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Abstract

As the general description of relationships between
attributes, approximate functional dependencies
(AFDs) almost hold for a given dataset with a
few violations. Most of existing methods for AFD
discover are insufficient to balance the efficiency
and accuracy due to the massive search space and
permission of violations. To address these issues,
we propose an efficient method of probabilistic
semantics guided discovery of AFDs based on
Bayesian network (BN). Firstly, we learn a BN
structure and conduct conditional independence
tests on the learned structure rather than the en-
tire search space, such that candidate AFDs could
be obtained. Secondly, we fulfill search space re-
duction and structure pruning by making use of
probabilistic semantics of graphical models in
terms of BN. Consequently, we provide a branch-
and-bound algorithm to discover the AFDs with
the highest smoothed mutual information scores.
Experimental results illustrate that our proposed
method is more effective and efficient than the
comparison methods. Our code is available at
https://github.com/DKE-Code/BNAFD.

1 INTRODUCTION

Functional dependency (FD) is a constraint between at-
tributes of a relational database, indicating that the value of
one attribute can be uniquely determined by other attributes.
FDs are employed in the relational schema normalization to
remove redundancy from databases [Wei and Link, 2021],
facilitating tasks like query optimization [Gultchin et al.,
2023] and data cleaning [Bounia and Koriche, 2023]. Since
FDs are frequently unknown, numerous studies focus on
automatic FD discovery without human intervention.

As the relaxed FD, approximate functional dependency

City State Zip Telephone Status

MONROE GA 30655 7702678461 OPEN
MONROE GA 30655 7702678461 OPEN
ATLANTA GA 30327 4043553788 CLOSE

DAYTONA BEACH FL 32117 3862313907 OPEN
DAYTONA BEACH KY 32117 3862316000 OPEN

Table 1: Noise and sample limitations in FD discovery.

(AFD) allows for a few violating rows in datasets [Man-
dros et al., 2017]. Since real-world data typically contains
noise, the mining of AFDs is more useful than that of FDs,
and the discovered AFDs exhibit enhanced performance
in subsequent data management tasks [Zhang et al., 2020].
For instance, Table 1 illustrates that noise can make the
true FDs overlooked by FD discovery methods, such as
City → State. Additionally, finite samples can result in
obtaining spurious FDs, like State,Stauts→ City, which
could be addressed by AFD discovery methods [Jiang et al.,
2023]. Nevertheless, the AFD discovery faces not only a
massive search space but also the challenge of evaluating
AFD’s validity due to its relaxation.

Various methods have been proposed for AFD discovery
from various perspectives. The threshold-based methods,
such as traditional FD discovery methods [Flach and Savnik,
1999, Huhtala et al., 1999] and PYRO [Kruse and Naumann,
2018], search and validate all possible AFDs in dataset by
setting the maximum number of violating rows (called error
threshold). Due to the manually set fixed threshold, these
methods often obtain a large number of spurious depen-
dencies, which only hold in specific datasets but fail to re-
flect the true dependencies between attributes. The structure-
based method FDX [Zhang et al., 2020] transforms the task
of AFD mining into learning a sparse structure to improve
the efficiency. However, it generates AFDs from a sparse
structure, which typically results in obtaining only a few
simple AFDs and low recall. Additionally, the score-based
methods, RFI [Mandros et al., 2017] and smoothed mutual
information estimator (SMI) [Pennerath et al., 2020], use in-
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formation theoretic scores to validate AFDs, preventing the
discovery of spurious dependencies. Nonetheless, they suf-
fer from low efficiency due to the massive search space and
might discover non-minimal dependencies, whose left-hand
side contains redundant attributes.

As is known that Bayesian network (BN) [Pearl, 1988, Yu
et al., 2021] is widely used for uncertain knowledge repre-
sentation and inference. To address the challenges of the
massive search space and non-minimal dependencies, we
propose BNAFD, a BN-based AFD discovery method that
leverages BN’s dependence representation capabilities.

Specifically, we first learn a BN structure from input data
and limit the search space to the local structures within the
BN, in accordance with the properties of the Markov blanket.
We then generate candidate AFDs (cAFDs) by considering
the probabilistic semantics and conducting conditional inde-
pendence (CI) tests to remove non-minimal dependencies.
In view of the merit of SMI score to accurately measure
the correlation between attribute sets and effectively avoid
obtaining spurious dependencies [Pennerath et al., 2020],
we use SMI scores to validate AFDs. We next provide an
upper bound for the SMI score and design a branch-and-
bound algorithm to efficiently search for the highest-scoring
AFDs from candidates. Moreover, during the calculation of
SMI scores, we reuse some intermediate results to further
improve the efficiency.

Our contributions are summarized as follows:

• We propose an effective method to generate cAFDs by
removing non-minimal dependencies, which is imple-
mented by reduction of search space and CI tests on
the BN structure learned from data.

• We provide a theoretically effective bound for SMI
scores and design a branch-and-bound algorithm to
search for AFDs with the highest SMI score. Moreover,
a sample count reuse approach is provided to speed up
the calculation of SMI scores.

• We conduct extensive experiments on public and syn-
thetic datasets. The results demonstrate that our method
achieves the best balance between the F1 score and
efficiency for AFD discovery.

2 RELATED WORK AND PROBLEM
STATEMENT

2.1 RELATED WORK

FD discovery. The methods for mining minimal non-
trivial FDs check whether FDs are valid on the given dataset.
Column-based methods: [Huhtala et al., 1999] propose
TANE to validate minimal, non-trivial FD by dynamically
pruning the search space. [Novelli and Cicchetti, 2001] and
[Yao et al., 2002] adopt different traversal strategies and

pruning rules. Row-based methods: Dep-Miner [Lopes et al.,
2000] and FastFDs [Wyss et al., 2001] find attribute sets that
agree on certain tuple pairs and build maximal or minimal
sets to derive FDs. [Flach and Savnik, 1999] propose Fdep
to initiate a set of FDs and specialize them by pair-wise com-
parisons of all tuples. Hybrid methods: [Papenbrock and
Naumann, 2016] propose HYFD to generate candidate FDs
and validate them. [Abu-El-Haija et al., 2023] offer poten-
tial improvements for FD discovery in noisy or large-scale
datasets. [Skyler et al., 2024] introduce a hybrid approach
for multi-objective heuristic search. [Chen et al., 2019] and
[Núñez-Molina et al., 2024] consider discovering FDs on
dynamic datasets. However, these methods for FD discovery
only work on error-free datasets and often produce some
spurious dependencies.

AFD discovery. The methods of AFD discovery can be
classified into three categories according to various val-
idation mechanisms. Threshold-based methods: [Kruse
and Naumann, 2018] propose PYRO to use a separate-and-
conquer approach to locate promising candidates via error
estimations. Structure-based methods: [Zhang et al., 2020]
propose FDX to transform the task into structure learning
to improve the efficiency. Score-based methods: [Mandros
et al., 2017] propose RFI to subtract the expected value from
the normalized mutual information, and [Pennerath et al.,
2020] propose SMI to employ smoothing technique to coun-
teract the overestimation of mutual information. However,
these methods may yield non-minimal dependencies with
low precision due to the vast search space.

2.2 PROBLEM STATEMENT

Let D′ be a dataset of a relational schema R that contains
sufficient samples. Assume each attribute A ∈ R has a
domain V (A) and V (X) = V (A1) × · · · × V (A|X|) is
the domain of an attribute set X = {A1, · · · , A|X|} ⊆ R.
For any X ⊆ R and Y ∈ R, the conditional probabil-
ity P (Y = y|X = X) can be statistically derived from D′

without sampling bias, since the sample size is large enough.
Thus, an AFD that holds in D′ is defined as follows:

Definition 1 (AFD). An AFD X → Y holds, equivalent to
there being a function f such that:

∀X ∈ V (X) : P (Y = y|X = X) =

{
1− ϵ, if y = f (X)

ϵ, otherwise

(1)
where ϵ is a positive real number representing relaxation.

This definition indicates that an AFD is a FD that holds for
most tuples with a few of violations. Moreover, X → Y is
minimal if there is no subset of X determining Y , and it is
non-trivial if Y /∈ X .
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Figure 1: The framework of BNAFD, consisting of two phases: (1) candidate generation where the learned BN structure
prunes the search space to generate cAFDs, and (2) AFD search that finds cAFDs with the highest SMI score.

Problem statement. Given a noisy dataset D of relational
schema R with finite samples, the goal of AFD discovery
is to learn a BN structure G from D and restrict the search
scope using Markov blankets (MBs), ensuring that only the
most relevant attributes X are considered for each target
attribute Y . To achieve this, we conduct CI tests to remove
non-minimal dependencies, ensuring that no subset X ′ ⊆ X
suffices to determine Y . Then, we introduce SMI scores and
design a branch-and-bound search strategy to prune subop-
timal AFDs using an upper bound of SMI and accelerate
computations by reusing sample counts. Ultimately, we find
all minimal non-trivial AFDs that hold on R utilizing D.

3 METHODOLOGY

3.1 OVERVIEW

Figure 1 provides an overview of our BNAFD method. The
input to BNAFD is a noisy dataset D of relation schema
R, and the output is a set of minimal non-trivial discovered
AFDs. BNAFD consists of the following two stages:

• Candidate generation. We learn a BN structure G
from D and generate multiple sub-search spaces by
limiting the search space to the MBs within G. Then,
we obtain candidates by conducting CI tests to remove
non-minimal dependencies with a smaller search space,
thereby improving accuracy in AFD discovery.

• AFD search. We derive an upper bound for the SMI
score and design a branch-and-bound algorithm to iden-
tify cAFDs with the highest SMI values as outputs.
Furthermore, we reuse certain sample counts from the
SMI calculation to reduce the computational overhead
and improve overall efficiency.

3.2 CANDIDATE GENERATION

To mitigate search space explosion, we remove non-minimal
dependencies to generate effective candidates.

Search space reduction. A random variable Y in BN is
usually dependent on a subset of variables S rather than all
variables in the BN. S contains all the useful information of
Y and is called a Markov blanket [Pearl, 1988]. This indi-
cates that we only need to consider the AFDs between the
attributes in each MB, since other attributes are independent
with the attributes in this MB. By limiting the search space
to MBs in the context of BN, many non-minimal and invalid
dependencies can be eliminated.

Inspired by existing efficient BN structure learning meth-
ods [Bello et al., 2022], we learn the BN structure G from
the input dataset D and then limit the search space of each
attribute to reduce the non-minimal dependencies. Specifi-
cally, we find the MBs of all attributes S = {S1, · · · , Sn},
where each MB contains an attribute, its parents, its children
and the parents of its children in G. Consequently, the search



space is divided into multiple sub-search spaces, each con-
taining all possible AFDs formed by attribute combinations
within the corresponding MB. This reduces the time com-
plexity from exponential in attribute count to exponential in
the maximum MB (MMB) size.

Structure pruning. To remove the non-minimal depen-
dencies, we first prove that CI tests can identify non-minimal
dependencies through Theorem 1 and Theorem 2, and then
we construct a graph structure for efficient pruning.

According to the minimality pruning rule, given any X ′ ⊆
X , if X ′ → Y holds, then X → Y is non-minimal [Huhtala
et al., 1999]. In the process of FD discovery, this critical
rule dynamically prunes non-minimal dependencies using
known dependencies. However, the score-based methods
determine the validity of AFD only at the final stage, which
prevents us from using the previous pruning rule. Thus, we
modify the above rule by incorporating CI tests.

Theorem 1. Let X1 and X2 be arbitrary disjointed subsets
of X with X1 ∪ X2 = X . If Y and X1 are conditional
independent given X2, denoted as Y⊥X1|X2, then X → Y
is not a minimal non-trivial AFD.

Proof. From Y⊥X1|X2, we have

P (Y |X2) = P (Y |X1, X2) = P (Y |X) (2)

According to Definition 1, the validity of both X2 → Y
and X → Y is equivalent. If X2 → Y holds, then X →
Y holds but is non-minimal. Conversely, if X2 → Y not
holds, then X → Y is invalid. In any situation, X → Y is
not a minimal non-trivial AFD. We refer to such AFDs as
excludable AFDs (eAFDs), while other AFDs are cAFDs.

Theorem 1 allows us to identify eAFDs using CI tests. How-
ever, it only necessitates that X1 and X2 serve as two parti-
tions of X , containing (|X|2)−2 potential partitioning ways.
Conducting CI tests for all potential partitions is computa-
tionally infeasible. Therefore, we introduce the following
theorem to decrease the number of CI tests to |X|.

Theorem 2. Let X1 and X2 be arbitrary disjointed subsets
of X with X1 ∪ X2 = X . ∀A ∈ X1, Y⊥X1|X2 ⇐⇒
Y⊥A|X \ {A}.

Proof. (⇐=) Since the right side is a special case of the
left side, holds clearly.
(=⇒) According to the decomposition property of CI [Pearl,
1988], we have

Y⊥X1|X2 =⇒ Y⊥X1 −A|X2

=⇒ P (Y |X2) = P (Y |X \ {A})
(3)

Since Y⊥X1|X2 =⇒ P (Y |X2) = P (Y |X), we obtain

P (Y |X) = P (Y |X \ {A}) =⇒ Y⊥A|X \ {A}. (4)

Theorem 2 indicates that to determine whether X → Y is
excludable, we simply need to verify whether there exists
A ∈ X such that Y⊥A|X \ {A} holds. To reduce the time
complexity of existing CI test methods, we propose a novel
graph structure, called dependency exclusion graph (DEG),
which makes it possible to determine if multiple AFDs are
excludable by building the DEG once. Given the attribute
set Z ⊆ R, its DEG Gd (Z) is built by the following steps:

• Construct the ancestral graph Ga (Z): Trim G onto
Z ∪ an (Z), where an (Z) represents the ancestor
nodes of Z.

• Construct the moral graph Gm (Z): Add undirected
edges between parents sharing a common child in
Ga (Z), then convert all directed edges to undirected.

• Construct the DEG Gd (Z): delete each attribute in
an (Z) sequentially and add undirected edges between
its neighboring nodes.

Theorem 3 gives the idea to determine whether each
{Z\ {Y } → Y | Y ∈ Z} is an eAFD using Gd (Z).

Theorem 3. Let Z ⊆ R, and Y ∈ Z. If Y is not fully
connected to other nodes in Gd (Z), then Z \ {Y } → Y is
an eAFD.

Proof. First, according to Theorem 1 and Theorem 2, if
there exists A ∈ Z \ {Y } such that Y⊥A|Z \ {Y,A} holds,
then Z \ {Y } → Y is an eAFD.

Second, we construct three graphs: (1) Gm (Z), the moral
graph of Z; (2) Gm′ (Z), obtained by pruning Gm (Z) onto
Y ∪ A ∪ an (Z). Gm′ (Z) only retains Y ∪ A ∪ an (Z)
and their edges; (3) Gd (Z), the DEG, created by adding
edges between nodes connected through an(Z) and remov-
ing an(Z) in Gm (Z).

Third, based on M-separation, if there is no path between Y
and A in Gm′ (Z), then Y⊥A|Z \{Y,A} holds. In this case,
Y and A are not directly connected and are not indirectly
connected through an (Z) in Gm (Z). That is, Y and A are
not directly connected in Gd (Z). Since A can be any node
in Z\ {Y }, if Y is not directly connected with all the other
nodes in Gd (Z), then Z \ {Y } → Y is an eAFD.

Last, the DEG remains consistent for each Y ∈ Z. We can
deduce that for every Y ∈ Z, if Y is not fully connected to
other nodes in Gd (Z), then Z \ {Y } → Y is an eAFD.

For example, Figure 2 provides an example of identify-
ing eAFDs using DEG, where Z = {A,B,D,G} and
Figure 2 (d) shows the DEG Gd (Z). Since A and G are
not fully connected to other nodes, {B,D,G} → A and
{A,B,D} → G are excludable.

For each MB in G, we generate all attribute subsets with
more than one attribute and construct a DEG for each subset.
Then, we prune the non-minimal dependencies and invalid
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Figure 2: An example of identifying eAFDs using DEG.

Algorithm 1 Structure Pruning

Input: G, the BN structure; S, the MBs in G.
Output: C, the cAFDs in the search space.

1: C← {}, Z′ ← {} // Z′ is the set of processed attributes.
2: for each S in {S} do
3: C [S]← [ ]
4: Generate a Z ⊆ S in descending order of attribute

count and store them in Z
5: for each Z in Z do
6: if |Z| > 1 and Z ⊈ Z′ then
7: Z′ ← Z′ ∪ {Z}
8: build DEG Gd (Z)
9: for each B in Z do

10: if B is fully connected to other nodes in
Gd (Z) then

11: C [S] .append (Z \ {Y } → Y )
12: end if
13: end for
14: end if
15: end for
16: end for
17: return C

dependencies (see Algorithm 1) based on Theorem 3. The
time complexity of constructing Gd (Z) is O(m2) in the
worst case, and thus the time complexity of determining
whether a possible AFD can be excluded is just O(m2/|Z|).
The time complexity of SMI score calculation is at least
O(n × |Z|), where n is the sample count. By excluding a
large number of possible AFDs with a lower computational
cost, we can obtain candidate dependencies.

3.3 AFD SEARCH

We next search the cAFDs with the highest SMI score as
outputs. Considering the expensive process of SMI score
calculation, we propose a branch-and-bound algorithm and
count generations to respectively reduce the number of SMI
score calculations and lower the single calculation cost.

Branch-and-bound algorithm for AFD discovery. First,
we derive an upper bound for the SMI score. Given the
attribute set X ⊆ R and attribute Y ∈ R, the SMI score

between any subset X ′ ⊆ X and Y is always not larger
than the upper bound. That is

∀X ′ ⊆ X =⇒ ŝ (X;Y ) ≥ s (X ′;Y ) (5)

where s (X ′;Y ) is the SMI score of X ′ → Y , and ŝ (X;Y )
is the upper bound, defined as follows

ŝ (X;Y ) = −
∑

y∈V (Y )

x log x

(
ny +NXα

n+NXNY α

)
− n

n+NXNY α
H (Y |X) (6)

where x log x (·) is a simplified representation of (·) log (·),
n is the sample size, ny is the sample count with a value of y
on Y , NX is the size of V (X), H (Y |X) is the conditional
entropy, and α is the pseudocount in the SMI score.

Since the sample counts required for s (X ′;Y ) and ŝ (X;Y )
are consistent, ŝ (X;Y ) requires almost no additional com-
putational cost.

Then, we prove the validity of the upper bound, where the
formula of s (X ′;Y ) is as follows

s (X ′;Y ) = H̃X′Y (Y )− H̃X′Y (Y |X ′)

H̃X′Y (Y ) = −
∑

y∈V (Y )

x log x
(
P̃ (y)

)
−H̃X′Y (Y |X ′) =

∑
X′y∈V (X′Y )

P̃ (X ′y) log P̃ (y|X ′)

P̃ (y) = (ny +NX′α) / (n+NX′NY α)

P̃ (X ′y) = (nX′y + α) / (n+NX′NY α)

P̃ (y|X ′) = (nX′y + α) / (nX′ +NY α) .

We calculate the partial derivative of H̃X′Y (Y ) w.r.t. NX′

as follows

∂H̃X′Y (Y )

∂NX′
=

α

(n+NX′Nyα)
2

∑
y∈V (Y )

[(n−NY ny)

×
(
log

(
1

P̃ (y)

)
+

1

ln 2

)]



Algorithm 2 AFD Discovery

Input: D, the dataset; C, the cAFDs; S, the MBs.
Output: F , the discovered AFDs.

1: F ← {} , I ← {} //I is the highest SMI score currently
2: for each A in R do
3: count nA from D // nA = {na|∀a ∈ V (A)}
4: I [A]← 0
5: end for
6: for each S in S do
7: count nS from D
8: N0 [S]← nS ,N1 ← {} , l← |S|
9: while C [S] ̸= ∅ do

10: pop the first cAFD X → Y from C [S] with the
most attributes

11: nXY , nX ← generate_counts(X,Y,N0,N1, l)
12: calculate s (X;Y ) and ŝ (X;Y ) using nXY ,

nX and nY

13: if ŝ (X;Y ) ≤ I [Y ] then
14: pop all cAFDs X ′ → Y from C [S]

(X ′ ⊆ X)
15: continue
16: end if
17: if s (X;Y ) > I [Y ] then
18: I [Y ]← s (X;Y )
19: F [Y ]← X
20: end if
21: end while
22: end for
23: return F

where
∑

y∈V (Y ) (n−NY ny) = 0. Since

log
(

1
P̃ (y)

)
< (or >) logNY when ny > (or <) n

NY

, and
∑

y∈V (Y ) (n−NY ny) logNY = 0, we have

∂H̃X′Y (Y )

∂NX′
≥ 0 (7)

If X ′ = X , then NX′ reaches its maximum value NX .
Based on the monotonicity, we can obtain

∀X ′ ⊆ X, H̃X′Y (Y ) ≤ H̃XY (Y ) (8)

∀X ′y ∈ V (X ′Y ) , P̃ (X ′y) log P̃ (y|X ′) ≤ 0, we have

− H̃X′Y (Y |X ′) ≤
∑

X′y∈V ′(X′Y ) P̃ (X ′y) log P̃ (y|X ′)

=
∑

X′∈V ′(X′)
nX′+NY α
n+NX′NY α

∑
y∈V ′

X′ (Y ) x log x
(
P̃ (y|X ′)

)
(9)

where V ′ (X ′) denotes the value of samples on X ′, and
V ′
X′ (Y ) denotes the value of samples on Y when X equals

to X ′. Similar to Equation 9, we have

− H̃X′Y (Y |X ′)

≤ −
∑

X′∈V ′(X′)
nX′+NY α
n+NX′NY αH (Y |X ′ = X ′)

≤ − n
n+NX′NY αH (Y |X ′)

(10)

Algorithm 3 Count Generation

Input: D, the dataset; C [S], the cAFDs corresponding to
S; nS , the count of S; X , the set of attributes; Y , an
attribute; l, the current search level; N0, N1, the sam-
ple count for the attribute sets containing l and l − 1
attributes.

Output: nXY , the sample count for XY ; nX , the sample
count for X .

1: if |XY | ≠ l then
2: l← |XY |
3: for each X ′ → Y ′ in C [S] do
4: if l > |X ′Y ′| then
5: break
6: end if
7: if nX′Y ′ /∈ N1 then
8: if ∃nZ ∈ N0 (or N1) s.t.X

′Y ′ ⊆ Z then
9: count nX′Y ′ from nZ

10: else
11: count nX′Y ′ from nS

12: end if
13: N1 [X

′Y ′]← nX′Y ′

14: end if
15: end for
16: N0 ← N1,N1 ← {}
17: end if
18: nXY ← N0 [XY ]
19: if nX /∈ N1 then
20: count nX from nXY

21: N1 [X]← nX

22: else
23: nX ← N1 [X]
24: end if
25: return nXY , nX

According to the monotonicity, we have

∀X ′ ⊆ X,−H̃X′Y (Y |X ′) ≤ − n
n+NXNY αH (Y |X)

(11)

Based on Equation 8 and Equation 11, we obtain the validity
of the upper bound.

Ultimately, we develop a branch-and-bound algorithm for
finding minimal non-trivial AFDs. Within each sub-search
space, we calculate the SMI scores and upper bounds of
the cAFDs in descending order of the attribute count. If
the current upper bound ŝ (X;Y ) is lower than the known
highest SMI score, then we prune all X ′ → Y (X ′ ⊆ X) in
the search space (see Algorithm 2). Since the SMI scores
and their upper bounds share the same sample counts, Al-
gorithm 2 incurs almost no additional cost. Compared to
traversing all cAFDs, this pruning technique significantly
reduces the number of SMI score calculations.

Count generation. To reduce the cost of counting the
samples from data for calculating SMI scores, we store



and reuse the previously obtained sample counts to prevent
redundant counting. Specifically, we use N0 and N1 to al-
ternately store the sample counts. The attribute count of
current cAFD is defined as the search level, represented by
l. Here, N0 stores the sample count for the attribute sets
containing l attributes, and N1 stores the sample count for
the attribute sets containing l − 1 attributes. We prioritize
reusing previously stored sample counts to regenerate them
when needed (see Algorithm 3). By trading a small amount
of additional memory usage, our approach avoids redundant
counting and thus reduces the overall computational cost of
calculating the SMI score.

4 EXPERIMENTAL STUDY

4.1 EXPERIMENTAL SETUP

Datasets. We select 6 public and 10 synthetic datasets
with ground-truth AFDs to evaluate the effectiveness of our
method. The statistics of these datasets are summarized in
Table 2.

Dataset # Attributes # Edges # Samples # AFDs

Earthquake 5 4 5,000 3
Cancer 5 4 5,000 3
Asia 8 8 5,000 5
Insurance 27 52 5,000 18
Water 32 66 5,000 18
Alarm 37 46 5,000 24

Table 2: Statistics of public datasets.

For public datasets, since the dependencies between at-
tributes are well-defined, we select six datasets including
Cancer, Earthquake, Asia, Insurance, Water, and Alarm. We
generate 5,000 samples as the dataset by forward sampling
on each BN.

For synthetic datasets, we first set the number of attributes
and edges, and then construct a Erdős-Rényi (ER) ran-
dom graph [Erdos and Rényi, 1960]. The attributes without
incoming edges are assigned by random values ranging
from 0 to 4. We finally assign values to the remaining at-
tributes following the topological order, with the values
being primarily determined by a function of their parents,
p(A = f(o)|pa(A) = o) = 0.8, where A and pa(A) is
an attribute and its parents, respectively. The AFDs can
be obtained from the ER random graph corresponding to
the situation of each dataset. Each synthetic dataset con-
tains 5,000 samples with different attributes and edges, i.e.,
{a10e10, a15e15, a20e20, a25e25, a30e30, a60e60, a65e65,
a70e70, a75e75, a80e80}, where a10e10 means that the
dataset including 10 attributes and 10 edges.

To evaluate the impact of dataset size on the efficiency, we

generate synthetic datasets by varying MMB size and the
number of attributes. Specifically, we first randomly gener-
ate BN structures along with their conditional probability
tables, and then select the BNs whose MMB size and at-
tribute numbers meet the requirements. We also generate
5,000 samples as the dataset by forward sampling on each
synthetic BN. Actually, the MMB sizes on these datasets
are {3, 5, 7, 9, 11} and the attribute numbers are {5, 10, 15,
20, 25}.

Comparison methods. We carefully choose the following
five methods for comparison:

• FDX [Zhang et al., 2020] is a structure-based method
and transforms FD discovery into a structure learning
problem over a linear structured equation model.

• RFI [Mandros et al., 2017] is a score-based method
and finds AFDs using the score that adjusts the nor-
malized mutual information by subtracting expected
values under the hypothesis of independence.

• SMI [Pennerath et al., 2020] is a score-based method
and discovers AFDs using the score that corrects the
mutual information through Laplacian smoothing.

• PYRO [Kruse and Naumann, 2018] is a threshold-
based method and combines a separate-and-conquer
search strategy with sampling-based guidance to
quickly detect and verify candidates.

• TANE [Huhtala et al., 1999] is a classical FD discovery
method and can be used to find AFDs by setting an
error threshold.

Metrics and implementation. The effectiveness of the
AFD discovery method is measured by precision (P ), recall
(R), and F1 score.

• Precision measures the accuracy of AFD discovery
and is the mean proportion of the correct attributes in
the left-hand side of the discovered AFDs, defined as

P = Ed

(
|X ∩X∗|
|X|

)
(12)

where X represents the left-hand side of the discovered
AFDs, whose ground-truth is X∗ and Ed (·) denotes
the mean value for all discovered AFDs.

• Recall measures the completeness of AFD discovery
and is the mean proportion of the discovered attributes
in the left-hand side of ground-truth AFDs, defined as

R = Et

(
|X ∩X∗|
|X∗|

)
(13)

where Et (·) denotes the mean value for all the ground-
truth AFDs.

• F1 score is defined as 2PR/(P +R).



Dataset Metric BNAFD FDX RFI SMI PYRO TANE

Earthquake

P 0.5000 0.5000 0.3667 0.2000 0.1667 0.0000
R 1.0000 1.0000 1.0000 1.0000 0.3333 0.0000
F1 0.6667 0.6667 0.5366 0.3333 0.2222 0.0000

# AFDs 5 4 5 5 6 0

Cancer

P 0.5000 0.5000 0.4000 0.2000 0.3333 0.0000
R 1.0000 0.6667 1.0000 1.0000 0.1667 0.0000
F1 0.6667 0.5714 0.5714 0.3333 0.2222 0.0000

# AFDs 5 4 5 5 3 0

Asia

P 0.4286 0.2381 0.2917 0.3036 0.1296 0.5000
R 0.6000 0.4000 0.6000 1.0000 0.4000 0.1000
F1 0.5000 0.2985 0.3925 0.4658 0.1958 0.1667

# AFDs 7 7 8 8 27 2

Insurance

P 0.3944 0.4375 - 0.3327 0.0287 0.0708
R 0.6944 0.1759 - 0.7407 0.8796 0.3704
F1 0.5031 0.2509 - 0.4592 0.0556 0.1189

# AFDs 27 16 - 27 743346 5327

Water

P 0.2776 0.3854 - - 0.0294 -
R 0.3491 0.1380 - - 0.6852 -
F1 0.3092 0.2032 - - 0.0563 -

# AFDs 26 16 - - 462797 -

Alarm

P 0.4093 0.4236 - - - -
R 0.8576 0.4167 - - - -
F1 0.5541 0.4201 - - - -

# AFDs 36 24 - - - -

Table 3: Comparison of effectiveness on public BN datasets. The best results are highlighted in boldface.

Additionally, the running time of each method is recorded to
evaluate the efficiency. For public datasets, we use the state-
of-the-art exact BN structure solver GOBNILP [Cussens
et al., 2017] to learn BN structures with the convergence
parameter set to 0.01. For synthetic datasets, we use the
efficient continuous optimization method DAGMA [Bello
et al., 2022] to achieve better scalability.

All experiments are conducted on a machine with Intel i9
13900KF CPU and 128GB RAM, running Windows 11
operation system.

4.2 EXPERIMENTAL RESULTS

Effectiveness and efficiency evaluation on public
datasets. We evaluate the effectiveness and efficiency of
our BNAFD by comparing with other methods. For fairness,
each method receives identical inputs and the running time
is limited to 30,000 seconds. Table 3 reports the precision,
recall, F1 score, and the number of AFDs discovered by
each method, and Figure 3 shows the corresponding run-
ning time. Overall, BNAFD consistently outperforms other
methods in terms of effectiveness and efficiency.

Effectiveness evaluation on synthetic datasets. We eval-
uate the effectiveness of our BNAFD by comparing with
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Figure 3: Comparison of efficiency on public datasets.

other methods. For large datasets, we only present the results
of BNAFD and FDX, since the running time of the other
methods exceed 30,000 seconds. For each configuration, we
conduct the tests for 5 times and report the average result
and variance. The precision, recall, and F1 score results are
reported in Table 4 and Table 5, which demonstrate that our
method BNAFD achieves the best overall performance on
synthetic datasets.

Robustness evaluation on noisy datasets. We evaluate
the robustness of our BNAFD by comparing with other
methods under different noise rates. Table 6 and Table A.1
summarize the F1 score of each method. The results demon-



Dataset Metric BNAFD FDX RFI SMI PYRO TANE

a10e10
P 0.5911 ±0.0013 0.5111±0.0054 0.3267±0.0072 0.4300±0.0066 0.1240±0.0001 0.1048±0.0019
R 0.8714±0.0126 0.6339±0.0230 0.5000±0.0158 0.5964±0.0159 1.0000±0.0000 0.5679±0.0016
F1 0.7026±0.0032 0.5635±0.0106 0.3944±0.0101 0.4987±0.0091 0.2205±0.0003 0.1741±0.0038

a15e15
P 0.5634±0.0056 0.5741±0.0017 0.2067±0.0072 0.3822±0.0063 0.0743±0.0000 0.0661±0.0012
R 0.8496±0.0050 0.5052±0.0031 0.3996±0.0202 0.6129±0.0030 0.9929±0.0002 0.6416±0.0190
F1 0.6771±0.0059 0.5344±0.0010 0.2691±0.0102 0.4691±0.0058 0.1382±0.0000 0.1185±0.0034

a20e20
P 0.5422±0.0029 0.7064±0.0032 0.2992±0.0009 0.4033±0.0008 0.0530±0.0000 0.0592±0.0004
R 0.8320±0.0067 0.5179±0.0048 0.5254±0.0019 0.6230±0.0007 0.9920±0.0001 0.6288±0.0085
F1 0.6559±0.0038 0.5963±0.0040 0.3801(±0.0009 0.4891±0.0006 0.1005±0.0000 0.1079±0.0011

a25e25
P 0.5851±0.0003 0.6347±0.0027 0.2827±0.0043 0.4107±0.0002 0.0404±0.0000 0.0406±0.0001
R 0.8812±0.0005 0.4165±0.0087 0.5409±0.0164 0.6453±0.0007 0.9815±0.0002 0.5792±0.0028
F1 0.7029±0.0001 0.4999±0.0063 0.3710±0.0074 0.5017±0.0003 0.0776±0.0000 0.0757±0.0002

a30e30
P 0.5473±0.0025 0.7281±0.0124 0.3272±0.0012 0.3878±0.0003 0.0330±0.0000 0.0359±0.0001
R 0.8254±0.0035 0.4435±0.0018 0.5935±0.0059 0.6446±0.0015 0.9778±0.0004 0.6257±0.0095
F1 0.6577±0.0027 0.5494±0.0033 0.4216±0.0023 0.4837±0.0003 0.0638±0.0000 0.0678±0.0004

Table 4: Comparison of effectiveness on small synthetic datasets. The best results are highlighted in boldface.

Dataset Metric BNAFD FDX

a60e60
P 0.5456±0.0001 0.7355±0.0029
R 0.8248±0.0031 0.4115±0.0022
F1 0.6562±0.0005 0.5261±0.0021

a65e65
P 0.5764±0.0006 0.6489±0.0012
R 0.8823±0.0004 0.3821±0.0011
F1 0.6967±0.0003 0.4800±0.0009

a70e70
P 0.5428±0.0003 0.6247±0.0039
R 0.8420±0.0029 0.3566±0.0023
F1 0.6596±0.0006 0.4533±0.0029

a75e75
P 0.5854±0.0004 0.6667±0.0092
R 0.8491±0.0013 0.3573±0.0023
R 0.6929±0.0006 0.4651±0.0040

a80e80
P 0.5712±0.0002 0.7443±0.0155
R 0.8590±0.0008 0.4011±0.0084
F1 0.6857±0.0001 0.5205±0.0115

Table 5: Comparison of effectiveness on large synthetic
datasets. The best results are highlighted in boldface.

strate that BNAFD achieves superior robustness and scal-
ability under different noise rates. For more details please
refer to A.3 in Appendix.

5 CONCLUSION

We propose a probabilistic semantics guided AFD discov-
ery method, BNAFD, by incorporating CI tests in terms of
BN and branch-and-bound pruning. Experimental results
demonstrate that high-quality AFDs could be discovered
efficiently. Moreover, our method is robust to the noise in

Dataset Noise rate BNAFD FDX

a60e60
0 0.6562 0.5261

0.05 0.6410 0.2013
0.01 0.6967 0.4565

a70e70
0 0.6596 0.4533

0.05 0.6546 0.0995
0.01 0.6932 0.3002

a80e80
0 0.6857 0.5205

0.05 0.6675 0.0966
0.01 0.4649 0.3503

a65e65
0.01 0.6613 0.5261

0 0.6967 0.4800
0.05 0.6877 0.0668

a75e75
0.01 0.6606 0.4122

0 0.6929 0.4651
0.05 0.6828 0.0327

Alarm
0.01 0.6791 0.3397

0 0.5541 0.4201
0.05 0.3834 0.0727

Table 6: Comparison of F1 score on large noisy datasets.
The best results are highlighted in boldface.

data and can guarantee the high precision of discovered FDs,
providing a novel idea for the classical problem of FD dis-
covery. By incorporating BN as the preliminary framework,
our method is theoretical reasonable.

Since real-world data frequently suffers from missing values,
we will investigate mining AFDs from incomplete datasets.
Furthermore, applying BNAFD to anomaly detection is an-
other promising direction for practical deployment.
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A EXPERIMENTAL DETAILS

A.1 EXP-1: EFFECTIVENESS AND EFFICIENCY EVALUATION ON PUBLIC DATASETS

We evaluate the effectiveness and efficiency of our BNAFD by comparing it with other methods. For a fair comparison, each
method receives identical inputs, and the running time is limited to 30,000 seconds. Table 3 summarizes the precision, recall,
F1 score, and the number of AFDs discovered by each method, and Figure 3 shows the corresponding running time. The
results tell us that:

• BNAFD achieves the highest F1 score and outperforms other methods on all datasets.

• FDX exhibits high precisions but low recalls, and performs well on the two datasets, Cancer and Earthquake, where the
left-hand sides of the ground-truth AFDs contain the fewest attributes. This is consistent with our analysis as it tends to
find simple AFDs. However, the F1 score of FDX is no higher than our method.

• Compared with RFI, BNAFD presents the equivalent recall while improving the precision by 0.1234 on average.
Compared with SMI, the average recall of BNAFD decreases somewhat by 0.1116, whereas the average precision
increases by 0.1967. The results demonstrate that it is reasonable to limit the search space to MBs and use CI tests to
remove non-minimal dependencies.

• The number of AFDs found by BNAFD, FDX, RFI and SMI is at most equal to the number of the anticipated attributes.
However, PYRO and TANE find all AFDs that satisfy the given error threshold, which leads to a large number of
spurious AFDs.

• Only FDX and BNAFD can finish the tests on all datasets. Furthermore, BNAFD is always faster than RFI and SMI
even when the structure learning incurs additional cost.

A.2 EXP-2: EFFECTIVENESS EVALUATION ON SYNTHETIC DATASETS

In this set of tests, we evaluate the effectiveness of our BNAFD by comparing with other methods. We divide the synthetic
datasets into two categories: small and large datasets. For the large datasets, we only present the results of BNAFD and
FDX, since the running time of the other methods exceed 30,000 seconds. For each configuration, we conduct the tests for 5
times and report the average result and variance. Table 4 and Table 5 summarize and compare the precision, recall, F1 score.
The results tell us that:

• BNAFD achieves the highest F1 score and outperforms other methods on all datasets. The findings demonstrate that
BNAFD is not overfitting to the BN datasets, and it can also obtian high-quality AFDs on randomly generated synthetic
datasets.

• The performance of all methods is similar to that on public BN datasets, with FDX having higher precision but lower
recall, RFI and SMI having higher recall but lower precision, PYRO and TANE obtaining a large number of spurious
dependencies, resulting in low precision.
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• BNAFD exhibits attribute scalability due to the search space reduction.

A.3 EXP-3: ROBUSTNESS EVALUATION ON NOISY DATASETS

In this set of tests, we evaluate the robustness of our BNAFD by comparing with other methods under different noise rates.
To simulate noisy datasets, we randomly alter each value in dataset to another value within its domain at a probability
corresponding to the noise rate. For each synthetic dataset, we conduct the tests for 5 times and report the average result. For
public datasets, we choose Cancer and Alarm to represent small datasets and large datasets, respectively. Table A.1 and
Table 6 summarize the F1 score of each method. The results tell us that:

Dataset Noise rate BNAFD FDX RFI SMI PYRO TANE

a10e10
0 0.7026 0.5635 0.3944 0.4987 0.2205 0.1741

0.01 0.7026 0.4737 0.3001 0.4987 0.2195 0.2111
0.05 0.6796 0.4548 0.2216 0.4647 0.2176 0.1535

a15e15
0 0.6771 0.5344 0.2691 0.4691 0.1382 0.1185

0.01 0.6771 0.5344 0.2282 0.4691 0.1375 0.1494
0.05 0.6611 0.4923 0.2063 0.4604 0.1416 0.1217

a20e20
0 0.6559 0.5963 0.3801 0.4891 0.1005 0.1079

0.01 0.6612 0.5269 0.2810 0.4891 0.1006 0.1109
0.05 0.6240 0.4817 0.2188 0.4728 0.1054 0.0958

a25e25
0 0.7029 0.4999 0.3710 0.5017 0.0776 0.0757

0.01 0.6954 0.4999 0.2980 0.5017 0.0785 0.0847
0.05 0.6904 0.4949 0.2454 0.5017 0.0838 0.1019

a30e30
0 0.6577 0.5494 0.4216 0.4837 0.0638 0.0678

0.01 0.6639 0.5528 0.2653 0.4840 0.0643 0.0719
0.05 0.6504 0.5429 0.2352 0.4810 0.0678 0.0764

Cancer
0 0.6667 0.5714 0.5714 0.3333 0.2222 0.0000

0.01 0.6667 0.5714 0.3562 0.3333 0.4000 0.0000
0.05 0.5914 0.0000 0.3226 0.3333 0.0000 0.0000

Table A.1: Comparison of F1 score on small noisy datasets. The best results are highlighted in boldface.

• BNAFD achieves the highest F1 score and outperforms other methods under different noise rates.

• For small datasets, all the methods are robust to noise on synthetic datasets. Since Cancer has smaller value domains
and is more probably affected by noise, only BNAFD, RFI and SMI maintain the robustness on Cancer.

• For large datasets, only BNAFD exhibits good robustness and attribute scalability.

A.4 EXP-4: IMPACTS OF PARAMETERS ON SYNTHETIC DATASETS

In this set of tests, we evaluate the efficiency of our BNAFD by comparing with other methods under different parameter
settings. We vary the attribute number and MMB size independently to evaluate how each parameter affects the running
time, which is limited to 30,000 seconds. By varying the parameters of BN structures in BNAFD, the structures of the
synthetic datasets are utilized as inputs. Figure A.1 shows the running time of all methods. The results tell us that:

• For a fixed MMB size, our BNAFD exhibits the slowest increase of running time as the number of attributes increases,
following a linear growth curve. In contrast, the running time of RFI, SMI, TANE, and PYRO increases exponentially
with the number of attributes.

• When the number of attributes is fixed but the MMB size grows, the running time of the comparison methods remains
basically constant, while our method grows exponentially. However, BNAFD is consistently faster than RFI and SMI.

These findings show that our BNAFD significantly reduces the time complexity from exponential in the number of attributes
to exponential in the MMB size.
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Figure A.1: Impacts of parameters on efficiency.

Dataset

Structure Pruning
Branch-and-bound Algorithm

Count Generation

× ✓ × × ✓

× × ✓ × ✓

× × × ✓ ✓

Earthquake 0.2272 0.1104 0.1245 0.0375 0.0357
Cancer 0.2164 0.1272 0.1357 0.0394 0.0377
Asia 0.7504 0.3805 0.3424 0.0427 0.0389

Insurance 257.8796 135.9594 217.7140 1.5280 0.7881
Water 31.1385 14.7965 24.4691 0.2540 0.1705
Alarm 67.3109 33.3371 48.9376 0.4399 0.2689
a30e30 8441.6901 3123.9453 8152.4624 28.8785 8.6985

Table A.2: Ablation experiments. The best results are highlighted in boldface.

A.5 EXP-5: ABLATION EXPERIMENTS

In this set of tests, we valuate whether our proposed algorithms, structure pruning, branch-and-bound algorithm and count
generation, can improve the efficiency. Five distinct methods are explored: employing no algorithms, using each algorithm
individually, and combining all three algorithms. These tests are conducted on the public datasets and a synthetic dataset.
The running time for structure learning is not recorded, since it is consistent across all the methods. Table A.2 summarizes
the running time of all methods. The results tell us that:

• The method combining all three algorithms exhibits the shortest running time on all datasets.

• The methods using any one of these algorithms are faster than the method employing no algorithms.

These indicate that the three proposed algorithms can improve the efficiency of our AFD discovery method.


	Introduction
	Related Work and Problem Statement
	Related Work
	Problem Statement

	Methodology
	Overview
	Candidate Generation
	AFD Search

	Experimental Study
	Experimental Setup
	Experimental Results

	Conclusion
	Experimental Details
	Exp-1: Effectiveness and efficiency evaluation on Public datasets
	Exp-2: Effectiveness evaluation on synthetic datasets
	Exp-3: Robustness evaluation on noisy datasets
	Exp-4: Impacts of parameters on synthetic datasets
	Exp-5: Ablation experiments


