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Abstract

We study multimodal survival analysis integrating clinical text, tabular covariates,
and genomic profiles using locally deployable LLMs. As many institutions face
tight computational and privacy constraints, this setting motivates lightweight,
on-premises models. Our approach jointly estimates calibrated survival probabili-
ties and generates concise, evidence-grounded prognosis text via teacher—student
distillation and principled multimodal fusion. On a TCGA cohort, it outperforms
baselines, avoids reliance on cloud services and associated privacy concerns, and
reduces the risk of hallucinated or miscalibrated estimates from base LLMs.

1 Introduction

Survival analysis estimates the probability of an event over time and is central to medical decision-
making (e.g., forecasting mortality or disease progression). Classical models operate on structured
covariates (e.g., age, sex, genomic data), while clinical practice also generates rich unstructured data,
such as clinical reports. Recent large language models (LLMs) can reason over such text and produce
human-readable assessments, but cloud-hosted models raise privacy concerns and heavyweight local
deployments are impractical for many institutions [15]. Moreover, base LLMs are not calibrated
for survival prediction as they are not trained on raw survival data; they typically recall published
summary statistics—and may hallucinate-rather than producing data-grounded estimates [22].

We present a unified, locally deployable multimodal survival framework that pairs a compact causal
LLM with structured covariates and gene expression. Our model jointly produces calibrated survival
curves and concise prognosis explanations. A teacher—student pipeline first queries a large teacher
LLM for numeric survival probabilities at fixed horizons and a brief assessment; the student then learns
from both the teacher’s verbalized reasoning and the observed survival outcomes. The architecture
supports either a discrete-time hazards model or a Cox proportional hazards (CoxPH) [2] model,
and fuses modalities by concatenation or via separate gated heads. Compared to prior multimodal
survival models [23, 17], our approach couples survival estimation with concise explanations while
remaining lightweight and locally deployable.

Contributions. Our work makes three contributions: (1) a calibrated locally deployable multimodal
survival framework that couples a compact causal LLM (1.5B parameters) with covariates and gene
expression, supporting both discrete and CoxPH heads with flexible fusion; (2) a teacher—student fine-
tuning scheme with a single forward-pass text objective that distills numeric survival probabilities and
rationales; and (3) an empirical evaluation on a TCGA cohort [21] showing improved performance
over baselines, alongside concise, verbalized prognosis explanations.
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2 Related Work

Methods in survival analysis range from parametric and semiparametric models to nonparametric es-
timators, with modern ensemble and deep-learning approaches that learn flexible risk and event-time
structures. Cox models [2] remain standard but assume a log-linear covariate effect and proportional
hazards, while Random Survival Forests [8] relax such assumptions. Deep learning introduced
end-to-end models that infer complex survival patterns: DeepSurv [11] replaces the Cox linear pre-
dictor with a neural network, DeepHit [14] models discrete hazards and competing risks, and Neural
Survival Clustering [10] learns mixture structure in survival data. Leveraging text for survival predic-
tion emerged with BERTSurv [23], which uses transformer embeddings of clinical notes to improve
concordance over tabular baselines, employing a BERT-based backbone [4] (e.g., Clinical BERT [7]).
A recent survey by Jeanselme et al. [9] reviews language-model strategies for survival, covering direct
prompting, feature extraction, and fine-tuning pipelines, and highlights open issues around censoring
and evaluation protocols. Foundation models have also been explored for multimodal survival: Song
et al. [17] show that zero-shot embeddings from foundation models can be combined with classical
survival models to yield gains over unimodal baselines, and discuss risks of hallucination in text
summarization. Complementary work applies LLMs directly to pathology reports for cancer type,
stage, and prognosis assessment [16], focusing on text-only predictions without calibrated survival
curves. Moreover, our framework draws motivation from the approach introduced in [18], which
combines calibrated hidden-state and verbalized signals in the context of guided deferral systems.

3 Methods
3.1 Problem Setup and Overview
path ' pcov 28°) and outcomes

We consider right-censored survival data consisting of triples z; = (z} iY@
(t;,e;) for samples i = 1,..., N, where ¢; denotes the observed follow-up time and e, € {0,1} is

the event indicator (e; = 1 indicating death, e; = 0 indicating censoring). Here, x’;ath is a free-text
pathology report; 5% € R% are tabular covariates (e.g., age, sex, cancer type); and = R% is
a high-dimensional gene-expression vector. For the text channel, we form a combined input z!™
by appending a formatted patient-info string to the report. We estimate the conditional survival
distribution S(¢ | z) in two complementary ways (Fig. 1). First, a hidden-state pathway encodes the
text with a compact causal LLM whose representation feeds a survival head (either discrete-time
hazards or CoxPH). Tabular covariates and gene-expression latents are fused via early concatenation
or late fusion with gated heads. Second, a verbalized pathway has the LLM generate an explicit
survival probability together with a concise rationale, which we map to a full survival curve.
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Figure 1: Overview of the proposed framework. A compact causal LLM encodes the input text
into hidden embeddings used by a survival model (here, CoxPH) and produces verbalized survival
estimates with explanatory text. Covariates and gene expression are fused either early (A) or late (B).

3.2 Hidden-State Survival Predictions

We use hidden representations from a compact causal LLM together with covariates and gene
expression to produce well-calibrated survival estimates:



Text encoder and pooling. A causal LLM encodes the tokenized pathology report into hidden
states H € RE*?. We form a fixed-size embedding 2**' via simple self-attention pooling, which
aggregates token representations by similarity and averages them into a sequence-level vector:

L
A=softmax(HH"), H=AH, 2= Z .. (1)

Gene-expression autoencoder. High-dimensional gene expression (GE) is compressed with an
autoencoder Dec(Enc(z5°)), yielding a latent 25 = Enc(z£%). The reconstruction objective Lap =
E;[||Dec(Enc(z5%)) — x5°(|3] /dg regularizes the latent while preserving survival-relevant signal [19].

Survival models. We support two survival network heads: (i) a discrete-time hazards model [6, 12],
which outputs logits 0 € RP over B time bins (hazards h;, = o (o), survival S(t;) = [Tic,(1—hr))
and is trained with a masked Bernoulli objective; and (ii) CoxPH [11], which outputs a log-risk score
g and is optimized via the negative partial log-likelihood. The corresponding training objectives are

> i @i BCE(hip, yip) 1 ;
Z@b ap Lcox = 721- e; Z (gl - log Z ed ) (2)

ie; =1 Jitj>t;

L:disc =

Here, y;, = 1{e; = 1, tp—1 < t; < t}} indicates an event for individual ¢ in bin b, and a;;, =
1{at risk at the start of b} masks at-risk samples that have not been censored or died by time bin b.

Fusion strategies. We consider two regimes to integrate text, covariates, and gene expression [5]:

(A) Early fusion concatenates z = [2'*'; £°°"; 28] and feeds a single head f, enabling rich cross-
modal interactions at the cost of tighter coupling.

(B) Late fusion learns modality-specific heads f'*', f°®V  f& and combines their outputs with
learned gates X', vV, ~&° (see Appendix C.2). This enables separate pre-training of ¥ and
f&¢ without being constrained by the larger memory footprint of end-to-end LLM fine-tuning.

3.3 Verbalized Survival Prediction and Assessment

Inspired by an approach introduced for instruction-tuned LLMs in guided deferral systems [18], we
additionally use the generative capabilities of the same compact causal LLM to produce a concise
prognosis explanation and an explicit 3-year survival probability statement.

Teacher—student distillation. As illustrated in Fig. 2, we first query a larger teacher LLM (here:
DeepSeek-R1 Distill Qwen-32B [3]) offline with two prompts: (1) a sequence of numeric-only
instructions to return survival probabilities at 1/3/5 years conditioned on z'**'; and (2) an expla-
nation prompt conditioned on z'*' and the rounded 3-year survival probability, TEACHER_PROB,
computed from an exponential fit of the extracted numeric predictions (see Appendix C.1). The
generated teacher explanation and probability estimate are then used to construct the target sequence:
[TEACHER_EXPLANATION] «VPROB»\n\n The estimated 3-year survival probability is:
[TEACHER_PROB] % . «END_VPROB», which is learned by the student model (here: DeepSeek-R1

Distill Qwen-1.5B [3]) during training, conditioned on z'**',

For our use case, the verbalized prediction sentence—delimited by « VPROB» and «END_VPROB»—and,
within it, the numeric probability, TEACHER_PROB, are the most critical parts of the assessment. We
therefore upweight the cross-entropy on tokens in this span and on the numeric substring using
weights w and w™™, yielding the following loss:

Lo = Ligp + (w=1)L&" + (w™™—1) L. ©)

Calibration correction By default, all samples contribute to the text loss. However, since teacher
predictions are obtained by prompting an LLM rather than learned directly from observed survival
outcomes, they may be miscalibrated. Following a similar idea to [ 18], we optionally mask out text
loss contributions for samples whose teacher 3-year survival estimate, TEACHER_PROB, is inconsistent
with the observed status at the assessment horizon: (i) the event occurred before 3 years yet the
teacher assigns a high survival probability (>50%), or (ii) the individual is known to be alive/at-risk
at 3 years yet the teacher assigns a low survival probability (<50%). All samples remain in the dataset



Input Sequence (Student LLM)
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Figure 2: Teacher pipeline for constructing the student target. (1) Numeric prompting at 1/3/5 years
from the input text; extract survival probabilities, and fit a parametric curve (exponential by default)
to obtain the 3-year value. (2) Explanation prompting conditioned on the text and the rounded 3-year
percentage; the explanation plus a marked probability sentence form the student’s training target.

and fully contribute to survival objectives; only language-model targets are masked to reduce the
influence of potentially miscalibrated supervision in text generation.

3.4 Objective and Optimization

We jointly optimize the survival model, gene-expression reconstruction, and text generation, reweight-
ing the latter two with coefficients o and 3. The total loss is then given by

L= Esurv + « »C'AE + ﬁ ['texl» (4)

where Ly € {Laisc, Leox } depending on the selected survival model. At test time, we compute the
survival function S(¢|z;) (probability of surviving beyond ¢) from the survival-head outputs, and
fit an exponential curve S¥(¢|*") from the verbalized 3-year survival probability. We then form a
convex combination S (¢[x;) = (1 — X) S(t|x;) + A S¥(¢|z'™Y), with X € [0, 1] selected on the
validation set to maximize concordance [18].!

4 Experiments

4.1 Experimental Setup

We evaluated on a TCGA-derived cohort [21] of 8,902 samples comprising pathology reports, tabular
covariates, and gene expression; details are provided in Appendix B. Across both survival models
(discrete and CoxPH), we ablate fusion strategy (early vs. late), optional pre-training of covariate-
and gene-expression-specific survival heads under increased batch size, calibration correction (CC),
and a variant conditioned only on x'***'. Baselines include BERTSurv [23] and unimodal experiments
on covariates and gene expression under both survival models. We additionally report our teacher’s
verbalized prediction performance, deriving survival functions via exponential fitting. We report time-
dependent concordance (C'9) and integrated Brier score (IBS); definitions are given in Appendix C.3.

4.2 Results

Table | summarizes performance across configurations; our standard setting (late fusion, no pre-
training, no calibration correction) is highlighted in gray. Across settings, hidden-state and combined
predictions outperformed baselines, confirming gains from multimodal fusion; hidden-state predic-
tions were consistently stronger than verbalized ones, and blending the two yielded modest, consistent
improvements in C'Y and IBS. The teacher achieved substantially better verbalized performance,
reflecting its larger model capacity. Moreover, its prediction was obtained via three separate prompts,
making it more robust. Late fusion generally improved hidden-state and combined performance;
a variant conditioned only on z'**' underperformed, consistent with the strong predictive signal in
gene expression observed in baselines. Calibration correction left CoxPH unchanged but markedly
improved the discrete model’s performance, yielding the best overall discrimination. Pre-training
modality-specific heads with larger batches to overcome memory constraints under end-to-end LLM

'If no probability can be extracted, we set the combined prediction to the hidden-state curve S<™ (¢|a;) =

S(t|x;), and mean-impute S" (¢|z*") = S¥(t|x'x) across test samples for verbalized-only evaluation.



Table 1: Performance across configurations and baselines.

Model/Configuration Hidden-state = Verbalized Combined

Name Text* Cov GE Survival Fusion Pretrain CC C“1 IBS| 6 C“Y1 IBS] C'Yt IBS]
BERTSurv ¢ « « CoxPH Early — — 0691 0.150| — — — -
Cov-only v Discrete  — — — 0665 0.149| — — —  —
v CoxPH — — — 10.668 0.149| — — — —

GE-only v/ Discrete — — — 0734 0.139| — — —  —
v/ CoxPH — — — 10.751 0.135| — — — —

Teacher v — — — — | — — 10746 0.141| — —
Ours v « « Discrete Late 0.765 0.138|0.626 0.164 |0.766 0.135
v ¢ « Discrete Late v 0.740 0.149]0.628 0.165|0.745 0.145

v V « Discrete Late v |0.774 0.135(0.613 0.167|0.778 0.130

v Discrete — 0.673 0.152]0.637 0.159|0.697 0.144

v« « Discrete Early 0.741 0.141(0.648 0.166 |0.744 0.139

v « « CoxPH Late 0.773 0.126 | 0.575 0.165|0.775 0.126

v « « CoxPH Late v 0.743 0.14410.625 0.165|0.746 0.141

v ¢ « CoxPH Late Vv [0.770 0.127 |0.600 0.164|0.773 0.128

v CoxPH — 0.729 0.141(0.621 0.163|0.733 0.140

v « « CoxPH Early 0.753 0.13510.611 0.168 10.755 0.134

cov

*For teacher and student models, this comprises 2P and verbalized z°°.

training yielded no improvement. Among baselines, CoxPH on gene expression performed best and
exceeded BERTSurv, even though BERTSurv leverages information from all modalities.

Qualitative analysis. We show a positive example of a generated assessment from our model
(discrete-time survival model, standard configuration) alongside an excerpt of the corresponding
raw pathology report (Fig. 3). Consistent evidence spans are highlighted in the same color. Beyond
such positive cases, we observe that very long reports can challenge the model: textual coherence
may drop and the stated 3-year probability may occasionally be omitted. Additional negative and
edge-case examples illustrating these patterns are presented in Appendix A.

Raw Pathology Report (excerpt). Generated Assessment (Student LLM).

[...] The tumor cells. demonstrate only The favorable prognosis is due to the
mild atypia. No mitotic figures are well-differentiated nature of the tumor
seen [...]. There is no microvascular (grade II), the absence of mitotic
proliferation or necrosis. [...] activity, and the lack of microvascular
Scattered MIB-1 reactive cells are or necrotic features, indicating a
present [...]1[;] a labeling index of 2.5} low-grade glioma.

is calculated, consistent with the

low grade. histologic features. The estimated 3-year survival probability
Addendum Diagnosis: Well differentiated is: 90%.

astrocytoma (who grade II). [...]

Figure 3: Qualitative example: original report (left) and generated assessment (right). Consistent
evidence spans are highlighted in the same color.

5 Conclusion

We presented a unified, locally deployable multimodal survival framework that fuses unstructured
text (e.g., clinical reports), tabular covariates, and gene expression on a compact LLM backbone with
comparatively low hardware requirements. The approach jointly learns calibrated survival estimates
and concise, verbalized assessments via a teacher—student scheme. We explored key design choices,
including different underlying survival models and fusion strategies. Ongoing work will condition
the language model itself on genomics to surface patient-specific, verbalized risk factors (e.g., salient
genes or mutations), enabling more trustworthy human—AlI collaboration in clinical workflows.
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Appendix

A Additional Qualitative Analysis of Generated Assessments

While the main paper presents a positive example of a generated assessment (see Fig. 3), here we
include additional negative examples to illustrate common failure modes. We find that the model
struggles particularly with longer pathology reports, where fluency can degrade and the numeric
prediction may become less reliable. In Fig. A.1, the explanation remains sensible and grounded in
the report but the 3-year probability is over-optimistic. Fig. A.2 shows two negative cases with poor
English fluency; the right example additionally fails to produce an explicit verbalized probability.

Raw Pathology Report (excerpt). Generated Assessment (Student LLM).
Laterality:Mucosa is ulcerated and ne-
crotic. [...] Specimen type: Gastrec-
tomy. Tumor site: Antrum. Tumor size:
5 x3x1.5cm. Tumor features: Ulcera-
ted. Histologic type: Adenocarcinoma,
signet ring type. Histologic grade:
Poorly differentiated. Tumor extent:
Serosa (visceral peritoneum) .

The prognosis is poor due to the presence
of poorly differentiated tumor cells,
which are aggressive and prone to
metastasis. Additionally, the large
tumor size (5 cm) and ulceration further
contribute to a lower survival
probability.

The estimated 3-year survival probability

Lymph nodes: 11/11 positive| for X )
is: 65}

metastasis (Regional 11/11). [...]

Figure A.1: Additional qualitative example: original report (left) and student-generated assessment
(right). Consistent evidence spans are highlighted with the same color; missing but clinically relevant
information is framed in orange. The explanation is reasonable and faithful to the report, but the
3-year survival probability (65%) is clearly over-optimistic.

Generated Assessment (Student LLM).
DE serous carcinoma.

The patient’s age is 50 years old.

Generated Assessment (Student LLM).

right side of the serosa, there is a
serosal margin of 1 cm, which is smooth,
and there is no evidence of serosal

invasion.
The estimated 3-year survival probability
is: The prognosis is poor due to the
presence of metastatic disease in
multiple sites, including the uterus,
fallopian tubes, peritoneum, and lymph
nodes, which are all indicators of
advanced disease and reduced survival
rates.

The favorable prognostic factors include:
low-grade serous adenocarcinoma, absence
of myo-invasion, no lymph node
metastasis, and no distant metastasis.

The 3% survival probability estimate is:
approximately 40%.

Figure A.2: Two negative examples of student-generated assessments. Both outputs exhibit degraded
English fluency; the right example further fails to provide an explicit verbalized probability.

B Data and Preprocessing

The Cancer Genome Atlas (TCGA) [21] is a large multi-cancer resource providing harmonized
clinical, pathology, and genomics data. We assembled a cohort pairing survival outcomes with three
inputs per sample: an unstructured pathology report, structured covariates, and gene-expression
profiles. Survival times were administratively censored after 5 years. Covariates were processed
following a data preparation strategy inspired by [9].> We included age at initial pathologic diagnosis,

*https://github.com/Jeanselme/LLM-For-Survival-Analysis
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sex, race, AJCC pathologic tumor stage (I, II, III), and cancer type. Age and stage were min—max
scaled. Sex and race were encoded as binary indicators. Cancer type was grouped into families
(gastrointestinal, gynecological, genitourinary, respiratory, skin, brain, and other) and represented
via one-hot indicators. Gene-expression profiles comprised 20,531 genes; within-gene missing
entries were imputed to 0. Samples with other missing critical information were excluded (survival
outcome, clinical report, gene expression, or covariates). The remaining 8,902 samples were split
into training/validation/test sets in proportions 70/10/20%.

C Implementation Details

C.1 Details on Teacher Pipeline and Student Input Sequence Construction

We construct the student’s training target with a two-step teacher pipeline (Fig. 2). First, a larger
teacher LLM is queried in three prompts with numeric-only instructions to return survival probabilities
at 1, 3, and 5 years (same horizons as in [9]) from the input text consisting of the pathology report with
a short patient-information snippet. We extract the numeric probabilities using regular expressions,
interpolate any missing probabilities (if all three probabilities are missing, we impute them using
the corresponding means), and then fit a simple parametric survival curve. This multi-horizon
fitting grounds the 3-year estimate in three independent numeric prompts rather than a single query,
improving robustness to prompt variance. We explored Weibull [20], log-logistic, spline, and
exponential curves and found that a simple exponential fit performed best in terms of IBS and C.
We therefore used the exponential model throughout to estimate the 3-year survival probability for the
second step, in which the teacher is prompted to generate a concise prognosis explanation conditioned
on the same text and the 3-year survival percentage (rounded to the nearest 5%). The student model
learns a target sequence that concatenates the explanation with a marked sentence verbalizing the
3-year probability, delimited by «VPROB>» and «END_VPROB», enabling span- and number-weighted
language-model losses during training.

C.2 Late Fusion Blending

We present the precise late fusion blending used for discrete-time and CoxPH heads. For discrete
heads, the learnable modality gates are per—time-bin vectors X, 7V ~& ¢ [0, 1]Z; for CoxPH, the
modality gates are scalars ', 4V &8¢ € [0, 1]. The discrete logits o and CoxPH scores g are then
given by

o = (1 _ ,yge) [(1 _ ,ycnv) Otext +,ycov Ocov] + ,yge Oge’

(5 cov text Ccov _Cov (5 (5 (5)
g = (L=2%) [(1 =) g™ + 7" g] + ¥ g%
C.3 Metrics Computation
We report time-dependent concordance C' and integrated Brier score (IBS) calculated as
Ctd = ]P(S’(ti | a:i) < S(tl ‘ l‘j) t; < t]‘, e; = 1) (6)
1t 1 QL[S0 221t <t, e, =1 1= S(t|2)  1{t; >t
tmax 0 N i—1 G(tl) G(t)

with .« = max; t;. G (+) is the Kaplan-Meier estimate of the censoring survival function used for
inverse-probability-of-censoring weighting (IPCW) [13].

C.4 Model Configurations, Hyperparameters, and Computational Details

The configurations and hyperparameter settings of all models are provided in Table C.1. Specifically,
we implement both survival heads and the autoencoder as MLPs. We use distinct learning rates
across parameters in different model components (LLM, survival head, autoencoder, and gating
parameters). In particular, the LLM’s learning rate is set lower to avoid overwriting pre-trained
knowledge. To reduce memory consumption, we freeze all but the last 18 layers of the student LLM
during fine-tuning, truncate pathology reports to 820 tokens, and use a small batch size.



Table C.1: Hyperparameters of student model, teacher model, and baselines.

Model Component Parameter Value
LLM LLM Name DeepSeek-R1 Distill Qwen-1.5B
Freezing All but last 18 transformer layers
Precision bfloat16
Attention dropout 0.1
Learning rate Se-5
Autoencoder Latent dim 128
Encoder layers [4096, 2048, 1024, 512, 256]
Activation ReLU
Dropout 0.3
« (CoxPH / Discrete) le-8/ 1e-9
Learning rate le-3
E Survival Model Layers [100,100,100]
S Activation ReLU
% Dropout 0.3
g Time bins B (Discrete) 30
i B3 (CoxPH / Discrete) 50/1.0
7 Learning rate le-3 (gates le-4)
Optimization Batch size 16 (512 under pre-training)
Epochs / Patience 30/5 (1000 / 5 under pre-training)
Optimizer AdamW (weight decay 0.01)

Span weights

sentence w=2.0; number w™"=5.0

Generation Parameters ~ Temperature 0.3
Min / max # of new tokens ~ 50/350
# Beams 3
Top-k 20
Top-p 0.9
Repetition penalty 1.3
No-repeat-ngram-size 3

5 Generation Parameters ~ LLM Name DeepSeek-R1 Distill Qwen-32B
<3 Temperature 0.1
S E Max # of new tokens 10/ 300
= (Num. / Expl. prompt)
LLM LLM Name Clinical BERT
Survival Model Type CoxPH
> Layers [100,100,100]
= Activation SELU
E Dropout 0.1
E Optimization Batch size 24
Epochs / Patience 30/5
LR le-2
Optimizer Adam (weight decay 0.01)
- Survival Model AS IN STUDENT MODEL
>
"': % Optimization Batch size 512
g Epochs / Patience 1000/ 5
SO LR le-3
Optimizer AdamW (weight decay 0.01)

For baselines, because no public BERTSurv implementation is available, we re-implemented it
in-house following [23] and applied the reported hyperparameters. As BERTSurv does not directly
handle gene-expression inputs, we trained the same gene-expression autoencoder offline to obtain
fixed latents, which we then concatenated to the Clinical BERT text embedding (together with other
tabular covariates). For the covariates-only and gene-expression-only baselines, we reused the same
survival-model configuration as in our framework to ensure comparability. In CoxPH settings, we
compute the Breslow baseline hazards [1] on the combined training and validation sets and use them
for test-time evaluation.
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All experiments were performed on a computer cluster with one NVIDIA A100 (80 GB) GPU, six
CPU cores, and 20 GB system RAM per task. At inference, the student model’s resource footprint
is substantially lower; evaluation can run on smaller GPUs or even CPU-only, supporting local
deployability.

11



	Introduction
	Related Work
	Methods
	Problem Setup and Overview
	Hidden-State Survival Predictions
	Verbalized Survival Prediction and Assessment
	Objective and Optimization

	Experiments
	Experimental Setup
	Results

	Conclusion
	Additional Qualitative Analysis of Generated Assessments
	Data and Preprocessing
	Implementation Details
	Details on Teacher Pipeline and Student Input Sequence Construction
	Late Fusion Blending
	Metrics Computation
	Model Configurations, Hyperparameters, and Computational Details


