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Abstract

We formalise the essential data of objective functions as equality constraints
on composites of learners. We call these constraints "tasks", and we
investigate the idealised view that such tasks determine model behaviours.
We develop a flowchart-like graphical mathematics for tasks that allows us
to; (1) design and optimise desired behaviours model-agnostically; (2) offer
a unified perspective of approaches in machine learning across domains;
(3) import insights from theoretical computer science into practical machine
learning. As a proof-of-concept of the potential practical impact of our
theoretical framework, we exhibit and implement a novel "manipulator"
task that minimally edits input data to have a desired attribute. Our model-
agnostic approach achieves this without the need for custom architectures,
adversarial training, random sampling, or interventions on the data, hence
enabling capable, small-scale, and training-stable models.

1 Introduction

The primary instrument for controlling the training of machine learning (ML) models
is the objective function, which can be broken into three modular parts. Let Θ𝑒,Θ𝑑 be
the parameter-spaces of a model enc and dec respectively. Then the reconstruction loss
that characterises an autoencoding task amounts to minimising (for 𝜃𝑒 ∈ Θ𝑒, 𝜃𝑑 ∈ Θ𝑑) the
following objective function:

argmin𝜃𝑒 ,𝜃𝑑
(
𝔼𝑥∼𝒳[𝐃

(
dec𝜃𝑑 (enc𝜃𝑒 (𝑥)), 𝑥

)])

We take the expected value over a data distribution 𝒳 of a measure of statistical divergence
𝐃 (such as cross-entropy or log-likelihood) of two expressions that, under ideal conditions,
should be equal: the decoding of the encoding of some data 𝑥, and the original 𝑥 . In this
work, we focus on the two expressions that want to be equal, and we call this equational
constraint a task.
In practice, designing a good objective function incorporates many technical choices, such
as choice of architecture, measure of statistical divergence, and training data (Ciampiconi
et al., 2023; Richardson, 2022; Terven et al., 2023). However, these choices are often made by
heuristics, or rationalised post hoc. While such choices are sometimes required to make
training tractable, they are not always relevant to understanding the final behaviour of the
trained model. Instead, we propose and investigate the idealised view that:

Tasks determine model behaviour.

To reason about tasks compactly, we use flowchart-like string diagram notation.
Example 1.1. For a hyperparameter choice of divergence𝐃, where𝑋 is an input datatype, and
𝐿𝐴𝑇 is the datatype of the latent space, the two components of the empirical risk minimisation
of the autoencoder task consist of (1) applying the encoder enc (typed 𝑋 → 𝐿𝐴𝑇) followed
by the decoder dec (typed 𝐿𝐴𝑇 → 𝑋) to inputs 𝑥 drawn from a source of data 𝒳 over the
datatype 𝑋, which should be equal to (2) the original 𝑥. We depict this as:

𝑑𝑒𝑐𝜃𝑑 (𝑒𝑛𝑐𝜃𝑒 (𝑥)) 𝑥

𝔼𝑥∼𝒳[𝐃
(
𝑑𝑒𝑐𝜃𝑑 (𝑒𝑛𝑐𝜃𝑒 (𝑥))⏟⎴⎴⎴⎴⏟⎴⎴⎴⎴⏟

(1)

, 𝑥⏟⏟⏟
(2)

)]
⟺ 𝒳 enc dec ⇋

enc,dec
𝒳

𝐿𝐴𝑇𝑋 𝑋 𝑋

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The diagrammatic notation is formally equivalent to the traditional symbolic notation
with the addition of type-information about inputs and outputs. While the formal details
(Appendix A) involve category theory, the power of string diagrams lies in their intuitive
visual nature: by reading the diagrams as flowcharts from left to right, practitioners can
leverage these diagrams to reason about ML tasks without needing to fully grasp the
underlying mathematical formalism. In summary, nodes depicted as various shapes are
functions, and wires are datatypes which can be understood as carrying information.
To explore the expressive power of tasks, we abstract away implementation details such as
architecture and training by idealising models to be universal function approximators
that can, in principle, perfectly optimise objective functions. Thus each task can be viewed
purely as an equational constraint on the behaviour of the learners, comparable to equational
constraints on the possible values of variables in algebra. This perspective allows us two
ways to specialise tasks by imposing structural inductive biases, by specifying architectural
choices, or by adding additional objectives.
Example 1.2 (Residuation as an architectural choice). Diagrammatically, choosing an
architecture means substituting a "black-box" universal function approximator with another
diagram with matching input-output type constraints; intuitively, since a universal function
approximator can be any function, it can in particular be a specific function of the same
input-output type if necessary. The formal semantics for such substitutions are provided
in Appendix A.2. A simple example is residuation, where a learner 𝑁 of type 𝑋 → 𝑋 is
transformed into 𝑁𝑟𝑒𝑠 ∶= 𝑥 ↦ 𝑁(𝑥) + 𝑥, depicted as:

𝑁𝒳 ⇒ 𝑁
𝒳 +

𝑁𝑟𝑒𝑠

Example 1.3 (Perceptual losses as multi-objective learning). A common form of multi-
objective learning is to add a normalisation or regularisation term to an objective function,
for instance, a perceptual loss 𝐋 ∶ 𝑌 → ℝ≥0 (which we depict with a "white box", because
there are no learnable parameters). Multiple tasks may be combined into single objective
functions by means of weighted summation with positive hyperparameter-coefficients 𝛼, 𝛽.

⇒𝒳 enc dec ⇋
enc,dec

𝒳
𝐿𝐴𝑇

𝒳 enc dec ⇋
enc,dec

𝒳
𝐿𝐴𝑇

𝒳 enc dec 𝐋 ⇋
enc,dec

0𝒳

argmin𝜃𝑒 ,𝜃𝑑 (𝛼𝔼𝑥∼𝒳 [𝐃
(
dec𝜃𝑑 (enc𝜃𝑒 (𝑥)), 𝑥

)]

+𝛽𝔼𝑥∼𝒳 [𝐃
(
𝐋(dec𝜃𝑑 (enc𝜃𝑒 (𝑥)), 0

)
])

⇒argmin𝜃𝑒 ,𝜃𝑑
(
𝔼𝑥∼𝒳 [𝐃

(
dec𝜃𝑑 (enc𝜃𝑒 (𝑥)), 𝑥

)])

Specialisation of tasks obtains desirable properties without compromising basic behaviours,
and allows us to explain the behaviour of models in terms of their constituent tasks. As
a canonical example, we may obtain a variational autoencoder (VAE) (Kingma & Welling,
2022) from a regular one by the two kinds of specialisation described.
Example 1.4 (VAE). Setting the output type of the encoder to be a space (mean, variance) of
parameters for Gaussians; declaring the decoder to be internally structured as the sequential
composite of sampling from a Gaussian of the input (mean, variance) followed by a learner;
adding an additional normalisation task which requires the outputs of the encoder to be
close to (0, 1) — the parameters of the unit Gaussian. encmaps the input space 𝑋 to (𝑥, 𝜎),
the parameter-space of Gaussians over the latent space 𝐿𝐴𝑇. The decoder is the composite
of a sampling function 𝗌𝖺𝗆𝗉. ∶ (𝜇, 𝜎) → 𝐿𝐴𝑇 and a learner dec ∶ 𝐿𝐴𝑇 → 𝑋. Note the
additional Normalise task that encmust satisfy. This presentation of VAEs is equivalent to
the traditional probabilistic form when the statistical divergence is KL (Rocca, 2021).

𝒳 enc
(𝜇, 𝜎)

𝗌𝖺𝗆𝗉. dec ⇋
enc,dec

𝒳 𝒳 enc
(𝜇, 𝜎) ⇋

enc

𝒳 (0,1)
(Normalise)

𝐿𝐴𝑇

1.1 Contributions
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We make three primary contributions in this work.
Our first, theoretical contribution is the formalisation of a common but informal standard
procedure in deep learning, which may be summarised as the following recipe:

1. Characterise desired behavior via equational constraints (tasks) between learners
2. Implement tasks by treating neural networks as universal approximators
3. Convert equations to loss function by a choice of hyperparameters, namely weighted

sum of constituent losses and choice of divergences

Our second, theoretical contribution is a demonstration that using our framework, we may
analyse, predict, and design behaviours of models. Using specialisation and algebraic
reasoning, we can analyse the behaviour of complex models in terms of simple, well-
understood tasks we call patterns. Moreover, we can define a novel synthetic relationship
between tasks called refinement which describes when one optimally trained set of tasks
entails satisfaction of a different set of tasks. Altogether, we may use these techniques
to understand and compare the behaviour of models before committing to potentially
costly training. Example 2.6 and Propositions 2.9, 3.2, and 3.3 illustrate the kinds of formal
reasoning our language enables.
Our third, practical contribution and proof-of-concept is the implementation of a novel
problem class we call manipulation (Section 3), which formalises (Bancilhon & Spyratos,
1981) the problem of viewing and editing a targeted attribute of data while "leaving other
aspects the same". Notably, this task represents the first problem class to our knowledge that
appears to be naturally solved by the relatively underexplored technique of "multi-learner
multi-objective learning", which our framework naturally accommodates. As examples in
image domains, we; change only the colour of a shape (Figure 1); change the value of a
handwritten digit without affecting other stylistic properties (Figure 2); and change only
whether a person is smiling in an image (Figure 6). Even in these toy domains, we observe a
range of benefits we expect to scale: by following our recipe we obtain architecture-agnostic
(Table 1) style-transference models without the need for randomness, adversarial training,
or modality- and architecture-specific interventions, with good interpolation properties
(Figure 6).
We conclude by discussing relations to similar approaches in the literature, along with
avenues and prospects for further development.

2 Tasks and patterns

2.1 Tasks

We assume the following contextual data, omitted if there is no confusion. Let 𝑋, 𝑌 denote
datatypes; Σ a set of processes 𝑓, each of which has (possibly empty) learnable parameter
datatypes 𝔭𝑓. An atomic task is a process-theoretic equational constraint on learners
specifying that 𝑓 should behave like 𝑔 on all inputs. The objective function of an atomic task
𝜑 of type 𝑋 → 𝑌 equipped with distribution 𝒳 corresponds to a map 𝔭𝜑 → ℝ that sends
𝜋 ↦ 𝔼𝑥∼𝒳[𝐃

(
sys𝜑;𝜋(𝑥), spec𝜑;𝜋(𝑥)

)]
for some choice of statistical divergence 𝐃. A learner

can optimise multiple atomic tasks simultaneously by optimising a combination 𝛼 of the
atomic objective functions (commonly obtained by taking a weighted sum).
Definition 2.1 (Tasks). An atomic task 𝜑 is a tuple (𝑓, 𝑔,𝒳,𝔭), where 𝑓, 𝑔 ∶ 𝑋 → 𝑌 are
composite processes of Σ, 𝒳 is a distribution over 𝑋, and 𝔭 ⊆ 𝔭𝑓 ⊕ 𝔭𝑔 is a space of trainable
parameters. We indicate the system 𝑓 and specification 𝑔 as sys𝜑 and spec𝜑, and similarly
the domain 𝑋 and codomain 𝑌 as dom(𝜑) and cod(𝜑). A compound task Φ (or just task) is a
non-empty set of tasks. As we have seen in previous examples, we notate a task Φ as a
collection of atomic tasks sys𝜑 ⇋ spec𝜑, where superscripts on the harpoons indicate which
learnable parameters are governed by each atomic task.

3
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Tasks become concrete objective functions by a hyperparametric choice of divergences
for atomic tasks, followed by a combination via a weighted sum with hyperparameter
coefficients, or more generally a compound function. As such, a particular objective function
that instantiates a task is one where the choices for the measure of statistical divergence and
compound function have been made. Beyond these hyperparameters, tasks and objective
functions may be viewed as informationally equivalent.

Definition 2.2 (Objective function). Let Φ = {(𝑓𝑖 , 𝑔𝑖 ,𝒳𝑖 ,𝔭𝑖)}𝑖∈𝑁 be a compound task with
𝑁 atomic tasks. Let 𝑙 ∈ Σ be a learner of Φ. An objective function for 𝑙 is a tuple (Φ𝑙,𝒟, 𝛼)
where Φ𝑙 = {(𝑓𝑖 , 𝑔𝑖 ,𝒳𝑖 ,𝔭𝑖) | para(𝑙) ⊆ 𝔭𝑖} is the set of all tasks on which 𝑙 is optimised, 𝒟 is
a set of statistical divergences 𝐃(𝜑∈Φ𝑙) ∶ cod(𝜑) × cod(𝜑)→ ℝ≥0, and the compound function 𝛼
is a function (ℝ≥0)×|Φ𝑙| → ℝ≥0 that is differentiable, and typically non-decreasing in each
argument.

2.2 Patterns are "nice" tasks

We do not expect there to be a general and systematic method to translate between
natural-language behavioural specifications and tasks; if such a method existed, then
all of deep learning would be reduced to hyperparameter search. There are often
many different ways to approach a problem in ML, much like there is no single
correct way to write software, or design a building. This suggests to us the view of
patterns: some tasks are well understood, usable modularly and in many contexts,
and easily modifiable, and such tasks can be viewed as design patterns – borrowing
a term from software engineering (Beck & Cunningham, 1987)1. In this section,
we suggest some examples of patterns that correspond to well-studied methods and
paradigms in ML, and we show how to use patterns as an accessible basis to analyse models.

Pattern 2.3 (classification).

𝒳 ⇋
cls𝐷

𝐿

cls
𝒳

Given a data-label pair (𝑑, 𝑙) drawn from 𝒳 with
labels 𝑙 ∈ 𝐿, a classifier cls ∶ 𝐷 → 𝐿 is a function that
solves the classification task, in which it seeks
to reconstruct the label from the data. This can be
done by minimising the corresponding objective
function 𝔼(𝑑,𝑙)∼𝒳[𝐃(cls(𝑑), 𝑙)] for some measure of
statistical divergence 𝐃 on the label space, which may
be continuous to encompass regression.

Pattern 2.4 (autoencoding).

𝒳 enc dec ⇋
enc,dec

𝒳
𝐿𝐴𝑇

As we have seen, given a data distribution 𝒳 over
𝑋 and some latent space 𝐿𝐴𝑇, an autoencoder con-
sists of an encoder enc ∶ 𝑋 → 𝐿𝐴𝑇 and a decoder
dec ∶ 𝐿𝐴𝑇 → 𝑋 which cooperate to reconstruct the
identity over the observed distribution, by minimising
𝔼𝑥∼𝒳[𝐃(dec(enc(𝑥)), 𝑥)].

Pattern 2.5 (GAN). Given a data distribution 𝒳 over 𝑋 and noise distribution 𝒩 over 𝑁, a
generative adversarial network (GAN) consists of a generator gen ∶ 𝑁 → 𝑋 and a discriminator
dsc ∶ 𝑋 → [0, 1]. The prosaic explanation that "the discriminator seeks to distinguish real
data from fake data while the generator aims to fool the discriminator" translates directly
into a task description: where 1 indicates "real" and 0 indicates "fake", the discriminator
dsc seeks to minimise some positive combination of the terms 𝔼𝑥∼𝒳[𝐃(dsc(𝑥), 1)] and
𝔼𝑥∼𝒳[𝐃(dsc(gen(𝑥)), 0)], while the generator gen seeks to minimise 𝔼𝑥∼𝒳[𝐃(dsc(gen(𝑥)), 1)].

𝒩⇋
dsc

0𝒳 ⇋
dsc

⇋dsc 𝒩
gen

1𝒩𝒳 1 dscgen

1And before that, architecture and urban design (Alexander et al., 1977).
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2.3 Analysing complex tasks

We can analyse the intended functions of models by viewing them as composites of
simple patterns. We have already seen in Example 1.4 how a VAE is analysable by inspection
as a specialised regular autoencoder. As a second example, a CycleGAN is two GANs on
different distributions, whose generators are mutually autoencoders by a cycle consistency
loss (Zhu et al., 2017). This suggests that the generators encode the distributions into each
other in a reversible manner, and indeed this kind of style transfer between distributions is
what a CycleGAN does in practice.

Example 2.6 (cycleGAN). Below, 𝑖, 𝑗 are nonequal indices taking values in {0, 1}, where 𝒳0
and 𝒳1 are different distributions on the same space 𝑋: typically these are two classes of
images.

𝒳𝑗 ⇋
dsc𝑖

𝒳𝑗 𝒳𝑖
dsc𝑖

⇋
gen𝑖

𝒳𝑗 𝒳𝑗 ⇋
gen𝑖 , gen𝑗

𝒳𝑗0 1 ⇋ gen𝑖dsc𝑖gen𝑖 dsc𝑖 gen𝑗

Tasks allow us to reason "legalistically" to rule out undesirable model behaviours. For
instance, in Example 1.4, we can immediately determine that the normalisation term imposes
a nontrivial constraint: without the normalisation task, enc and dec could collude against
us by only using variance 0 (i.e. deterministic) representations that are far apart, which
would lose the ease of sampling and robustness of representations. We further elaborate on
the use of this form of reasoning for informing task design in Appendix B.
We can also upgrade informal intuitions into formal derivations. For example, on
the account of Ranzato et al. (2007), a broad class of unsupervised learning techniques
— including PCA and 𝑘-means — are specialisations of the energy minimisation task,
which may be considered an autoencoding task from a latent "code" space subject to the
representations minimising a measure of "energy". We can in fact formalise the relationship
between these forms of unsupervised learning and autoencoding, showing that under mild
assumptions, they are the same in the computational limit.
Pattern 2.7 (energy minimisation).

enc

dec
𝒴

𝐷

𝒵 ∶ 𝐶 𝐄enc

𝐄dec

enc

ℝ
×𝛾

⇋ 0+
enc,dec

ℝ
𝒴

energy minimisation consists of; three types
of systems: 𝐷(ata), 𝐶(ode), and ℝ≥0; two learn-
able processes: an encoder enc ∶ 𝐷 → 𝐶 and a
decoder dec ∶ 𝐶 → 𝐷; two user-supplied energy
functions: 𝐄enc ∶ 𝐶×𝐶 → ℝ≥0 and𝐄dec ∶ 𝐷×𝐷 →
ℝ≥0; and a user-supplied constant 𝛾 ∈ ℝ≥0. Pro-
vided a distribution of inputs 𝒴 on 𝐷, and a
distribution 𝒵 on 𝐶 the system seeks to minimise
𝔼𝑦∼𝒴,𝑧∼𝒵[𝛾𝐄enc(enc(𝑦), 𝑧) + 𝐄dec(𝑦, 𝑑(𝑧))]. Such
a task is called code-extracting when 𝒵 = enc(𝒴).

To formally relate code-extracting energy minimisation and autoencoding, we introduce
a relationship between tasks called refinement, which states that perfectly solving Φ allows
one to construct perfect solutions for Ψ. When Φ and Ψ refine each other, the tasks are "the
same in the computational limit"; a perfect autoencoder is a perfect code-extracting energy
minimiser, and vice versa. These relationships are a proxy for the behaviour and relative
power of concrete implementations of tasks.

Definition 2.8 (Refinement and equivalence of tasks). Task Φ refines task Ψ if, by treating the
atomic tasks as equations, the processes of Φ may be composed to satisfy the equations of Ψ.
Φ and Ψ are equivalent if they refine one another, which we denote Φ ≡ Ψ.

Proposition 2.9. If enc and dec are deterministic and 𝐄enc and 𝐄dec are positive (e.g.
metrics or statistical divergences), then energy minimisation ≡ autoencoding. (proof in
Section C.1)
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3 Experiment: the manipulation task

In this section, we design and experimentally validate manipulation, a novel task which
aims to view and edit a property of data without explicit guidance. There are many
models that behave like manipulators, e.g. unsupervised sentiment translation (Li et al.,
2018; Sudhakar et al., 2019) in the text domain and prompt-based photo editing (Hertz
et al., 2022; Kawar et al., 2023) in the image domain. To constrain the behaviour of such a
manipulation, we demonstrate another ability of our framework: importing insights from
computer science more broadly via the process-theoretic perspective. For manipulation,
we reference the field of Bidirectional Transformations, which studies consistency between
different overlapping representations of data (Abou-Saleh et al., 2018). A special case is
the view-update problem (Bancilhon & Spyratos, 1981) originally proposed for databases:
how do we algebraically characterise reading-out and updating an attribute 𝑎 ∈ 𝐴 from
some data 𝑑 ∈ 𝐷? There are a family of solutions called lenses which are parameterised by
algebraic laws of varying strength (Nakano, 2021), which we take inspiration from below:

Task 3.1 (manipulation). Let𝒳 ∶ (𝑑, 𝑎) be a distribution over some data 𝑑 ∈ 𝐷, each labelled
with an attribute 𝑎 ∈ 𝐴 and let 𝒜 be a distribution over the attributes. A manipulation
consists of a pair of operations (get ∶ 𝐷 → 𝐴, put ∶ 𝐷 × 𝐴 → 𝐷) which can be understood
as reading and writing, respectively. In particular, the put edits a reference data point to
exhibit the specified attribute. The two operations have to obey the following tasks, with
respect to the modeller’s choice of distribution 𝒜 on 𝐴.

𝒳 ⇋
get

𝒳
get

(Classify)
𝒳

put get ⇋
put,get 𝒳

𝒜 𝒜
(PutGet)

𝒳 put ⇋
put,get

𝒳 (GetPut)
𝒳

put
𝒜 put ⇋

put,get
(Undoability)

get
get

𝒳

𝒜

𝔼(𝑑,𝑎)∼𝒳 [𝐃𝐴1 (get𝜙(𝑑), 𝑎)] 𝔼(𝑑,𝑎′)∼𝒳|𝑑×𝒜[𝐃
𝐴
2 (get𝜙(put𝜓 (𝑑, 𝑎

′)), 𝑎′)]

𝔼𝑑∼𝒳|𝑑 [𝐃
𝐷
1 (put𝜓 (𝑑, get𝜙(𝑑)), 𝑑)] 𝔼(𝑑,𝑎′)∼𝒳|𝑑×𝒜[𝐃

𝐷
2 (put𝜓 (put𝜓 (𝑑, 𝑎

′), get𝜙(𝑑)), 𝑑)]

To provide an intuition for each of the tasks, assume that the data consists of images each
containing a single shape each labeled with the colour of the shape. Classify allows us to
use get to read out the colour of a shape. PutGet says that first editing the colour of a shape
(say, from red to blue) and then immediately reading out that colour will return the edited
colour (blue). GetPut says that reading out the colour of a shape (say, red) followed by
editing the shape to have the same colour (i.e., an edit that leaves red unchanged) is the same
as doing nothing. Undoability says that edits can be undone; using the first put to change
the colour of a shape (say from red to blue), and then editing again with a second put to
restore the original, read-out colour of the shape (red) must restore the original image.

For completeness, and to illustrate the ergonomic necessity of our diagrammatic notation, we
display the formulaically obtained hyperparameterised objective function of manipulation
in standard notation below:

argmin𝜙,𝜓

⎛
⎜
⎜
⎜
⎜
⎝

𝛼𝔼(𝑑,𝑎)∼𝒳
(
𝐃𝐴
1

(
get𝜙 (𝑑) , 𝑎

))

⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟
Classify

+ 𝛽𝔼(𝑑,𝑎′)∼𝒳|𝑑×𝒜
(
𝐃𝐴
2

(
get𝜙

(
put𝜓 (𝑑, 𝑎′)

)
, 𝑎′

))

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
PutGet

+ 𝛾𝔼𝑑∼𝒳|𝑑
(
𝐃𝐷
1

(
put𝜓

(
𝑑, get𝜙 (𝑑)

)
, 𝑎
))

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
GetPut

+ 𝛿𝔼(𝑑,𝑎′)∼𝒳|𝑑×𝒜
(
𝐃𝐷
2

(
put𝜓

(
put𝜓 (𝑑, 𝑎′) , get𝜙 (𝑑)

)))

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟
Undoability

⎞
⎟
⎟
⎟
⎟
⎠

Where; 𝜙, 𝜓 are the parameters of put and get to be learnt; 𝛼, 𝛽, 𝛾, 𝛿 are hyperparametric pos-
itive weighting coefficients for each task; 𝐃𝐴

1 ,𝐃
𝐴
2 are hyperparametric statistical divergences
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for 𝐴; 𝐃𝐷
1 ,𝐃

𝐷
2 are statistical divergences for 𝐷; and 𝒜 is a hyperparametric distribution over

𝐴 such that supp(𝒜) contains the attributes the modeller intends to have as targets.
The following pair of theoretical results allow us to anticipate and justify the efficacy of
manipulation, by analysing its behaviour with respect to an additional regularisation
term we detail in Appendix B; in the same way that a VAE may be viewed as a nicely
regularised autoencoder, we may learn some things indirectly about manipulation by
considering a nicely-regularised variant. First, we may relate the behaviour of manipulation
to style-transfer.
Proposition 3.2 (manipulation vs. style-transfer (Take 1)). There exists a regularisation
term for manipulation such that an "optimally-trained" manipulation yields an "optimally-
trained" CycleGAN. (Elaboration of conditions and proof in Section C.2)

Second, we have a result that informs us that in the computational limit, manipulation
allows us to transform any classifier of attributes into a "minimally invasive" editor of those
attributes, without providing any additional information in the form of augmented data or
inductive biases.
Proposition 3.3 (put as Bayesian inverse of a classifier). There exists a regularisation term
for manipulation such that by identifying a given "well-behaved" classifier cls as get,
satisfaction of the manipulation task allows put to induce the Bayesian inversion cls†.
(Elaboration of conditions and proof in Section C.3)

Indeed, as we proceed to report, we obtain such minimal-editors in practice. Moreover, we
do so in a manner that is deterministic (cf. VAEs, Kingma & Welling (2022)), non-adversarial
(cf. GANs, Goodfellow et al. (2020)), and without hardcoding or handcrafting features in
latent spaces (cf. CVAEs, Shaikh et al. (2022)).

3.1 Experimental Results I: Simple attributes of synthetic and real-world data

N.B. For space, only results are reported in the main body, while all methodological
details are reported in Appendix D; as we follow our recipe, these details consist chiefly of
hyperparameter choices.
We demonstrate initial proofs-of-concept of the manipulation task on a simple analytic
dataset (Figure 1) inspired by Spriteworld (Watters et al., 2019), and on MNIST (Figure 2). In
the former, each image depicts a single shape with varying properties, and is labelled by
two attributes: shape – circle, square or triangle – and colour – red, green or blue. For each
attribute, we train a get/put pair according to the manipulation task specification.

Figure 1: An input Spriteworld image alongside a spectrum of outputs exhibiting the ability
of the put to manipulate a single attribute of the input while preserving its other properties.
Additionally, the model is able to generalise by interpolating to attribute values unseen
during training, in this case producing orange and cyan shapes, whereas during training, it
only sees red, green or blue shapes. (further details in Section D.1)

3.2 Experimental Results II: Derived attributes of synthetic data

Often in practice we are interested in complex, non-explicit attributes that are derived
from those labelled in the data: for example, "eligibility for a loan" may be derived from
other explicit attributes of people in a database by an operationally opaque classifier, with

7
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Original 0 1 2 3 4 5 6 7 8 9

Figure 2: Outputs of a put trained against an MNIST classifier. The put preserves several
graphological aspects, such as stroke weight, slant, and angularity. This represents qualitative
evidence to support our prediction that put as a class-conditioned generative model behaves
as a style-preserving edit.

unknown range, distribution, and dependencies on other attributes. A known challenge
in manipulating derived attributes is unequal entropy in attribute classes (Chu et al.,
2017), which may cause models such as CycleGANs to hide data imperceptibly, making
them particularly vulnerable to adversarial attacks. Various solutions have been proposed,
including masks (Wu et al., 2024), blurring (Fu et al., 2019) and compression (Dziugaite
et al., 2016). We demonstrate via a modification of manipulation (Task 3.1,Figure 4) that our
framework permits the design and implementation of end-to-end approaches to editing
complex attributes without interventions on the data.

bc =
⎧

⎨
⎩

min(1, 𝑐𝑠 + 0.6) if shape = circle
min(0.8,max(0.2, 𝑐𝑠)) if shape = square
max(0, 𝑐𝑠 − 0.6) if shape = triangle

Figure 3: To illustrate the concepts of derived attributes and unequal entropy, consider an
attribute on the Spriteworld data called blue-circleness, which broadly measures how similar
a shape is to a blue circle. We define blue-circleness (bc) as a function of explicit attributes
shape and colour; we assign a continuous colour score 𝑐𝑠 ∈ [0, 1] based on the hue, where
red = 0 and blue = 1. To illustrate unequal entropy in this example, the class 0 has higher
entropy than 0.4 because there are more shapes that have bc-value 0. So manipulating a
shape with bc-value 0 to 0.4 must lose information.

8
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Task 3.4 (complement manipulation).

𝒳 ⇋
get

𝒳
get

get

⇋
put,get 𝒳

𝒜

𝒳

⇋
put,get 𝒳

𝒳

𝒜 ⇋
put,get 𝒳

𝒜

get

𝒞

put put

𝒳

𝒜

𝒞

put

𝒞

𝒞 𝒞
put

𝒞

get

Inspired by the complement of symmetric
lenses (Hofmann et al., 2011), we introduce
a complement 𝐶 to put, changing its type
to 𝑆 × 𝐿 × 𝐶 → 𝑆 × 𝐶. Let (𝑑, 𝑎) ∼ 𝒳 be a
distribution over some data 𝑑 ∈ 𝐷, each la-
belled with an attribute 𝑎 ∈ 𝐴. complement
manipulation consists of a pair (get ∶ 𝐷 → 𝐴,
put ∶ 𝐷×𝐴×𝐶 → 𝒟×𝐶) fulfilling the rules on
the left. The idea of the complement is that it
provides the manipulation with a scratchpad
𝐶 to keep track of additional data. As none
of the tasks check the output of the comple-
ment, the put and get can use it freely to store
relevant data.

Figure 4: Complement manipulators (Task 3.4) can manipulate derived attributes such as
blue-circleness, by using the complement as a scratchpad to record a correspondence between
data points (further details in Section D.1) while preserving attributes such as position and
size.

3.3 Experimental results III: Interpretability applications on real-world data

As a further test of the robustness of tasks to implementation choices, we specialised the
put to be a simple vector addition in the latent space of an autoencoder (Figure 5), for
the relatively complex Large-scale CelebFaces Attributes dataset. We found that restricting
put to be linear in this way increased training stability. Moreover, in the same way that
we would expect a latent space "filtered through" the probabilistic structure of Gaussians
to yield good sampling properties (Example 1.4), we would predict that enforcing linear
structure on the latent space would yield "linear" properties. Indeed, we exhibit continuous
interpolation in generated outputs between normally discrete class labels (Figure 6), and
class-sensitive separation of latent space embeddings in the autoencoder. We consider this
to be compelling evidence that since our framework is agnostic, implementation details
may be engineered to obtain additional desirable properties without compromising
behavioural specifications.

put ⇒
enc dec+

put’

Figure 5: Recalling that architectural choices are a form of specialisation by diagrammatic
substitution, the linear put is a specialisation of a generic put as an autoencoder task-bound
pair of learners enc and dec, along with a put’ that computes single shift vector to be
added into the latent space, depending only on the label value. enc, dec, and put’ are
trained simultaneously along with the manipulation tasks, and intuitively this pressures
the autoencoder pair to adapt their latent representations to fit the needs of the broader
manipulation task.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Original Not smiling Smiling

(a)

Smiling
Not smiling

Autoencoder Only

Linear Manipulator

(b)

Figure 6: Left: Outputs of a linear manipulator trained on face image data paired with
a binary "smile"/"no-smile" label. The remarkable aspect of this experiment is that the
original data only carried binary smile/no-smile labels, and that the linear structure in the
specialisation of the put admits continuous interpolation. Right: A comparison of the spread
of the latent embeddings of images from the validation set when pre-training an autoencoder
and then training a (linear) classifier on the latent space (top), vs. when trained with a
linear manipulator (bottom). We find that linear put automatically separates latent space
embeddings of classes : the graphs depict the relative density of embeddings along the
direction of the classifiers’ weight vectors, normalised so that each combined data spread is
centred and has unit variance (details in Section D.2).

4 Concluding discussion

4.1 Summary

We introduced a diagrammatic language for representing and reasoning about the
behaviour of machine learning models in terms of tasks, viewed as the essential data of
objective functions. By leveraging category theory and string diagrams, our work establishes
a cross-disciplinary formal bridge between theoretical computer science and practical
machine learning, providing new conceptual tools for analyzing ML systems and permitting
the transfer of insights between traditionally separate fields.
The proposed framework allows capturing existing tasks in machine learning, providing
intuitive insights rooted in mathematical rigour. We identify a set of widespread and
well-understood tasks, which we call patterns. We can analyse some tasks as composites of
patterns (Example 2.6) while other tasks can be understood as specialisations of patterns (Ex-
ample 1.4). The rewrite system inherent to string diagrams, allows us to identify relationships
between different tasks and formalise intuitions (Proposition 2.9, Proposition 3.2).
Beyond theoretical insights, the proposed language also allows the creation of new training
paradigms. As preliminary empirical validation of our theory’s utility and potential, we
introduced a novel task type called manipulator that produces a class-conditioned and style-
preserving generative model counterpart for a given classifier. In the image domain, we were
able to verify predicted behaviours (Section 3.1), and we demonstrated the ability to design
novel end-to-end capabilities, such as end-to-end editing of complex attributes (Section 3.2)
and the imposition of linear structure on latent space representations (Section 3.3), which
allowed continuous interpolation between discrete class labels on real data, and separated
latent space embeddings of different classes. Notably, this was achieved without adversarial
training conditions, random sampling, preprocessing of data, or hardcoded interventions in
the architectures, i.e.:

Our framework enables capable, small-scale, and training-stable models.

10
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4.2 Relation to extant work

Regarding our nascent theoretical framework as a whole, the style of engineering beginning
from tasks is already common practice in many fields of ML, and we sought here to place
these practices on a more rigorous footing, and to probe their strengths and limitations. Our
mathematical approach draws broadly from the field of Applied Category Theory (Fong
& Spivak, 2019a), particularly in the use of string diagrams for the higher-algebraic data
of concurrently and serially composed functions, which enables compact representation
and reasoning with otherwise cumbersome symbolic equivalents when dealing with
multiple learners in tandem. To our knowledge, our concern with the composition of tasks
among many learners distinguishes our aims and formal choices from approaches that
employ similar mathematical formulations, both within the category-theoretic literature
(cf. Gavranović et al. (2024)), and without (cf. the variational generalisation of Bayesian
inference presented in Knoblauch et al. (2022)).

While our approach is essentially neurosymbolic in spirit, it does not fit neatly into the
mainstream triad of neurosymbolic approaches (d’Avila Garcez & Lamb, 2020); we do not
encode symbolic data for neural operations, nor do we interface neural approaches with
symbolic engines, nor are we hardcoding expert knowledge representations. Moreover,
our aims differ: while neurosymbolic approaches often seek to manipulate symbolic data
systematically by neural means, our framework operates at a higher level of abstraction,
seeking to use the systematicity of higher-algebraic equational characterisations as a means
to shape the neural ends. Hence our perspective may complement existing approaches to
structure in machine learning.

Regarding manipulation in particular, this was to our knowledge the first practically demon-
strated synthesis of insights from Bidirectional Transformations as a subfield of database
theory (Abou-Saleh et al., 2018) with ML. While explicitly neurosymbolic approaches have
been tried for similar editing tasks before (see e.g. Smet et al. (2023)), owing to the influence
of database theory in our approach, to our knowledge our statement and execution of this
task enjoys the maximal permissible generality and implementation agnosticism among
similar attribute-editing tasks, without sacrificing rigour and systematicity.

4.3 Limitations and Prospects

Concerning manipulation in particular, an immediately evident limitation of this practical
demonstration is a lack of exploration of how the difficulty of training such ensembles of
learners behaves at scale, with respect to more complex and multimodal datasets, and
with a wider range of architectures. Concerning scale, while none of the products of our
experimentation are state-of-the-art with respect to specific applications, we believe the
variety and promise of these results serve as a compelling validation of our theoretical
framework’s utility and potential. Concerning applications of manipulator beyond the
image domain, we report on some sketch experiments in sentiment-manipulation on text in
Appendix F, where we also comment on the nature of technical difficulties to be overcome
in the application of our framework to complex domain data, and offer an explanation for
mode collapses observed during training by empirically relating manipulator to other
generative classification approaches. Concerning a wider range of architectures, we report
on some specialisations of the learners. However, we leave exploring manipulation in
combination with state-of-the-art architectures, such as diffusion, for future work.

Addressing the theoretical framework of tasks more broadly, our reliance on equational
characterisations is double-edged. On one hand, it is uncommon to find such characterisa-
tions of mathematical systems of interest as they are usually defined by more direct means,
and this presents a theoretical limitation. On the other hand, it appears that the strength of
equational characterisations when applied to ML lies in imposing structure on "the way to
learn to solve a problem" rather than on the solutions or problems themselves (Sutton, 2019).
This suggests promising future possibilities of our mathematical framework in bridging
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structural-symbolic approaches from computer science more broadly with methods that can
effectively leverage computation; we suggest "neural data structures" as a sketch experiment
in Appendix E.

While we have demonstrated that, in certain cases, tasks can determine behaviours, there
is a theoretical gap in the converse analysis of behaviours of trained models in terms of
their basic tasks. The problem is typified by generative models where it is impossible
a priori for all of the constituent tasks to be simultaneously perfectly optimised. The
prototypical illustrating example is the GAN, where it is impossible for both the generator
and discriminator to be perfect. Conceptually, the gap is that we have only dealt here with
"static" ensembles which in principle admit idealised loss-minimisations, whereas some
generative models use adversarial tasks to enforce "dynamic" training forces for a variety of
purposes, such as representation regularisation for easier sampling in VAEs. While we do
offer some initial methods of analysis in Section C.2, a more thorough and encompassing
analysis is beyond the scope of this paper.

Future theoretical developments will seek to incorporate other aspects of ML: for example,
relating to work that focuses on the choice of model architecture (Khatri et al., 2024) and
interactions with the underlying data distribution (Bronstein et al., 2021). While our current
experiments focus on demonstrating our framework’s validity, future practical developments
will explore applications to more complex, real-world ML challenges, where we envision our
approach informing areas such as AutoML, interpretable AI, and formal verification of ML
systems: the compositional nature of our task-based framework naturally aligns with neural
architecture search by potentially informing principled search strategies for optimal model
architectures, and the explicit representation of model behaviours as equational constraints
could enhance interpretability and facilitate formal verification.
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Ethics Statement

We recognise the potential impact of ML, both positive and negative, on global society and
nature as ethical stakeholders.
Regarding society, we recognise that expertise in, and steering of, the development and
implementation of ML systems is concentrated in the hands of relatively few. Hence, we
believe that broad democratisation of methods and understanding would be an improvement
upon current circumstances. Accordingly, in the development of our theory and exposi-
tion, we were biased away from formal rigidity in favour of accessibility and expressive
possibility. Our "pattern language" approach seeks to be a minimally constraining mode of
communication, reasoning, and design.
Regarding nature, we recognise that practical ML carries a growing ecological footprint,
primarily due to the energy-intensive nature of training large models and running extensive
experiments. We believe that a compositional approach could enable efficient and smaller
model design, reducing environmental impact.
By formalising ML tasks in a way that allows for more principled and targeted experi-
mentation, we aim to encourage a more thoughtful, resource-conscious, and participatory
approach to ML research and development. We acknowledge that there is still much work
to be done in this regard, and we hope that our framework will inspire further research into
sustainable and harm-free ML practices.

Reproducibility Statement

Experiment methodology and details such as model parameters are reported in the Appendix.
All code is available in the supplementary materials, and will be made public.
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A String diagrams for tasks

String diagrams are a formal diagrammatic syntax that take semantics in symmetric monoidal
categories, and they find usage in a broad variety of fields2. Our string diagrams are built
using sequential and parallel composition from the following generators, along with a stock
of function labels:

𝑓ℝ𝑀 ℝ𝑁 𝑓

(𝑔◦𝑓)∶ ℝ𝐴 → ℝ𝐶

Sequential composition

𝑔

𝑓∶ ℝ𝑀 → ℝ𝑁

Function

𝑓
𝑔

(𝑓 ⊕ 𝑔)∶ ℝ(𝐴+𝐶) → ℝ(𝐵+𝐷)

Parallel composition

ℝ𝐴
ℝ𝐵

ℝ𝐶

ℝ𝐴 ℝ𝐵

ℝ𝐶 ℝ𝐷
{⋆}

𝑣 ∈ ℝ𝑁

Vector

ℝ𝑀

∆∶ ℝ𝑀 → ℝ(𝑀+𝑀)

Copy

ℝ𝑀
ℝ𝑁

ℝ𝑀

ℝ𝑀

𝜖∶ ℝ𝑀 → {⋆}

Delete

{⋆}

ℝ0 ≃ {⋆}

Singleton space

{⋆}

𝒳 ∶ {⋆}→ ℝ𝑀

Data from 𝒳

ℝ𝑀𝒳

(𝒳 × 𝒴)∶ {⋆}→ ℝ(𝑀+𝑁)

Independent 𝒳,𝒴

ℝ𝑀𝒳

ℝ𝑁𝒴

𝜃∶ ℝ(𝑁+𝑀) → ℝ(𝑀+𝑁)

Swap

ℝ𝑀

ℝ𝑁ℝ𝑀

ℝ𝑁
𝑣

For conventional reasons that were not by our choice, vectors are depicted as triangular
nodes with only output wires, reminiscent of bra-ket notation. (co)associative (co)monoids,
such as copy-delete and add-zero, are specially depicted as circular nodes as is common in
applied category theory. In this work, encoders and decoders are sometimes depicted as
"bottlenecking" trapezia, as is common in ML, and distributional states are given their own
notation as thick bars.
An attractive characteristic of string diagrams is that visually intuitive equivalences between
information flows are guaranteed to correspond to symbolic derivations of behavioural equiv-
alence: tedious algebraic proofs of equality between sequentially- and parallel-composite
processes are suppressed and absorbed by (processive) isotopies of diagrams. In the
diagrammatic syntax it is conventional to notate such isomorphisms as plain equalities.
Interested readers are referred to (Selinger, 2011) for the relevant mathematical foundations.

(𝟏⊕ 𝜃)◦(∆⊕ 𝑔)◦(𝑓 ⊕ 𝟏)
≃ (𝟏⊕ 𝜃)◦(𝟏⊕ 𝟏⊕ 𝑔)◦(∆⊕ 1)◦(𝑓 ⊕ 𝟏) [Identity, interchange]
≃ (𝟏⊕ 𝑔 ⊕ 𝟏)◦(𝟏⊕ 𝜃)◦(∆⊕ 1)◦(𝑓 ⊕ 𝟏) [Braid naturality]
≃ (𝟏⊕ 𝑔 ⊕ 𝟏)◦(𝟏⊕ 𝜃)◦(𝑓 ⊕ 𝑓 ⊕ 1)◦(∆⊕ 1) [Copy naturality]
≃ (𝟏⊕ 𝑔 ⊕ 𝟏)◦(𝑓 ⊕ 𝟏⊕ 𝑓)◦(1⊕ 𝜃)◦(∆⊕ 1) [Braid naturality]

⇔ 𝑓
𝑔

=
𝑓

𝑓
𝑔

A.1 Categorical semantics of task diagrams

The functional effect of the construction below is to extend the category of continuous maps
between Euclidean spaces with global elements that behave as probability distributions
instead of points. We presume familiarity with symmetric monoidal categories and their
graphical calculi (Selinger, 2011).
Let CartSp denote the coloured PROP (Yau, 2008) of continuous maps between Euclidean
spaces, where the tensor product is the cartesian product — i.e. CartSp is cartesian monoidal.
Let BorelStoch denote the Markov category (Cho & Jacobs, 2019; Fritz, 2020) of stochastic
kernels (Panangaden, 1999) between Borel-measurable spaces. Stochastic kernels in particular
subsume the continuous maps between Euclidean spaces.
As a Markov category, in the terminology of (Fong & Spivak, 2019b), BorelStoch supplies
cocommutative comonoids. By Fox’s theorem (Fox, 1976b) cartesian monoidal categories

2Including linear and affine algebra (Sobociński, 2015; Bonchi et al., 2017; 2019), first order logic
(Haydon & Sobociński, 2020), causal models (Lorenz & Tull, 2023; Jacobs et al., 2019), signal flow graphs
(Bonchi et al., 2014), electrical circuits (Boisseau & Sobociński, 2022), game theory (Hedges, 2015),
petri nets (Baez & Master, 2020), probability theory (Fritz et al., 2021), formal linguistics (Coecke et al.,
2010; Wang-Mascianica et al., 2023; Wang-Maścianica, 2023), quantum theory (Coecke & Duncan, 2011;
Coecke & Kissinger, 2017; Poór et al., 2023), and aspects of machine learning such as backpropagation
(Cruttwell et al., 2022).
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are precisely those isomorphic to their own categories of cocommutative comonoids. Hence
there is a (semicartesian) functorial embedding of CartSp into BorelStoch sending ℝ𝑁 to ℝ𝑁

(equipped with the usual Borel measure), and continuous maps to deterministic continuous
maps. We declare our semantics to be taken in the category to be generated by the image of
this embedding along with the probability distributions 𝒳 ∶ {⋆} → ℝ𝑁 , where {⋆} is the
singleton monoidal unit of BorelStoch.

A.2 Categorical semantics for idealised universal approximators

As we are concerned with behaviour, not implementation details, we idealise all neural net-
works as perfect universal approximators, which we may formulate string-diagrammatically
in a monoidal closed category, borrowing evaluator-notation from (Pavlovic, 2013; 2023). In
essence, we are assuming that architectures are sufficiently expressive to optimise whatever
tasks we give them; in practice, the conditions under which architectures become univer-
sal approximators can be mild (Hornik et al., 1989), and the idealisation is increasingly
true-in-practice in the contemporary context of increasing data and compute.
Definition A.1 (Learner). Let 𝑋,𝑌 denote input and output types. A processΩ ∶ 𝔭⊕𝑋 → 𝑌
with parameters in para(Ω) = 𝔭 = ℝ𝑛 (for sufficiently large 𝑛) is a universal approximator or
learner when3:

𝑓𝑋 𝑌 =∀𝑓𝑋→𝑌∃𝑓∈𝔭 ∶
𝑓

𝑋
𝑌

𝔭
Ω

The parameter space could represent e.g. the phase space of weights and biases of a neural
network.
Example A.2. By visual convention, we use colours to indicate different data types of wires.
We depict processes with no free parameters as white boxes, and learners as black-boxes
with variable labels to indicate distinct or shared parameters. The following composite
process has one function 𝑓 with no learnable parameters, and three neural nets: the two
labelled 𝛼 share a parameter in the space 𝔭, and the one labelled 𝛽 takes a parameter in ℚ.
In this paper, we favour the shorthand on the right.

𝑓≜
Ω

Ω
𝑓

Ω

𝔭

ℚ 𝛼
𝛼𝛽

The universal approximation theorem, suitably idealised, manifests as the capacity for a
black-box learner to be diagrammatically substituted for any other composite diagram with
equal input and output, including those composites that contain other learners. For example,
recall the linear put below, which may be viewed as substituting a particular composite of
put’, enc, dec, and addition in place of put:

put ⇒
enc dec+

put’

This ability is referred to in this work intermittently as specialisation, and as expressive reduction
in (Khatri et al., 2024) where the concept first appeared. For the sake of completeness, we
reproduce the relevant construction that gives category-theoretic semantics to universal
approximators and specialisation below, along with standard definitions, with the authors’
permission.
Definition A.3 (PROP). A PROP is a strict symmetric monoidal category generated by a
single object 𝑥: every object is of the form

𝑛⨂
𝑥 = 𝑥⊗⋯⊗

⏟ ⏟ ⏟
𝑛

𝑥

3We adapt the shape of the universal approximators to clearly indicate the parameters.
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PROPs may be generated by, and presented as signatures (Σ, 𝐸) consisting of generating
morphisms Σ with arity and coarity in ℕ, and equations 𝐸 relating symmetric monoidal
composites of generators.
Definition A.4 (Coloured PROP). A multi-sorted or coloured PROP with set of colours ℭ has
a monoid of objects generated by ℭ.
Definition A.5 (Cartesian PROP). By Fox’s theorem (Fox, 1976a), a cartesian PROP is one in
which every object (wire) is equipped with a cocommutative comonoid (copy) with counit
(delete) such that all morphisms in the category are comonoid cohomomorphisms.
Definition A.6 ((symmetric, unital) coloured operad). Where (𝒱 ,⊠, 𝐽) is a symmetric
monoidal category and ℭ denotes a set of colours 𝑐𝑖 , a coloured operad 𝒪 consists of:

• For each 𝑛 ∈ ℕ and each (𝑛 + 1)-tuple (𝑐1,⋯ , 𝑐𝑛; 𝑐), an object 𝒪(𝑐1,⋯ , 𝑐𝑛;𝑛) ∈ 𝒱

• For each 𝑐 ∈ ℭ, a morphism 1𝑐 ∶ 𝐽 → 𝒪(𝑐; 𝑐) called the identity of 𝑐

• For each (𝑛 + 1)-tuple (𝑐1⋯ 𝑐𝑛; 𝑐) and 𝑛 other tuples (𝑑11⋯𝑑1𝑘1)⋯ (𝑑𝑛1 ⋯𝑑𝑛𝑘𝑛 ) a
composition morphism

𝒪(𝑐1,⋯ , 𝑐𝑛; 𝑐)⊠𝒪(𝑑11⋯𝑑1𝑘1)⊠⋯⊠𝒪(𝑑𝑛1 ⋯𝑑𝑛𝑘𝑛 )→ 𝒪(𝑑11⋯𝑑1𝑘1 ⋯𝑑𝑛1 ⋯𝑑𝑛𝑘𝑛 ; 𝑐)

• for all 𝑛 ∈ ℕ, all tuples of colours, and each permutation 𝜎 ∈ 𝑆𝑛 the symmmetric
group on 𝑛, a morphism:

𝜎∗ ∶ 𝒪(𝑐1⋯ 𝑐𝑛; 𝑐)→ 𝒪(𝑐𝜎∗(1)⋯ 𝑐𝜎∗(𝑛); 𝑐)

The 𝜎∗ must represent 𝑆𝑛, and composition must satisfy associativity and unitality in a
𝑆𝑛-invariant manner.
Construction A.7 (Hom-Operad of coloured PROP). Where (𝒫, ⊗, 𝐼) is a coloured PROP
with colours ℭ𝒫, we construct 𝒪𝒫, the hom-operad of 𝒫. We do so in two stages, by first
defining an ambient operad, and then restricting to the operad obtained by a collection of
generators. Let the ambient symmetric monoidal category be (𝐒𝐞𝐭,×, {⋆}). Let the coloursℭ𝒪
be the set of all tuples (𝐀,𝐁), each denoting a pair of tuples (𝐴1⊗𝐴𝑛, 𝐵1⊗𝐵𝑛) of 𝐴𝑖 , 𝐵𝑖 ∈ ℭ𝒫.

• The tuple
(
(𝐀1,𝐁1)⋯ (𝐀𝑛,𝐁𝑛); (𝐀,𝐁)

)
is assigned the set [𝒫(𝐀1,𝐁1) × ⋯ ×

𝒫(𝐀𝑛,𝐁𝑛) → 𝒫(𝐀,𝐁)] ∈ 𝐒𝐞𝐭; the set of all generated functions from the product
of homsets 𝒫(𝐀𝑖 ,𝐁𝑖) to the homset 𝒫(𝐀,𝐁).

• 1(𝐀,𝐁) ∶ {⋆} → [𝒫(𝐀,𝐁) → 𝒫(𝐀,𝐁)] is the identity functional that maps 𝑓 ∶ 𝐀 → 𝐁
in 𝒫(𝐀,𝐁) to itself.

• The composition operations correspond to function composition in 𝐒𝐞𝐭, where
[𝑋 → 𝑌] × [𝑌 → 𝑍] → [𝑋 → 𝑍] sends (𝑓∶𝑋→𝑌 , 𝑔∶𝑌→𝑍) ↦ (𝑔◦𝑓)∶𝑋→𝑍 ; appropriately
generalised to the multi-argument case. The permutations are similarly defined,
inheriting their coherence conditions from the commutativity isomorphisms of the
categorical product ×.

The generators are:

• For every 𝑓 ∈ 𝒫(𝐀,𝐁) that is a generator of 𝒫, define a corresponding generator of
type {⋆} → [𝒫(𝐼, 𝐼) → 𝒫(𝐀,𝐁)], which is the functional

(
− ↦ (𝑓 ⊗ −)

)
that sends

endomorphisms of the monoidal unit of 𝒫 to their tensor with 𝑓, viewed as an
element of the set [𝒫(𝐼, 𝐼)→ 𝒫(𝐀,𝐁)].

• For every pair of tuples
(
(𝐗1,𝐘1)⋯ (𝐗𝑚,𝐘𝑚); (𝐀,𝐁)

)
and

(
(𝐉1,𝐊1)⋯ (𝐉𝑛,𝐊𝑛); (𝐁,𝐂)

)

in ℭ𝒪, a corresponding sequential composition operation of type:

[
∏

𝑖⩽𝑚
𝒫(𝐗𝑖 ,𝐘𝑖)→ 𝒫(𝐀,𝐁)] × [

∏

𝑗⩽𝑛
𝒫(𝐉𝑗 ,𝐊𝑗)→ 𝒫(𝐁,𝐂)]
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→ [
(∏

𝑖⩽𝑚
𝒫(𝐗𝑖 ,𝐘𝑖) ×

∏

𝑗⩽𝑛
𝒫(𝐉𝑗 ,𝐊𝑗)

)
→ 𝒫(𝐀,𝐂)]

Which maps pairs of functionals (𝐹∶∏
𝑖⩽𝑚

𝒫(𝐗𝑖 ,𝐘𝑖)→𝒫(𝐀,𝐁), 𝐺∶∏
𝑗⩽𝑛

𝒫(𝐉𝑗 ,𝐊𝑗)→𝒫(𝐁,𝐂)) to the

functional which sends 𝑝𝑖 ∶ 𝐗𝑖 → 𝐘𝑖 and 𝑞𝑗 ∶ 𝐗𝑗 → 𝐘𝑗 to 𝐺(𝑝1⋯𝑝𝑚)◦𝐹(𝑞1⋯ 𝑞𝑛).

• An analogous parallel composition for every pair of tuples, which sends pairs of
functionals (𝐹, 𝐺) to 𝐺(𝑝1⋯𝑝𝑚)⊗𝐹(𝑞1⋯ 𝑞𝑛).

Remark A.8. For technical reasons involving scalars (the endomorphisms of the monoidal
unit), this construction only works in semicartesian settings, i.e. where the monoidal
unit is also terminal, but that is sufficiently general to admit our use cases, which are
primarily in cartesian monoidal settings (Fox, 1976a) and semicartesian Markov categories
for probabilistic settings (nLab authors, 2024b).

Example A.9. Construction A.7 can be thought of as bridging diagrams with their specific
algebraic descriptions using just the basic constructors ◦, ⊗; the hom-operad (when notated
suggestively in the usual tree-notation, found e.g. in Markl et al. (2007)) plays the role of the
syntactic tree of ◦, ⊗ operators. For instance, given the composite morphism (𝑔⊗1𝐸)◦(1𝐴⊗𝑓)
in PROP 𝒫, the corresponding diagram and operad-state in 𝒪𝒫 is:

𝑓

𝑔
𝐴

𝐵

𝐷

𝐸

↔𝐶

𝟏𝐴

𝑓

𝟏𝐸

𝑔
◦

⊗

⊗

[𝒫(𝐼, 𝐼)→ 𝒫(𝐴,𝐴)]

[𝒫(𝐼, 𝐼)→ 𝒫(𝐵, 𝐶 ⊗ 𝐸)]

[𝒫(𝐼, 𝐼)→ 𝒫(𝐴⊗ 𝐶,𝐷)]

[𝒫(𝐼, 𝐼)→ 𝒫(𝐸, 𝐸)]

[𝒫(𝐼, 𝐼)2 → 𝒫(𝐴⊗ 𝐵,𝐴 ⊗ 𝐶 ⊗ 𝐸)]

[𝒫(𝐼, 𝐼)2 → 𝒫(𝐴⊗ 𝐶 ⊗ 𝐸,𝐷 ⊗ 𝐸)]

[𝒫(𝐼, 𝐼)3 → 𝒫(𝐴⊗ 𝐵,𝐷 ⊗ 𝐸)]

Since the PROPs CartSp and its free tensoring are cartesian, 𝒫(𝐼, 𝐼) is a singleton containing
only the identity of the monoidal unit, so in the settings we are concerned with, we
may simplify colours of the form [𝒫(𝐼, 𝐼)𝑁 → 𝒫(𝐀,𝐁)] to just 𝒫(𝐀,𝐁), and operad-states
{⋆}→ 𝒫(𝐀,𝐁) are in bĳective correpondence with morphisms 𝑓 ∶ 𝐀→ 𝐁 of 𝒫; the fact that
all 𝑓 ∶ 𝐀 → 𝐁 are representable as operad states follows by construction, since any 𝑓 in
𝒫 is by definition expressible in terms of the generators of 𝒫, and sequential and parallel
composition ◦, ⊗. As we assume homsets are already quotiented by the equational theory
of 𝒫 and the symmetric monoidal coherences, our operadic representations inherit them:
for example, we obtain interchange equalities such as the one below for free:

𝑣

𝒫(𝐴,𝐶)

𝐴

𝐵
𝐶
𝐷

𝐸

𝐹

𝑢

𝑣

𝑤

𝑥

𝑢

𝑤

𝑥

↔

⊗

⊗

◦
𝒫(𝐵,𝐷)

𝒫(𝐶, 𝐸)

𝒫(𝐷, 𝐹)

𝒫(𝐴⊗ 𝐵,𝐶 ⊗ 𝐷)

𝒫(𝐶 ⊗ 𝐷, 𝐸 ⊗ 𝐹)

𝒫(𝐴⊗ 𝐵, 𝐸 ⊗ 𝐹) 𝑤

𝒫(𝐴,𝐶)𝑢

𝑣

𝑥
◦

◦

⊗
𝒫(𝐵,𝐷)

𝒫(𝐶, 𝐸)

𝒫(𝐷, 𝐹)

𝒫(𝐴, 𝐸)

𝒫(𝐵, 𝐹)

𝒫(𝐴⊗ 𝐵, 𝐸 ⊗ 𝐹)
=

Definition A.10 (Universal approximators and specialisation). A morphism of a coloured
PROP 𝒫 of type (𝐀,𝐁) containing universal approximators as black-boxes of types 𝐀𝑖⩽𝑛 →
𝐁𝑖⩽𝑛 is a morphism

(
(𝐀1,𝐁1)⋯ (𝐀𝑛,𝐁𝑛); (𝐀,𝐁)

)
of 𝒪𝒫, and by construction, vice versa.

Specialisation corresponds to precomposition in 𝒪𝒫.

Example A.11. The inputs of open morphisms in 𝒪𝒫 correspond to "typed holes", and
operadic precomposition corresponds to "filling holes", with contents that may themselves
also contain typed holes. This precisely formalises the intuition that expressive reductions
correspond to the ability of a universal approximator to simulate anything, including
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composites containing other universal approximators.

𝑓 𝑓
≜

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

𝐺 𝐺

𝟏𝐺

𝒫(𝐴⊗𝐷,𝐸 ⊗ 𝐹)𝑓
⊗

◦

𝒫(𝐺,𝐺)
𝒫(𝐴⊗𝐷 ⊗𝐺,𝐸 ⊗ 𝐹 ⊗ 𝐺)

𝟏𝐴
𝒫(𝐴,𝐴)

⊗ 𝒫(𝐴⊗ 𝐵 ⊗ 𝐶,𝐴 ⊗ 𝐷 ⊗ 𝐺)
𝒫(𝐵 ⊗ 𝐶,𝐷 ⊗ 𝐺)

𝒫(𝐴⊗ 𝐵 ⊗ 𝐶, 𝐸 ⊗ 𝐹 ⊗ 𝐺)
↔

𝑓
ℎ

𝑓
≜

𝐴

𝐵

𝐶

𝐸

𝐹

𝐺 𝐺

ℎ

𝟏𝐺

𝑓
⊗

◦

𝟏𝐴

⊗

↦

ℎ ⊗
𝒫(𝐵,𝐷)

𝒫(𝐶,𝐺)

𝒫(𝐵 ⊗ 𝐶,𝐷 ⊗ 𝐺)

↔

↦

Remark A.12. The extension of the current theory to accommodate parameter sharing
between universal approximators is conceptually straightforward but technically involved.
Parameter sharing corresponds to the ability to reuse – i.e. copy – data between open wires
in the operad 𝒪𝒫, which amounts to having a cartesian operad.

B Strong manipulation

The basic manipulation admits pathological counterexamples, which we may block by
imposing additional tasks. We can treat these new tasks as additional regularisation terms.
This section further illustrates a form of "legalistic" thinking using tasks: by thinking of ways
that "noncooperative" or "naughty" learners might seek to satisfy tasks without exhibiting the
behaviour that the modeller desires. By identifying these counterexamples and constructing
additional tasks that block them, the modeller may iteratively improve the behaviour of
the model. For illustration, consider the following examples of pathological behaviour that
satisfy basic manipulation, again in the setting of editing the colour of a shape.

Example B.1 (Flipping). Consider a put that changes the colour of a shape as desired,
but then vertically flips the shape. If the classifier get is insensitive to the position and
orientation of the shape, then Classify, PutGet, and GetPut are satisfied. Moreover, since
a vertical flip is its own inverse, composing two puts as in the Undoability task will not
detect this aberration. Speaking in more general terms, if there are properties that get is
insensitive to, there must be additional guardrails to ensure that put preserves these other
properties as the identity, rather than one of potentially very many self-inverse symmetries.

Example B.2 (Adversarial decorations). While the classifiergetmay be perfect in-distribution,
there are no guarantees about its behaviour out of distribution, for example, when given
images with multiple shapes, where it might only classify the leftmost shape. So, it is
possible that put learns to make edits that take the resulting image out-of-distribution: for
example, by adding a red circle next to a blue square to fool the classifier into outputting
"red". This would satisfy Classify, PutGet, and GetPut. If the put can recognise and undo
its own decorations, then Undoability will also be satisfied. Speaking more generally, we
require additional guardrails to ensure that put returns something in-distribution.

The strong manipulation adds additional tasks to the manipulator. A strong
manipulator has to satisfy the original four tasks plus the following four:

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Task B.3 (strong manipulation add-ons).

𝒳
put

𝒜

𝒜
⇋
put,get

𝒳

𝒜

𝒜
(PutPut)

𝒳 dsc

𝒳
put dsc

𝒳

𝒜

𝒜
(Fake)

⇋
dsc

𝒳

𝒳

𝒜
(Fool)

(True)1

⇋dsc

⇋
put

0

1

put
put

The PutPut task (which is strictly stronger
than Undoability in that it is algebraically
implied) says that the effect of putting twice is
the same as discarding the effect of the first edit
and only keeping the last edit. In conjunction
with PutGet and GetPut, this creates what is
known in the literature as a very well-behaved
lens, which blocks Example B.1 and similar
modifications of the data get is insensitive to.
The True, Fake, and Fool tasks introduce a
discriminator component dsc, which forms a
GANpattern with respect toput as the generator.
When well-trained, this forces the outputs
of put to lie in-distribution. As in general
there are no algebraic or equational laws that
characterise arbitrary distributions of data,
using GANs in this way is a generic recipe for
shaping outputs of generators to behave well
in-distribution.

Remark B.4 (Why basic manipulation is preferable in practice). We have observed informally
that conditions such as those in basic manipulation where learners are cooperative and
there are only learners on the LHS appear to be more stable during training. We suggest
a sketch reason why: in the tasks of strong manipulation, PutPut has put occur on both
the LHS and RHS, which establishes a nontrivial dependence on the current position on
parameter-space of put in the process of finding a solution. Similarly, the GAN rules of strong
manipulation establishes adversarial mutual dependencies in the parameters of dsc and put.
Conceptually, these dependencies create dynamical systems on the paths that the learners
take over the course of training in parameter-space, which may for instance include stable
orbits and chaotic behaviour, and may be highly sensitive to initial conditions. A further
elaboration of "static" versus "dynamic" tasks in tandem with the ability to express equivalent
tasks is potentially useful for creating train-stable models with equivalent behaviour, but
this is beyond the scope of this paper, and left for future work.

C Deferred proofs

In this section, we refer to tasks and their realisations interchangeably: so instead of "manip-
ulators" realising the manipulation task, we speak just of a manipulator, disambiguating
when necessary.

C.1 Proof of Proposition 2.9

Lemma C.1. For all well-typed 𝑓, 𝑔, and for any positive linear combination 𝛼 ∶ ℝ≥0×ℝ≥0 →
ℝ≥0:

𝑓

𝑔
𝒳 ⇋ 𝒳 0𝛼 ∼ 𝑓 𝑔𝒳 ⇋ 𝒳 0 𝒳⇋

Proof. For the forward refinement, as 𝛼 is a positive linear combination, we have for all 𝑥 ∈ 𝒳
that 𝛼(𝑓(𝑥), 𝑔(𝑥)) = 𝛼1 ⋅ 𝑓(𝑥) + 𝛼2 ⋅ 𝑔(𝑥) = 0. If 𝑓 and 𝑔 are constant-functions 0, we are done.
Otherwise, positivity implies that 𝛼1 ⋅ 𝑓(𝑥) = 𝛼2 ⋅ 𝑔(𝑥) = 0, and since 𝛼1, 𝛼2 ∈ ℝ≥0, then
𝑓(𝑥) = 0 = 𝑔(𝑥), which is the desired task. For the backwards refinement, if 𝑓(𝑥) = 0 = 𝑔(𝑥)
for all 𝑥 ∈ 𝒳, then 𝛼(𝑓(𝑥), 𝑔(𝑥)) = 𝛼1 ⋅ 𝑓(𝑥) + 𝛼2 ⋅ 𝑔(𝑥) = 0.
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Lemma C.2. For a real-valued pairwise measure 𝐃 ∶ 𝒟(𝑌) ×𝒟(𝑌)→ ℝ≥0 on the space of
distributions over 𝑌, the positivity axiom 𝐃(𝒴1,𝒴2) = 0 ⟺ 𝒴1 = 𝒴2 implies, for (almost4)
all 𝑓, 𝑔 ∶ 𝑋 → 𝑌 and 𝒳:

𝑓
𝑔𝒳 ⇋𝐃 𝒳 0 ∼ 𝑓 𝑔𝒳 𝒳∶⇔

Proof. For the forward refinement, we assume that 𝐃(𝑓(𝒳, 𝑔(𝒳))) = 0. By positivity of 𝐃,
𝑓(𝒳) = 𝑔(𝒳), which is the right hand task. For the backward refinement, if 𝑓(𝒳) = 𝑔(𝒳),
then, by positivity, 𝐃(𝑓(𝒳, 𝑔(𝒳))) = 0.

Proposition C.3. If enc and dec are deterministic and 𝐄enc and 𝐄dec are positive (e.g. metrics
or statistical divergences), then energy minimisation ≡ autoencoding.

Proof. As enc and dec are functions, we may copy them through their outputs to re-express
energy minimisation as:

⇋ 0

enc,decenc dec
𝒴

𝐄enc

𝐄dec

enc dec enc

enc

×𝛾

+

By Lemma C.1, this is equivalent to:

⇋ 0

enc,dec

enc dec
𝐄enc𝐄dec

enc dec enc

enc
𝒴 𝒴⇋

enc,dec

Recall that 𝐄enc and 𝐄dec are positive by definition, hence Lemma C.2 allows us to express
the two minimisations as:

∶⇔
enc,dec

enc dec enc dec enc enc𝒴 ∶⇔
enc,dec

𝒴 𝒴 𝒴

The left task is autoencoding, so we have that energy minimisation refines autoencoding.
For the other direction, we observe that autoencoding refines the right task by postcomposing
both sides with enc, and as the left and right tasks together are equivalent to energy
minimisation, we have the claim.

C.2 Proof of Proposition 3.2

CycleGANs (Example 2.6) solve a similar task as the manipulator, translating between two
distributions. In fact, with the additional regularisation terms, the strong manipulator
(see Appendix B) is a refinement of CycleGANs, giving us more guarantees by avoiding
certain failure cases. We can use the pattern language to show this formally. However, in
both cases, the tasks are not perfectible, as, by design, it is impossible for the generator and
the discriminator to have a loss of zero at the same time. Therefore, we have to generalise
the definition of refinement for partially perfectible tasks.
Definition C.4 (Partially perfectible task). A partially perfectible task {(𝑓𝑖 , 𝑔𝑖 ,𝒳𝑖 ,𝔭𝑖)}𝑖 with
learnable functions Σ𝑙 is a compound task with excluded learners 𝐸 ⊆ Σ𝑙 such that:

1. no two 𝑒 ∈ 𝐸 share atomic tasks, i.e. ∀𝑒, 𝑒′ ∈ 𝐸.{(𝑓𝑖 , 𝑔𝑖 ,𝒳𝑖 ,𝔭𝑖)|𝑒 ∈ 𝑓𝑖 ∨ 𝑒 ∈ 𝑔𝑖} ∩
{(𝑓𝑖 , 𝑔𝑖 ,𝒳𝑖 ,𝔭𝑖)|𝑒′ ∈ 𝑓𝑖 ∨ 𝑒′ ∈ 𝑔𝑖} = ∅ and

2. all tasks not involving learners from 𝐸 are perfectible, i.e. ∃𝜋 ∈ 𝔭.∀𝑥 ∈ 𝑋.𝑓𝑖;𝜋(𝑥) =
𝑔𝑖;𝜋(𝑥)

4When the function space containing 𝑓 and 𝑔 is large, the edge case where 𝑓 and 𝑔 are nonconstant
and 𝑓 = −𝑔 is negligible. Since we are concerned with behaviour in the computational limit, this is an
acceptable assumption for our purposes.
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Importantly, there does not need to exist a perfect solution for all tasks. As condition (1)
explicitly forbids excluded learners to share tasks, we do not need to make restrictions
on their composite behaviour. An example of a partially perfectible task is CycleGAN
with excluded learners dsc1, dsc2. Assuming an appropriate data distribution (Wu et al.,
2024), the autoencoding tasks, i.e. the reconstruction losses, are perfectible. However, the
generator-discriminator tasks are not. GAN with excluded learner dsc is another example of
a partially perfectible tasks. In this case no tasks are required to be perfectible, as all of them
involve the discriminator.
When we have partially perfectible tasks, we have to define what we mean by an optimal
solution.
Definition C.5 (Optimal partially pefect solution). Let Φ = {(𝑓𝑖 , 𝑔𝑖 ,𝒳𝑖 ,𝔭𝑖)}𝑖 be a partially
perfectible tasks with learners Σ and excluded learners 𝐸 ⊆ Σ. Then an optimal partially
perfect solution for the learners 𝐿 = Σ ⧵ 𝐸 is, if it exists, a set of parameters 𝜋𝐿 ∈ 𝔭𝐿 such that
for all 𝛼𝐿,𝐃𝜙 they perfect the perfectible tasks:

∀{(𝑓𝑖 , 𝑔𝑖 ,𝒳𝑖 ,𝔭𝑖) ∈ Φ|∀𝑒 ∈ 𝐸.𝑒 ∉ 𝑓𝑖 ∧ 𝑒 ∉ 𝑔𝑖}.∀𝑥 ∈ 𝒳𝑖 .𝑓𝑖;𝜋𝐿 (𝑥) = 𝑔𝑖;𝜋𝐿 (𝑥)

and for all 𝑙 ∈ 𝐿 and all tasks Φ𝑙 with para(𝑙) ∩ 𝔭𝑖 ≠ ∅:

𝛼𝑙({ 𝔼
𝑥∼𝒳𝑖

(D𝜙(sys𝜙;(𝜋𝐿∪𝔭𝐸(𝜋𝐿))(𝑥), spec𝜙;𝜋𝐿∪𝔭𝐸(𝜋𝐿)(𝑥))) |𝜙 ∈ Φ𝑙})

is minimal over all possible parameter combinations, where

𝔭𝐸(𝜋𝐿) =
⋃

𝑒∈𝐸
inf
𝜋𝑒∈𝔭𝑒

(𝛼𝑒({ 𝔼
𝑥∼𝒳𝑖

(D𝜓(sys𝜓;(𝜋𝐿∪𝜋𝑒)(𝑥), spec𝜓;(𝜋𝐿∪𝜋𝑒)(𝑥))) |𝜓 ∈ Φ𝑒}))

In words, we consider a set of parameters optimal partially perfect, if they are perfect for the
perfectible tasks and have a minimal objective function for the non-perfectible tasks, even
if the excluded learners only optimise for themselves. This may not always exist, either
because there is no solution that is optimal for all 𝛼𝐿,𝐃𝜙 or as there may be more optimal
solutions for the non-perfectible tasks that do not satisfy the perfectible tasks.
Given this, we can generalise the definition of refinement for partially perfectible tasks.
Definition C.6 (Optimal refinement of partially-perfectible tasks). Given two partially-
perfectible tasks Ψ,Φ with excluded learners 𝐸Ψ, 𝐸Φ, we say that Ψ optimally refines Φ if
optimal partially perfect solutions for Σ𝑙Ψ ⧵ 𝐸Ψ can be composed to form optimal partially
perfect solutions for Σ𝑙Φ ⧵ 𝐴Φ.

For 𝐴Ψ, 𝐴Φ = ∅, optimal refinement is equivalent to refinement.
To show that manipulation optimally refines cycleGAN, we need one assumption: we
assume that the measure of statistical divergence and compound function have been chosen
such that a generator in a generative-adversarial setting is optimal if and only if its output
distribution is equal to the original distribution. As the goal of such a generative setting is
to approximate the original distribution, this is quite a natural assumption. One possible
choice of measure of statistical divergence and compound function is given by Goodfellow
et al. (Goodfellow et al., 2020, Theorem 1) and has been proven to fulfil this assumption.
Proposition C.7 (Manipulation vs. Style-transfer). Given appropriately chosen measure
of statistical divergence and compound functions, the strong manipulator with excluded
learner dsc optimally refines the CycleGANwith excluded learners dsc1, dsc2.

Proof. Let 𝒳1,𝒳2 be two distributions over the same type. We create 𝒳 = (𝑥, 𝑖) for 𝑥 ∈ 𝒳𝑖
where the label 𝑖 indicates the distribution the data point came from. Assuming that we
have a strong manipulator (get, put, disc) with an optimal partially perfect put, get, we
can construct optimal partially perfect generators 𝐺1 and 𝐺2 for CycleGAN.
For 𝑖 ∈ 0, 1, 𝑗 = 1 − 𝑖, we define:

𝐆𝐢 := put
i
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First, we show that the perfectible tasks are indeed perfected, i.e. that both the autoencoder
tasks are fulfilled. We have:

G𝑖 G𝑗𝒳𝑗 =

(Def)

𝒳𝑗
put

i
put

j
=

(PutPut)

𝒳𝑗
put

j

=

(Classify)

𝒳𝑗 put
get

=

(GetPut)

𝒳𝑗

Next, we will show that these generators are indeed globally optimal. By assumption,
a generator is optimal if and only if its output distribution is indistinguishable from the
training distribution. Thus, assuming that the manipulator is optimal with respect to the
generative-adversarial tasks, put output distribution approaches 𝒳 = (𝑥, 𝑖) for 𝑥 ∈ 𝒳𝑖 . But
by PutGet, we have:

G𝑖 get𝒳𝑗 =

(Def)

𝒳𝑗
put

i
get =

(PutGet)

𝒳𝑗 i

Therefore, by Classify, 𝐺1 and 𝐺2 can only return values that are akin to values in 𝒳1
and 𝒳2 respectively. As these two labels make up the entirety of 𝒳, 𝐺1’s and 𝐺2’s output
distributions are indistinguishable from 𝒳1 and 𝒳2 respectively. Therefore, they are indeed
optimal generators for their respective distribution.
But then we have shown that 𝐺1 and 𝐺2 are indeed optimal solutions to the CycleGAN pattern
and therefore that the concept manipulator is a specialisation of the CycleGAN5.

In turn, the CycleGAN, however, is not a refinement of the strong manipulator. This
means there exist solutions to CycleGAN, which violate strong manipulator. In these image
translation tasks, we expect the translators to change as little as possible to go from one
distribution to the other, i.e. preserving as much information from the original as possible.
However, the generators of the CycleGAN could, for example, flip the images horizontally.
As the autoencoder tasks have an even number of generators on each side, this would be a
‘perfect solution’ to the outlined task, yet not the behaviour we would want or expect. In
contrast, the PutPut rule of the strong manipulator does not allow this behaviour. As
such, the strong manipulator gives us more guarantees than the CycleGAN.
Despite the additional guarantees, the strong manipulator does not guarantee that it
indeed only changes as little as necessary to go from one distribution to the other. This can
be seen when considering a limited toy scenario: the data has the four objects circle, square,
red and green. There is no unique mapping between shapes and colours. Without further
information, it is therefore completely impossible to say what it would mean to change
as little as possible to go from shapes to colours. When considering this toy scenario, it
becomes obvious that, without specifying further restrictions on all remaining attributes, it
is impossible to know which mapping is correct. Yet, despite these theoretical concerns, in
practice, even the weaker manipulator often converges to the desired behaviour, similar to
CycleGANs, which have even fewer guarantees.

C.3 Proof of Proposition 3.3

Definition C.8 (Balanced entropy of an attribute). Given a distribution of data 𝒟 on space
𝐷, we say that a distribution 𝒜 over space 𝐴 represents an entropy-balanced attribute of 𝒟
if there exists a complement type 𝐶 with distribution 𝒞 such that we have the equality in
distributions 𝒟=𝒜 × 𝒞 up an isomorphism of the underlying spaces 𝐷 ≃ (𝐴 × 𝐶).

5In (Zhu et al., 2017), when doing style transfer, they additionally add the identity loss which enforces
that generating an image in 𝑋𝑖 given an image from 𝑋1 should return the identity. This perfectible task
is also guaranteed by the strong manipulator by cls and GetPut
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Task C.9 (entropy balancer). This task is autoencoder with a regularisation condition on
the encoder to be satisfied in distribution.

decenc𝒟
𝐶

𝐴
𝐷 ⇋

enc,dec
𝒟 enc𝒟

𝐶

𝐴
⇋
enc

(in dist.)

𝒞
𝒜

𝐷 𝐷 𝐷

Lemma C.10 (Perfect-task representation of equal entropy). Balanced entropy in the attributes
is equivalent to the perfectability of entropy balancer.

Proof. If there is balanced entropy in the attributes, Task C.9 may be satisfied up to identity by
the enc and decwitnessing the isomorphism 𝐷 ≃ (𝐴×𝐶) that realises 𝒟=𝒜×𝒞. Conversely,
if the tasks above are equalities, we recover the definition of balanced entropy.

Contextually, we will assume that distributions have full support over spaces; this can always
morally be the case by restrictions to subspaces. This assumption strengthens Lemma C.10
to yield the following corollary.
Corollary C.11. If entropy balancer is perfect, enc and dec witness an isomorphism
𝐷 ≃ (𝐴 × 𝐶).
Lemma C.12 (Hardcoding latent-spaces). Given a perfected entropy balancer, we may
construct the following composites, which are the put and get of a strong manipulator6.

dec
enc

𝐴

𝐷
𝐷 enc 𝐴𝐷𝐷 get :=𝐴put 𝐷

𝐷

𝐴 :=

Proof. First, we argue that the lens laws are satisfied. PutGet, GetPut, Undoability, and
PutPut follow from pure diagrammatic reasoning and applying Corollary C.11. For PutGet:

dec
enc

enc =
enc

=

(Corollary) (Delete naturality)
GetPut:

dec
enc

enc

= enc dec =

(copy naturality) (copy-delete counitality)

enc dec =

(autoencoder)
Undoability:

dec
enc

enc

dec
enc

=

(Corollary)

enc

enc dec =

(GetPut)
PutPut:

dec
enc

dec
enc

enc

dec=

(Corollary)

dec
enc

=

6modulo classify, which in this setting is trivially obtained as we assume the attribute is derived
from get.
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By construction, putting 𝑎 by independently sampling the marginal on𝐴 is indistinguishable
in distribution from the original distribution, hence the GAN laws of strong manipulator
are optimally satisfied, and we are done.

Definition C.13 (Bayesian Inversion in Markov Categories). In a Markov category, the
Bayesian inversion (Cho & Jacobs, 2019; nLab authors, 2024a) of a stochastic map 𝑓 ∶ 𝑋 → 𝑌
with respect to a distribution𝒫 on𝑋 is a stochastic map 𝑓† ∶ 𝑌 → 𝑋 such that, in distribution:

𝑓
𝒫

𝑋 𝑌

𝑋𝑓†
𝒫

𝑋
𝑌

𝑌
=𝑓𝑋

(in dist.)

Proposition C.14 (strong manipulator as Bayesian inversion). If a discriminative classifier
cls ∶ 𝐷 → 𝐴 induces a balanced attribute cls(𝒟) over 𝐴 with respect to 𝐷, there exists a
strong manipulator for which the put induces the Bayesian inversion cls† ∶ 𝐴 → 𝐷.

Proof. We show that, under our premises, the put composed with an independent copy of
the data source 𝒳 is the Bayesian inversion of cls.

=𝐷𝒳 cls
𝐴

put
𝒳

=

(Lemma C.12) (Copy)

=

(Task C.9)

= =

(Task C.9)

=

(Counit)

=

(autoencoder, Lemma C.12)

cls
=

(Copy)

(in dist.) (in dist.)

D Experiment Details

D.1 Spriteworld

For the Spriteworld experiment, we procedurally generate 32x32 images containing a single
shape with the following attributes:

Attributes Possible Values
Shape { Ellipse, Rectangle, Triangle }
Hue { Red : 0±8, Green : 85±8, Blue : 170±8 }
Saturation 64-255
Value 64-255
Background Color Black
Width & Height 5-27
X & Y position 5-27

Only the first two attributes, shape and hue, are changed in the manipulation task, but
all unchanged properties are intended to be preserved by the transformation. We use an
autoencoder with a CNN/DCNN architecture to embed each image into a latent space:
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Parameter Value
Latent Size 32
Layers 4
Hidden Channels 64
Kernel Size 5x5
Stride 2
Activation Function LeakyReLU(0.1) followed by BatchNorm

We train separate get/put models for each of the three concepts: shape, colour, blue-
circleness. Each model uses the encoder of the autoencoder to embed input images into
latent space, and only sees the labels for the particular attribute it is manipulating.
For shape and colour, the getmodel uses a linear classifier from the latent space (of size
32) to 3 output logit values, one for each possible value. The put model maps a one-hot
vector of the input value to a vector in latent space that is added to the embedding. This
new embedding is then decoded by the autoencoder.
For blue-circleness, the getmodel uses a linear classifier from the latent space to a single
output value from zero to one (we do not use a sigmoid output layer to restrict the output).
The putmodel uses a complement of size 8. It concatenates the one-hot value vector with
the image embedding and the complement vector (using a default trainable complement
vector if one is not provided) and passes that through a linear layer to get a new embedding
vector (which is then decoded) and complement vector.
In total, these models contain 644,130 parameters. All models are trained simultaneously
according to the autoencoding and manipulation rules, along with PutPut. At each step,
a batch of images is generated, along with four batches of random values, containing
random labels for the shape and colour manipulators, and random real numbers for the
blue-circleness manipulator, uniformly sampled from [−0.1, 1.1] and then clamped to [0, 1].
The loss function is a weighted sum of the losses from each atomic task in order to balance
the signal from the image loss with the signal from the classifier loss:

Hyper-parameter Value
Steps 100,000
Batch Size 512
Optimiser AdamW
Learning Rate 10−3
Weight Decay 10−2
Gradient Clipping 1 (element-wise)
Image Loss 𝐿2 + 0.25 ⋅ 𝐿1
Discrete Value Loss Binary cross-entropy
Continuous Value Loss Mean squared error
Seed 0

Task Weight
autoencoding 100
GetPut 1
PutPut 1
Undo 10
PutGet
(blue-circleness) 10
(shape and colour) 1
Classification
(blue-circleness) 10
(shape and colour) 1

D.2 Faces

For the faces experiment, we use the CelebFaces Attributes dataset (Liu et al., 2015), with an
off-the-shelf data augmentation method called "TrivialAugment" (Müller & Hutter, 2021).
Again, we use an autoencoder with a CNN/DCNN architecture to embed each image:

Parameter Value
Latent Size 128
Layers 5
Hidden Channels 8, 16, 32, 64, 128
Kernel Size 5
Stride 2
Activation Function LeakyReLU(0.1) followed by BatchNorm
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We train linear get/putmodels for the binary concept of "Smiling", resulting in a total of
1,071,749 parameters. The loss function is a weighted sum of the losses from each atomic
task:

Hyper-parameter Value
Steps 100,000
Batch Size 64
Optimiser AdamW
Learning Rate 10−3
Weight Decay 10−2
Gradient Clipping 1 (element-wise)
Image Loss 𝐿2 + 0.2 ⋅ 𝐿1 + 𝑆𝑆𝐼𝑀
Value Loss Binary cross-entropy
Seed 0

Task Weight
autoencoding 10
GetPut 1
PutPut 1
Undo 1
PutGet 1
Classification 1

D.3 MNIST

We trained the manipulator pattern on the MNIST dataset, using the digit label as the
property. The get operated directly on images, while putwas trained to act on the latent
space of an autoencoder, as in option (1) of Section 3.3. The images are input as 28 × 28
matrices, flattened to 784-dimensional vectors, and the labels are provided as 10-dimensional
vectors with one-hot encoding. All of the components were structured as multilayer
perceptrons. The hyperparameters are given below:

enc dec put get

Input Dimension 784 = 28 × 28 32 42 = 32 + 10 784 = 28 × 28
Output Dimension 32 784 = 28 × 28 32 10
Hidden Dimensions {128, 128, 64} {64, 128, 128} {128, 128, 128} {64, 64}
Hidden Activations ReLU ReLU ReLU ReLU
Final Activation Sigmoid Sigmoid Sigmoid Softmax

With these architectural components, we trained four tasks: (a) training get supervised, (b)
training get given pre-trained put, enc, and dec, (c) training put given pre-trained get’,
enc, and dec, and (d) training get to match a previous get’. These were trained using the
manipulation rules, as well as PutPut, and additional regularization term we denote as
Entropy. The loss function of Entropy is given by

ℒEntropy = 𝔼[𝐻(get(enc(𝑥)))] −𝐻(𝔼[get(enc(𝑥))])

where 𝑥 is a batch of input images, 𝐻(⋅) is the entropy of a categorical distribution, and
the expectation is approximated by the mean over each batch. The idea behind Entropy
is to encourage the output of get to be well-distributed across labels (by maximizing the
entropy of the mean distribution) but to be sure of each label (by minimizing the entropy
for each specific input). For task (d), labels were generated for the Classify rule using get’.
Each task is trained by minimizing a weighted linear combination of the rules. We give the
hyperparameters, rule weights, and loss functions for each of these below.
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(a) (b) (c) (d)
Optimizer Adam Adam Adam Adam
Learning Rate 0.001 0.001 0.0001 0.001
Epochs 20 20 20 20

Weight Loss Weight Loss Weight Loss Weight Loss
Classify 1 CE – – – – 1 CE
PutGet – – 10 CE 10 CE – –
GetPut – – 10 L2 10 L2 – –
PutPut – – 10 L2 10 L2 – –
Undoability – – 10 L2 10 L2 – –
Entropy – – 1 ℒEntropy – – – –

We also have an additional task (e) of training enc and dec unsupervised. This was done
using the Adam optimizer, with a learning rate of 0.001 for 80 epochs. The reconstruction
loss was given by

ℒ(𝑥, �̂�) = L2(𝑥, �̂�) + (1 − SSIM(𝑥, �̂�))

where SSIM is the structure similarity image metric.

To produce Figure 2, an enc, dec, put, and get were trained using (a)→ (e)→ (c), followed
by training (𝑐) for an additional 40 epochs. A slightly larger (but still MLP-based) model,
where both put and get act on the latent space of the autoencoder, was used to achieve
better visual quality. The hyperparameters are detailed below:

enc dec put get

Input Dimension 784 = 28 × 28 32 42 = 32 + 10 32
Output Dimension 32 784 = 28 × 28 32 10
Hidden Dimensions {128, 128, 128,

32, 32}
{32, 32, 128,
128, 128}

{256, 256} {256}

Hidden Activations ReLU ReLU ReLU ReLU
Final Activation Sigmoid Sigmoid Sigmoid Softmax

enc, dec, and putwere used to manipulate six examples picked from the dataset, putting
each of the ten classes onto each example. The examples were cherrypicked to provide
maximum stylistic contrast across the sample but were not selected for maximum style
transfer accuracy - a similar level was observed across the entire dataset. Code for all of these
models, as well as the training schedules of tasks (a)-(e), are provided in the supplementary
material.

E Stacks

Here we define tasks that obtain learned operators that implement the well-known data
structure stack. There are two interacting operations: push and pop. By itself, the stack is
not particularly interesting, as it can algorithmically be implemented rather easily, but a fully
differentiable and automatically learned stackmay be useful for other downstream tasks.
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𝒳 enc dec ⇋
enc, dec

𝒳

⊥ pop ⇋
pop ⊥

⊥

psh pop ⇋
psh, pop

𝛼

𝛼 ∶=
⊥

𝒳 enc

𝛼 psh

𝒳 enc

Given a data distribution 𝒳 over 𝑋 and a pretrained
autoencoder (enc: 𝑋 → LAT, dec: LAT → 𝑋), a stack
consists of a empty stack ⊥ ∶ ⋆ → 𝑆, a push operation
psh ∶ 𝑆 × 𝑋 → 𝑆 and a pop operation pop ∶ 𝑆 → 𝑆 × 𝑋.
We recursively define the distribution:

𝛼 ∶= ⊥⊗ enc(𝒳) | psh(𝛼)⊗ enc(𝒳)

meaning 𝛼 is a stack of arbitrary size and an encoded
element from 𝒳.
Then psh and pop have to obey the rules on the left.

Experimentally in the Spriteworld setting, we observe that the stack works exactly as
expected. The stack space 𝑆 has to be 𝑛 times larger than the latent space Lat for the stack to
be able to hold up to 𝑛 items. At the moment, we do not observe any additional information
compression in this basic setup. The experiment (Figure 7) uses an autoencoder architecture
for processing 32 × 32 RGB images, with a latent space size of 16 dimensions. The encoder
consists of four convolutional layers, each with 64 channels and a channel multiplier of 1.
Additionally, a stack of 64 latent features is processed through an MLP with 256 hidden
units. Training is performed on a GPU (if available), with a batch size of 64, learning rate
of 1 × 10−4, weight decay of 1 × 10−2, and gradient clipping at 1. The model trains for
100,000 steps, logging every 10,000 steps. Input images are converted to tensors and scaled
to floating-point precision, and a fixed random seed of 0 ensures reproducibility.

Figure 7: In this example, we train a stack (alongside an autoencoder) to store the latent
vectors of Spriteworld shapes. With an image latent size 16 and stack vector size 64, it is able
to retain information to faithfully restore up to 4 shapes.

F Examining Manipulation in complex domains

F.1 Manipulation for text sentiment

We attempted to fine-tune an extant strong solution for text-sentiment modification by
additionally imposing the constraints of manipulation on top of the original objective
function. Our findings suggest that additionally imposing the constraints of manipulation
on architectures that are already performant does not make an appreciable difference
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(Table 1). We pretrained the Blind Generative Style Transformer (B-GST) model of
(Sudhakar et al., 2019) which takes in the non-stylistic components of a sentence and the
target sentiment, and outputs the sentence generated in the target style. This was done until
we achieved baselines higher than the original ones reported by the authors of the model.
Afterwards, we continued training under three different conditions: (1) resuming training
with only the original objective, (2) only using objective functions from manipulation,
and (3) using both. For (1) and (3), we reused the same objective in the original paper.
In all experiments, we used the YELP dataset used by (Li et al., 2018), reusing the same
train-dev-test split they used. It consists of 270K positive and 180K negative sentences for
the training set, 2000 sentences each for the dev set, and 500 sentences each for the test set.
Furthermore, we used the human gold standard references they provided for their test set.
B-GST uses a sequence length of 512, 12 attention blocks each with 12 attention heads. We
used 768-dimensional internal states (keys, queries, values, word embeddings, positional
embeddings). We tokenized the input text using Byte-Pair Encoding (BPE).

We used the same input autoencoding and output decoding used in (Sudhakar et al., 2019)
across all experiments. For the get of the manipulation task, we used the PyTorch version of
the pretrained Transformer by HuggingFace, which uses the OpenAI GPT model pretrained
by (Radford & Narasimhan, 2018) on the BookCorpus dataset which contains over 7000
books with approximately 800M words. We trained it on a sentiment classification task
using the YELP dataset reaching 98% accuracy on the test set. The get was fixed for the
entire duration of training conditions (2) and (3) above. For the put of manipulation, we
used the B-GST model to generate text with a specified sentiment. This was a computational
bottleneck for training conditions (2) and (3) as autoregressive decoding is required to
generate model inputs for PutGet and Undoability in manipulation. We used ’teacher
forcing’ or ’guided approach’ (Bengio et al., 2015; Williams & Zipser, 1989) whenever we
computed the reconstruction loss of put. Additionally, for training conditions (2) and (3),
we only used PutGet, GetPut, and Undoability from manipulation. We used a weighted
sum of the losses computed for each of these and the original reconstruction loss if present -
the weights can be considered as training hyperparameters. For (2), we used (PutGet=5,
GetPut=20, Undoability=20), while for (3), we used (PutGet=5, GetPut=10, Undoability=25,
B-GST=30). Code for all of the models, training schedules, and hyperparameter values for
training conditions (1)-(3) are also provided in the supplementary material.

Model GLEU BLEUSRC BLEUREF ACC (fasttext)
B-GST-pretrained 11.869 74.563 52.770 84.6
B-GST-only 11.426 74.876 52.549 85.7
manipulation-only 11.712 74.428 52.646 84.1
B-GST+manipulator 11.338 74.608 52.836 85.1
Human Reference 100.00 58.158 100.00 67.6

Table 1: We pretrained the Blind Generative Style Transformer (B-GST) model (Sudhakar
et al., 2019) based on theDelete-Retrieve-Generate (Li et al., 2018) framework for sentiment
modification until we recovered higher baselines than reported by the authors of the model
(GLEU=11.6, BLEUSRC=71.0), and we continued training in three different conditions: (1)
keeping the original objective, (2) only using objective functions obtained from manipulation,
and (3) using both. We report no statistically significant differences in scores, even under
continued training. Below we report the results of training conditions (1) and (2) for an
additional epoch, and (3) for two epochs (details in Appendix F).

F.2 Characterising Manipulation as generative classification

Training manipulation autoregressively (e.g. when instantiating the learners as transform-
ers for sequential data) is slow due to autoregressing twice for PutPut and Undoability.
Moreover, our attempts to autoregressively manipulate the sentiment of IMDB reviews
often resulted in a form of posterior collapse where put ignored the attribute and behaved
as the identity function on text. Conceptually, this is because the identity function satisfies

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

GetPut, PutPut and Undoability, and while the identity fails on PutGet, failing on one
component of the combined loss function does not provide a strong enough incentive to
move away from the identity in parameter-space.

Notably, these shortcomings mirror that of VAEs, which also suffer from posterior collapse
(Bond-Taylor et al., 2022) in highly structured domains such as video (Babaeizadeh et al.,
2018) and text (Bowman et al., 2016). This suggested to us that puts may be generative
classifiers, which could potentially explain why mode collapse was occurring in complex
domains. Borrowing terminology from (Ng & Jordan, 2001), classifiers are discriminative
if they seek to learn the conditional distribution 𝑝(𝑎|𝑑) of attributes given data (as in the
classification pattern), and otherwise they are generative if they seek to learn the joint
distribution 𝑝(𝑑, 𝑎) (as, for example, a VAE). The tradeoffs between the two types are well
studied, e.g. performance-wise, generative models may converge faster with limited data,
but discriminative models often achieve lower asymptotic error, and it is well known that
learning generative models is harder (Vapnik, 1998).

As generative classifiers, puts in the manipulation task appear to approximate the
Bayesian inverse of a discriminative classifier cls, approximately as well as VAEs do. To
demonstrate this, we tried three ways to train an "informationally identical" cls′ given an
initial cls, provided access to unlabelled data to obtain a distribution of pairs (𝑑, cls(𝑑)) by:
(a) directly training cls by classification, (b) training a generative classifier, in our case a
VAE, and (c) training manipulation around cls-as-get to obtain a put, and then train cls′
to satisfy the tasks of manipulation except for Classify. Repeating this process several times,
we would expect to see some loss of accuracy due to imperfect Bayesian inversion. Indeed, we
see in Figure 8 that (b) and (c) have similar decays in accuracy, indicating that manipulation
and VAEs have similar performance in this case. This experiment was performed using the
trained components obtained from the MNIST experiment (Section D.3), and in addition
to the tasks (a-e) we (f) trained a VAE to learn the joint distribution of images and labels
produced by get’, and we (g) trained a get supervised using labels and images generated
from the VAE. The VAE encoder and decoder are also based on multilayer perceptrons -
each is comprised of an MLP trunk and two linear heads for generating the means and
log-variances of the latent space, or the image and labels, respectively. The latent space is
comprised of independent normally distributed variables as in (Kingma & Welling, 2022),
and is sampled using the standard reparameterization trick. The hyperparameters of the
architecture are given below:

VAE Encoder VAE Decoder
Input Dimension 794 = 28 × 28 + 10 32
Hidden Dimensions {128, 128, 64} {64, 128, 128}
Hidden Activations ReLU ReLU
Head 1 Dimension 32 784 = 28 × 28
Head 1 Activation – Sigmoid
Head 2 Dimension 32 10
Head 2 Activation – Softmax

Three loss functions were used for tasks (f) and (g) — the reconstruction loss of the
autoencoder, which can be separated into a label loss and an image loss, the K-L divergence
regularization term ℒ𝐾𝐿 of the VAE (Kingma & Welling, 2022), and the Classify loss of get.
The training hyperparameters are given as follows:
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(f) (g)
Optimizer Adam Adam
Learning Rate 0.001 0.001
Epochs 40 20

Weight Loss Weight Loss
Classify – – 1 CE
Image Reconstruction 100 L2 – –
Label Reconstruction 1 CE – –
K-L Divergence 0.5 ℒ𝐾𝐿 – –

In order to evaluate the three methods, we trained the tasks in the following order. At each
step, the component being trained (e.g. get, put, etc) was initialized randomly (the previous
weights were discarded). Measurements of the test accuracy were made after each (a), (b),
(d), or (g) training run, and used to produce Figure 8.

get→ get’ ⟹ (a)→ (d)→ (d)→⋯→ (d)
get→ put→ get’ ⟹ (a)→ (e)→ (c)→ (b)→ (e)→ (c)→ (b)→⋯→ (b)
get→ VAE→ get’ ⟹ (a)→ (f )→ (g)→ (f )→ (g)→⋯→ (g)

0 1 2 3 4 5Steps

40%

60%

80%

100%

Ac
cu
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cy

(a) get get′

(b) get VAE get′

(c) get put get′

Figure 8: We tried three ways to train an "informationally identical" cls′ given an initial cls
- depicted are the results of training successive MNIST classifiers using methods (a), (b) and
(c) given above. ’steps’ refers to the number of times this process was repeated. We observe
that the degradation of accuracy is approximately the same for both (b) and (c), which we
consider evidence that manipulator and VAEs have similar performance characteristics.
Both models had roughly the same number of parameters (300K) and were based on the
same MLP architecture. We ran 20 repetitions of each method, the shaded regions represent
one standard deviation (method (a) had a standard deviation of less than 1%).
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