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Abstract

Object-centric learning (OCL) is extensively researched to001
better understand complex scenes by acquiring object rep-002
resentations or slots. While recent studies in OCL have003
made strides with complex images, the interpretability and004
interactivity over object representation remain largely un-005
charted. In this paper, we introduce a novel method, Slot006
Attention with Image Augmentation (SlotAug), to explore007
the possibility of learning interpretable controllability over008
slots in a self-supervised manner by utilizing image aug-009
mentation. We also devise the concept of sustainability in010
controllable slots by introducing iterative and reversible011
controls over slots with two proposed submethods: Auxil-012
iary Identity Manipulation and Slot Consistency Loss.013

1. Introduction014

Compositional comprehension of visual scenes [10, 18, 28],015
essential for various computer vision tasks such as local-016
ization [4] and reasoning [27], requires human-like under-017
standing of complex world [24, 35, 36]. In response to this,018
object-centric learning (OCL) has emerged as an active re-019
search area [11, 22, 25]. OCL aims to enable a model to020
decompose an image into objects, and to acquire their rep-021
resentations, slots, without human-annotated labels.022

In this work, we advance the field of OCL in terms of023
the interpretability of object representation. To achieve in-024
terpretable controllability, we propose a method that en-025
ables the manipulation of slots through human interpretable026
instructions in a self-supervised manner. We address the027
training-inference discrepancy by incorporating image aug-028
mentation and slot manipulation into our training pipeline.029
Consequently, we resolve the discrepancy and streamline030
the way to interact with slots in the inference.031

Second, to attain sustainability in object representation,032
we introduce Auxiliary Identity Manipulation (AIM) and033
Slot Consistency Loss (SCLoss). AIM is designed to assist034
in learning the concept of multi-round manipulation. AIM035
is implemented by incorporating an auxiliary manipulation036
into the intermediate stage of slot manipulation, where the037

auxiliary manipulation introduces no semantic changes to 038
object properties. This simple auxiliary process can expose 039
our model to multi-round manipulation: we can make two- 040
round manipulations with one instruction from the augmen- 041
tation and the other from the auxiliary manipulation. More- 042
over, SCLoss enables learning the concept of reversible ma- 043
nipulation, such as the relationship between moving an ob- 044
ject to the right and returning to the left. After being trained 045
with SCLoss, our model produces consistent and reusable 046
representations that can undergo multiple modifications. 047

Extensive experiments demonstrate the interpretable and 048
sustainable controllability of our model. To assess inter- 049
pretability, we conduct object manipulation experiments 050
where slots are guided by semantically interpretable in- 051
structions. In evaluating sustainability, we introduce novel 052
experiments, like the durability test. Our evaluation encom- 053
passes not only pixel space such as object-level image edit- 054
ing, but also slot space such as property prediction, provid- 055
ing a comprehensive examination of our method. 056

2. Method 057

2.1. Slot Attention with Image Augmentation 058

Data augmentation. We introduce a simple data aug- 059
mentation scheme that, for a given input reference im- 060
age imgref ∈ RH×W×3, generates an augmented image 061
imgaug ∈ RH×W×3 and the transformation instructions 062
between them, instsref2aug ∈ RK×L, where K and L in- 063
dicate the number of slots and the number values for ob- 064
ject properties. imgaug is produced by randomly translat- 065
ing, scaling, or color shifting imgref . To transform imgref 066
into imgaug , we employ a set of instructions instsref2aug . 067
These instructions comprise a list of values that dictate the 068
augmentation, including translation values, a scaling factor, 069
and color shift values in the HSL color space. We also have 070
the inverse instructions, instsaug2ref ∈ RK×L, allowing us 071
to revert imgaug back to imgref . Henceforth, for the sake 072
of simplicity in notation, we employ r and a as shorthand 073
for ref and aug. For instance, the expression imgr and 074
imgr2a equal imgref and imgref2aug , respectively. More 075
details are described in the Appendix. 076
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Figure 1. Model architecture. From a given image imgref , we generate an augmented image imgaug (leftmost part of the figure), and the
instruction instsref2aug and its inverse instsaug2ref . Our model produces slots from imgref and decodes them to reconstruct the given
image (reconref ). The slots are also manipulated, along with instsref2aug , by SLOTMANIPULATION. We incorporate Auxiliary Identity
Manipulation (AIM) into this manipulation process. The details are provided in the right part of the figure. The manipulated slots are
then simultaneously 1) decoded to the reconstructed augmented image reconaug , and 2) re-manipulated by SLOTMANIPULATION with
instsaug2ref . Our total loss consists of the reconstruction losses of reference and augmented images, and the slot-level cycle consistency.

Training. We propose a novel training process that lever-077
ages image augmentation (Fig. 1). Our training scheme078
enables learning interpretable controllability which allows079
us to interact with the model via semantically interpretable080
instructions. Our training process involves data augmenta-081
tion, spatial binding, slot manipulation, and image recon-082
struction via slot decoding. For a given input image, we083
initially perform data augmentation to yield imgr, imga,084
instsr2a, and instsa2r. Then, the model performs SPA-085
TIALBINDING on imgr to produce slotsref , or slotsr.086

Thereafter, the model conducts SLOTMANIP (Alg. 1)087
to modify slotsr based on instsr2a. In SLOTMANIP, we088
utilize a newly introduced property encoder denoted by089
PropEnc which is 3-layer MLPs. This PropEnc gener-090
ates vector representations, inst vec, which capture the091
essence of transformation instructions. Each PropEncj gen-092
erates an inst vecj that encodes the values of instsr2a093
for the j-th property. These vectors are then added to slotsr094
to reflect the effect of instsr2a. This addition is followed by095
a residual connection, along with layer normalization and096
another MLP to generate slotsr2a.097

Lastly, slotsr2a is decoded by the decoder to create the098
recona, the reconstruction for the augmented image imga.099
The MSE between imga and recona serves as a training100
loss, Laug. To ensure stable training, we also adopt an addi-101
tional loss, Lref, the MSE between the imgr and reconr, the102
reconstructed reference image decoded from slotsr. Ac-103
cordingly, our training loss for image reconstruction is de-104
fined as Lrecon = Lref + Laug.105

Inference. To perform object manipulation, the model106
takes the position of the target object, along with the instruc-107
tion to be carried out. We use the Hungarian algorithm [23]108
to find the slot for the object closest to the given position.109

Algorithm 1 Slot manipulation algorithm in pseudo-code.
J represents the number of object properties, while Pj,f and
Pj,l indicate the first and last indices of the j-th property val-
ues. We use Layer Normalization LN to normalize vectors.

1: function SLOTMANIP(slots,insts)
2: for j = 0 . . . J do
3: instj = insts[:,Pj,f : Pj,l]
4: inst vecj = PropEncj(LN(instj))
5: slots = slots+ inst vecj

6: end for
7: slots = slots+ MLP(LN(slots))
8: return slots
9: end function

To predict the position of an object encoded in a slot, we 110
compute the center of mass acquired from the alpha mask 111
by the decoder or from the attention map between the visual 112
encodings and the slot. After figuring out the desired slot, 113
we perform slot manipulation with the given instructions. 114

2.2. Sustainability in Object Representation 115

In this work, we introduce sustainability: the concept that 116
slots should sustain their integrity even after iterative ma- 117
nipulations. Thus, sustainability is a key feature that con- 118
tributes to the reliable and reusable object representation. 119
Auxiliary Identity Manipulation (AIM) serves as the 120
identity operation for slot manipulation, indicating no 121
changes in object properties. By manipulating slots with in- 122
structions having zero values for translation, one for scaling, 123
and so on, AIM is supposed to make each slot preserve the 124
identity of the object. We incorporate AIM into the training 125
process to make the model recognize and maintain the in- 126
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Figure 2. Results of object manipulation. The first two columns are the ground truths and reconstructions. The other columns are the
results of manipulation along the human-interpretable instructions. The instructions are shown in the text for easy understanding. The
instantiation of instruction can be found in the Appendix. From the first row onwards, the results are for CLEVR, CLEVRTEX, and PTR.

trinsic properties of objects during iterative manipulations.127
AIM is applied to the slot manipulation process as follows:128

slots′r2a = f(f(slotsr, instsr2a), instsid)

= f(slotsr2a, instsid),
(1)129

where f represents the SLOTMANIP function, and instsid,130
or instsidentity, is the instruction that contains the iden-131
tity elements for manipulating properties. In the followings,132
slots′r2a is notated as slotsr2a for simplicity.133
Slot Consistency Loss (SCLoss) addresses the issue of a134
slot diverging significantly from its original state after it-135
erative manipulations, even when a user intends to restore136
the corresponding object to its original state. To implement137
SCLoss, we introduce slotsrestored, which is derived by ex-138
ecuting a series of SLOTMANIP operations on slotsr using139
instsr2a and instsa2r. Supposed that our goal is to en-140
sure slotsr and slotsrestored have the same representation,141
we set the MSE between them as SCLoss. As a result, the142
model learns to keep the two distinct slots representing the143
same object as close as possible and to be robust against144
multiple rounds of manipulation. The equation of SCLoss,145
Lcycle, and the total training loss, Ltotal, are as follows:146

Lcycle =
1

K
∥f(slotsr2a, instsa2r)− slotsr∥22, (2)147

148 Ltotal = wreconLrecon + wcycleLcycle, (3)149

where K is the number of slots, f is the SLOTMANIP func-150
tion, and wrecon and wcycle are the weights for the losses.151

3. Experiments152

Experimental Details. We evaluate models on three multi-153
object datasets: CLEVR6 [18], CLEVRTEX6 [19] and PTR154

[16]. Regarding the baseline models, we basically employ 155
the model architecture of Slot Attention. For CLEVRTEX6 156
and PTR, we replace the encoder with ViT [5] pretrained 157
by MAE [15] and the decoder with that of SRT [30] while 158
using an increased size of the slot attention module. The 159
additional details for adopting large models are described in 160
the Appendix. To clarify the methods used in ablative stud- 161
ies, we categorize our model into three versions: v1, which 162
is exclusively trained with image augmentation; v2, which 163
improves upon v1 with AIM; v3, which extends v1 with 164
both AIM and SCLoss. More details including the training 165
schemes are described in the Appendix. 166

3.1. Interpretable Controllability: Image Editing 167

As shown in Fig. 2, we can manipulate various properties of 168
a single object, even multiple times, according to user-given 169
instructions. Based on this observation, we can ascertain 170
that our object representations retain the intrinsic properties 171
of objects seamlessly even after manipulation. This inter- 172
pretable controllability is achieved with a neglectable com- 173
promise of the performance on the object discovery task. It 174
is also worth noting that we can also manipulate the back- 175
ground as shown in the second row of Fig. 2 since we em- 176
ploy SLASH [20] which treats the background as a single 177
entity. Deeper discussions with theoretical proof and em- 178
pirical results are provided in the Appendix. 179

3.2. Sustainability: Durability Test 180

To assess the sustainability of our model, we devise a novel 181
evaluation, called durability test. In the durability test, we 182
evaluate how many manipulations a model can endure while 183
preserving object representation intact. As shown in Fig. 184
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Figure 3. Durability test. The leftmost image is the initial image for the test. Each row shows the results of that each model is instructed
to alternately move the target object up and down four times each.

Table 1. Results on durability test with MSE on CLEVR6.

Slot (↓) Obj. Pos. (↓)
Single step (x8)

(v1) Train w/ aug. 50.8 0.14
(v2) + AIM 39.7 0.15
(v3) + AIM + SCLoss 0.25 0.01

Multiple steps (x4)
(v1) Train w/ aug. 54.0 0.16
(v2) + AIM 41.4 0.11
(v3) + AIM + SCLoss 0.31 0.02

3, while v1 fails to keep the color after the second round,185
v2 relatively preserves the color well for the fourth round.186
Nevertheless, from the fifth round, the texture progressively187
diverges from its original. Different from the v1 and v2, v3188
demonstrates strong durability despite a greater number of189
manipulations. We also perform quantitative evaluations on190
100 randomly selected samples from CLEVR6 to measure191
the intrinsic deformity of slots and extrinsic change of ob-192
ject properties, especially position. As shown in Tab. 1, we193
achieve better sustainability as the model evolves from v1194
to v2 and v3 by utilizing the proposed AIM and SCLoss.195

3.3. Slot Space Analysis: Property Prediction196

In addition to the pixel space analysis, for a comprehen-197
sive assessment of the effectiveness of our method, we198
extend our examination to the analysis of the latent slot199
space. To evaluate the quality of slots concerning human-200
interpretable object properties, such as size, color, material,201
shape, and position, we conduct a property prediction task202
using CLEVR6. This task enables us to scrutinize how well203
the slots are distributed within the latent vector space fol-204
lowing the properties of corresponding objects. The anal-205
ysis allows for an understanding of object representations206
that impart semantic existence significance beyond mere207
segmenting objects in an image.208

A property predictor, consisting of 3-layer MLPs, takes209
slots as input and predicts a property of objects. Each prop-210

Original Slots Layer 2Layer 1

SA
 +

 A
R

K
Sl
ot
A
ug

Figure 4. t-SNE of slots on property prediction for color. Each
row shows the results of the baseline model (SA + ARK) and our
model (SlotAug), respectively. The first column is the result of the
original slots obtained from the spatial binding. The second and
third columns are the results of the intermediate outputs from the
first and second MLP layers of the property predictor, respectively.

Table 2. Property prediction results on CLEVR6 in F1 score.
The number of classes are shown in the parenthesis after the prop-
erty name. We set two distance thresholds for position prediction.

SA + ARK SlotAug (Ours)
Size (2) 69.7 82.2
Color (8) 63.5 78.2
Material (2) 70.4 82.6
Shape (3) 59.1 73.0
Pos@0.15 71.1 84.2
Pos@0.05 51.8 77.2

erty predictor is trained by supervised learning using the 211
ground truths matched by the Hungarian algorithm [23]. 212
To assess the quality of object representations, we freeze 213
the OCL models that produce slots. As shown in Tab. 2, 214
our model outperforms the baseline method [20] across all 215
properties including those, like material and shape, that are 216
not addressed during training. Moreover, in Fig. 4, quali- 217
tative results using t-SNE [37] show that while the original 218
slots do not appear to be well-clustered, slots obtained by 219
SlotAug exhibit better adaptability to the downstream task. 220
This observation reinforces our quantitative findings. 221
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A. Related Works 381

The binding problem in artificial neural networks [13], in- 382
spired by cognitive science [9, 36], is a subject of active 383
exploration, aiming to attain human-like recognition abil- 384
ities by understanding the world in terms of symbol-like 385
entities such as objects. In computer vision, object-centric 386
learning (OCL) focuses on comprehending visual scenes by 387
considering objects and their relationships without labeled 388
data [8, 41, 42]. MONet [3], IODINE [12], and GENE- 389
SIS [7] have adopted autoencoding architectures [1, 21, 26] 390
to accomplish self-supervised OCL, and Slot Attention [25] 391
introduced the concept of slot competition, which enables 392
parallel updates of slots with a single visual encoding and 393
decoding stage. Recent studies have leveraged large-scale 394
models to learn object representations in complex images 395
[31, 32], multi-view images [29], and videos [22, 33]. 396

Several studies have shown the possibility of interact- 397
ing with object representation to manipulate the objects. 398
VAE-based models such as IODINE [12] and Slot-VAE [39] 399
showed that adjusting the values of slots can change ob- 400
ject properties. SysBinder [34] demonstrated that replacing 401
factor-level slot, called block, between slots exchanges the 402
corresponding properties. However, these works have diffi- 403
culties in determining ways to interact with slots as they re- 404
quire manual efforts to identify the features associated with 405
specific properties. ISA [2] incorporates spatial symmetries 406
of objects using slot-centric reference frames into the spa- 407
tial binding process, enhancing interactivity of object rep- 408
resentation for spatial properties such as position and scale. 409
Meanwhile, our method itself has no constraint on the types 410
of the target property, showing its expandability toward ex- 411
trinsic properties such as the shape and material of objects 412
if there exist proper image augmentation skills or labeled 413
data. 414

B. Spatial Binding in Slot Attention 415

The core mechanism of the slot attention, the spatial bind- 416
ing, is described in Alg. 2. Given an input image img 417
∈ RH×W×3, CNN encoder generates a visual feature map 418
input ∈ RN×Denc , where H , W , N , and Denc are the 419
height and width of the input image, the number of pixels 420
in the input image (= HW ), and the channel of the visual 421
feature map. The slot attention module takes slots and 422
inputs, and projects them to dimension Dslot through 423
linear transformations k, q, and v. Dot-product attention 424
is applied to generate an attention map, attn, with query- 425
wise normalized coefficients, enabling slots to compete for 426
the most relevant pixels of the visual feature map. The at- 427
tention map coefficients weight the projected visual feature 428
map to produce updated slots, updates. With the itera- 429
tive mechanism of the slot attention module, the slots can 430
gradually refine their representations. 431
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Algorithm 2 Spatial binding in slot attention algorithm in pseudo-code format. The input image is encoded into a set of
N vectors of dimension Dinput which is mapped to a set of K vectors with dimension Dslot. Slots are initialized from a
Gaussian distribution with learned parameters µ, σ ∈ RDslot . The number of iterations is set to T = 3.

1: function SPATIALBINDING(img ∈ RH×W×3)
2: inputs = Encoder(img)
3: inputs = LayerNorm(inputs)
4: for t = 0 . . . T do
5: slots prev = slots
6: slots = LayerNorm(slots)
7: attn = Softmax( 1√

Dslot
k(inputs) · q(slots)T ,axis=‘slots’)

8: updates = WeightedMean(weights=attn+ϵ, values=v(inputs))
9: slots = GRU(state=slots prev, inputs=updates)

10: slots = slots+ MLP(LayerNorm(slots))
11: end for
12: return slots
13: end function

C. Implementation and experimental details432

C.1. Training433

We use a single V100 GPU with 16GB of RAM with 1000434
epochs and a batch size of 64. The training takes approxi-435
mately 65 hours (wall-clock time) using 12GB of RAM for436
the CLEVR6 dataset, and 22 hours using 9GB of RAM for437
the Tetrominoes dataset, both with 16-bit precision.438

C.2. Image Augmentation439

Upon receiving an input image imginput, we produce four440
outputs: a reference image, denoted as imgref , an aug-441
mented image, represented as imgaug , and the transforma-442
tion instructions between them, indicated as instsref2aug443
and instsaug2ref .444

In the data augmentation process, three pivotal variables445
are defined. The first is the template size T , employed for446
the initial cropping of imginput prior to the application of447
transformation (240 for CLEVR6 and 80 for Tetrominoes).448
Next, the crop size C is used to crop the transformed image449
before resizing it to M (192 for CLEVR6 and 64 for Tetro-450
minoes). This two-stage cropping procedure mitigates the451
zero-padding that results from transformations. Lastly, the452
image size M denotes the final image size post data aug-453
mentation (128 for CLEVR6 and 64 for Tetrominoes).454

In the training phase, imgref is obtained by applying a455
center-crop operation on imginput using C and then resiz-456
ing it to M. The generation of imgaug is more complex,457
entailing the application of a random transformation from a458
set of three potential transformations. Initially, imginput is459
cropped using T , and the transformation process is imple-460
mented. Following this, the transformed image is cropped461
by C and then resized to M, yielding imgaug . The detailed462
description for each transformation is as follows:463
Translating. We set a maximum translation value dmax =464

T −C
2 . A value is randomly chosen within the range of 465

(−dmax, dmax) for translation along the x-axis (dx) and the 466
y-axis (dy) respectively. 467

Scaling. The maximum and minimum scaling factors, smax 468
and smin, are computed by T

C and C
T , respectively. A float 469

value s, serving as a scaling factor, is then randomly sam- 470
pled from within the range of (smax, smin). One thing to 471
note is that calculating the transformation instructions is 472
not straightforward due to the potential translation of ob- 473
jects during scaling. Thus, to calibrate the instructions, we 474
infer translation values from the predicted object positions 475
before scaling. The position prediction is calculated as the 476
weighted mean on the attention maps between the visual en- 477
codings and slots. With this position prediction, we add the 478
translation term into the scaling process so that the model 479
should perform both object-level scaling and translating: 480
d⃗ = (s − 1)(p⃗ − c⃗), where d⃗ represents the vector of the 481
translation value, p⃗ refers to the vector of the predicted ob- 482
ject position, and c⃗ is the vector corresponding to the posi- 483
tion of image center. 484

Color shifting. In this study, we employ the HSL (hue, sat- 485
uration, and lightness) color space for effective object color 486
manipulation. The input image, initially in RGB space, is 487
converted to HSL space. We adjust the hue by rotating it us- 488
ing randomly sampled angles that span the entire hue space. 489
For saturation, we apply a scaling factor, determined by the 490
exponential of a value randomly drawn from (-1, 1), a hyper 491
parameter. Our primary focus lies on the internal color of 492
objects, leaving lightness untouched. Nonetheless, adjust- 493
ments to lightness can be made if necessary. 494

Instruction. Each transformation instruction is a list of 6 495
values: one scaling factor (Λscale), two translation param- 496
eters (∆x,∆y), and three color shifting parameters in HSL 497
(∆hue,Λsaturation,Λlightness) where Λ and ∆ means the 498
multiplicative and additive factor for the corresponding val- 499
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ues, respectively. The identity instruction, instsidentity,500
contains the base values for each transformation. Thus,501
instsidentity has 1 for scaling, (0, 0) for translation, and502
(0, 1, 1) for color shifting. For the inverse instruction ,503
instsaug2ref has the values of −instsref2aug for additive504
factors, and 1

instsref2aug
for multiplicative factors.505

C.3. Model506

Basically, our model framework is built on Slot Attention507
[25], thereby the encoder, decoder, and slot attention mod-508
ule are the same as that of Slot Attention except for the509
inclusion of the Attention Refining Kernel (ARK) from510
SLASH [20]. For Tetorminoes and CLEVR, we employ a511
4-layer CNN encoder and a 6-layer Spatial Broadcast (SB)512
decoder [40] with a hidden dimension of 64. Within the slot513
attention module, we set the slot dimension to 64, perform514
the binding process for 3 iterations, and use a kernel size of515
5 for the ARK. Please refer to the original papers [20, 25]516
for additional details for Slot Attention.517

For CLEVRTEX6 and PTR datasets which include more518
complicated objects, we adopt larger models with a slot di-519
mension, Dslot, of 256. As encoders, we use 1) Resnet34520
[14] following [2, 6] and 2) ViT-base [5], with the patch521
size of 8, pretrained via MAE [15] As decoders, we use an522
increased size of SB decoder consisting of 8-layer CNNs523
with a hidden dimension of 128, and a Transformer-based524
decoder proposed in SRT [30]. The original SRT decoder525
is designed to operate at the image level, and the follow-526
ing research OSRT [29] introduce a modification to decode527
slots simultaneously. In this paper, we slightly modified it to528
decode each slot independently following the spatial broad-529
cast decoder. This selection is made to demonstrate that530
our proposed method is not limited to CNN-based spatial531
broadcast decoders used in Slot Attention but can robustly532
operate within transformer-based decoders as well, given533
the appropriate conditions for independence.534

In Alg. 1 of the main paper, the Property Encoder535
(PropertyEncoder) takes as input the values that corre-536
spond to specific properties. Accordingly, the input size for537
the property encoder is 1 for scaling, 2 for translation, and538
3 for color shifting. Each property is encoded via Property539
Encoder, a 3-layer MLP with ReLU activation functions,540
resulting in a inst vec, a vector of dimension Dslot.541

D. Discussion: How does it work?542

To begin with, we would like to highlight our unique ap-543
proach to the training procedure. While our training incor-544
porates manipulations at the image-level, it can be perceived545
as training the model at the individual object-level. In this546
section, we discuss on how this transition is achieved with-547
out the need for an additional tuning process, and present548
empirical results that support our claim.549

As we discussed shortly in Sec. 3.1. in the main paper, 550
the success of transitioning from image-level augmentation 551
during training to object-level manipulation during infer- 552
ence can be attributed primarily to the fact that the entire 553
process for each slot, including object discovery and de- 554
coding, exclusively influences the reconstruction of its re- 555
spective object. A mathematical proof is provided below to 556
show how an image-level reconstruction loss can be disen- 557
tangled into object-level reconstruction losses. 558

Lrecon = ∥Î − I∥22 (4) 559

= ∥
K∑

k=1

(Îrgb
k ⊙ Îα

k )− I∥22 (5) 560

= ∥
K∑

k=1

(Îrgb
k ⊙ Îα

k )−
K∑

k=1

(I ⊙ Îα
k )∥22 (6) 561

= ∥
K∑

k=1

(Îrgb
k ⊙ Îα

k − I ⊙ Îα
k )∥22 (7) 562

≈ ∥
K∑

k=1

(Ôk −Ok)∥22, (8) 563

=

K∑
k=1

∥(Ôk−Ok)∥22+
K∑

i,j=1
i̸=j

(Ôi · Ôj −2 Ôi ·Oj +Oi ·Oj)

(9) 564

≈
K∑

k=1

∥(Ôk −Ok)∥22, (10) 565

where K is the number of slots, Î ∈ RH×W×3 represents 566
the reconstructed image, and I ∈ RH×W×3 represents the 567
input image. Îrgb

k ∈ RH×W×3 and Îα
k ∈ RH×W×1 are the 568

reconstruction results generated by the decoder using the k- 569
th slot as input: an RGB and an alpha map (or an attention 570
mask), respectively. Ôk ∈ RH×W×3 is the predicted image 571
for the specific object that is bounded with the k-th slot, 572
while Ok ∈ RH×W×3 is the corresponding ground-truth 573
object image. 574

From Eq. (4) to Eq. (5), we follow the decoding pro- 575
cess of Slot Attention [25]. In particular, each k-th slot is 576
decoded independently, resulting in the reconstructed RGB 577
image Îrgb

k and the reconstructed alpha map Îα
k . The final 578

reconstruction image Î is generated by aggregating Îrgb
k us- 579

ing a pixel-level weighted average, where the weights are 580
determined by Îα

k . It is crucial to recognize that Îα
k serves 581

as an attention mask, as elaborated below: 582

K∑
k=1

Îα
k (x, y) = 1 for all x, y, (11) 583
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where Îα
k (x, y) is a value for the position (x, y). This584

characteristic plays a pivotal role in our approach, facilitat-585
ing the transition from Eq. (5) to Eq. (6). In this transfor-586
mation, the input image I is effectively weighted by the set587
of K alpha maps, denoted as Îα

k , where k spans from 1 to K.588
Then, as both the first and second terms in Eq. (6) involve589
the same sigma operations, we can simplify the expression590
by combining the individual subtraction operations into a591
single sigma operation (Eq. (7)).592

Subsequently, we approximate Eq. (7) as Eq. (8) to get593
an object-level disentangled version of the reconstruction594
loss. Here we assume that both Ôk and Ok only consist of595
a specific region of interest within the input image. This re-596
gion corresponds to the target object which is bound to the597
k-th slot, while the remaining areas are masked out and as-598
signed a value of zero. We can make this assumption based599
on the successful performance of the previous object-centric600
learning model, SLASH [20]. SLASH has demonstrated601
effective capabilities in focusing on and capturing specific602
objects of interest within an image, by introducing the At-603
tention Refining Kernel (ARK). By incorporating ARK into604
our model, we confidently assume that Ôk and Ok primar-605
ily represent the target object while masking out other irrel-606
evant parts as zero as shown in Fig. 5.607

Here, we would like to note that ARK is an optional com-608
ponent in our method, not a necessity. The use of ARK is609
not intended to enhance object discovery performance in a610
single training session; rather, it is employed to ensure con-611
sistent results across multiple experiments. If our proposed612
training scenario arises where bleeding issues do not occur613
in the original SA, it can be achieved without the need for614
ARK. To substantiate this claim, we present qualitative re-615
sults in Fig. 7, where we train SlotAug with the original SA616
(without ARK). One can easily catch that the object manip-617
ulation fails in the case of bleeding problem. Specifically,618
the analysis for the failure case in bleeding problem is as619
follows: 1) Obviously, if the attention map corresponding to620
the target object encompasses other objects, it becomes im-621
possible to exclusively manipulate solely the target object,622
leading to unexpected artifacts in other objects. 2) When-623
ever tinting instructions are applied, objects become gray624
and we attribute this to the backgrounds – having a gray625
color – intervening with the target objects during training.626

Eq. (8) can be broken down into two separate summa-627
tions. The first one is our target term that is the sum of628
object-level MSE losses, and the second term is the residual629
term. Lastly, the transition from Eq. (9) to Eq. (10) con-630
stitutes a significant simplification in the representation of631
the loss function. This is a valid transformation under the632
assumption follows:633

Ôi · Ôj = Ôi · Oj = Oi · Oj = 0 if i ̸= j. (12)634

This assumption postulates that the inner product of dif-635

ferent object images, whether they are predicted or ground- 636
truth, is always zero. We assert that this assumption is jus- 637
tifiable, much like the previous one, given the promising 638
results obtained in our object discovery experiments. The 639
loss computation is thus decomposed into individual com- 640
ponents for each slot, which lends itself to an interpretation 641
of object-level loss. 642

The conversion from image-level MSE loss to a sum of 643
individual object-level MSE losses provides a new perspec- 644
tive on our training method. Despite the use of image-level 645
manipulations, the underlying core of the training process 646
inherently engages with object-level representations. This 647
demonstrates how a simple methodological addition, incor- 648
porating image augmentation into the training process, can 649
lead to considerable gains in the model’s capacity for user- 650
intention-based object manipulation. 651

Fig. 5 empirically demonstrates the effectiveness of our 652
model, leveraging Slot Attention for controllability over 653
slots. Conversely, it was noted that the well-known alter- 654
native framework for object-centric learning, SLATE [32], 655
employing image tokenization from Discrete VAE (dVAE) 656
[17] and Transformer-based auto-regressive decoding [38], 657
struggled with the manipulation of slots, as illustrated in 658
Fig. 6. The same slot manipulation strategy via Property 659
Encoder was used for comparison. Other training environ- 660
ments are just the same as the official paper [32] except for 661
the addition of the training loss for the reconstruction of the 662
augmented images. 663

E. Conclusion 664

We presented an OCL framework, SlotAug, for exploring 665
the potential of interpretable controllability in object-centric 666
learning. To achieve this goal, we tackled the object ma- 667
nipulation task, where we added some conditions regard- 668
ing interpretability and interactivity, via controlling object 669
representations called slots. We employed image augmen- 670
tation for training our model in a self-supervised manner 671
to resolve the lack of labeled data. Moreover, we intro- 672
duced a concept of sustainability in slots, achieved by the 673
proposed method AIM and SCLoss. We substantiated the 674
effectiveness of our methods by providing extensive empir- 675
ical studies and theoretical evidence in the Appendix. These 676
empirical studies include pixel- and slot-space analyses on 677
tasks such as the durability test and property prediction. 678
Though our work remains several questions detailed in the 679
Appendix and represents just one step on a long journey 680
of OCL, we firmly believe that our work is a foundational 681
piece in the field of interpretable OCL and propel the ongo- 682
ing effort to equip machines with human-like comprehen- 683
sion abilities. 684
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Figure 5. Training results of our method. The leftmost column is the reference images, imgref . The second leftmost column is the
reconstruction of the reference images, reconref . The middle columns show the object discovery results where each column corresponds
to a single slot in slotsref . The second rightmost column is the augmented images, imgaug . The rightmost column is the reconstruction
of the augmented images, reconaug . 10
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Figure 6. Training results of SLATE [32] for slot manipulation. The leftmost column is the reference images, imgref ; The second
leftmost column is the reconstruction of the reference images, reconref . The middle columns show the object discovery results where
each column corresponds to a single slot in slotsref . The second rightmost column is the augmented images, imgaug . The rightmost
column is the reconstruction of the augmented images, reconaug . 11
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(1) Move obj1 left 0.1 
and obj2 up 0.2

(2) Shift hue of obj1 by -0.2 
and obj2 by 0.2
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Figure 7. Visualization of object manipulation results affected by the bleeding problem with the original Slot Attention. The first
row demonstrates the cases where bleeding problem emerges, while the second row shows the cases where the object discovery is done
successfully.
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