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Abstract

Does vision-and-language (VL) training change the linguistic representations of
language models in meaningful ways? Most results in the literature have shown
inconsistent or marginal differences, both behaviorally and representationally. In
this work, we start from the hypothesis that the domain in which VL training
could have a significant effect is lexical-conceptual knowledge, in particular its
taxonomic organization. Through comparing minimal pairs of text-only LMs and
their VL-trained counterparts, we first show that the VL models often outperform
their text-only counterparts on a text-only question-answering task that requires
taxonomic understanding of concepts mentioned in the questions. Using an array
of targeted behavioral and representational analyses, we show that the LMs and
VLMs do not differ significantly in terms of their taxonomic knowledge itself, but
they differ in how they represent questions that contain concepts in a taxonomic
relation vs. a non-taxonomic relation. This implies that the taxonomic knowledge
itself does not change substantially through additional VL training, but VL training
does improve the deployment of this knowledge in the context of a specific task,
even when the presentation of the task is purely linguistic.

1 Introduction

Humans readily integrate perceptual and linguistic signals to form generalizable mappings from
semantic information to language, allowing them to reason about concepts beyond their immediate
environment [57, 18]. Approaches to concept grounding in Al, which traditionally relied on annotated
datasets to specify how language links to people, objects, and events [72, 26], have rapidly shifted in
light of the impressive capabilities of vision-language models (VLMs).

Many standard VLMs [33, 30, i.a.] often build on top of a pretrained language model (LM) by
adding visual conditioning to its next token prediction task, often also updating the parameters
of the language model. Analyses of VLM capabilities often focus on the multimodal tasks this
additional modality enables. But (how) does this vision-and-language (VL) training change the
linguistic capacity of the model? Answering this question requires comparing VL-tuned LMs to
their original LM counterparts. Empirical evidence in this literature is rather sparse, often comparing
such “VLM-LM minimal pairs” on general benchmarks such as MMLU [17] and GLUE [65]. In this
paper, we consider a more targeted investigation (like [73]) of VLM-LM pairs in a particular domain:
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lexical-conceptual knowledge, specifically its taxonomic organization (e.g., a cat is an animal).
Evaluation of taxonomic knowledge has been of continued interest within the Natural Language
Processing [14, 32, 43, 45] and Computer Vision communities [2, 62, 48]—however, to the best of
our knowledge no work so far has compared minimally differing VLM-LM pairs in terms of how
well they can reason taxonomically.

To this end, we develop TaxonomiGQA, a synthetically augmented text-only version of the popular
visual-question answering (VQA) dataset GQA [19], where a subset of WordNet [40] hierarchy is
used to create questions that require taxonomic knowledge. On comparing 7 widely used VLM-LM
minimal pairs, we find most VLMs to consistently outperform their LM counterparts, despite the fact
that the QA task is text only. We put forth two hypotheses to explain these results. H1: VL training
fundamentally alters the (task-agnostic) taxonomic knowledge in LMs; and H2: VL training improves
the ability of the LM to deploy its (largely unchanged) taxonomic knowledge in tasks that require
its usage. Through a series of controlled behavioral and representational analyses, we find evidence
that supports H2 relative to H1. Finally, we conduct a preliminary investigation where we relate the
successes of VLMs over LMs to the visual similarities between the hyponym-hypernym categories
we have tested in our work. Here we find initial evidence that suggests that VLMs especially perform
well at answering questions about hyponym-hypernym pairs that are visually similar, leaving open
areas of interesting future research for a more precise characterization of the role of visual input.

2 Related Work

Influence of vision on language in VLMs There are two main strands of empirical work measuring
the influence of the additional visual modality on models’ linguistic behavior and representations.
The first line of work compares VLM and LM performance on downstream text-only benchmarks.
The results are mixed: for instance, FLAVA [60] noted around 8% point gains over the base masked
language model on GLUE-style NLP tasks (although the evaluation setting involved finetuning). On
the other hand, Molmo has been reported to be outperformed by its base LM, Qwen, on text-only
benchmarks like MMLU [8]. Generally, more evidence exists in favor of multimodal training hurting
text-only task performance [21, 37] and this observation has been used to argue for freezing the
language part of the model during multimodal training [12]. The second line of work conducts more
targeted comparisons of VLMs and LMs, examining whether additional vision training leads to
differences in representations of syntactic categories [66] and performance on tasks that require more
“grounding” [73], but the findings overall have indicated no substantial differences. We contribute
to this line of work by showcasing a context where there is a non-trivial difference brought about
as a result of VL training. In particular, we show that while VL training does not fundamentally
alter task-agnostic representations of taxonomic knowledge in LMs (in line with prior work), it does
improve the deployment of this knowledge in the context of a question-answering task.

Taxonomic knowledge and its deployment Taxonomic knowledge has long been a topic of interest
in cognitive psychology [35, 46], and has also often been used to analyze conceptual organization
in LMs [14, 32, 45, 44]. Work that tests its functional consequences, such as property inheritance
[43, 58, 56] and inductive generalization [42, 13], found strong evidence that while LMs do learn
explicit taxonomic knowledge, they struggle to deploy it in taxonomically sensitive tasks [43].
Taxonomic knowledge has also been evaluated and analyzed in multimodal models. For instance,
Pach et al. [48] show that the internal structure of neurons in models such as CLIP are often in
alignment with existing taxonomies. Our work contributes to this line of work by proposing a
level-ground comparison between minimally differing LMs and VLMs, narrowing in on the precise
ways in which additional VL training may or may not alter the nature of this knowledge.

3 Behavioral testing of minimal pair VLMs and LMs with TaxonomiGQA

The question we are interested in answering concerns the change that VL training introduces to the
lexical-conceptual knowledge of a model. This requires a shared evaluation that can be applied to
both VLMs and LMs. We discuss below how we designed this evaluation as well as our findings
about a range of VLM-LM pairs from this evaluation.
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Figure 1: The three-step pipeline to create TaxonomiGQA.

3.1 Dataset design

We created a QA dataset that requires taxonomic understanding based on GQA [19], named
TaxonomiGQA. A datapoint in GQA consists of an image of a scene, a question about this scene, and
metadata that includes a scene graph of the objects, their attributes, and relations between the objects.
We applied a three-step modification (each step illustrated in Figure 1) to create a fext-only dataset,
since our goal is to systematically compare the LM and VLMSs’ taxonomic competence. (1) Convert
the scene graph into a purely textual description of the scene programmatically using hand-crafted
templates; (2) For each question that contains a word that corresponds to a node in our reference
taxonomy, substitute the word to its hypernym; (3) For each substitution, create four negative samples
following Misra et al. [43], by substituting the target word with a word that is not in its hypernymy
chain. Below we describe the resources, filtering, and sampling details used to create TaxonomiGQA.

Taxonomy To construct the reference taxonomy, we first extracted all unique noun lemmas (N =
1216) that appeared in the GQA questions, and annotated their senses in the WordNet taxonomy,
these serve as the leaf nodes of our taxonomy. Next, for each noun, we extracted its hypernym chain
(e.g., dog < canine < mammal < vertebrate < animal) from WordNet, rejecting hypernyms that were
too abstract (determined manually), e.g., entity, material, conveyance. 315 concepts were removed
as a result, many of which often had abstract entities in their hypernym chains or had non-ideal
WordNet categorization (e.g., bubble as a member of ball), leaving us with 901 unique chains. (See
Appendix C for more details.)

Dataset construction We applied a multi-stage filtering process to the validation split of GQA
(10,696 images/scenes and 488,293 questions) to obtain our base questions. We first applied scene-
level filtering by excluding scenes containing more than 20 annotated objects or any repeated object
labels to avoid ambiguity in referring expressions in text. For each remaining scene, we applied
question-level filtering to retain questions that refer to a single object (excluding any that mention
multiple objects) and whose hypernyms do not overlap with those of any other object in the scene.
Next, we balanced the dataset by randomly sampling 40 questions per scene in proportion to each
scene’s question type ratios. We further filtered the questions by answer type and restricted the dataset
to yes/no questions to facilitate the substitution step. This reduced our taxonomy to 314 unique
chains. In the base questions remaining after filtering, we substituted each target concept with each
of its hypernyms in its hypernym chain to obtain the substituted questions. Then, we created negative
sample questions by substituting the target concepts with concepts that are not in their hypernym
chain, discarding question types where this substitution was not possible due to the introduction of
presupposition failure (e.g., questions such as Is the color of the dog brown? when there is no dog
in the image). This ended up eliminating more hypernym chains (which were only present in the
discarded question types), leaving us with 126 final chains. More details about this negative sampling
pipeline is given in Appendix D.

Dataset statistics The final dataset contains 1,342 unique images/scenes, 29,604 positive sample
instances (9,334 targeting leaf node concepts, 20,270 targeting hypernym-substitutions), and 4
negative samples for each positive sample, amounting to 148,020 total instances. There are 276
hyponym-hypernym pairs, 126 unique hypernym chains, 88 unique hypernyms, and 24 top-level
categories (e.g., animal, vehicle, etc.).



3.2 Metrics

We propose metrics designed to be sensitive to taxonomic structure (cf. [62]). The design principles
are: (1) be sensitive to hierarchical relationships between two concepts; (2) anchor expectations
on taxonomic knowledge conditioned on the model’s success at foundational or prerequisite tasks;
and (3) provide insight into robustness, including contrasting the performance on both positive and
negative samples. By grounding our metrics in these properties, we move beyond correctness and
toward a more systematic assessment of model performance.

As preliminaries, each instance, X; = (q,¢} ,) in TaxonomiGQA consists of a positive sample
question, ¢, about some leaf-level category (target concept), coupled with a set of 4 negative sample
questions, {g}* ,}, where the target concept in the original question is now replaced by a negative-
sample concept, as described in Section 3. Next, for each instance, we have a set of k; hypernym-
substituted instances, { X7, ..., X %, }» where each item X ; 1s an instance but with the original
category substituted with a category in its hypernym chain, along with their own 4 negative samples.
Finally, we use a function, correct(.) — {0, 1}, which accepts an instance X, and returns 1 iff.
the model correctly answers the positive sample question and all four negative sample questions, and
0 otherwise. Using these preliminaries, we propose the following metrics:

Overall Accuracy measures the proportion of time the model correctly answers all original,
unsubstituted, and hypernym-substituted instances, treating each instance as separate item.
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Conditional Accuracy measures the proportion of time the model correctly answers hypernym-
substituted instances, conditioned on the fact that the model correctly answered the original, unsubsti-
tuted instance correctly. That is, if there are [V4; original instances that the model answered correctly,
the metric is calculated by:
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Hierarchical Consistency proposed by Wu et al. [68, originally named “Hierarchical Consistence
Accuracy”’] measures a stricter form of accuracy relative to the previous ones, as the proportion of
time the model correctly answers the original unsubstituted instance and all of its corresponding
hypernym-substituted instances. Using our notation, this is measured as:
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All of the metrics incorporate robustness to negative samples (using the correct() function). Condi-
tional Accuracy is stricter than Overall, ruling out cases where the model succeeds at higher level
categories without correctly answering questions about the target object. HC requires the model to
answer all questions about a hypernym chain correctly, being the strictest measure. That is, if the
model fails to answer questions about canines then all dog/wolf/fox questions will be penalized. This
is the most faithful to the chain in the reference taxonomy but may be considered overly strict.

3.3 Models

We selected seven LM-VLM model pairs, where the LM has been reported to be the base model
that the VLM has been trained on top of, following the approach of [24]. The selected pairs are: (1)
Llama-3.1-8B vs. MLlama-3.2-11B [12]; (2) their instruct versions; (3) Vicuna vs. Llava-1.5-7B
[33]; (4) Mistral-v0.2-Instruct [22] vs. Llava-Next [34]; (5) Qwen2-7B [70] and Molmo-7B-D
[8]; (6) Qwen2-7B-Instruct vs. Llava-OneVision [29]; and (7) Qwen2.5-7B-Instruct [71] vs.
Qwen2.5-7B-VL-Instruct [4]. See Appendix A for more details. Since TaxonomiGQA consists of
Yes/No questions, we sampled from a constrained probability distribution of Yes and No tokens from
the models’ output vocabulary, allowing for surface form variation such as casing and space-prefixing.
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Figure 2: Performance of VLM-LM model pairs on TaxonomiGQA (Section 3) and TAXOMPS (Sec-
tion 4.1). Points above the line indicate that VLM outperforms LM.

3.4 Results

The results are shown in Figure 2: points above the diagonal denote model pairs where the VLM
outperforms the LM counterpart, and points below denote model pairs where the LM outperforms
the VLM. We observe a consistent trend (with a single exception of Vicuna vs. Llava-1.5) where
the VLMs outperform their LM counterpart, even though the presentation of the task was purely
linguistic.! We rule out the possibility that the VLMs are performing better due to having been trained
on GQA directly by running a control experiment where we give only the question (without the scene
description) to the VLMs—if VLMs have encountered the original GQA instances during training,
they may have learned question-label associations used in our dataset. Our results (Appendix E) show
that most VLMs do not perform substantially above chance. Since the text descriptions are newly
introduced in TaxonomiGQA, we can safely rule out the hypothesis that VLMs’ improvements are due
to having been trained on GQA. Accepting the trend of VLMs outperforming LMs on TaxonomiGQA
as a genuine improvement, we conduct analyses that aim to explain this result more in the subsequent
sections. When we are not analyzing all model pairs, we focus on Qwen 2.5-Instruct vs. Qwen
2.5-VL-Instruct, since the performance gap between VLM and LM was the most salient with this
pair, especially on stricter metrics (conditional accuracy and HC).

Generalizability of our finding We conducted a supplementary experiment using the dataset
from Rodriguez et al. [S6]—another case where task contexts require the deployment of taxonomic
knowledge—to verify the generalizability of our finding outside of TaxonomiGQA. Here, LMs were
evaluated on their projection of novel properties (e.g., is daxable, has feps, etc.) from hypernyms to
their hyponyms. Results on this dataset (shown in Table 5 in Appendix F) are qualitatively in line
with those on TaxonomiGQA: VLMs were substantially better than their LM counterparts in 5 out of 7
VLM-LM pairs. Furthermore, concurrent work by Tan et al. [63] that also investigates taxonomic
understanding in minimally differing LMs and VLMs corroborates our finding. In their results, VLMs
(with the exception of LlaVa-OneVision, and to a milder extent, InternVL-8B) showed improved
performance on 4 out of 5 taxonomic understanding benchmarks.

4 H1: VLMSs’ taxonomic knowledge aligns better with reference taxonomy

One possible reason that VLM are performing better on TaxonomiGQA could be due to the difference
in their underlying (task-agnostic) taxonomic knowledge, and in particular, in a way that better
aligns with the reference taxonomy used to create the hypernym-substituted questions. We test this
hypothesis about taxonomic knowledge difference in three different ways: (1) through a QA task
that directly elicits taxonomic judgments; (2) through an analysis of the hierarchical organization of
concepts in the models’ representation space; and (3) through similarity analysis on the embeddings.

"For the curious: see Appendix E for how the VL models perform on our text-only QA vs. VQA.



4.1 Directly eliciting taxonomic judgments through Taxonomic Minimal Pairs (TAXOMPS)

Since TaxonomiGQA presupposes taxonomic knowledge rather than eliciting it directly, we first
checked whether VLMs and LMs differed in their ability to directly answer questions about taxonomic
relations. To this end, we introduce TAXOMPS (Taxonomic Minimal Pairs), a dataset which consists of
questions of the form “Is it true that a C; is a C2?” where C (cat) and C3 (feline) are concepts
that are in a hypernymy relation, and negative samples where C is replaced by a concept that is
not the hypernym of C; (vehicle), following Misra et al. [43]. We constructed TAXOMPS directly
from the final taxonomy used in our TaxonomiGQA analysis—i.e., 276 total hyponym-hypernym
pairs, each coupled with 4 negative samples (same as in TaxonomiGQA), yielding 1380 questions. We
use Overall Accuracy as our performance measure (since there is no conditional analog), following
Section 3. That is, an instance is considered correct iff. the model answers questions with the
hyponym-hypernym pairs (Is it true that a cat is an animal?) with a Yes while answering No to the
negative sample questions (Is it true that a cat is a vehicle/fruit/tool/vegetable ?).

Figure 2 shows our results. With the exception of Llama-3.1 vs. MLIlama 3.2, most VLM-LM pairs
perform quite similarly (and well) on TAXOMPS. This suggests that additional VL training does not in
general alter the basic taxonomic membership judgments of a language model.

4.2 Lexical representations of taxonomic knowledge

Can the alignment with reference taxonomy be observed representationally, although not by direct
elicitation? We tested whether the lexical representations in VLMs align better with the reference
taxonomy than LMs via their hierarchical organization and hypernym-hyponym embedding similarity.

4.2.1 Hierarchical taxonomic structure

Park et al. [52] propose a method to analyze the latent hierarchical taxonomic structure of an LM,
based on ideas including the linear representational hypothesis [39, 53] and causal separability of
concepts [67], finding that taxonomic hierarchies (dog < canine < mammal...) are encoded as
orthogonalities in LMs’ transformed unembeddings. Therefore, one way we may observe the effect
of VL training on the taxonomic knowledge of the LM is via differences in this hierarchical structure.

We applied Park et al. [52]’s method to transform the unembedding space in our models to a space
where the inner product between two concepts’ vectors is sensitive to the hierarchical relation between
them. Then, we compared VLM-LM pairs in terms of their pairwise cosine similarities between
concepts in their unembeddings’ causal inner product space (as established in [53]). In addition, we
used the large WordNet hierarchy (a superset of our taxonomy) originally used by [52] to compare
the pairwise similarities of concepts in VLM and LM to that of the pairwise path-similarities between
concepts in WordNet. We conducted these comparisons using Representational Similarity Analysis
[25], which computes the Spearman’s correlation between two matrices’ (flattened) upper triangular
matrices, treating it as the representational similarity between the two spaces. We conducted RSA
between three representational spaces: VLM, LM, WordNet. Greater RSA value between two spaces
indicates greater similarity between. To account for potential variance, we sampled 100 subsets (of
size 100 x 100 each) from the full pairwise matrices and report the mean and standard deviation of
the RSA correlations across all subsets.

This analysis (Table 1, left) shows that the hierarchical organization of concepts (as defined by [52])
is mostly shared between the VLM and LM, indicated by the consistently similar RSA scores when
comparing VLMs and LMs to WordNet, as well as the high similarity between the VLM and LM
when directly compared (all RSA scores > 0.95). Interestingly, the Qwen 2.5 and Molmo pairs,
the two model pairs that showed the most salient advantage of VLMs in Figure 2 had the lowest
VLM-LM RSA scores: 0.95 and 0.96, respectively. However these values are still very high in terms
of raw correlation, suggesting that they are still fundamentally similar. The pairwise similarities for
VLMs, LMs, and WordNet can be visually inspected in Figure 5 in Appendix G.

4.2.2 Embedding similarities of taxonomic relations

Another way in which taxonomic relations can be investigated is via vector similarity—we tested
whether the lexical embeddings (i.e., uncontextualized representations) corresponding to concepts in
our reference taxonomy are more similar to embeddings of their hyponyms, relative to embeddings



Table 1: Left: RSA comparisons of hierarchically sensitive pairwise similarities [52] in the unem-
bedding spaces of VLM-LM pairs, and pairwise path-similarities from the WordNet (WN) Noun
Hierarchy. Subscripts show standard deviation (hidden if under 0.01). Right: Differences (A) in
cosine similarities between positive concept pairs (i.e., in a hypernymy relationship) and negative
samples from the taxonomy in TaxonomiGQA, computed using VLM and LM static-embedding layers.

Minimal Pairs RSA using Park et al. [52] Raw Embeddings
(VLM, WN) (LM, WN) (VLM, LM) \ Aviv A t P
Vicuna vs. Llava-1.5 0.4340.04 0.4340.04 0.99 0.02 002 1.09 0.27
Mistral-v0.2-1 vs. Llava-Next 0.4210.04 0.4210.03 0.99 0.04 004 1.19 0.23
Qwen2.5-1 vs. Qwen2.5-VL-I 0.3840.05 0.3940.04 0.95 0.03 0.04 -751 <.001
Llama-3.1 vs. MLlama-3.2 0.4040.04 0.4110.04 0.99 0.04 004 134 0.18
Qwen2-I vs. Llava-OV 0.4040.04 0.4049.05 0.99 0.06 0.06 0.82 0.41
QWGI]2 vs. Molmo-D 0.38i0_04 0.39:5:0_04 0.96 0.05 0.05 - -
Llama-3.1-1 vs. MLlama-3.2-1  0.404¢.04 0.4040.04 0.99 0.04 0.04 -0.09 092

of non-hyponyms in our taxonomy. We computed the similarity between each target concept and its
hyponym, as well as between the target concept and four randomly sampled non-hyponym concepts
(same as in Section 3.1). Then, we computed the difference between target-hyponym similarity and
the average similarity between the target and the negative samples. We tested whether this difference
is greater in VLMs than LMs, which would mean that VLM embeddings encode hypernym-hyponym
relations more similarly than non-hypernym-hyponym relations. This hypothesis is not borne out:
Table 1 (right) shows that this holds for no VLM-LM pairs (the significant effect in Qwen2.5-I vs.
Qwen2.5-VL-1 is in the opposite direction).

5 H2: VLMs are better at deploying taxonomic knowledge

As mentioned in Section 4.1, solving a downstream task presupposes the domain knowledge recruited,
and requires this knowledge to be correctly deployed in the context of the specific task. Hence,
solving TaxonomiGQA requires (1) taxonomic knowledge and (2) its deployment specifically for
scene description-based QA. Our analyses in the previous section did not show convincing evidence
in support of the hypothesis that the underlying taxonomic knowledge differs substantially in our
VLM-LM pairs. In light of this mostly negative result, we turn to our second hypothesis: VLMs
are better at deployment of taxonomic knowledge. To test whether there is a difference when
taxonomic knowledge is incorporated into the specific task context, we used contextual similarity of
lexical representations and a Principal Component Analysis (PCA) of representations of questions.
These analyses let us examine both the contextualized lexical representations as well as the holistic
representation of the full question context. We used the Qwen2.5 pair in both analyses.

Data To control for the confounding effect of the target label (Yes/No) when analyzing contextual-
ized representations, we used a subset of TaxonomiGQA that has the same ground truth label for both
positive and negative samples. In our dataset, this only includes cases where the ground truth answer
is No. We further filtered this dataset to instances where the models got the original, unsubstituted
question right, and used the models’ Conditional Accuracy on substituted questions as the target of
study. This gave us us 37,790 and 40,145 samples for Qwen2.5-1 and Qwen2.5-VL-I, respectively.

5.1 Contextualized representation similarity

Our first analysis aims to relate the behavioral outcome of a model for each question to the rep-
resentational structure of the concepts in context. To this end, we investigated the contextualized
representations of a target concept in the scene description in terms of their similarity to represen-
tations of its hypernym in the question (e.g., There is a doghyp, on a yellow surfing board [...]. In
the scene, are there any mammals ., 7). The quantitative hypothesis is that greater contextualized
hypernym-hyponym similarity (e.g., sim(dog, mammal) compared to hyponym similarity with
negative samples (e.g., sim(dog, fruit) from There is a dognypo [...]. In the scene, are there any
Jruits,.,?) would predict how well the model can answer the TaxonomiGQA questions. We used
the 4 negative samples from TaxonomiGQA, and then fit a logistic regression model to predict model
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Figure 3: Contextualized representational analysis on Qwen2.5-1 and Qwen2.5-VL-I.

correctness (measured using the correct () function from Section 3.2) using the difference in cosine
similarity between hypernym-hyponym, and maximum? cosine similarity of 4 hyponym-negative
sample pairs. Here, an odds ratio (of the difference term) being greater than 1 indicates that the
similarity of the hyponym to hypernym (relative to negative samples) is more strongly associated
with the model correctly answering questions, while the opposite is true if the odds ratio is less than
1. We performed this analysis using representations from every layer in the Qwen2.5 model pair, and
took the maximum similarity in cases where the hyponym is mentioned in the scene more than once.

Figure 3a shows the layerwise odds ratios of the difference in similarities between concept pairs
(sim-A; discussed above), in predicting model correctness, for both models. For most layers, we see
odds ratios greater than 1.0, indicating a positive association between sim-A and model correctness
for both model classes. At the same time, the VLM odds ratios are often greater than those of the
LM, with the LM odds ratios sometimes even veering off below the 1.0 level (which would suggest
an association of sim-A with wrongness as opposed to correctness. Overall, this suggests that VL.
training helps establish stronger connections between model representations and behavior in task
contexts requiring deployment of taxonomic knowledge.

5.2 Principal Component Analysis (PCA) of question representations

Like in the previous analysis, we focused on the distinguishability of hypernym-hyponym relations
from non-hypernym-hyponym relations, but considered whether this is captured in the representation
of the question context from data used in the previous section. Following Alhamoud et al. [1] (who
tested negation sensitivity in VLMs), we took the last hidden state of the final layer of the text decoder
to be the summary representation of the full context. Then we asked whether representations of ques-
tions that contain a hypernym-hyponym relation (e.g., dog-canine) are separated from representations
of questions that contain a non-hypernym-hyponym relation (e.g., dog-bird) via PCA.

Figure 3b shows the first two principal components (PCs) of the question representations from the
VLM & LM, with hypernym (green) vs. negative sample substitutions (orange) color coded. We
see that the two types are largely visually distinct in both models, suggesting that their question
representations do encode differences in terms of the taxonomic relations tested. To quantify (linear)
separability, we fit a soft-margin support vector machine (SVM) classifier [7] on the first two principal
components of the representations extracted from each model separately, and measured its error on the
PC-representations—greater the error, the poorer the separability. We found that the SVM error of the
PCs of VLM representations is substantially lower than that of the LM, demonstrating that taxonomic
distinctions are more linearly separable in VLM question representations. This complements the
results from the previous analysis of contextualized embeddings, and suggests genuine differences in
the representational states of the VLM and LM when the task contexts require taxonomic reasoning.

2We note that taking the average instead of maximum results in substantially weaker trends.



5.3 On the distinction between knowledge possession and deployment

Collectively, our results highlight that VL training does not change the underlying taxonomic
knowledge within LMs, but rather affects its deployment in task contexts that require sensitivity to
taxonomic knowledge. We see two specific reasons why this distinction could be important.

First, storing or representing knowledge differs from learning its “functional consequences” [46]. A
model may robustly encode category information (e.g., that robins are birds), yet fail to recruit this
knowledge when the context demands it. TaxonomiGQA is designed precisely to probe this aspect
of deployment: in order to be successful, a model must not only sfore taxonomic knowledge, but
use it appropriately when answering questions. Practically, teasing apart knowledge possession
and deployment can inform decisions about (post-)training data selection: if a model’s limitations
stem from representational gaps, additional encyclopedic knowledge may help; if the issue lies
in deployment, more diverse contextual supervision, involving contexts in which such knowledge
is recruited, could be more effective. This distinction can also motivate solutions; for instance
transferring task vectors from models that are better at deployment [16].

Second, the distinction has implications for cognitive and philosophical interpretations of multimodal
learning—in particular, for drawing appropriate conclusions about the roles of linguistic versus
(added) extralinguistic exposure. For instance, the platonic representation hypothesis [20] suggests
that models trained on sufficiently large amounts of data converge toward similar internal representa-
tions, irrespective of modality. Our findings provide a complementary perspective to this hypothesis.
While independent unimodal models might converge to similar taxonomic representations, combining
information from multiple modalities can result in non-trivial changes that go beyond representational
convergence (in our case, in terms of how knowledge is accessed and deployed).

6 Why might vision training help?

Our analyses so far have pinpointed where the meaningful behavioral and representational differences
lie in the context of a taxonomic task when comparing a VLM-LM pair. However, we have not
discussed why vision training would be beneficial. We present a preliminary investigation here,
hypothesizing that visual similarity between members of concepts in a hypernym-hyponym relation
is helpful information that VLMs can leverage. Some examples would be the visual similarity of
members of equine and horse or root vegetable and radish. Of course, visual similarity will not be
informative cues for all such relations, e.g., it would not be very helpful in better understanding the
relation between vertebrates and its hyponyms, since there are few salient visual features shared by
members of vertebrate (e.g., fish, mammal, amphibian...). This motivates a hypothesis that links
visual information to model performance: high visual similarity between members of a hypernym and
its hyponym would have a positive effect on model performance on questions probing that relation,
but the effect would substantially vary depending on the target concepts.

Method To test this hypothesis, we first estimated hypernym-hyponym visual similarities by
computing the cosine similarity between the image representation of a leaf node object and the
image representations of other objects within its parent node (i.e., its hypernym) for concepts in our
taxonomy. The image representations are extracted from the target VLM’s (Qwen2.5-VL-I) vision
encoder. Importantly, the images themselves are sourced from an independent dataset (THINGS [15])
so that our conclusion is not tied to specific images in GQA. Rather, they are intended as estimates of
visual similarity more broadly. More details about the image similarity computation is in Appendix H.
Then, we tested the extent to which this similarity predicts Conditional Accuracy of the VLM on
hypernym questions where it outperforms its LM counterpart, using a linear mixed-effects model.
Specifically, we predicted Conditional Accuracy of the VLM between each hyponym-hypernym pair
using the pair’s visual similarity as a fixed effect, and included random slopes and intercepts for each
hypernym (model formula: cond_acc ~ viz_sim+ (1 + viz_sim | hypernym)).

Results We found a significant global effect of visual similarity in predicting Conditional Accuracy
(b = 0.52,SE = 0.19,p < .01). These results are much weaker when using the text-only LM’s
Conditional Accuracy as the dependent variable (b = 0.23, SE = 0.17,p = 0.18), suggesting that
image similarity captures interesting properties related to the success of the VLM and uniquely so for
VLMs. We also found interesting hypernym-specific random effects, where the effect of similarity
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Figure 4: Hypernym-specific random effects of image similarity in predicting VLM accuracy on
TaxonomiGQA. Greater values indicate closer association of visual similarity to model accuracy. Bar
colors indicate percentage of hypernym-hyponym pairs that have above-median similarity.

varies greatly depending on the hypernym. Figure 4 shows the random slopes for each hypernym.
This substantial individual variation aligns with our initial intuition that visual similarity would help
some relations more than others. To quantify this intuition concretely, we annotated the higher level
concepts in our taxonomy in terms of the % of the time the visual similarity to their hyponyms were
above the median. This is meant to capture the difference between equine and animal we discussed
earlier: members of equine are more similar to each other, more so than members of animal are (i.e.,
visually cohesive). The colors of the bars in Figure 4 are mapped to the degree of visual cohesion,
where darker bars mean more cohesive. We see that the degree of cohesion generally lines up with
effect sizes of similarity on predicting VLM performance, with mostly lighter bars on the left edge
and darker bars on the right edge. The figure zooms into the concepts on either edge (left: animal,
right: band), showing a sample of images corresponding to those concepts to illustrate the low visual
cohesion of animal and high visual cohesion of band. Overall, the results present a promising lead
into elucidating the source of improvement in VLMs, establishing a potential link between visual
similarity, visual cohesion, and behavioral QA performance.

7 Conclusion

By building TaxonomiGQA, a text-only QA dataset that requires taxonomic understanding, we identi-
fied an interesting performance gap between VLM and their LM counterparts. That is, most VLMs
consistently outperformed LMs under all metrics we adopted, despite this task being purely text
based. We set out to pinpoint the source of this gain in VLMs. The first set of findings show that both
behaviorally and representationally, there was no substantial difference between VLMs and LMs in
their taxonomic knowledge, corroborating the general implications of [73, 66] that additional vision
training does not fundamentally restructure the underlying knowledge. However, our second set of
analyses show: (1) VLMs’ contextual representation similarity of concepts in taxonomic relation
in higher layers better predict success on TaxonomiGQA, and (2) VLM representations of questions
containing taxonomic relations and questions that do not are better linearly separable, suggesting that
VLMs have an advantage over LMs in adequately deploying taxonomic knowledge. We furthermore
conducted a preliminary investigation on why vision training helps, testing the hypothesis that visual
similarity of members in the extension set of hypernym/hyponyms help VLMs learn more useful rep-
resentations of these words for taxonomic tasks. The results showed that VLMs’ behavioral success
on TaxonomiGQA can be predicted by visual similarity between members of concepts in a taxonomic
relation, and the prediction strength is modulated by the visually cohesion of the hypernym.

Limitations and future work Our analyses do not provide causal evidence for the relation between
behavior on TaxonomiGQA and the analyzed representations. Gaining causal evidence would require
analyses more closely tied to the training data and objective, which is challenging due to the scale
of the models as well as the scarcity of open data models. Additionally, a caveat to our results is
that VL-tuned models do encounter more text-data in addition to visual supervision. This confound
can be teased apart in future work by training LMs on the text-only portion of the VL training data.
Furthermore, our SVM-based separability analysis is only applicable to taxonomic distinctions that
are linearly encoded, leaving room for future work to extend this to non-linear separability.
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Table 2: Overview of model configurations used in our experiments, including size, modality, and
model training details. The “Training Details” columns indicate whether the model was pretrained on
GQA, trained with video data, or instruction-tuned. A checkmark (v") denotes the presence of the
corresponding training signal, (X) indicates its absence, a bold question mark (?) represents unknown
or unclear training status, and a blank cell indicates that the category is not applicable. Hugging Face
identifiers are provided for reproducibility.

Model Size  Modality Training Details HF Identifier
GQA Video Instruction

Pretrained  Involved Tuned
Qwen2 7B L X Qwen/Qwen2-7B
Molmo-D 7B VL X X v allenai/Molmo-7B-D-0924
Llama-3.1 8B L X meta-1llama/Llama-3.1-8B
MLlama-3.2 11B VL ? ? X meta-llama/Llama-3.2-11B-Vision
Vicuna 7B L v Imsys/vicuna-7b-v1.5
LLaVA-1.5 7B VL v X v llava-hf/1llava-1.5-7b-hf
Qwen2-1 7B L v Qwen/Qwen2-7B-Instruct
LLaVA-OV 7B VL v v v 1lava-hf/1llava-onevision-qwen2-7b-ov-hf
Mistral-v0.2-1 7B L v mistralai/Mistral-7B-Instruct-ve.2
LLaVA-Next 7B VL v X v llava-hf/1lava-v1.6-mistral-7b-hf
Llama-3.1-1 8B L v meta-llama/Llama-3.1-8B-Instruct
MLlama-3.2-1 11B VL ? ? v meta-1llama/Llama-3.2-11B-Vision-Instruct
Qwen2.5-1 7B L v Qwen/Qwen2.5-7B-Instruct
Qwen2.5-VL-I 7B VL X v v Qwen/Qwen2.5-VL-7B-Instruct

A Selected Model Pairs

Table 2 shows a list of model pairs used in this work, along with their metadata — parameters, modality,
huggingface identifier, etc.

B Extended Related Work

Multimodal Semantic Representations in Humans and Language Models. A central question
in cognitive science and linguistics is how humans integrate perceptual and linguistic signals to form
generalizable mappings from semantic and conceptual knowledge to language. Research exploring
the cognitive and neural underpinnings of such knowledge supports the idea that language learning
and processing is inherently multimodal, grounded in visual, motor, and affective experience [61, 64].
At the neural level, conceptual knowledge is proposed to be coordinated by a transmodal “semantic
hub,” allowing humans to flexibly attend to the modality that provides the most informative cue in
context and to abstract over modality-specific input [55, 54]. Several NLP tasks now commonly
employ multimodal representations [5], notably image captioning [59, 38] and visual commonsense
reasoning [74, 31]. In embodied agents, linking physical actions to explicit linguistic representations
has been shown to facilitate more effective concept learning [36, 6].

Computational representations can be optimized by identifying and exploiting semantic structure
shared across modalities. Models trained on different modalities and objectives may converge on
similar representations as they grow in size, forming a “platonic” structure shaped by statistical
correlations across input that is modality agnostic [20]. Unified representations and architectures
have been argued to better support multimodal processing and reasoning by reshaping how models
reference and access perceptual and linguistic features, both reflecting the “semantic hub” structure
found in humans and partially mitigating common biases found in unimodal models [60, 10, 69].
These methods can enable the implicit grounding of language in perceptual features such as spatial
awareness and sound, even in text-only models [47].

For vision and language modalities, the Visual Question Answering (VQA) task [3] has inspired
work on joint language and image understanding using on compositionality, consistency metrics,
and knowledge-enriched prompting [23, 11, 9]. Focused benchmarks like VALSE [51], which tests
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models’ ability to ground linguistic phenomena in the visual modality, and interpretability methods
such as MM-SHAP [49] and CC-SHAP [50], measure how VLMs integrate and rely on visual versus
textual information. Findings show that VLMs often underuse visual input for reasoning, yet rely
on it more heavily for generating explanations, especially in chain-of-thought (CoT) settings. These
findings highlight that contributions of each modality in VLMs are uneven and task-dependent,
challenging assumptions of uniform multimodal integration. An open question thus remains as
to whether multimodal training indeed changes conceptual content, or instead how that content is
accessed and applied. Our research explores this in a unique setting where VLM/LM minimal pairs
share the textual component.

C Taxonomy Filtering and Annotation

Before manual annotation and removal of specific chains, we first identified 52 highly abstract
concepts® (e.g. entity, conveyance, act, etc.) to be removed from all chains. After generating the
initial hypernym chains, we conducted a second round of manual inspection to identify and address
cases of “non-ideal” categorizations, defined as instances where either (a) the assigned hypernym was
not the canonical category of the object (e.g., bubble categorized as circle), or (b) the chain consisted
solely of abstract elements that were missed during the first filtering step. Through this process, we
identified 611 problematic cases. Of these, 296 were corrected by querying WordNet for alternative
hypernym chains, leaving 315 unfixable cases; these were subsequently removed (as reported in the
main text).

D Negative Sampling Details

Table 3: Nine question types in TaxonomiGQA. Each question type is illustrated with an example and
the total number of instances of that category. Question types ending in "C" have "no" as the correct
answer ("C" stands for counterfactual); all others have "yes" as the correct answer, consistent with
the design of GQA.

Question Type Sample Question Counts
exist Are there any dogs? 29030
existAttr Are there any boats that are white? 16405
existAttrNot Are there dogs in this scene that are not white? 15300
existAttrC Do you see dogs that are white? 16010
existAttrNotC Do you see a fork that is not silver? 16440
existThat Are there any tables in the picture that are wooden? 20435
existThatNot Is there a television in the image that is not off? 4120
existThatC Is there a boat that is green? 19985
existThatNotC Is there a watch in the image that is not on? 3670
existMaterial Do you see a fence that is made of wood? 1750
existMaterialNot Is there a bench that is not made of wood? 1465
existMaterialC Are there any lace tablecloths? 1650
existMaterialNotC  Are there forks that are not made of metal? 1760

After dataset filtering, we identified 32 types of questions. 19 of them were excluded because
substituting the object in the question with one not present in the scene could result in presupposition
failures. For the remaining types, we sampled four negative objects for each question based on
the following three criteria: the sampled argument is (1) not present in the scene, (2) not in the
original argument’s hypernym chain, and (3) associated with the same set of attributes as the original
arguments defined in GQA metadata. Due to inconsistencies and errors in the GQA metadata, we
manually* verified the attribute matches to ensure the naturalness and validity of each substitution.

3These concepts are listed in the GQA Hierarchies First Pass.ipynb notebook located under notebooks/
in our repository.

“We remove attributes that introduce non-standard property attribution, such as "happy trees", "swimming
flowers", "fluffy apple".
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This process resulted in a final dataset consisting of 13 question types and reduced our taxonomy to
126 unique chains. Details of question types, examples, and statistics can be found in Table 3.

E VQA vs. Text and a Question-only Control

Table 4 shows results from evaluating VLMs on the original GQA questions across different formats:
(1) the original VQA setup, conditioned on an image; (2) the Text setup, where they are conditioned
on the scene description; and (3) a Question-only control where we condition them only on the
question, without any context.

While it is difficult to compare between the VQA and the text setup, we see stark differences in the
absolute values of the accuracies. The VLMs seem to answer the (positive sample, unsubstituted)
questions with very high accuracy (sometimes near-perfect) relative to their performance on the
subset of the VQA task we have used in this work. Next, the VLMs are substantially worse at the
question-only baseline than they are in the text version, often times being closer to chance (50%).
This question-only control is especially relevant for any potential concern readers might have about
VQA data being present in the models’ training set. Since models are largely worse off at these
relative to the text version of the dataset, the potential presence of VQA in the model’s training set is
of little concern. One interesting observation here is that MLlama-3.2 (non-instruct tuned) performs
similarly at the Question-only task and at the VQA task. This could suggest that it might not have
been trained on VQA after all.

Table 4: Accuracies of VLMs on GQA questions when evaluated using standard VQA-based setup
(i.e., with images) vs. Text (i.e., with scene descriptions), as well as a Question-only control (No
image and no text). Evaluation data consists only the positive sample version of the dataset with
unsubstituted questions taken verbatim from GQA [19]. Chance performance is 50%.

Model VQA Text Question-only
Molmo-D 0.79 0.89 0.52
MLlama-3.2-1 0.79 0.92 0.58
MLlama-3.2 0.63 091 0.60
Llava-1.5 0.78 0.95 0.53
Qwen2.5-VL-I  0.81 0.98 0.49
Llava-Next 0.84 0.98 0.52
Llava-OV 0.87 0.99 0.60

F Supplementary Experiment on the Rodriguez et al. Dataset

Property inheritance testing datasets such as those introduced by Rodriguez et al. [56] involve
attributing a novel, nonsense property (e.g., is daxable) to concepts given that their parents are
attributed with it—e.g., Given that birds are daxable, is it true that robins are daxable? Answer with
Yes or No. This particular dataset includes a robustness check in the form of a single negative sample
per concept and includes 2016 positive samples, spanning 44 superordinate categories and 1281
subordinate categories.” We evaluated our model pairs on this dataset with minimal prompt tuning,’
and found that, as shown in Table 5, all VLMs (except MLIlama-3.2 and Llava-OV) outperformed
their LM counterparts, reinforcing the robustness of the observed VLM > LM trend on models’
behavioral performances on taxonomic understanding within a QA setting.

>This dataset has a larger set of categories than TaxonomiGQA, as its taxonomy is not constrained by visual
scenes.

5We added the quantifier “all” to the premise - e.g., Given that all birds are daxable, is it true that robins are
daxable? Answer with Yes or No, to make the logical inference more coherent. This modification improved the
QA accuracy significantly, particularly for Qwen2.5-VL-I and MLlama-3.2.
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Table 5: Performance comparison between LMs and VLMs on the Rodriguez et al. dataset.
A(VLM-LM) denotes the difference in accuracy between the VLM and its corresponding LM.

Pair LM VLM A(VLM-LM)
Llama-3.1 vs. MLlama-3.2 0.50 0.68 0.18
Llama-3.1-1 vs. MLlama-3.2-1  0.51 0.50 -0.01
Mistral-v0.2-I vs. Llava-Next 0.69 0.78 0.09
Qwen2 vs. Molmo-D 0.60 0.81 0.21
Qwen2-I vs. Llava-OV 0.84  0.81 -0.02
Qwen2.5-1 vs. Qwen2.5-VL-I  0.78  0.83 0.05
Vicuna vs. Llava-1.5 050 0.74 0.24

G RSA Heatmaps

We depict heatmaps showing the pairwise cosine similarities computed for the transformed Un-
embedding vectors of the Qwen2.5 model pair, as well as pairwise path-similarity from Word-
Net, in Figure 5. The LM and VLM matrices look quite similar, while the WordNet matri-
ces are more sparse, showing clearer depiction of hierarhical structure. We computed similar
plots for all other models but left them out due to large file sizes. Full plots can be viewed on
https://github.com/tinlaboratory/taxonomigga.

H More Details about Visual Similarity Analysis

To compute visual cosine similarity between two nodes—a leaf node object (e.g., dog) and one of its
hypernyms (e.g., vertebrate)— we first needed a sufficient number of images for both. We used images
from THINGS [15], a dataset with 26,107 high-quality, manually curated object-centric images of
1,854 diverse object concepts. Since the taxonomy in THINGS is more coarse-grained than ours, we
aligned the taxonomies through the following steps: (1) Identify intermediate nodes that are missing
in THINGS (e.g., vertebrate); (2) Collect leaf node objects present in THINGS and prompt a large
language model (GPT-40 and Gemini 2.5 Pro) to identify which of them can be classified under the
given intermediate node (e.g., vertebrate); 3) Manually verify the correctness of the selected objects.
After aligning the taxonomies, we obtained visual representations for each node in our taxonomy from
the Qwen 2.5VL-7B Instruct model. To do so, we modified the model’s forward pass to extract hidden
states immediately after the merger.1ln_q RMSNorm layer within the Qwen2_5_VLPatchMerger
module, and before the merger.mlp layer. These intermediate hidden states served as patch-level
embeddings, which we mean-pooled to produce a 1280-dimensional representation for each image.
We then computed cosine similarities between the visual representation of the leaf node (e.g., dog)
and each of its hypernyms (e.g., vertebrate) by taking the mean of all image embeddings for the
intermediate category node—similar to the prototype approach in [28]—and compute pairwise cosine
similarities with each image from the leaf node.

I Experimental Resources

Dataset filtering for TaxonomiGQA was performed using multithreaded processing across 8 CPU cores
and completed in approximately 3 hours. Negative sampling was carried out on a single CPU core
and took approximately 5 minutes.

Model Inference was conducted using vLLM[27]. Vision tasks were processed on a single NVIDIA
A40 GPU (48GB) over 3 hours, while text-only tasks were run on two NVIDIA L40 GPUs (48GB
each) for approximately 1.5 hours. Image representation extraction for Qwen2.5VL was also per-
formed on a single A40 GPU and completed in roughly 2.5 hours. Static embeddings were computed
in under 10 minutes on an L40 GPU.

TAXOMPS, RSA on unembedding layer vectors, contextualized representational similarity analysis,
and PCA analysis were conducted on a single NVIDIA RTX6000 Ada (48GB) GPU, and took a
total of 1 hour, 1.5 hours, 4 hours, and 1 hour, respectively. Representation extraction and TAXOMPS
behavioral analyses were performed using the minicons library [41]. All plots were produced using
the ggplot2 library in the R programming language.
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Figure 5: Pairwise similarities between concepts in WordNet, and the transformed unembedding
spaces in Qwen2.5-1 (LM) vs. Qwen2.5-VL-I (VLM) (computed using Park et al. [52]’s method),
across all pairs.
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We estimate that the total compute cost, including preliminary and unsuccessful experiments, is
approximately 3x the sum of the runtimes reported above.

J License Information

The original GQA dataset was released under CC BY 4.0 and we downloaded the dataset from
https://cs.stanford.edu/people/dorarad/gga/download.html. We follow this and release
TaxonomiGQA under the same license, CC BY 4.0.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [ Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, they accurately reflect the paper’s contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes, we have a separate Limitations and Future Work paragraph in the Conclu-
sion section.
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the process of dataset creation and how the additional analy-
ses were run in detail. We provide additional descriptions about the models used (e.g.,
Huggingface identifiers) and computing environments in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We submit our data and code as part of Supplemental Material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the Neur[PS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental details necessary to understand the results in the
main text and Appendix. Code is also submitted as part of Supplemental Material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We provide statistical analysis wherever appropriate.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we provide this detail in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed the Code of Ethics and confirm that there is no violation.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work primarily concerns evaluation and foundational understanding of
existing models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.

Guidelines:
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» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we credit the original creator of the asset we used to create our dataset
and release ours under the same license as the original.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, the new assets will be released as a Github repository which would
contain a full README for the dataset. The repository is submitted as part of Supplemental
Material.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: No crowdsourcing involved.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subject experiments.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLM classification was used in data preparation for one of the analyses
(combined with post-hoc human verification) and we discuss this in the Appendix.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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