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GAUSSIANFLUENT: GAUSSIAN SIMULATION FOR DY-
NAMIC SCENES WITH MIXED MATERIALS
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Figure 1: Physical simulation of dynamic object states with 3D Gaussian Splatting. GaussianFluent is
capable of generating realistic internal texture, simulating and rendering complex object dynamics (e.g., elastic
deformation, fracture, and slicing) with mixed materials (e.g., jelly with internal blue sugar penetrated by a
rigid bullet in top row), in response to different lighting conditions.

ABSTRACT

3D Gaussian Splatting (3DGS) has emerged as a prominent 3D representation for
high-fidelity and real-time rendering. Prior work has coupled physics simulation
with Gaussians, but it predominantly targets soft, highly deformable materials
such as rubber and snow, leaving brittle fracture in objects like watermelons un-
resolved. This stems from two obstacles: the lack of a volumetric interior with
coherent textures with GS representation, and the absence of fracture-aware simu-
lation methods for Gaussians. To overcome these, we introduce GaussianFluent,
a framework for realistic simulation and rendering of dynamic object states. First,
it synthesizes consistent, photorealistic interiors by densifying internal Gaussians
guided by generative models. Second, it integrates an optimized Continuum Dam-
age Material Point Method (CD-MPM) to enable correct brittle fracture at real-
time speeds. Finally, a Blinn-Phong model is used to shade the dynamically evolv-
ing fracture surfaces. Experiments show GaussianFluent delivers photo-realistic,
real-time renderings of these state changes with structurally consistent interiors,
highlighting its potential for downstream applications.

1 INTRODUCTION

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has emerged as a prominent and highly effective
technique for high-fidelity, real-time rendering of complex scenes and achieves state-of-the-art ren-
dering quality. Despite its remarkable success, modeling dynamic scenes within the Gaussian Splat-
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ting (GS) framework, especially the physics simulation of consistent evolution of multi-material
objects, presents significant challenges. This difficulty stems from three primary issues.

First, as a surface-based method, GS inherently lacks representation of internal structures. Thus, the
stress, inertia, and contact-force computations required for physically accurate solid-object simula-
tion are undefined. It is also impossible for GS to realistically render the new surfaces exposed dur-
ing the fracture process. Second, previous GS simulation methods, such as PhysGaussian (Xie et al.,
2024), have largely targeted specific dynamics like elastic material. Simulation methods suitable
for brittle fracture within the GS framework are still lacking. Existing point-cloud fracture meth-
ods (Wolper et al., 2019) are incompatible with GS; they lack a continuous return-mapping scheme,
leading to physically implausible fracture dynamics, and their reliance on CPU-bound execution
with limited parallelism imposes significant performance bottlenecks. Third, rendering dynamic
lighting effects is challenging. Static GS reconstructions typically bake in lighting and shadows,
which prevents their evolution during simulation. While advanced methods like Relightable 3DGS
exist, they rely on pre-defined normals and physics properties, and thus cannot adapt to the evolving
surfaces generated during fracture simulations.

To address these challenges, we introduce GaussianFluent, a framework to populate GS’s interiors
and simulate complex object dynamics such as brittle fracture and bullet impacts, with optionally
dynamic lighting. Our key contributions are as follows:

• Internal Texture Synthesis. We propose a novel pipeline that synthesizes realistic and consis-
tent internal structures and textures for GS by leveraging publicly available generative models,
requiring no additional training data.

• Optimized CD-MPM for GS. We augment the current GS simulation framework with an opti-
mized integration of CD-MPM, resolving instability issues in the previous CD-MPM algorithm
and implementing GPU parallelism. This enables physics-plausible brittle fracture simulation
with substantial real-time performance improvements.

• Efficient Dynamic Lighting. We implement a Blinn-Phong lighting model (Blinn, 1977), coupled
with a normal estimation module. Its empirical formulation enables efficient lighting estimation
for each evolving frame.

We validate GaussianFluent on a suite of challenging scenarios involving food, liquids, and fruits,
where internal and external appearances differ significantly, and materials span brittle solids, vis-
coelastic gels, and soft tissues. Our experiments cover diverse topological changes, including dy-
namic fracturing, elastoplastic deformation, slicing, and high-velocity bullet impacts. Results show
that our method effectively reconstructs structurally coherent internal GS primitives with realistic
textures and achieves high-fidelity simulation and rendering of dynamic scenes, substantially out-
performing existing methods.

2 RELATED WORK

2.1 DEFORMATION-PREDICTED DYNAMIC SCENES

Neural Radiance Fields (NeRF) (Mildenhall et al., 2021; Müller et al., 2022; Barron et al., 2021;
2023; 2022; Chen et al., 2022) and 3DGS (Kerbl et al., 2023; Yu et al., 2024; Huang et al., 2024a;
Chen & Wang, 2024) have recently emerged as two prominent approaches for scene reconstruction,
largely due to their ability to produce photo-realistic and efficient renderings. However, both meth-
ods primarily focus on static scenes and lack inherent support for modeling dynamic environments.
To address this limitation, subsequent works incorporate deformation fields into neural radiance
fields (Pumarola et al., 2021; Park et al., 2021; Tretschk et al., 2021) and Gaussian primitives (Wu
et al., 2024; Yang et al., 2024b; Huang et al., 2024c; Wan et al., 2024; Liang et al., 2024; Luiten
et al., 2024) to capture scene dynamics. Despite these advancements, existing approaches are typ-
ically limited to replaying observed motion trajectories rather than enabling further simulation or
interaction, thereby restricting their generalization capability. Moreover, the modeling of motion in
deformable Gaussians often lacks physically grounded constraints: each Gaussian is assigned an in-
dependent deformation vector without regard to physical plausibility, which can result in unrealistic
or implausible dynamics.
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2.2 PHYSICS-SIMULATED DYNAMIC SCENES FOR GAUSSIAN SPLATTING

3DGS is inherently compatible with MPM physics simulation frameworks, as its representation is
composed of particle-like primitives, which provide a unified explicit foundation for both simula-
tion and rendering. PhysGaussian (Xie et al., 2024) pioneers this direction by associating physical
properties with Gaussian primitives and employing the Material Point Method (MPM) for physically
based simulation. Subsequent works (Huang et al., 2024b; Zhang et al., 2024; Liu et al., 2024a) ex-
tend this framework by either learning physical properties from generative priors (Blattmann et al.,
2023; Xing et al., 2024; Wang et al., 2023a; Lin et al., 2025), enabling automated physical parameter
optimization. However, these methods still cannot model highly dynamic scenes, primarily due to
the absence of simulation models suitable for brittle fracture. Furthermore, existing methods gen-
erally neglect the plausibility of internal textures that become visible when objects tear or break.
FruitNinja (Wu & Chen, 2025) addresses internal texture generation for static GS reconstructions of
fruits using a diffusion model fine-tuned on a self-collected dataset, which is costly and lacks gener-
alizability. In addition, current simulation works (e.g. PhysGaussian) leave relighting unaddressed;
existing lighting works like RelightableGS (Gao et al., 2024) and GS-Phong (He et al., 2024) typi-
cally rely on pre-computed, static surface normals, limiting their adaptability when fracture exposes
new interior surfaces.

Building upon Continuum Damage Mechanics (CDM) (Simo & Ju, 1987; Matsuoka et al., 1999;
Bourdin et al., 2000), we develop an optimized CD-MPM formulation for 3DGS that delivers brittle
fracture on mixed-material objects, and pair it with (i) an internal texture filling pipeline and (ii) a
dynamic lighting system for evolving Gaussians. The latter couples a Blinn-Phong model (Blinn,
1977) with training-free normal estimation, so newly fractured internal surfaces immediately obtain
consistent shading and fragment-aware self-shadowing.

3 METHOD

We propose GaussianFluent to enable realistic simulation of dynamic scenes, particularly material
fracture, within the 3DGS framework. The overall framework is shown in Figure 2. Our method
first generates internal structures and textures for GS representations, followed by simulating frac-
ture dynamics using an optimized CD-MPM framework. To achieve realistic rendering, we further
incorporate dynamic lighting to accurately visualize newly exposed fracture surfaces.

3.1 INTERNAL FILLING FOR 3D GAUSSIAN SPLATTING

3.1.1 INTERNAL VOLUME INITIALIZATION

Standard 3DGS primarily captures external surfaces, leaving interiors undefined, which is prob-
lematic for simulating interactions like cutting that expose internal structures. Our method first
populates the interior volume and then textures it, as illustrated in Figure 2.

To initialize the internal volume, we first train an initial 3DGS model of the target object from mul-
tiview images. To prevent large Gaussians from straddling boundaries and ensure a clear exterior-
interior separation (Liu et al., 2024c; Wu & Chen, 2025), we augment the standard rendering loss
with a scale regularization:

Ltotal = 0.8MSE + 0.2SSIM + λ

N∑
i=1

||si||22, (1)

where si are the scale parameters of Gaussian i, and λ controls regularization strength. This encour-
ages smaller, more localized Gaussians, crucial for interior definition and relighting.

Next, we identify the object boundary as the high-density regions. Given a resolution n, we uni-
formly discretize the scene space into n3 grids and compute the density field d(x) for each grid
center by accumulating contributions from its neighboring Gaussians P :

d(x) =
∑
p∈P

αp exp
(
− 1

2 (x− xp)
TA−1

p (x− xp)
)
, (2)
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Gaussian Infilling Texture Inpainting Mixed Material Physics Simulation Lighting System 

Figure 2: Overview of GaussianFluent. Our model first populates Gaussians in the internal volume and
generates interior realistic texture with pretrained image generative models (Section 3.1). We then incorporate
optimized CD-MPM simulation with mixed materials for Gaussian Splatting (Section 3.2) and introduce Blinn-
Phong reflection in the rendering pipeline (Section 3.3).

where αp, xp, and Ap denote the opacity, GS center, and covariance of Gaussian p, respectively.
Grids with d(x) ≥ τd are marked high-density; these high-density grids are extracted as the object
boundary. New internal Gaussians are then initialized inside the enclosed volume, following prior
practice by Xie et al. (2024).

GS trained with 
scale regularization

Smooth GS 
surface

Rough GS 
surface 

Internal 
Filling

Opacity 
Optimization

Figure 3: Internal Gaussian filling and refinement.
The opacity optimization improves the smoothness of
the GS surface after internal filling, beneficial for tex-
ture inpainting and simulation.

This initial density-based filling can be imprecise,
potentially creating Gaussians outside the true
boundary due to sensitivities to surface geome-
try and threshold choice (Wu & Chen, 2025). To
refine this, we perform an opacity-only optimiza-
tion for all new internal Gaussians using the ren-
dering loss by fixing other attributes. This drives
the opacity of extraneous Gaussians to zero. Fi-
nally, we prune Gaussians with opacity α < ϵα,
resulting in a clean, well-defined solid volume
representation suitable for subsequent texturing
and simulation, as shown in Figure 3.

3.1.2 INTERNAL TEXTURE GENERATION

Once the interior volume is populated, assigning plausible internal textures is the next step. Generat-
ing multi-view and spatially coherent internal textures is a significant challenge due to scarce train-
ing data for object interiors (Poole et al., 2022; Liu et al., 2024b). Thus, we propose a training-free
two-stage approach: an initial texture generation via single-view inpainting, followed by iterative
multi-axis refinement, as illustrated in Figure 2.

Coarse Texture Initialization We first establish a coarse internal texture by uniformly slicing
the object into 40 slices along the X-axis and inpainting each slice from its frontal viewpoint. For
each slice, we render its initial appearance Cinitial and an internal region mask Minit. The masked
region in Cinitial is then inpainted using a generative model, e.g., MVInpainter (Cao et al., 2024),
guided by a text prompt P , to produce the target image Cinpaint. Each internal Gaussian i whose 2D
projection ui falls within the inpainted region then samples its color ci from Cinpaint using bilinear
interpolation. Its zeroth-order spherical harmonic (SH) coefficient, sh0

i , is initialized as:

sh0
i =

ci − 0.5

C0
, (3)

where the constant C0 = 1/(2
√
π). Higher-order SH coefficients for these internal Gaussians are

initialized to zero, ensuring an initially isotropic appearance derived from the inpainted texture.

Iterative Texture Refinement The single-view initialization, while a reasonable start, lacks con-
sistency across the 3D internal structure and different viewing directions. To achieve comprehensive
consistency, we iteratively refine the texture across all three primary axes (X, Y, and Z). This re-
finement is guided by text-prompted image inpainting using image generative models like Stable
Diffusion XL (SD-XL) (Podell et al., 2023).
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Inspired by the iterative corrective philosophy of SDS (Poole et al., 2022), we perform successive
low-strength inpainting updates. The core refinement loop, repeated per iteration, consists of two
main steps: 1) Generative Inpainting of Slices: We select 40 uniformly spaced slices along each of
the X, Y, and Z axes (120 slices in total). For every slice, we render its axis-aligned orthographic
view and an internal structure mask; these inputs are passed to SD-XL with an inpaint strength of
0.1, constraining denoising so that edits incrementally inject new internal details while remaining
the global structure. 2) Gaussian Optimization: The newly inpainted 2D images from all 120 slices
serve as optimization targets. The SH coefficients of the internal GS are optimized for 5 steps to
minimize the rendering discrepancy against these inpainted images.

This two-step cycle is systematically repeated until the optimization loss converges or a maximum
number of iterations is reached, ultimately yielding an internally consistent and detailed 3D texture.
Our successive low-strength inpainting strategy produces sharp and realistic textures, in contrast to
vanilla SDS, which leads to blurry and oversaturated results (Wang et al., 2023b; Alldieck et al.,
2024; Lukoianov et al., 2024). Since the internal slices are co-dependent, with intersections on the
orthogonal views, the iterative refinement drives the optimization toward tri-axial consistency.

3.2 CD-MPM IN GAUSSIAN SPLATTING WITH MIXED MATERIALS

We extend the 3DGS simulation framework by incorporating the CD-MPM with support for mixed
materials. Similar to PhysGaussian (Xie et al., 2024), each 3D Gaussian primitive in our framework
is assigned physical properties, including mass, velocity, volume, and stress, and interacts with
other particles via a background Eulerian grid. Our GPU parallelization implementation for efficient
physical simulation is detailed in Appendix B.3.

Initialization We initialize covariances only for newly added interior Gaussians, assigning each a
spherical covariance whose radius corresponds to its per-particle volume, i.e., cell volume divided
by the number of particles in the cell. The material parameters of the Gaussians, such as Young’s
modulus, Poisson’s ratio, friction angle, mass density, etc., are manually defined following Phys-
Gaussian and CD-MPM.

GS Property Evolution with MPM Let X denote the reference GS state before simulation, and x
the state after simulation. Continuum mechanics describes motion via a time-dependent deformation
map as follows:

x = φ(X, t). (4)

Here, φ represents the MPM simulation function. The deformation gradient Fp(t) is defined as

Fp(t) =
∂x

∂X
=

∂φ(X, t)

∂X
, (5)

which encodes both local rigid deformation (rotation) and non-rigid deformation (stretch and shear).
For each simulation step, we apply Fp(t) to the GS’s covariance and spherical harmonics to achieve
physics-plausible simulation results. For more details, please refer to Appendix A.
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Figure 4: A jelly-like material is shot with a bul-
let. We compare our method with PhysGaussian to
demonstrate the effectiveness of our simulation and
visualize the damage variable α.

Fracture Mechanism We model brittle fracture
by tracking the deformation Fp(t) of each GS. A
softening law reduces its stress-generating capac-
ity with increasing deformation. Fracture is not
triggered by a sharp threshold but emerges when
this capacity becomes negligible and fails to sus-
tain internal forces. We decompose Fp(t) into rigid
and non-rigid components; only the latter, com-
prising volumetric stretch p and shear distortion q,
contributes to fracture. A square under volumet-
ric stretch becomes a scaled orthogonal rectangle,
whereas pure shear turns it into an area-preserving
parallelogram with skewed angles. The elastic,
stress-generating region is defined by a yield sur-
face y(p, q) ≤ 0. With accumulating deformation, this surface contracts in the (p, q)-plane, dimin-
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ishing the sustainable elastic stress. Fracture occurs as this residual capacity vanishes. The Non-
Associated Cam-Clay (NACC) model specifies this surface via the equation y(p, q; p0, β,M) = 0.
More specifically,

y(p, q; p0, β,M) = q2(1 + 2β) +M2(p+ βp0)(p− p0), (6)
p0 = K sinh(ξmax(−α, 0)). (7)

β,M,K, ξ are all predefined hyperparameters, p is the volumetric stretch magnitude, and q is the
shear magnitude. α is the key damage variable. At each step, we apply return mapping to enforce
y ≤ 0 and update α to evolve the yield surface y.

Continuous Return Mapping At each step, a trial state (ptr, qtr) is formed and evaluated by the
yield function ytr = y(ptr, qtr). Only the region where y ≤ 0 is physically meaningful. Therefore,
when y > 0, it is necessary to project (ptr, qtr) onto the ellipsoid such that y = 0. In CD-MPM, this
projection process R involves two possible cases:

1. Exterior pressures (ptr ≥ p0 or ptr ≤ −βp0): tip projection, where ptr ≥ p0 ⇒ (p0, 0), and
ptr ≤ −βp0 ⇒ (−βp0, 0).

2. Interior pressures (−βp0 < ptr < p0): connect (ptr, qtr) to (pc, 0) with the ellipse center pc =
−βp0+p0

2 = 1−β
2 p0, where the intersection with the yield ellipse gives (pnew, qnew).

The connection to the fixed center (pc, 0) causes return-map discontinuities at p = p0 and p =
−βp0. At the right boundary p, letting qtr →∞ shows a jump:

lim
ε→0+

lim
qtr→∞

R(p0 − ε, qtr) = (
1− β

2
p0,

M(β + 1)

2
√
1 + 2β

p0), (8)

lim
ε→0+

lim
qtr→∞

R(p0 + ε, qtr) = (p0, 0). (9)

We present a schematic diagram in Figure A1 to illustrate the discontinuity jump problem of this
projection. Specifically, approaching p → p−0 with qtr → ∞ maps the trial state to the upper
apex of the yield ellipse, whereas p → p+0 maps it to the right tip (p0, 0). This jump triggers
numerical instability: a machine-precision fluctuation δ about p0 can map an identical geometric
state to completely different return points. To resolve this instability, we regularize the projection by
introducing a dynamic point, (p′c, 0), which smoothly adapts to the (p, q) and ensures a continuous
mapping. We define this new point as:

p′c = pc + ϕk(p
tr)(ptr − pc), (10)

where ϕk(p
tr) =

∣∣∣ ptr−pc

p0−pc

∣∣∣k and p0 − pc is the semi-major axis of the ellipse.

This modified scheme can be regarded as an extension of the original approach, replacing the fixed
point (pc, 0) with a dynamic point (p′c, 0). For any finite k, we have limε→0+ p′c(p0 − ε) = p0,
indicating continuity:

lim
ε→0+

lim
qtr→∞

R(p0 − ε, qtr) = lim
ε→0+

lim
qtr→∞

R(p0 + ε, qtr) = (p0, 0). (11)

Moreover, it recovers the original discontinuous scheme in the limit as k → ∞, because for any

ptr in (−βp0, p0), we have limk→∞ p′c = limk→∞(pc +
∣∣∣ptr−pc

p0−pc

∣∣∣k) = pc. In our implementation,
we choose k = 2, as it provides a robust and smooth projection. After projection, we compose p
and q to obtain the Fp. We define Jtr = detFtr

p and Jnew = detFnew
p , and update the hardening

parameter via α ← α + ln
(

Jtr

Jnew

)
. We present an example of α heatmap in Figure 4 to visualize

the changes in α within the jelly. As the α value increases, the corresponding regions of the jelly
undergo fracturing. Further details are provided in Appendix B.

Mixed material simulation Unlike PhysGaussian, which assumes uniform material properties,
our method supports more realistic and complex simulations by assigning different β to various
parts of an object, such as the seed, flesh, and rind of a watermelon. This requires segmenting
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Ours

Figure 5: Comparison between our mixed material modeling and fixed β setting. Our approach assigns
distinct β values, i.e., 2, 0.6, and 5, to the rind, flesh, and seed, respectively. This yields more realistic simulation
results compared to settings that apply a single, uniform β value to the entire watermelon.

both external and internal structures through existing segmentation methods (Yang et al., 2024a; Liu
et al., 2025), part-aware object generation (Yang et al., 2025; Zhang et al., 2025), or heuristics. For
example, to realistically model a watermelon fracture, we assign β values based on the color of the
GS, i.e., 5 to the black seeds, 0.6 to the red flesh, and 2 to the green rind. As shown in Figure 5,
our mixed material approach produces more realistic results, whereas using a uniform material leads
to visual artifacts and unnatural fracture patterns. The lollipop shattering scene in Figure 7 further
demonstrates the cracks that PhysGaussian cannot generate.

3.3 RELIGHTING

Existing GS lighting methods, such as Relightable 3DGS (Gao et al., 2024) and GS-Phong (He et al.,
2024), are not applicable to dynamic simulations. These methods are intended for static scenes and
rely on multiple images captured under known lighting conditions to learn GS normals and other at-
tributes. Rather than adopting the Physically Based Rendering (PBR) lighting model in Relightable
3DGS, which requires learning additional material attributes, e.g., Fresnel parameters, for each GS,
we employ the empirical Blinn-Phong reflection model, which only requires the normals for GS.

However, it is nontrivial to obtain GS normals using non-learning methods. As noted in Relightable
3DGS, numerical normal-estimation methods such as PCA are ill-suited to GS for two primary
reasons: (i) GS particles are spatially sparse, and (ii) Gaussian centers, especially those with large
kernels, are not tightly aligned with the visual surface. To overcome these issues, the regularization
loss 1 we introduce in Section 3.1 promotes kernel densification and surface alignment, thereby
enabling effective normal computation for each Gaussian splat using PCA.

Blinn-Phong Reflection Model Once the normal n for each GS is computed, we apply the Blinn-
Phong reflection model to determine its final color. For each Gaussian i with center pi and normal
ni, we apply the Blinn-Phong reflection model using view direction v (from pi to the camera) and,
for each light m, light direction lm, distance rm, and half vector hm = (lm + v)/∥lm + v∥2. The
diffuse and specular terms are Dm = max(ni · lm, 0) and Sm = [max(ni ·hm, 0)]p, with shininess
exponent p. Let c0 be the base color, Ia the ambient light color, IL,m the color of light m, and Ti,m

a per-light visibility term. Then

Li = c0 ⊙ Ia +
∑
m

Ti,m (c0 ⊙ IL,m)
1

r2m
(Dm + Sm), (12)

where ⊙ denotes element-wise multiplication.

This lighting framework allows us to effectively simulate complex scenes with multiple objects and
dynamic light sources, as shown in Figure 1 and Figure A3. For example, in the latter figure, we
present a scene of multiple fruits with dynamic lighting on a table. Such dynamic illumination and
shadowing are crucial for achieving visually consistent and plausible renderings during simulation,
where the evolution of shadows is not considered in PhysGaussian (Xie et al., 2024).

4 EXPERIMENT

We conduct experiments on both internal texture filling and physical simulation of dynamic scenes.
For a more intuitive visualization of our results, we refer the reader to the supplementary videos.

7
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Input Ours 2D Inpaint PhysGaussian

Figure 6: Qualitative comparison of internal texture filling. Our method yields more realistic and consistent
interior textures from GS rendering.

4.1 INTERNAL TEXTURE FILLING

Table 1: Quantitative internal filling comparison.

Method CLIP Score ↑ User study ↑
PhysGaussian 22.3 3.57% (3/84)
2D Inpainting 30.1 25.00% (21/84)
Ours 35.4 71.43% (60/84)

We evaluate the quality of the generated in-
terior texture, both quantitatively and qualita-
tively, against PhysGaussian and 2D Inpainting.
We report CLIP scores (Radford et al., 2021)
and conduct a user study, where participants are
asked to select the best internal filling results.
As presented in Table 1, our method achieves
the highest CLIP score, significantly outperforming PhysGaussian and 2D inpainting. These results
indicate that the interior textures generated by our approach exhibit superior semantic consistency
with the target descriptions. Prompt details are shown in Appendix C.

Figure 6 provides a qualitative comparison of rendered internal structures, and our method produces
realistic and detailed results. For instance, the figure showcases the distinct seeds and flesh texture
within a watermelon, a spherical cross-section of a kiwi that reveals its characteristic patterns, and
an oblique slice through a cake displaying its clearly defined layers. These high-fidelity results stand
in sharp contrast to those from PhysGaussian, which appear blurrier and less defined. Furthermore,
while 2D inpainting can produce plausible individual slices, it fails to maintain 3D consistency
across different views, resulting in unconvincing volumetric representations. In addition to static
textures, our method achieves realistic dynamic rendering during simulation, capturing authentic
material behavior under various conditions, as detailed in the next section.

4.2 PHYSICS SIMULATION FOR DYNAMIC SCENES

Table 2: Dynamic scene simulation comparison.

Method CLIP Score ↑ User study↑
PhysGaussian 12.2 3.84% (1/26)
OmniPhysGS 13.1 7.69% (2/26)
Ours 22.7 88.46% (23/26)

Quantitative evaluations of physics simulation
further validate the performance of our method
using both CLIP similarity scores and a percep-
tual user study, where participants are asked to
choose the most realistic simulation outcome
from our method and the baselines using the
same form as Figure 7. As shown in Table 2,
our method achieves the highest CLIP similarity score and user preference, substantially outper-
forming PhysGaussian and OmniPhysGS. The perceptual study demonstrates that our results align
with the users’ understanding of realistic dynamic evolution and conform to intuitive physical com-
monsense. The higher CLIP score affirms that our simulation outcomes are not only visually more
convincing but also semantically more accurate.
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Figure 7: Qualitative comparison of object state simulation. We present a comparison for a lollipop, where
our result correctly simulates its fracture of mixed materials, outperforming PhysGaussian and OmniPhysGS.

Diverse Object Simulation We conduct an extensive series of qualitative experiments, as shown
in Figures 1 and 7, and Figures A2 and A3 in Appendix, to further substantiate the broad applicability
and robustness of our framework for various objects with significantly different material properties.
The set included highly elastic materials like jelly, sliceable fruits such as pineapples and kiwis,
brittle objects like watermelons, fluids including milk, and granular structures like sandcastles. They
provide compelling visual evidence of our model’s capabilities under different lighting conditions
in diverse scenarios. For example, the top example in Figure 1 illustrates the deformation of a jelly
when struck by a bullet, highlighting not only its elastic response but also the detailed internal rigid
sugar expulsion. More examples are shown in the supplementary video.

Mixed-Material Physics Simulation Our method is capable of simulating complex fracture and
deformation, particularly for objects with different material responses. Figure 7 highlights this with
a challenging scenario: a lollipop shatters on impact while its wooden stick remains intact. This
ability to model mixed-material physics simulations that are visibly more detailed and realistic than
those from prior work. This is also demonstrated in our simulation of a falling watermelon (Figure 1,
Figure 5), where the internal seed and flesh remain distinctly separate.

5 CONCLUSION AND DISCUSSION

In this paper, we introduce GaussianFluent, a novel framework for physically plausible and re-
alistic simulations of dynamic scenes with 3D Gaussian Splatting, including material fracture and
behaviors of mixed materials. Our core contributions include a method for internal structure texture
synthesis, an adapted CD-MPM for efficient physics simulation, and a dynamic lighting system for
rendering evolving fracture surfaces. This integration allows GaussianFluent to simulate complex
events like shattering, deformation, fluid splashing, cutting, and granular collapse with high visual
fidelity directly within the GS representation, as demonstrated by our diverse qualitative results. The
ability to model, simulate, and render dynamic scenes paves the way for more applications involving
dynamic and interactive virtual worlds.

Limitations and Future Direction To further enhance the applicability and generalization of
physical simulation in the GS framework, we point out several directions for future work. Firstly,
enhancing physical accuracy and versatility could be achieved by incorporating a broader range of
constitutive models and exploring simulation techniques better suited for specific phenomena like
fluids. Secondly, the current physical parameters are manually set; automating this process through
inverse rendering or learning-based approaches would reduce tuning efforts and could improve sim-
ulation fidelity. Future research could also focus on scalability for extremely complex scenes, more
intricate multi-physics interactions, and integrating learning for predictive simulation.

9
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6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our work on GaussianFluent. To this
end, we will release the complete source code, which includes our implementations of internal
structure texture synthesis, the adapted CD-MPM for physics simulation, and the dynamic lighting
system for rendering fracture surfaces. The curated dataset, derived from Objaverse, along with the
Blender scripts used to render the training images, will also be made publicly available. We believe
these comprehensive resources will enable the community to verify our findings and build upon
the GaussianFluent framework for future research. Please refer to the Appendix C for specific
implementation details.

7 ETHICS STATEMENT

We have thoroughly reviewed the ICLR Code of Ethics and confirm that all aspects of our work
comply with established academic ethical standards. Our research does not involve human or animal
subjects, nor does it contain any potentially harmful insights, methodologies, or applications. We do
not anticipate any issues related to discrimination, bias, fairness, privacy, or security. Furthermore,
our work adheres to all relevant legal and research integrity requirements, and we are confident that
it aligns with the principles outlined in the ICLR Code of Ethics.
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APPENDIX

A MATERIAL POINT METHOD

Overview We use an explicit MPM. Particles (also the 3D Gaussian splats) carry

mp, V
0
p , Xp, xp, vp, Fp, Ap, ap, σp, Cp. (A1)

In summary, given the 3D GS of a static scene {Xp, Ap, σp, Cp}, we use simulation to dynamize
the scene by evolving these Gaussians to produce dynamic Gaussians {xp(t), ap(t), σp, Cp}. Here,
Xp is the initial position, while xp is the current position that evolves over time with velocity vp.
Furthermore, Ap is the static covariance of the initial Gaussian; the dynamic covariance ap is de-
rived at each step; Fp is the deformation gradient used to calculate ap; and the opacity σp and SH
coefficient magnitudes Cp are considered time-invariant.

A.1 THE MATERIAL POINT METHOD (MPM) ALGORITHM STEPS

The Material Point Method (MPM) algorithm iteratively transfers data between particles and a back-
ground grid. A single time step can be broken down into the following three main stages.

A.1.1 PARTICLE-TO-GRID TRANSFER (P2G)

In the first stage, information is transferred from the Lagrangian particles to the nodes of the Eu-
lerian grid. This process, known as rasterization, effectively creates a grid-based snapshot of the
continuum’s state. For each particle p, its mass mp and momentum pp = mpvp are interpolated and
added to the surrounding grid nodes i. This is done using interpolation functions Nip (also known
as shape functions), which depend on the particle’s position relative to the grid.

The nodal mass mi and nodal momentum pi are computed as follows:

mi =
∑
p

mpNip (A2)

pi =
∑
p

mpvpNip. (A3)

From the nodal momentum and mass, the initial nodal velocity is found: vi = pi/mi, provided
mi > 0.

A.1.2 GRID UPDATE

This stage contains the core physics computations, which are performed entirely on the grid. First,
forces acting on each grid node are calculated. These forces are typically composed of two parts:

• Internal forces f internal
i , which arise from the material’s stress. These are computed by transferring

particle stress information (derived from the deformation gradient Fp) back to the grid.

• External forces f external
i , such as gravity or user-defined interactions.

The total force on a node is fi = f internal
i + f external

i .

With the total force, the grid node velocities are updated over the time step ∆t using an explicit time
integration scheme (e.g., Forward Euler):

vn+1
i = vn

i +∆t
fi
mi

. (A4)

Boundary conditions, such as collisions with obstacles, are also enforced on the grid during this
stage by modifying the nodal velocities.
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A.1.3 GRID-TO-PARTICLE TRANSFER (G2P)

Finally, the updated kinematic information is transferred from the grid back to the particles. This
stage, often called the ”gather” step, updates the Lagrangian particles’ state using the newly com-
puted fields on the Eulerian grid, preparing them for the next time step. This process involves
updating each particle’s velocity, its deformation gradient, and finally its position.

First, the particle’s velocity vp is updated by interpolating the new velocities vn+1
i from the sur-

rounding grid nodes. This is essentially a weighted average, using the same interpolation functions
Nip as the P2G step:

vn+1
p =

∑
i

vn+1
i Nip. (A5)

This update can be a pure Particle-In-Cell (PIC) update, or it can be combined with the particle’s
previous velocity in a FLIP (Fluid-Implicit-Particle) scheme to reduce numerical dissipation.

Simultaneously, the particle’s deformation gradient Fp, which tracks the local rotation and strain of
the material, must also be updated. This is done by first computing the velocity gradient ∇v at the
particle’s position, which is also interpolated from the grid node velocities:

∇vp =
∑
i

vn+1
i ∇NT

ip. (A6)

This gradient is then used to advance the deformation gradient forward in time:

Fn+1
p = (I+∆t∇vp)F

n
p , (A7)

where I is the identity matrix. This update is crucial for correctly computing material stress in the
next time step.

Lastly, with the new velocity vn+1
p computed, the particle’s position xp is updated as:

xn+1
p = xn

p +∆tvn+1
p . (A8)

Once all particles have been updated, the information on the background grid is no longer needed
and is typically reset or discarded. The simulation is now ready to begin the next time step with the
P2G phase.

A.2 EVOLUTION OF 3D GAUSSIAN PROPERTIES VIA CONTINUUM MECHANICS

This approach outlines a method for animating 3D GS by treating them as discrete particles within
a physics-based system governed by continuum mechanics. The primary goal is to evolve a static
scene, defined by initial properties, into a dynamic state for rendering.

The evolution of the key Gaussian properties for each time step is as follows:

• Position Evolution (Mean): The Gaussian’s center, or mean, is its world-space position xp. This
is updated using the particle’s velocity vp, which is determined by the physical simulation, via
explicit time integration:

xn+1
p = xn

p +∆tvp. (A9)

• Shape Evolution (Covariance): The dynamic world-space covariance ap, which defines the
Gaussian’s shape and size, is computed directly from the deformation gradient Fp. The defor-
mation gradient describes the local deformation of the material around the particle. It maps the
initial, undeformed shape (defined by the material-space covariance Ap) to its current, deformed
configuration:

ap(t) = Fp(t)ApFp(t)
T . (A10)

• Orientation Evolution (for Rendering): To correctly render anisotropic appearances (e.g., using
Spherical Harmonics), the particle’s orientation must be tracked. The rotation component Rp is
extracted from the deformation gradient, typically via polar decomposition (Fp = RpSp). This
rotation is then applied to the appearance model during rendering.

• Time-Invariant Properties: Visual attributes such as opacity σp and material-space appearance
coefficients (e.g., Spherical Harmonics, Cp) are considered intrinsic material properties. They are
typically held constant throughout the simulation.
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B FRACTURE MECHANISM WITH CONTINUUM DAMAGE MATERIAL POINT
METHOD

B.1 INTRODUCTION OF CD-MPM

The yield surface serves as a dividing boundary in stress space: inside it, the material response is
elastic; at the boundary plastic yielding begins; any trial state predicted beyond this boundary is
reconciled by returning it to a suitable point on the boundary in accordance with ideal plasticity. As
mentioned above, the yield surface of CD-MPM is defined as:

y(p, q) = (1 + 2β) q2 +M2(p+ βp0)(p− p0) = 0. (A11)

If (p, q) lies in the elastic domain where y ≤ 0, no plastic correction is applied.

(pc, qc) =
(1− β

2
p0, 0

)
(A12)

ytr = y(ptr, qtr) (A13)

JE(p) =

√
−2p

κ
+ 1 (A14)

Here pc, qc identify the center of the yield ellipsoid (y = 0); ptr, qtr is the uncorrected trial stress
state produced at simulation step n; JE is the determinant of the elastic deformation gradient (elastic
volume ratio); κ is the Bulk Modules; and pn+1, qn+1 is the state after applying the return mapping
R:

R(pn+1, qn+1) =


(ptr, qtr), ytr ≤ 0 (Elastic)
(p0, 0), ytr > 0 ∧ ptr > p0 (Case 1: upper tip projection)
(−βp0, 0), ytr > 0 ∧ ptr < −βp0 (Case 2: lower tip projection)
(px, qx), ytr > 0 ∧ −βp0 ≤ ptr ≤ p0 (Case 3: center–trial line intersection)

(A15)

Here ytr = y(ptr, qtr). If ytr ≤ 0, the trial point lies in the elastic domain and is accepted un-
changed: (pn+1, qn+1) = (ptr, qtr). If ytr > 0 and ptr > p0, the trial point lies beyond the positive
p-axis tip and is projected to the upper tip (p0, 0). If ytr > 0 and ptr < −βp0, it lies beyond the
negative tip and is projected to (−βp0, 0). Otherwise (ytr > 0 with −βp0 ≤ ptr ≤ p0), we join
the center (pc, qc) and the trial point (ptr, qtr); the intersection of this line segment with the yield
ellipsoid y(p, q) = 0 defines (px, qx), and we set (pn+1, qn+1) = (px, qx). Besides p, q, we also
update α and JE as below:

αn+1 = αn +

{
0, ytr ≤ 0

log
(
JE,tr/JE,n+1

)
, ytr > 0

, (A16)

with

JE,n+1 =


JE(p0), Case 1
JE(−βp0), Case 2
JE(px), Case 3

(A17)

B.2 ADAPTED CONTINUOUS RETURN MAPPING

However, this piecewise return mapping is discontinuous at the right tip p = p0. Consider trial states
with ytr > 0 and very large shear measure qtr → ∞. Take two sequences with ptr = p0 − ε and
ptr = p0 + ε (ε > 0). For ptr = p0 − ε, the algorithm falls into the “center–trial line intersection”
branch; as qtr → ∞ the direction from the center (pc, 0), with pc = 1−β

2 p0, to the trial point
becomes vertical, so the mapped point tends to the upper apex of the yield ellipsoid y(p, q) = 0,
namely,

(pc, qapex) =
(

1−β
2 p0,

M(β+1)

2
√
1+2β

p0

)
. (A18)
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Subsequently letting ε → 0+ leaves this limit unchanged. In contrast, for ptr = p0 + ε, the “upper
tip projection” branch is invoked and the image is the tip (p0, 0), retaining the volumetric (tensile)
part and removing shear. Thus,

lim
ε→0+

lim
qtr→∞

R(p0−ε, qtr) =
(

1−β
2 p0,

M(β+1)

2
√
1+2β

p0

)
, lim
ε→0+

lim
qtr→∞

R(p0+ε, qtr) = (p0, 0), (A19)

showing a directional jump: one limit preserves (essentially) shear while the other preserves only
the volumetric extension. And even some small q such as q = p0 will also occur jumps like this.

Return Mapping near p = p₀: p_c discontinuity vs p_c' continuity

Original (fixed p_c): jump

p

q

p = p₀

(p₀,0)p_c

apex

p₀ - ε p₀ + ε

(p_x,q_x)

Left → apex, Right → (p₀,0)
Discontinuous

Regularized (adaptive p_c'): smooth

p

q

p = p₀

p_c (ref) p_c'

apex

(p₀,0)

p₀ - ε p₀ + ε

(p_x,q_x)

Both sides → (p₀,0)
Continuous

Legend

p_c p_c (ref) p_c' apex (p₀,0) trial (p_x,q_x)

orig return regularized p = p₀ callout

Figure A1: Comparison of two return mapping kinds.

To remove both the numerical instability and the physical ambiguity at the tip, we replace the interior
(ptr ∈ [−βp0, p0]) center–line branch with a normal closest-point return: solve (pn+1, qn+1) =
(ptr, qtr)−∆λ∇y(pn+1, qn+1), y(pn+1, qn+1) = 0, ∆λ ≥ 0. Outside this interval, we still project
to the nearest tip. This yields a continuous mapping and a well-defined consistent tangent.

We modify only the interior plastic branch with−βp0 ≤ ptr ≤ p0. Introduce a k-dependent pseudo-
center on the p-axis:

Lp = p0− pc > 0, ϕk =

∣∣∣∣ptr − pc
Lp

∣∣∣∣k ∈ [0, 1], (p′c, q
′
c) =

(
pc +ϕk(ptr − pc), 0

)
. (A20)

In Case 3 we replace the fixed center (pc, 0) by (p′c, 0), draw the line through (p′c, 0) and the trial
point (ptr, qtr), and take its intersection with the yield surface y = 0 as the updated stress, as shown
in Figure A1. All other cases are unchanged. For any finite k the return mapping is continuous,
because as ptr → p−0 we have ϕk → 1 and thus p′c → ptr, so the update approaches the right tip
smoothly. For any fixed interior ptr < p0, ϕk → 0 as k → ∞, giving p′c → pc and recovering the
original (unmodified) branch. Hence k provides a homotopy from a continuous regularized mapping
(finite k) back to the original formulation (k →∞).

B.3 GPU PARALLELIZATION

We achieve a substantial performance improvement by porting the CPU-bound CD-MPM algorithm
to the GPU. Our implementation reduces simulation times from 4 minutes per frame to a single
second. This is accomplished through a complete framework reimplementation that leverages the
NVIDIA Warp library to parallelize the core simulation loop. Unlike the original CPU-only method,
our GPU-native approach enables the simulation of far more complex scenes in interactive time.

C EXPERIMENT DETAILS

All experiments are conducted on a GPU capable of 52.22 TFLOPS (FP32) and approximately 103
Tensor TFLOPS (FP16). These simulations typically consume around 10 GB of VRAM, with peak
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Table A1: Parameters and Timings. Seconds per frame (s/frame) is an average. All performance metrics
were obtained from experiments conducted on a GPU delivering 103 Tensor TFLOPS at FP16 precision.

Example s/frame ∆tframe ∆x ∆tstep N ρ E ν NACC-(α0, β, ξ, M )

watermelon 3.56 1/50 3× 10−3 1× 10−4 27M 2 2000/1000/1× 104 0.38 (-0.04, 2/0.6/5, 2, 2.36)
jelly 0.39 1/500 3× 10−3 1× 10−5 1M 2 2000 0.45 (-0.5, 1, 2, 2.36)
pumpkin 5.12 1/50 3× 10−3 1× 10−4 27M 2 4000 0.40 (-0.04, 1, 2, 2.36)
kiwi 1.58 1/50 1× 10−2 1× 10−4 1M 2 2000 0.42 (-0.04, 1, 2, 2.36)
pineapple 1.16 1/50 1× 10−2 1× 10−4 1M 2 5000 0.39 (-0.04, 1, 2, 2.36)
dragonfruit 2.27 1/50 1× 10−2 1× 10−4 1M 2 2000 0.42 (-0.04, 1, 2, 2.36)
tosta 3.18 1/50 5× 10−3 1× 10−4 8M 2 2000 0.38 (-0.1, 1, 2, 2.36)
sandcastle 2.09 1/50 1× 10−2 1× 10−4 8M 2 50 0.05 (-0.04, 0.01, 1, 2.36)

usage not exceeding 16 GB. Detailed timings and material parameters are provided in Table A1.
For the NACC model, the parameter β is adjusted to differentiate the material properties of various
components, while the initial parameter α0 is maintained uniformly for all particles within an object.

For coarse texture generation, MVInpainter (Shi et al., 2023) is selected over IP-Adapter (Ye et al.,
2023) and MVDream (Shi et al., 2023) due to its ability to maintain color consistency across different
viewing axes. Subsequently, SD-XL was employed for fine texture generation, owing to its enhanced
performance in generating detailed interior textures compared to IP-Adapter.

For the user study, we prepare eight distinct objects: watermelon, cake, jelly, pumpkin, bread, kiwi,
dragonfruit, and pineapple. We then conduct two separate evaluations. To assess the quality of the
interior filling, we recruit 21 participants, collecting a total of 8 × 21 = 168 ratings. Separately, to
evaluate the simulation dynamics, 26 participants are recruited, providing a total of 8 × 26 = 208
ratings.

We use two types of prompts:

• For interior filling: We explicitly instruct GPT to generate an inpainting prompt in the form “a
slice of [object].” For example, GPT produces the following for a watermelon: “A realistic and
detailed drawing of the juicy red flesh and black seeds of a watermelon slice.”

• For CLIP-score evaluation: To evaluate the plausibility of the final scene, we have human an-
notators write prompts that describe the overall event, for example, “A watermelon dropped and
shattered on a table,” and “Slices of a [object] landing on a table.”

D USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model solely as a writing aid to improve the clarity, grammar, and overall
readability of the manuscript. Its role was limited to polishing the language and refining sentence
structure, without contributing to research ideation, experimental design, or data analysis. All tech-
nical ideas, methods, results, and conclusions are entirely the work of the authors, and we take full
responsibility for the final content.
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Figure A2: More examples of object simulation.
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Figure A3: More examples of object simulation and illumination.
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