[31] Martin Grohe, Moritz Lichter, Daniel Neuen, and Pascal Schweitzer. Compressing cfi graphs
and lower bounds for the weisfeiler-leman refinements. In 2023 IEEE 64th Annual Symposium
on Foundations of Computer Science (FOCS), pages 798–809. IEEE, 2023.

[32] William L Hamilton. Graph representation learning. Morgan & Claypool Publishers, 2020.

[33] Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms, volume 28. OUP Oxford, 2004.

[34] Yinan Huang, Xingang Peng, Jianzhu Ma, and Muhan Zhang. Boosting the cycle counting power
of graph neural networks with i2-GNNs. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=kDSmxOspsXQ.

[35] Emily Jin, Michael Bronstein, Ismail Ilkan Ceylan, and Matthias Lanzinger. Homomorphism
counts for graph neural networks: All about that basis. arXiv preprint arXiv:2402.08595, 2024.

[36] Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
Advances in Neural Information Processing Systems, 32, 2019.

[37] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

[38] Eric D Kolaczyk and Gábor Csárdi. Statistical analysis of network data with R, volume 65.
Springer, 2014.

[39] Rui Li, Xin Yuan, Mohsen Radfar, Peter Marendy, Wei Ni, Terrence J O’Brien, and Pablo M
Casillas-Espinosa. Graph signal processing, graph neural network and graph learning on
biological data: a systematic review. IEEE Reviews in Biomedical Engineering, 16:109–135,
2021.

[40] Shouheng Li, Dongwoo Kim, and Qing Wang. Generalization of graph neural networks through
the lens of homomorphism. arXiv preprint arXiv:2403.06079, 2024.

[41] Don R Lick and Arthur T White. k-degenerate graphs. Canadian Journal of Mathematics, 22
(5):1082–1096, 1970.

12

https://openreview.net/forum?id=kDSmxOspsXQ
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

[42] Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 338–348, 2020.

[43] Andreas Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020.

[44] László Lovász. Operations with structures. Acta Mathematica Hungarica, 18(3-4):321–328,
1967.

[45] László Lovász. Large networks and graph limits, volume 60. American Mathematical Soc.,
2012.

[46] Yao Ma and Jiliang Tang. Deep learning on graphs. Cambridge University Press, 2021.

[47] Takanori Maehara and Hoang NT. A simple proof of the universality of invariant/equivariant
graph neural networks. arXiv preprint arXiv:1910.03802, 2019.

[48] Takanori Maehara and Hoang NT. Learning on random balls is sufficient for estimating (some)
graph parameters. Advances in Neural Information Processing Systems, 34:1126–1141, 2021.

[49] Shmoolik Mangan and Uri Alon. Structure and function of the feed-forward loop network motif.
Proceedings of the National Academy of Sciences, 100(21):11980–11985, 2003.

[50] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. In International Conference on Learning Representations, 2018.

[51] Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful
graph networks. Advances in neural information processing systems, 32, 2019.

[52] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

[53] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019.

[54] Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational
pooling for graph representations. In International Conference on Machine Learning, pages
4663–4673. PMLR, 2019.

[55] Daniel Neuen. Homomorphism-distinguishing closedness for graphs of bounded tree-width.
arXiv preprint arXiv:2304.07011, 2023.

[56] Hoang NT and Takanori Maehara. Graph homomorphism convolution. In International
Conference on Machine Learning (ICML), Proceedings of Machine Learning Research. PMLR,
2020.

[57] Raffaele Paolino, Sohir Maskey, Pascal Welke, and Gitta Kutyniok. Weisfeiler and leman go
loopy: A new hierarchy for graph representational learning. arXiv preprint arXiv:2403.13749,
2024.

[58] Daniel Paul-Pena and C Seshadhri. A dichotomy theorem for linear time homomorphism orbit
counting in bounded degeneracy graphs. arXiv preprint arXiv:2211.08605, 2022.

[59] Omri Puny, Derek Lim, Bobak T. Kiani, Haggai Maron, and Yaron Lipman. Equivariant
polynomials for graph neural networks, 2023.

[60] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan Wang, and Jie Tang. Deepinf: Social
influence prediction with deep learning. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining, pages 2110–2119, 2018.

[61] David E Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of
bounded degree. arXiv preprint arXiv:2206.10321, 2022.

[62] T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing
in graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

[63] Ryoma Sato. A survey on the expressive power of graph neural networks. arXiv preprint
arXiv:2003.04078, 2020.

13

[64] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM international conference on data mining (SDM),
pages 333–341. SIAM, 2021.

[65] Franco Scarselli, Sweah Liang Yong, Marco Gori, Markus Hagenbuchner, Ah Chung Tsoi, and
Marco Maggini. Graph neural networks for ranking web pages. In The 2005 IEEE/WIC/ACM
International Conference on Web Intelligence (WI’05), pages 666–672. IEEE, 2005.

[66] Ida Schomburg, Antje Chang, Christian Ebeling, Marion Gremse, Christian Heldt, Gregor Huhn,
and Dietmar Schomburg. Brenda, the enzyme database: updates and major new developments.
Nucleic acids research, 32(suppl_1):D431–D433, 2004.

[67] Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. The power of recursion in graph neural
networks for counting substructures. In International Conference on Artificial Intelligence and
Statistics, pages 11023–11042. PMLR, 2023.

[68] Remco Van Der Hofstad. Random graphs and complex networks. Cambridge university press,
2024.

[69] S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M Borgwardt. Graph
kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

[70] Hinrikus Wolf, Luca Oeljeklaus, Pascal Kühner, and Martin Grohe. Structural node embeddings
with homomorphism counts. arXiv preprint arXiv:2308.15283, 2023.

[71] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. Graph neural networks in recom-
mender systems: a survey. ACM Computing Surveys, 55(5):1–37, 2022.

[72] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2018.

[73] Gilad Yehudai, Ethan Fetaya, Eli Meirom, Gal Chechik, and Haggai Maron. From local
structures to size generalization in graph neural networks. In International Conference on
Machine Learning, pages 11975–11986. PMLR, 2021.

[74] Hanqing Zeng, Muhan Zhang, Yinglong Xia, Ajitesh Srivastava, Andrey Malevich, Rajgopal
Kannan, Viktor Prasanna, Long Jin, and Ren Chen. Decoupling the depth and scope of graph
neural networks. Advances in Neural Information Processing Systems, 34:19665–19679, 2021.

[75] Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai Huang, and
Zhong Liu. The expressive power of graph neural networks: A survey. arXiv preprint
arXiv:2308.08235, 2023.

[76] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power of gnns
via graph biconnectivity. In The Eleventh International Conference on Learning Representations,
2022.

[77] Bohang Zhang, Guhao Feng, Yiheng Du, Di He, and Liwei Wang. A complete expres-
siveness hierarchy for subgraph gnns via subgraph weisfeiler-lehman tests. arXiv preprint
arXiv:2302.07090, 2023.

[78] Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for GNN expressiveness. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=HSKaGOi7Ar.

[79] Muhan Zhang and Pan Li. Nested graph neural networks. Advances in Neural Information
Processing Systems, 34:15734–15747, 2021.

[80] Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplifting any
gnn with local structure awareness. In International Conference on Learning Representations,
2021.

14

https://openreview.net/forum?id=HSKaGOi7Ar
https://openreview.net/forum?id=HSKaGOi7Ar

Algorithm 1 Algorithm for tree pattern P .
1: procedure RECURSION(P ‚, p)
2: dpprus Ð 0 for all u P V pGq

3: for q P childrenppq do
4: dpq Ð RECURSIONpP ‚, qq

5: dpprus Ð dpprus ` µppxuq
ř

vPNpuq dpqrvs for all u P V pGq

6: end for
7: return dpp
8: end procedure

A Algorithms

A.1 Algorithm for Bounded Treewidth Pattern

If the pattern graphs have the bounded treewidth, we can compute the generalised homomorphism
numbers in a polynomial time. Since describing the general case requires some preparation about
tree decomposition, we here present the algorithm for tree patterns in Algorithm 1. We emphasise
that this algorithm is just for an illustrative purpose because tree patterns are generated from ‚ ´ ˝ so
the standard message passing GNNs can capture these patterns.

As a preprocessing, we make the pattern P ‚ directed toward the root. Let P ‚,p be the subtree of P ‚

rooted at p. The procedure RECURSIONpP ‚, pq computes the array rhomppP ‚,p, µq, pGu, xqq : u P

V pGqs. By the chain rule (Lemma 5.3), we have the following recursive formula.

homppP ‚,p, µq, pGu, xqq “ µppxuq
ÿ

qPchildrenppq

ÿ

vPNpuq

homppP ‚,q, µq, pGv, xqq. (10)

For each node p, RECURSIONpP ‚, pq is invoked exactly once. Thus, the complexity of the procedure
is Op|V pP ‚q||EpGq|q, which is linear in G.

The generalisation to the bounded tree-width case is straight-forward — we just run a similar dynamic
programming algorithm where the states are bags. As we need to maintain the mapping from V pGq

to the states, the complexity becomes V pGqtwpGq`1. See [20].

A.2 Algorithm for Bounded DAG-Treewidth Pattern and Bounded Degeneracy Graph

If the pattern P ‚ has the bounded DAG-treewidth and G has the bounded degeneracy, we can compute
the generalised homomorphism number in a polynomial time. Since describing the general case
requires lots of preparation about DAG-tree decomposition, we here present the linear-time algorithm
for the simplest case that the pattern is the quadrange (aka. four cycle) C4. This result is non-trivial
because there will be Ωpn2q quadrangles in a graph of bounded degeneracy (imagine the complete
bipartite graph K2,n, which has two left nodes and n right nodes, has the degeneracy of two but has
Θpn2q quadrangles); hence, any naive enumeration algorithm requires Ωpn2q time.

We can observe that all quadrangles that have u and v as the opposite nodes is represented as a
“compressed” format, pu, v, tw1, . . . , wkuq, meaning that there are

`

k
2

˘

quadrangles by choosing any
two wi and wj in addition to u and v. For example, in the above-mentioned K2,n case, we have
only three tuples pu, u, tw1, . . . , wnuq, pu, v, tw1, . . . , wnuq, and pv, v, tw1, . . . , wnuq to represent
all quadrangles in the graph. Chiba and Nishizeki [14] observed that if the graph has bounded
degeneracy, we obtain a linear-size compressed representation for all quadrangles in the graph. Their
algorithm is presented in Algorithm 2.

Suppose we have a compressed representation of quadrangles pu, v, tw1, . . . , wjuq. Then, we can
compute their contributions to node u as

ÿ

i,j

µ1pxuqµ2pxwi
qµ3pxvqµ4pxwj

q “ µ1pxuq

˜

ÿ

i

µ2pxwi
q

¸

µ3pxvq

˜

ÿ

j

µ4pxwj
q

¸

, (11)

15

Algorithm 2 Chiba–Nishizeki algorithm for enumerating all homomorphic images of a quadrangle
in a compressed format.

Initialise set[u] “ H for all u P V pGq

for u P V pGq in the decreasing order of the degree do
for w P Npuiq do

for v P Npwq do
Insert w to the set[v]

end for
end for
for v with set[v] ‰ H do

Report pu, v, setrvsq

set[v] Ð H

end for
Remove u from G

end for

Algorithm 3 Algorithm for evaluating homppC4, µq, pGu, xqq for all u
for pu, v, tw1, . . . , wkuq produced by Algorithm 2 in Appendix do

Compute Wp :“
ř

i µppxwi
q for p “ 2, 3, 4.

zu Ð zu ` µ1puqW2µ3pxvqW4

zv Ð zv ` µ1pvqW2µ3pxuqW4

zw Ð zw ` µ1pxwqµ2pxuqW3µ4pxvq

end for
Report zu as homppC4, µq, pGu, xqq

which is evaluated in Opkq time. The same procedure is applied to the contributions to node v. We
can also compute the contributions to wi by

ÿ

j

µ4pxuqµ1pxwi
qµ2pxvqµ3pxwj

q “ µ4pxuqµ1pxwi
qµ2pxvq

˜

ÿ

j

µ2pxwj
q

¸

. (12)

Here, as the xwj factors are common in all wi, we can evaluate them for all i in Opkq time in total.
This procedure is summarised in Algorithm 3.

The general case (bounded DAG-treewidth and bounded degeneracy) is a far generalisation of the
above idea [10, 58]. Let P⃗ be an DAG orientation of P . Then, a DAG tree decomposition of P⃗ is a
tree of bags such that (1) each bag B is a subset of source nodes (nodes without incoming edges),
and (2) the union of bags covers all source nodes, and (3) if B lies on the unique path between B1

and B2, then reachablepB1q X reachablepB2q Ď reachablepBq. The maximum size of the bag is
called the DAG-treewidth. The dynamic programming algorithm on the DAG tree decomposition
is similar to that on the tree decomposition case but enumerates all compressed representations of
homomorphisms instead of the homomorphisms; see [10]. For example, C4 “ t1, 2, 3, 4u has a DAG
tree decomposition with two bags t1u and t3u, and the dynamic programming with respect to this
DAG tree decomposition produces Chiba–Nishizeki’s compressed representation of all quadrangles.
This dynamic programming is easily converted to compute the generalised homomorphism numbers.

B Related Work and Comparison with Our Model

There are multiple GNN models that attain the intermediate complexity between the universal GNN
and the MPGNN. Here, we review some of these models and describe their relationship with our
model.

B.1 k-GNNs

The k-GNNs [53] or PPGN [51] assign values to k-tuples of nodes (instead of the nodes itself as
in MPGNN), and the k-IGNs [50] use equivariant linear layers defined by k-th order tensors. They

16

have the same expressive power as the k-dimensional WL test [72, 27], which is equivalent to the
Tk-homomorphism indistinguishability where Tk is the graphs of treewidth at most k [23]. A recent
variant [24] reduced the space complexity to Opn2q while keeping the expressive hierarchy to the
graph isomorphism problem; we used this model (N2-GNN) in our Experiment. These models are
often used in molecular biology applications as the input graphs are small.

The homomorphism characterisation mentioned above proves that P‚-DHN model is not more
expressive than k-GNN and k-IGN models as in Corollary 5.11 and Corollary 5.12. On the other
hand, k-GNN and k-IGN might require Ωpnkq time as they have to aggregate information over
k-tuples globally. Hence, they are not suited for large graphs as there will be millions or billions of
nodes.

B.2 Subgraph GNN

Subgraph GNNs [79, 74, 80, 25, 67] are designed to capture local structures of each node. A single
layer of a subgraph GNN takes a subgraph for each node and applies a base GNN. The expressive
power of the subgraph GNNs varies on the subgraph selection policy and the base GNN model. The
common subgraph selection policies include k-hop egographs, node/edge marking, and node/edge
deletion, and the common base GNN is the MPGNN. In this case, Frasca et al. [25] proved that
its expressive power is bounded by 3-WL test. Zhang et al. [77] analysed the expressive power of
the subgraph GNNs by introducing subgraph WL-test, which basically runs the WL test on each
selected subgraphs. Huang et al. [34] analysed the expressive power of the subgraph GNNs and
showed that if we use MPGNN as the base encoder, it cannot count cycles of length more than four.
Huang et al. [34] then developed a variant of node-marking GNN that can count at least 6 cycles
while maintaining a linear time complexity on graphs of bounded degree; we used this model in our
Experiment (I2-GNN). Tahmasebi et al. [67] showed a recursive subgraph selection policy has higher
expressive power learning all local functions.

In general, subgraph GNNs do not fit the homomorphism framework. However, we can still analyse
their properties using the homomorphism framework. Let us consider the subgraph GNN model that
uses k-hop egograph selection and universal GNN; this model is more expressive than any subgraph
GNN model that uses k-hop egograph selection policy. Let B‚

k be the graphs of the radius from ‚

at most k6. Then, as homomorphism numbers from B‚
k to Gu characterise k-hop neighbours of u,

the above model has the same expressive power as the B‚
k-DHN model. This characterisation proves

Corollary 5.13, which was already known in [77, Theorem 7.1].

Subgraph GNNs perform local computation; hence, they run in Opnq time on bounded degree
graphs. However, they are still not suitable for large sparse graphs in the real world as these graphs
contain a few nodes with very large degrees (power-law property) and a small diameter (small-world
property) [3]. In such graphs, building k-hop egographs for all nodes may take Ωpn2q time.

B.3 GNN with explicit pattern detection

Using the numbers of subgraphs (incl. homomorphisms) as features is a traditional approach in
network science and graph data mining [15, 69, 52, 26]. Recently, several researchers tried to integrate
this technology in GNNs [47, 56, 4, 9, 78].

As we mentioned in Section 1, our work is strongly motivated by the model of NT and Maehara [56]
and the theoretical analysis of [4]. The resulting model (or layer) provides a building block of GNNs
that perform local aggregation.

Using graph neural network Applying the homomorphism theory (or subgraph enumeration) in GNN
is a relatively new approach. These are classified as follows.

Models based on graph homomorphisms To the best of our knowledge, NT and Maehara [56] is
the only study that explicitly uses graph homomorphisms as a building block of a machine learning
model in a GNN context. Beaujean et al. [5] proposed to sample homomorphisms to estimate homo-
morphism numbers to accelerate the computation. Related studies include the GNN with equivariant
polynomials [36, 59] since the homomorphism numbers define equivariant polynomials [47, 59].

6Bk is an infinite set of graphs. Thus, we need to consider each degree d independently.

17

Recently, Paolino et al. [57] proposed a GNN architecture that uses cycles for aggregation. They
proved that their model can count cactus graphs of bounded cycle lengths. Their model is a special
case of our DHN using Cďk :“ tC1, . . . , Cku as the patterns, and the set of cactus graphs of bounded
cycle lengths is exactly the set of graphs generated from Cďk using the rooted product. In this sense,
our method can be seen as a generalisation of their methods for arbitrary patterns. One minor but
crucial difference is that they didn’t use the feature transformation. This means that their model
cannot distinguish a homogeneous cycle (adjacent nodes have similar features) and heterogeneous
cycle (adjacent nodes have dissimilar features). See also Remark 3.2 about the importance of feature
transformation in theory.

Injecting homomorphisms numbers and/or subgraph counts as features Barceló et al. [4]
proposed injecting homomorphism numbers into the node features and Bouritsas et al. [9] proposed
injecting subgraph counting into the node features. As these numbers are connected by the Mobius
transformation [16], their expressive powers are not so different if we consider multiple patterns. Jin
et al. [35] studied the difference and identified the effective set of patterns to be injected. We believe
that their findings are useful for selecting the set of patterns P‚ in our DHN model.

Analysing expressive power by homomorphisms Traditionally, the expressive powers of GNNs
have been studied using the Weisfeiler–Lehman test [72]. As the Weisfeiler–Lehman test has the
homomorphism characterisation [19], it is natural to extend this discussion to more expressive
GNNs. The above-mentioned studies of injecting counts Barceló et al. [4], Bouritsas et al. [9], Jin
et al. [35] studied the expressive power of homomorphism numbers and/or subgraph counts-injected
models via homomorphism numbers. Zhang et al. [78] identified the homomorphism characterisation
of the expressive power of local WL-based GNNS. The pattern sets are characterised using ear
decomposition. Li et al. [40] evaluated a generalised error of a GNN using homomorphism entropy.
We believe that their analysis could be used to evaluate the generalisation error of our DHN model as
well.

C Experiment Details

C.1 Model Configurations

All DHN models in Table 1 have 20 hidden units MLP layers; these MLP blocks (3 layers) correspond
to functions µ in Equation 3. Each homomorphism kernel is embedded in 10 dimensions. The DHN
models are trained using the Adam optimizer with an initial learning rate of 0.001. We do not use
any learning rate scheduling or advanced regularization techniques, as the expressivity benchmark
datasets can be learned with default hyperparameters.

Homomorphism mappings are pre-computed for each input graph and loaded to DHN like the edge
list is loaded to Pytorch Geometric’s API. The homomorphism enumeration can be run in linear time
and parallelizable for large graphs; hence, this pre-computation step is negligible compared to the
training process. All our experiments can be run on a CPU machine due to the small model size (M3
chip with 24GB of memory shared with the operating system or CPU-type Google Colab instance).
The reported results are obtained on a single GPU machine that houses an RTX4090 with 24GB of
GPU memory.

C.2 Datasets and Evaluations

Each experiment is run for a maximum of 1200 epochs. Early stopping on train set accuracy with
patience of 10 epochs is used for ENZYME and PROTEINS. For CSL, EXP, and SR25, since they
are expressivity benchmark datasets, the model is trained until train loss converged to zero.

Table 2 describes the three synthetic expressivity benchmark datasets commonly utilized in Graph
Neural Network (GNN) research to assess and benchmark the expressive power of various GNN
architectures. The CSL (Circular Skip Links) dataset consists of 150 regular graphs that cannot be
distinguished by simple MPGNN. EXP graphs are crafted to be isomorphic under the 1-WL test,
meaning that traditional GNNs limited by the WL test’s discriminative power may fail to distinguish
them. The EXP dataset is a benchmark for whether GNNs can surpass the WL test limitations by
capturing higher-order structural information, distinguishing between non-isomorphic but 1-WL-
indistinguishable graphs. The SR25 (also named Paulus Graphs) dataset consists of strongly regular

18

Table 2: Expressivity Benchmark Datasets

Dataset |G| |V pGq| |EpGq|

CSL 150 41.0 164.0
EXP 1200 44.4 110.2
SR25 15 25.0 300.0

Table 3: Real-world Graph Classification Datasets

Dataset |G| E|V pGq| E|EpGq| #node features #classes

PROTEINS 1113 39.06 72.82 4 2
ENZYMES 600 41.0 164.0 21 6

and co-spectral graphs, which require high expressivity GNNs to distinguish. Essentially, a model
that performs perfectly on the train set of this dataset would perform well on the test set because both
sets have the same isomorphism classes. Except for SR25, which needed 800 epochs to converge,
EXP and CSL training converged in less than 20 epochs in our experiments.

Table 3 describes the real-world datasets commonly utilized in Graph Neural Network (GNN) research
to assess the practicality of a graph neural network. These datasets come from the TUDatasets
collection, and due to their small size, it is conventional to report their 10-fold cross-validation results.
The PROTEINS dataset consists of 1113 graphs, where the nodes and edges of each graph contain
information about the secondary structure of the protein. The ENZYME dataset contains 600 graphs,
each corresponding to a protein enzyme. The nodes signify amino acids, and the edges represent
chemical interactions or spatial proximities between these amino acids. The dataset is divided into
six classes, each corresponding to one of the top-level enzyme categories defined by the Enzyme
Commission (EC) numbers: oxidoreductases, transferases, hydrolases, lyases, isomerases, and ligases.
Nodes are annotated with attributes capturing physicochemical properties relevant to protein function.

D Proofs

D.1 Proof of Theorem 3.1: Generalised Homomorphism Determines Isomorphism

We use the following generic theorem.

Theorem D.1 (Theorem 3.6 in Lovasz [44]). Any finite relational structure is uniquely identified by
the homomorphism numbers.

Proof. The “if” direction is clear. Thus, we prove the “only-if” direction.

We first enumerate the relevant feature vectors tx1u2 : u1 P V pG1qu Y tx2u2 : u2 P V pG2qu and
associate unique labels to them. We denote by lpxq for the label associated with x. Then, the input
graphs are the instances of finite relational structure, where the relations are the root relation (u is the
root), adjacency relation (u and v have edges), and the feature value relation (u has the feature value
x).

The isomorphism pG‚
1, x1q » pG‚

2, x2q of rooted featured graphs coincides with the isomorphism
of the relational structure introduced the above. By the Lovasz theorem, if the input graphs are not
isomorphism, there exists a relational structure pF ‚, lq such that the homomorphism numbers from
this structure distinguishes the input graphs. Because the homomorphism number of this relational
structure can be computed by the generalised homomorphism number, by setting (a smoothed version
of) µppxq “ 1rlpxq “ lps. Therefore, we obtain the result.

19

D.2 Remark 5.8: DHN generalises the most expressive subgraph GNNs

Suppose hu “ fphv : v P Huq. Let P ‚ be the graph isomorphic to Hu. Then, we have

hu “
1

|AutpGuq|

ÿ

πPAutpGuq

f phv : v P πpHuqq (13)

9
ÿ

πPHompinjqpP ‚,Guq

f
`

hπppq : p P P ‚
˘

(14)

“ ρ

¨

˝

ÿ

πPHompinjqpP ‚,Guq

ź

pPP ‚

µpphπppqq

˛

‚ (15)

“ ρ
´

hompinjq
ppP ‚, µq, pGu, hqq

¯

, (16)

because the first equality follows from the equivariance of the layer, where AutpGuq is the set of
automorphisms (isomorphisms to itself) of Gu, the second proportionality follows because each
automorphism induces an injective homomorphism, and the third equality follows by taking µppxq :“
exp pr0, . . . , 0, x, 0, . . . , 0sq and ρpz1, . . . , z|P ‚|q :“ fplog zp : p P P ‚q.

It should be noted that this does not cover strategies like node marking in subgraph GNNs as
such strategies (tentatively) break isomorphisms to improve their expressive power. To cover such
strategies, we might need a higher-order theory of DHN.

D.3 Proof of Theorem 5.2: Expressive power of DHN

To prove the theorem, we introduce a variant of the WL test as follows. The P‚-Weisfeiler Lehman
test performs the following colour-refinement procedure. In the 0-th step, we assign the node features
as the colour. In the pk ` 1q-th step, for each u P V pGq, it enumerates all patterns P ‚ and all rooted
homomorphisms π P HompP ‚, Guq, and associates the colours based on the colours in the k-th step.
Formally, it is given as follows.

cp0q
u “ xu, cpk`1q

u “

´!!´

c
pkq

πppq
: p P V pP ‚q

¯

: π P HompP ‚, Guq

))

: P ‚ P P‚
¯

. (17)

Then, it determines the non-isomorphism using the obtained colours, like the WL test.
Example D.2. t‚, ‚ ´ ˝u-WL test coincides with the standard WL test.

Now, we state our main theorem about the expressive power of the DHN model.
Theorem D.3. Let P‚ be a set of rooted graphs. For two rooted graphs with features pG‚

1, x1q and
pG‚

2, x2q, the following are equivalent.

1. The P‚-WL does not distinguish pG‚
1, x1q and pG‚

2, x2q.

2. For any P‚-DHN h, we have hpG‚
1, x1q “ hpG‚

2, x2q.

3. pG‚
1, x1q and pG‚

2, x2q are P‚-homomorphism indistinguishable.

(1 ñ 2). This part is a generalisation of Theorem 3 in [72]. This is trivial from the definitions because
the WL-colouring contains all information that is needed to compute the DHN.

(2 ñ 3). We show that, for all F ‚ P F‚ and µ, there exists a P-DHN h such that
homppF, µq, pGu, xqq “ hpuq, which immediately proves this claim. We prove this claim by the
induction about the construction of F .

Base Case The base case is that F is a pattern graph, i.e., F “ P for some P P P . This case is
trivial from the definition of the DHN model.

Induction Case Induction case is that F is obtained by attaching smaller subpatterns F1, . . . , FN P

F to some P P P . By the product rule and the chain rule, we can represent homppF, µq, Gq by the
sum and product of homppFi, µiq, Gq, which are represented by the DHN by the inductive hypothesis.

20

As the DHN is closed under sum and product (Lemma D.6), homppF, µq, Gq is also represented by a
DHN.

(3 ñ 1). This claim is a generalisation of [19]. Here, we provide “direct” proof of this claim. We
prove that P‚-WL colouring of step k is identified from the values homppFj , µjq, Guq for some
pFi, µiq P F . In the proof, we extensively use the following lemma.
Lemma D.4. The values of the multi-symmetric power sum polynomials,

n
ÿ

i“1

d
ź

j“1

a
ej
ij , (18)

uniquely determine the multiset of vectors

ttpai1, . . . , aidq : i “ 1, . . . , nuu . (19)

Here, each ej is bounded by a constant that depends on n and d.

Proof. This is an extension of the famous “fundamental theorem of symmetric polynomials” and
follows from the basic results of the invariant theory; see [11, Theorem 3].

First of all, we can assume that we know all the values txpupPV relevant to the computation. This
is because all the nodes that appeared in the computation are contained in a sufficiently large
homomorphic image F‚ P P , and by putting µppxq “

ś

j x
epj
j , we have

homµpF‚, Guq “
ÿ

πPHompF‚,Guq

ź

pPV pF‚q

ź

jPrds

pxpπppqqjqepj . (20)

Therefore, by Lemma D.4, we can uniquely reconstruct the set

X :“ txπppq : p P V pP ‚qu, (21)

which tells all the possible values that appeared in the computation.

Now, we prove the claim by the induction about the depth k of the pattern expansion.

Base Case The case k “ 0 is trivial.

Induction Case We first identify the number of children with respect to P by computing

homppP, µi1,...,i|V pP q|
q, Guq (22)

for µi1,...,i|V pP q|
that satisfies

ź

pPV pP q

µi1,...,i|V pP q|,ppxpq ‰ 0

ðñ xp1 “ xi1 , . . . , xp|V pP q
“ xi|V pP q|

. (23)

Such µ can be constructed by projecting vectors into |V pP q|N dimensional space.

Next, we identify the colour of the substructures below p P V pP q. By the induction hypothesis, there
exist patterns with transformations pF1, µ1q, . . . , pFM , µM q such that their homomorphisms identify
the colour of steps less than k. Using these patterns with transformations, we define a new set of
patterns with transformations as follows.

• For each p P V pF q, we attach F1 ep,1 times, F2 ep,2 times, and so on, by the rooted product.

By definition, this pattern is in F . By the chain rule of homomorphism numbers, we have the
following.

homppF, µq, Guq “
ÿ

πPHompP,Guq

ź

pPV pP q,
i“1,...,M

homppFi, µiq, G
πppqqep,i (24)

By Lemma D.4, we can uniquely reconstruct the multiset of vectors

tphomppF1, µ1q, Gπpp1qq, . . . ,homppFM , µM q, Gπpp|V pP q|qqquπPHompP,Gq. (25)

Therefore, we can identify the colour of each p in each child.

21

D.4 Proof of Lemma 5.3: Chain Rule

Proof. Any rooted homomorphism π P HompF ‚, G‚q is identified as a concatenation of homomor-
phisms π0 P HompP ‚, G‚q and πp P HompFp,G

πppqq for each p. Hence,

homppF ‚, µq, pG‚, xqq (26)

“
ÿ

πPHompF ‚,G‚q

ź

pPV pF ‚q

µppxπppqq (27)

“
ÿ

π0PHompP ‚,G‚q

ź

pPV pP ‚q

ÿ

πpPHompF ‚
p ,G

πppqq

ź

qPV pF ‚
p q

µqpxπppqqq (28)

“
ÿ

π0PHompP ‚,G‚q

ź

pPV pP ‚q

homppF ‚
p , µ|V pF ‚

p qq, pGπppq, xqq. (29)

D.5 Proof of Theorem 5.16: Universality

This is a direct application of the Stone–Weierstrass theorem:
Theorem D.5 (Stone–Weierstrass Theorem). Let M be a compact Hausdorff space and A be a set
of continuous functions. If A forms an algebra, contains the constant function and separates points,
then A is dense in the space of uniformly continuous functions on M.

We first check that DHN forms an algebra.
Lemma D.6. The P-DHN model is closed under sum, product, and scalar multiplication.

Proof. The claim is clear for scalar multiplication. To prove the claim for sum and product, we observe
that the stacking of two models, i.e., hpuq :“ rh1puq, h2puqs, is in the DHN as it is implemented by
stacking every µ and ρ. The sum and product are obtained by modifying the last layer of the stacking
model.

We then check the topological condition. Let G‚
d be the set of all rooted graphs with features such

that the maximum degree is at most d. We introduce the metric in this space as follows. Without loss
of generality, we assume that maxx1,x2PX }x1 ´ x2} ď 1 where } ¨ } is the norm associated with X .
First, for each integer r, we define

drppG‚
1, x1q, pG‚

2, x2qq :“

"

1, G‚
1 fi G‚

2,

minπp1{nrq
ř

u }x1u ´ x2πpuq}, otherwise
(30)

where π runs over the isomorphism between G‚
1 and G‚

2, and nr is the maximum number of nodes of
graphs of diameter r and degree d. We then define

dppG‚
1, x1q, pG‚

2, x2qq “
ÿ

r

2´rdrppG‚
1, x1qrNrs, pG‚

2, x2qrNrsq (31)

where pG‚, xqrNrs is the graph with features whose graph part is the subgraph of G‚ induced by the
r-neighbourhood of the root and the feature part is the restriction on Nr. Note that this induces the
standard Benjamini–Schramm topology if the graphs have no features [68]. We prove Theorem 5.16
with respect to this topology.
Lemma D.7. G‚

d is totally bounded Hausdorff.

Proof. It is easy to see the space is Hausdorff because, as dppG‚
1, x1q, pG‚

2, x2qq “ 0 implies their
r-neighbourhood are isomorphic for all r. By choosing r sufficiently large as it covers whole G‚

1
and G‚

2, we obtain G‚
1 » G‚

2. By definition, there exists π that satisfies x1u “ x2πpuq for all u. This
indicates that pG‚

1, x1q » pG‚
2, x2q.

Now we prove that the space is totally bounded by constructing an Opϵq-net for any ϵ ą 0. We
choose r0 ě log2p1{ϵq and enumerate all rooted graphs of diameter at most r0 and degree at most
d. There are Op2d

r0
q graphs and each of them have Opdr0q nodes. Then, for each rooted graph, we

enumerate all the rooted graphs with features by assigning node features from the ϵ-net of X . Then,
we obtain the ϵ-net of Gd.

22

Corollary D.8. The covering number of 1-Lipschitz functions on G‚
d is 2p1{ϵq

p1{ϵqOp1q

.

Proof. By counting the size of Opϵq-net in the above proof, we see that the covering number is

p1{ϵqp1{ϵq
Op1q

. Therefore, the covering number of 1-Lipschitz continuous functions is 2p1{ϵq
p1{ϵqOp1q

.

Lemma D.9. Any P-DHN h is uniformly continuous on G‚
d .

Proof. By definition, there exists a finite r such that the r-neighbour of the root determines the value
of h. We choose δ sufficiently small so that dppG‚

1, x1q, pG‚
2, x2qq ă δ indicates that the r-neighbour

of G‚
1 and G‚

2 are topologically isomorphic. In this case, hppG‚
1, x1qq and hppG‚

2, x2qq only differ
at the feature values. Therefore, for any ϵ ą 0, by choosing δ sufficiently small, we can make
|hppG‚

1, x1qq ´ hppG‚
2, x2qq| ă ϵ for all pG‚

1, x1q and pG‚
2, x2q with dppG‚

1, x1q, pG‚
2, x2qq ă δ.

Remark D.10. In this study, we only discuss the universality of the graphs of arbitrary sizes. We can
easily prove the universality for graphs of a fixed size, which is more often discussed in previous
studies (see [64, 75]), by the same proof strategy without any complicated topology discussion.
However, we believe that such universality is not useful in practice as we usually apply GNNs to
graphs of different number of nodes.

D.6 Proof of Corollary 5.9: Comparison of Models

Let P‚
1 and P‚

2 be two set of patterns. Our goal is to understand the relationship between the
equivalence relation of the P‚

1 -homomorphism indistinguishability and P‚
2 -homomorphism indistin-

guishability. Here, we provide a tool to identify their relationship.

Roberson [61] introduced a concept called homomorphism-distinguishing closed. A set of graphs F
is homomorphism-distinguishing closed if a graph H satisfies hompH,G1q “ hompH,G2q for all
G1 and G2 with hompF,G1q “ hompF,G2q for all F P F then H P F .

Here, we use the rooted graph variant as follows. A set of rooted graphs F‚ is homomorphism-
distinguishing closed if a rooted graph H‚ satisfies hompH‚, G‚

1q “ hompH‚, G‚
2q for all G‚

1 and G‚
2

with hompF ‚, G‚
1q “ hompF ‚, G‚

2q for all F ‚ P F‚ then H‚ P F‚. By the definition, if F‚
1 Ĺ F‚

2
and they are homomorphism-distiguishing closed, then the homomorphism-distinguishability of
F‚

2 leads a strictly finer equivalence relation than that of F‚
1 . For a set of rooted graphs F‚, the

homomorphism-distinguishing closure is the smallest homomorphism distinguishing set including
F‚, which is well-defined. By definition, F‚ and clpF‚q leads the same equivalence relation.

The following is the key lemma of connecting the homomorphism-distinguishing closedness on
graphs with features and graphs without features.
Theorem D.11. Let F‚ be a homomorphism-distinguishing closed set of rooted
graphs. H‚ R F‚ if and only if there exists pG‚

1, x1q and pG‚
2, x2q such that

homppF ‚, µq, pG‚
1, x1qq “ homppF ‚, µq, pG‚

2, x2qq for all F ‚ P F‚ and µ but
homppH‚, νq, pG‚

1, x1qq ‰ homppH‚, νq, pG‚
2, x2qq for some ν.

The “only-if” direction is easy: H‚ R F‚ guarantees the existence of G1 and G2; thus, the claim
holds for pG1, xq and pG2, xq where x takes the same value at all nodes.

To prove the “if” direction, we use the following lemma.
Lemma D.12. Let pF ‚, µq be a rooted graph with transformations. Suppose
homppF ‚, µq, pG‚

1, x1qq ‰ homppF ‚, µq, pG‚
2, x2qq for some pG‚

1, x1q and pG‚
2, x2q. Then,

there exist G1‚
1 and G1‚

2 such that

1. hompF ‚, G1‚
1 q ‰ hompF ‚, G1‚

2 q.

2. For any rooted graph F 1‚, hompF 1‚, G1‚
i q is the sum of homppF 1‚, µ1q, pG‚

i , xiqq for finitely
many µ1.

Proof. To simplify the presentation, we prove the same claim for non-rooted graphs. We first
construct node-weighted graphs pKi, wiq for i “ 1, 2 by defining V pKiq “ tpui, qq : ui P

V pGiq, p P V pF qu and EpKiq “ tppui, pq, pvi, qqq : pui, viq P EpGiqu. We then put node weight

23

by wppui, pqq “ γpµppxuq where tγp : p P V pF qu are algebraically independent numbers. Then,
we have hompF, pK1, w1qq ‰ hompF, pK2, w2qq since the

ś

p γp term of hompF, pKi, wiqq is
homppF, µq, pGi, xiqq.

We then construct unweighted graphs Hi for i “ 1, 2. We take a scale parameter α and define Kα
i

by V pKα
i q “ tpxi, sq : xi P V pKiq, s P t1, . . . , rαwpxiqsu and EpHα

i q “ tppxi, sq, pyi, tqq : xi P

V pKiqu. Then, by construction, we see limαÑ8 hompF,Hα
i q{α|V pF q| “ hompF, pKi, wiqq. This

implies that for sufficiently large α, we have hompF,Hα
1 q ‰ hompF,Hα

2 q. This shows the first
condition.

These Hα
i satisfy the second condition as follows:

hompF 1, Hα
i q “ hompF 1, pKi, rαwisqq (32)

“
ÿ

πPHompF 1,Giq

ÿ

ι:V pF 1qÑV pF q

ź

p1PV pF 1q

rµιpp1qpxiπpp1qqs (33)

“
ÿ

µ1

homppF 1, µ1q, pGi, xiqq (34)

where µ1 is defined by µ1
p1 “ rµιpp1qs for each ι : V pF 1q Ñ V pF q.

We can easily modify the above proof to rooted graphs by only duplicating non-rooted nodes, although
the notation will get messy.

Proof of Theorem D.11 (if direction). Suppose there exist pG‚
1, x1q and pG‚

2, x2q such that
homppF ‚, µ1q, pG‚

1, x1qq “ homppF ‚, µ1q, pG‚
2, x2qq for all F ‚ P F‚

1 and µ1, but
homppH‚, µ2q, pG1, x1qq ‰ homppH‚, µ2q, pG‚

2, x2qq. We take G1‚
1 and G1‚

2 constructed in
Lemma D.12. Then, by the first condition, we have hompF ‚

2 , G
1‚
1 q ‰ hompF ‚

2 , G
1‚
2 q. Also, by

the second condition, we have hompF ‚
1 , G

1‚
1 q “ hompF ‚

1 , G
1‚
2 q for all F ‚

1 P F‚
1 . Therefore, as F‚ is

homomorphism-distinguising closed, we have H‚ R F‚.

To compare the expressive powers of two DHN models with respect to patterns P‚
1 and P‚

2 , we
have to compare clpP‚

1 q and clpP‚
2 . However, it is not easy to characterise the homomorphism-

distinguishing closure of a given set. Here, instead of characterising their closures, we try to find
another homomorphism-separating set H‚ that “separates” P‚

1 and F‚
2 using the following lemma.

Lemma D.13. Let F‚
1 and F‚

2 be sets of rooted graphs. If there is a homomorphism-distinguishing
closed set H‚ such that F‚

1 Ď H‚ and F‚
2 Ę H‚, then clpF‚

1 q Ę clpF‚
2 q.

Proof. This is clear from the closure property.

In the literature on homomoprhism distinguishability, we have several examples of homomorphism-
distinguishing closed sets. Here, we use the following two examples of homomorphism-distinguishing
closed sets.

• The set Tk of graphs of treewidth at most k [61, 55].

• The set CCk of graphs of maximum chordless cycle length at most k [61].

As their homomorphism-distinguishabilities are proved for non-rooted graphs, we have to prove
the corresponding result for rooted graphs. We use the following lemma, which guarantees that the
rooted counterparts, T ‚

k and CC‚
k, are homomorphism-distinguishing closed.

Lemma D.14. Let F be a homomorphism-distinguishing closed set. If F is closed under the rooted
product (taking any node as root) and contains a single edge ‚ ´ ˝, then F‚ is homomorphism-
distinguishing closed, where F‚ “ tFu : F P F , u P V pF qu is the graphs obtained by picking each
node as root.

To prove this lemma, we use the following to connect the homomorphism number and the rooted
homomorphism number.
Lemma D.15. Let F‚ be a set of rooted graphs containing ‚ ´ ˝. Suppose G is connected. Then, we
can identify hompF,Gq for any F P F by hompH‚, G‚q for several H‚.

24

Proof. To identify hompF,Gq, we construct H‚
k,e P F‚ as follows. We first construct a path of

length k by attaching edges. Then, for each node i, we attach ei edges (so it is a caterpillar graph).
Finally, we attach ek`1 copies of F ‚ to the tail (farthest point from the root) of the caterpiller. Then,
we have

hompH‚
k,e, G

‚q “
ÿ

pu1,...,ukq:walk from ‚

de1u1
. . . dekuk

hompF ‚, Gukqek`1 . (35)

Hence, by Lemma D.4, we can obtain the following quantity:
ÿ

pu1,...,ukq:walk from ‚

hompF ‚, Gukq

du1
. . . duk

. (36)

Let W “ D´1A be the random-walk matrix of G. Then, the above quantity is written as
eJ

‚ W
krhompF ‚, Guq : u P V pGqs, where e‚ is the unit vector. Therefore, we can also obtain

all the values eJ
‚ ppI ` W q{2qkrhompF ‚, Guq : u P V pGqs. As pI ` W q{2 defines an irreducible

aperiodic random walk, eJ
‚ ppI ` W q{2qk converges to the stationary distribution 1{n. Therefore, we

can estimate 11rhompF ‚, Guq : u P V pGqs “ hompF,Gq arbitrarily accurately.

Proof of Lemma D.14. Let H‚ be a rooted graph. Suppose there exists connected rooted graphs
G‚

1 and G‚
2 such that hompF ‚, G‚

1q “ hompF ‚, G‚
2q for all F ‚ P F‚ but hompH‚, G‚

1q ‰

hompH‚, G‚
2q. By Lemma D.15, the former condition yields hompF,G1q “ hompF,G2q for

all F P F‚ and the latter condition yields hompH,G1q ‰ hompH,G2q. Therefore, by the
homomorphism-distinguishing closedness of F , we have H R F . Therefore, H‚ R F‚.

Proof of Corollary 5.9. We say that H‚ separates P‚
1 from F‚

2 if they satisfy the condition in
Lemma D.13. In this case, by Theorem 5.2, we can conclude that P‚

1 -DHN model is not more
expressive than P‚

2 -DHN model. Here, we can easily observe the following.

• MPGNN model is the t‚ ´ ˝u-DHN model and T ‚
1 separates t‚ ´ ˝u from P‚.

• 2-GNN model is the T ‚
2 -DHN model. Let p be the longest chordless cycle length in P‚.

Then, CC‚
p`1 separates P‚ from T ‚

2 .

• CC‚
k separates C‚

k from C‚
k`1. T ‚

k separates K‚
k from K‚

k`1. T ‚
k separates S‚

k from S‚
k`1.

• T‚
2 separates C‚

k from S‚
k since any graph in C‚

k has treewidth at most two. CC‚
k separates

S‚
k from C‚

k as no graph in S‚
k has chordless cycle of length k.

• CC‚
3 separates K‚

k from S‚
k since no graph in K‚

k has chordless cycle of length more than
three. T‚

k separates S‚
k from K‚

k since every graph in K‚
k has the treewidth of at most k.

• The above proof works for separating C‚
k and K‚

k.

25

Figure 3: Hierarchy of GNN models. Only showing WL variants, Ck-DHN, and Kk-DHN. Models
without (transitive) arrows means they are not comparable, e.g., 2-WL and DHN with ď 4 cliques are
incomparable.

1-WL (MPGNN)

2-WL (3-IGL, 3-GNN)

3-WL (4-IGL, 4-GNN)

4-WL (5-IGL, 5-GNN)

...

DHN with an edge

DHN with ď 3-cycles

DHN with ď 4-cycles

...

DHN with ď 3-cliques

DHN with ď 4-cliques

DHN with ď 5-cliques

...

26

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The theoretical claims are proved in Section 5.1. The experiment is shown in
Section 6.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

27

Justification: We discussed the assumptions in our theory and the trade-offs in experiments.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provided self-contained proofs for all theorems in Appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This is a theory paper; thus, the experiment is conducted to verify the theory.
All datasets used in the paper are publicly available.

Guidelines:

28

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provided an anonymous prototype on Google Colab. The datasets are
publicly available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This is a theory paper so the experiment is just conducted to verify our claim.
The short description is in Section 6 and the details with additional experiments are provided
in Section C in Appendix.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Due to the nature of the expressivity benchmark datasets, the results are
consistent across multiple runs of the experiment. We omit reporting the standard deviation
because they are zero.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Type of computing resources are reported in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.

30

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research did not involve human subjects or participants. We only used
datasets that had no concerns listed in the guideline. As it is a theory paper, it has no risks
on societal impact and potential harmhul consequence.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper has no risks on societal impacts because this is a theory paper
analysing mathematical properties of neural network models.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theory paper analysing mathematical properties of neural network
models. The datasets used in this paper had no such risks.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provided citations and links to the codes used in the experiment.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provided codes as assets.

31

https://neurips.cc/public/EthicsGuidelines
paperswithcode.com/datasets

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not involve research with crowdsourcing and human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We do not involve research with human subjects.

32

	Introduction
	Background
	Our Contribution

	Preliminaries
	Graphs
	Graph Homomorphism
	Weisfeiler-Lehman Test
	Graph Neural Networks

	Generalised Homomorphism Numbers for Rooted Graphs with Features
	Deep Homomorphism Networks
	Definition
	Computational Complexity

	Theoretical Analysis of P-DHN Model
	Expressive Power of P-DHN Model
	Relationship with Existing Models
	Applications: Expressive Power Hierarchy
	Continuity and universality of P-DHN

	Experiments
	Conclusion
	Algorithms
	Algorithm for Bounded Treewidth Pattern
	Algorithm for Bounded DAG-Treewidth Pattern and Bounded Degeneracy Graph

	Related Work and Comparison with Our Model
	k-GNNs
	Subgraph GNN
	GNN with explicit pattern detection

	Experiment Details
	Model Configurations
	Datasets and Evaluations

	Proofs
	Proof of Theorem 3.1: Generalised Homomorphism Determines Isomorphism
	Remark 5.8: DHN generalises the most expressive subgraph GNNs
	Proof of Theorem 5.2: Expressive power of DHN
	Proof of Lemma 5.3: Chain Rule
	Proof of Theorem 5.16: Universality
	Proof of Corollary 5.9: Comparison of Models

