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ABSTRACT

Protein language models, like the popular ESM2, are widely used tools for extract-
ing evolution-based protein representations and have achieved significant success
on downstream biological tasks. Representations based on sequence and struc-
ture models, however, show significant performance differences depending on the
downstream task. A major open problem is to obtain representations that best
capture both the evolutionary and structural properties of proteins in general. Here
we introduce Implicit Structure Model (ISM), a sequence-only input model with
structurally-enriched representations that outperforms state-of-the-art sequence
models on several well-studied benchmarks including mutation stability assess-
ment and structure prediction. Our key innovations are a microenvironment-based
autoencoder for generating structure tokens and a self-supervised training objective
that distills these tokens into ESM2’s pre-trained model. We have made ISM’s
structure-enriched weights easily available: integrating ISM into any application
using ESM2 requires changing only a single line of code. Our code is available at
https://github.com/jozhang97/ISM.

1 INTRODUCTION

Protein language models (pLMs) are versatile feature extractors with proven success across numerous
downstream applications (Elnaggar et al., 2021; Brandes et al., 2022; Rives et al., 2019; Lin et al.,
2022). Their accessibility has significantly democratized protein research, enabling biologists with
limited computational expertise to apply advanced machine learning techniques to their specific
protein domain. The method’s success comes from its exclusive use of sequences, bypassing costly,
unreliable, or infeasible structure computations and sophisticated data-engineering pipelines.

The tradeoff is that pLMs are often lack structural context and underperform (relative to structure-
based models) on tasks that typically require structural insight (Su et al., 2023; Yang et al., 2023;
Zhang et al., 2024; Gaujac et al., 2024; Frolova et al., 2024; Li et al., 2024; Kulikova et al., 2023;
Allman et al., 2024). Longstanding biological research (Anfinsen, 1973) does suggest that the amino
acid sequence is solely responsible for the folding of the structure. Indeed, sequence-only models
trained using masked language modeling learn to extract structure features encoded in evolutionary
co-variations (Lin et al., 2022). However, current state-of-the-art frameworks, such as AlphaFold,
require the protein’s evolutionary history as an additional input, demonstrating that sequence-only
models fail to extract all the structural information within a multiple sequence alignment (MSA).
Building a single-sequence model (without additional MSA input) that leads to structurally-informed
representations remains a challenging open problem.

In this paper, we introduce Implicit Structure Model (ISM), a sequence-only protein language
model that is trained to implicitly capture structural information. Our key contribution is a new
self-supervised pre-training objective, structure-tuning, where the sequence model learns to distill
features derived from structure-based models (see Figure 1). As a result, ISM outperforms sequence-
only models and is competitive with pLM frameworks that explicitly take the protein structure as
an additional input. For example, on the CAMEO protein structure prediction benchmark ISM

outperforms its ESM2 counterpart with a GDT-TS score of 0.67 versus 0.64 (see Table 1). For S669
!!G prediction, ISM surpasses ESM2 in AUC (0.76 vs 0.72) and even matches specialized models
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Figure 1: Structure-tuning a protein language model. Implicit Structure Model (ISM) is a sequence-
only protein model (right) supervised by structure tokens derived from a structure model (left). For
every residue, a structure encoder takes the atoms of a residue’s microenvironment as input and
produces a structural representation. We discretize these representations into tokens using a codebook
extracted via k-means clustering. The ISM sequence model learns to predict these structure tokens.

that process atomic environments (0.76 vs 0.75, see Table 2). Our results align with prior works that
show multiple modalities enhance model performance (Gong et al., 2024; Hayes et al., 2024).

Structure-tuning is a fine-tuning technique where a sequence-only model is trained to predict structure
tokens – rather than masked amino acids – for each protein residue (see Figure 1). Our structure
tokens, derived from our Atomic Autoencoder and MutRank (Gong et al., 2024), capture key chemical
interactions that underpin the protein’s tertiary structure. Structure-tuning distills these structural
representations into ISM, as demonstrated by the significant improvement in predicting long-range
tertiary interactions (0.49 vs 0.35, see Table 1).

2 RELATED WORK

Protein Language Models. These models take an amino acid sequence as input and produce a deep
representation for each amino acid conditioned on the entire sequence. Commonly-used models
such as ProtBERT, ProteinBERT, ESM1b, and ESM2 use transformer-based architectures and are
trained to maximize wildtype accuracy (i.e., reconstruct masked amino acids) (Elnaggar et al., 2021;
Brandes et al., 2022; Rives et al., 2019; Lin et al., 2022).

One of the motivations behind ESM2 was to build a single-sequence variant of AlphaFold that does
not require the computationally expensive task of generating MSAs. The resulting model, ESMFold,
is a widely used tool but generally underperforms when compared to AlphaFold in terms of predicted
structural quality. This demonstrates that ESM2 does not fully capture the epistatic landscape induced
during evolution. This has motivated research on augmenting sequence models with a structural
modality, and we describe some of these works below.

Sequence models with structure loss. The ESM2-s sequence model incorporates structural infor-
mation by fine-tuning ESM2 to predict a protein’s structural fold (Zhang et al., 2024). The fold of a
protein, however, is biologically coarse-grained information. ISM achieves superior performance by
using the more fine-grained approach of training at the residue level. More specifically, in our training
objective, each residue is tasked with predicting its corresponding local structural environment.
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S-PLM and “Structure-infused protein language models (SIPLM)” use a type of CLIP training to
align sequence and structural features (Wang et al., 2023; Peñaherrera & Koes, 2023). This technique
is also coarse-grained because its training objective does not operate at a residue level (we do not
include SIPLM in our tables of results due to its relatively weak performance on our benchmarks).

AlphaFold also learns structural representations from sequences (Jumper et al., 2021). However, it
requires a multiple sequence alignment as input, which is expensive to compute and often unavailable
for many practical applications. Furthermore, prior works have shown that Evoformer, the feature
extractor for AlphaFold, underperforms ESM2 on various downstream tasks that involve less structural
information (Hu et al., 2022). On these tasks, ISM still achieves comparable performance to ESM2.

Sequence models with structure inputs. These models extend sequence models by using the
structure as an additional input. SaProt (Su et al., 2023) and ProstT5 (Heinzinger et al., 2023) use
the VQVAE from FoldSeek (van Kempen et al., 2022) to extract per-residue structure tokens as
additional inputs to a protein language model. MULAN (Frolova et al., 2024) extends these works to
include structural features (torsion angles) as additional inputs. Similarly, ProSST (Li et al., 2024)
also takes structural tokens as inputs. However, instead of using FoldSeek tokens, ProSST trains
a Denoising Autoencoder to extract per-residue features, which are then tokenized into a structure
sequence using K-means clustering. All these models require a protein structure as input at inference
time. There are well-known drawbacks to frameworks requiring structure as input. In addition to
requiring a more sophisticated data engineering pipeline, there are some cases where the structure
has not been experimentally resolved and cannot be accurately modeled using computational tools
(e.g., antibody-antigen complexes, conformer specific protein-protein interactions, post-translation
modification-dependent conformations, interfaces, etc).

Protein Structure Autoencoders. These autoencoders are structure-based models that take the
backbone atom coordinates as input and encode each residue into a discrete token (Gaujac et al., 2024;
Hayes et al., 2024). The sequence of discrete tokens is used to reconstruct the positions of backbone
atoms using coordinate losses (e.g., frame aligned point error, distogram classification). Protein
structure denoising Autoencoders take a noisy variant of the protein backbone as input and then learn
a latent embedding that decodes the backbone atoms (Peñaherrera & Koes, 2023; Li et al., 2024).
Foldseek (van Kempen et al., 2022) extracts features for a residue given the backbone geometry of
its nearest neighbors. Unlike our approach, these works use only the protein backbone as input. We
also train a structural autoencoder, but instead of reconstructing the local backbone of a protein, we
reconstruct the coordinates of all atoms within the local chemical environment surrounding a masked
residue (masked microenvironment).

3 PRELIMINARIES

Let xseq = (x1, ..., xL) be a protein sequence of L amino acids where each amino acid residue
xl → {A,C, ...,Y}. The atoms defined by this sequence fold into an energetically favorable 3-
dimensional structure xstruct = {(pi, ei, ci)}Ni=1 where each atom i consists of residue sequence
position pi → {1, ..., L}, an element type ei → {C,H,N,O, P, S,X} and coordinates ci → R3.

3.1 PROTEIN SEQUENCE MODELS

A protein language model pLM takes a protein sequence xseq as input and produces a latent
representation pLM(xseq) → RL→D for downstream tasks. Most models use a transformer archi-
tecture and are pre-trained via a masked language modeling (MLM) loss. During training, a subset

M ↑ {1, ..., L} of the sequence is replaced with the [mask] token x̃i =

{
[mask] if i → M
xi otherwise

with x̃seq = (x̃1, ..., x̃L). The model learns to reconstruct the masked tokens with

LMLM =
1

|M|
∑

i↑M
ωCE(C

↓
MLMpLM(x̃seq)i, xi), (1)

for the cross entropy loss ωCE, indexed feature pLM(x̃seq)i → RD at position i, and a linear
classification head CMLM that predicts the amino acid type. While the backbone pLM is used for
downstream tasks, CMLM is only used for pre-training.
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3.2 PROTEIN STRUCTURE MODELS

An all-atom protein structure model pSM computes an atom-level feature representation from the
local geometric description of each residue. It starts from a microenvironment xl

microenv that contains
all atoms in a radius r = 10Å around ωl → R3, the coordinates of the ε-carbon of residue l:

xl
microenv = {(ei, ci) : ↓i → {1, ..., N} such that ||ci ↔ωl|| < r}.

A common backbone for protein structure models is a Graph Transformer G (Ying et al., 2021).
The graph transformer G(xl

microenv) embeds each atom’s element type ei in a set e = {e1, ..., en→},
where n↔ is the number of atoms in the microenvironment. In attention updates, the graph transformer
adds an attention bias Bl

ij = ↗ci ↔ cj↗ based on the pairwise distance between atoms i and j. This
attention bias Bl is the only structural information given to the transformer. The graph transformer
then produces a set of output features {zl

1, ..., z
l
n→} = G(xl

microenv), one per input atom ei. The graph
transformer is commonly trained on the downstream task using a supervised learning objective (Ying
et al., 2021). In this work, we use the Graph Transformer directly to train a structure model on atomic
reconstructions of proteins in our pre-training dataset.

MutComputeX-GT (Diaz et al., 2024) pre-trains a Graph Transformer using a structural analog of
masked language modeling. They define a masked microenvironment xl

masked-microenv that contains all
atoms of other residues pi ↘= l

xl
masked-microenv = {(ei, ci) : ↓i → {1, ..., N} such that pi ↘= l and ||ci ↔ωl|| < r},

and pool all-atom level features into a single residue level embedding zl = 1
n

∑
i z

l
i for

{zl
1, ..., z

l
n} = G(xl

masked-microenv) where n is the number of atoms in the masked microenvironment.
They then predict the masked-out amino acid type xl:

Ll
AA = ωCE(C

↓
AAz

l, xl). (2)

where CAA is a linear classification head.

MutRank (Gong et al., 2024) uses the EvoRank self-supervised training objective to learn the
evolutionary mutational landscape of a residue from the masked microenvironment. More specifically,
it learns to predict an evolutionary score derived from the protein’s multiple sequence alignment.

4 METHOD

ISM is a sequence model that takes as input only an amino acid sequence xseq = (x1, ..., xL) but is
trained to implicitly capture structural information. We start by training an Atomic Autoencoder,
based on a Graph Transformer, on protein structures. The autoencoder is trained with a geometric
reconstruction loss and the MutComputeX-GT objective Ll

AA. We then cluster the resultant features
into one of K structure tokens. We use the sequence s = (s1, ..., sL) of structure tokens sl →
{1, ...,K} as additional supervisory signal for the sequence-only Implicit Structure Model (ISM).

4.1 ATOMIC AUTOENCODER

Atomic Autoencoder uses an encoder-decoder architecture with a Graph Transformer encoder and
a plain transformer decoder. The encoder takes the masked microenvironment xl

masked-microenv as
input and produces atomic representations {zl

1, ..., z
l
n}. The decoder takes atomic representations

in and produces features {f l
1, ...,f

l
n} which linearly project to atomic coordinates {ĉl1, ..., ĉln}

(See Figure 2). This might seem like a trivial task, after all the inputs xl
masked-microenv contain the

regression targets. However, since the Graph Transformer only uses relative positions, and only in
an attention bias Bl, the prediction tasks are quite difficult and require reasoning about the local
structure of the microenvironment.

To obtain a residue-level feature representation, we average the atom-level features of the Graph
Transformer zl = 1

n

∑
i z

l
i following Diaz et al. (2024). To train this representation, we add zl

into all atomic representations before the decoder. Mathematically, the transformer decoder takes
{zl

1 + zl, ..., zl
n + zl} as input. We also found that adding this zl directly to the decoder architecture

improves training stability. See Figure 5 for full architecture.
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Figure 2: Atomic Autoencoder learns a structural representation of a residue’s microenviron-
ment. The Autoencoder takes atom element types and pairwise distances as input and reconstructs
all atomic coordinates. The encoder is a graph transformer that uses the pairwise distances to bias the
attention mechanism to learn rich atomic representations. The atomic representations are pooled to
form a microenvironment embedding. The decoder takes the atomic representations and microenvi-
ronment embedding as input to decode the coordinates for all atoms. The learned microenvironment
embeddings are discretized via K-means into structure tokens, which supervise the fine-tuning of a
protein language model. See Figure 5 for architectural details.

Training objective. One major challenge is that microenvironments lack robust protein backbone
coordinate frames that underpin full protein models (Jumper et al., 2021; Hayes et al., 2024; Dauparas
et al., 2022). Unsurprisingly, we empirically observe that vanilla MSE loss Ll

MSE = 1
n

∑
i ↗ĉli ↔ cli↗

does not take the coordinate frame into account and overestimates the loss. Thus, we optimize the
MSE loss after global alignment. First, we employ the Kabsch algorithm (Kabsch, 1976; Umeyama,
1991) to analytically compute the rotation and translation that minimize MSE loss. Then the loss is
calculated using the transformed ground truth coordinates. Formally,

Ll
MSE-aligned = min

R↑SE(3),T↑R3

1

n

∑

i

↗ĉli ↔ (Rcli + T )↗.

During training, we observe that naive optimization of the MSE-aligned loss results in convergence to
a local optimum where all predicted coordinates lie on a 2-dimensional plane. Following AlphaFold
(Jumper et al., 2021), we addressed the issue using a distogram loss. Here, we use ESM3’s distogram
head by first computing f l

ij = Waf l
i ↔Wbf l

j , where Wa,Wb are linear adapters. We then apply a
binned distance loss

Ll
disto =

1

n2

∑

i,j

ωCE(C
T
distof

l
ij , d

bin,l
ij ).

where Cdisto is a linear classification head that predicts the distance bin dbin,l
ij between atoms i and

j at residue position l. During the first stage of training, we train with the distogram and masked
modeling losses, Ll

disto + Ll
AA. During the second stage, we additionally include Ll

MSE-aligned.

Generating Structure Tokens. Given a protein structure xstruct, we start by generating the masked
microenvironment for all L residues, namely (x1

masked-microenv, ...,x
L
masked-microenv). We feed each

masked microenvironment into our Graph Transformer encoder to extract a residue-level feature
representation at each position, (z1, ..., zL). We quantize zl for every residue in the protein using K-
means (Lloyd, 1982) to generate a structure sequence s = (s1, ..., sL). In addition to our autoencoder,
we also extract features (z1↔, ..., zL↔) from MutRank (Gong et al., 2024) and generate a second
structure sequence s↔ = (s↔1, ..., s

↔
L), both of which are used identically to fine-tune the protein

sequence model. Both models are trained on a smaller dataset of experimental structures and are used
to generate structure tokens on a large dataset of AlphaFold structures.
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Table 1: Comparisons on structural benchmarks. We freeze all protein models to assess the
learned representation. ISM is structure-tuned on the AlphaFold structures of Uniclust30 while ISM

†

undergoes additional structure-tuning on PDB structures. SaProt↗ takes the protein structure as input.
All other methods take a sequence as their only input. For contact, secondary structure, and binding
residue prediction, the proteins in the training and test sets have at most 30% sequence similarity.

Structure Prediction (CAMEO) Contact SS Binding
Method GDT-TS GDT-HA LDDT Short Med Long Acc F1 MCC

Evolutionary pLM
Amplify (Fournier et al., 2024) - - - 0.38 0.36 0.23 0.82 0.22 0.26
ESM2 (Lin et al., 2022) 0.64 0.47 0.82 0.45 0.45 0.35 0.86 0.31 0.34
ESM2 (fine-tuned) 0.64 0.47 0.82 0.45 0.45 0.35 0.86 0.32 0.34

Structural pLM
ESM2-S (Zhang et al., 2024) 0.61 0.43 0.79 0.46 0.47 0.36 0.85 0.32 0.35
S-PLM (Wang et al., 2023) 0.61 0.44 0.80 0.48 0.49 0.36 0.86 0.29 0.32
SaProt↗ (Su et al., 2023) - - - 0.57 0.53 0.48 0.86 0.36 0.38
ISM (Ours) 0.67 0.50 0.83 0.61 0.60 0.49 0.89 0.35 0.37
ISM

† (Ours) 0.67 0.50 0.84 0.62 0.60 0.48 0.89 0.37 0.38

4.2 STRUCTURE-TUNING THE PROTEIN SEQUENCE MODEL

We initialize a sequence-only protein language model trained using masked language modeling (i.e.,

ESM2) and fine-tune it to predict the structure tokens. We call this training structure-tuning and the
resulting model Implicit Structure Model (ISM). We append a linear classification head Cstruct to the
output of the pLM backbone to predict the structural token. The structure prediction loss function is

LStruct =
1

|S|
∑

i↑S
ωCE(C

↓
structpLM(x̃seq)i, si),

where x̃seq is the amino acid sequence with masked residues, pLM is the protein language model
backbone, pLM(x̃seq)i is the representation for residue i, si is the structure token at residue i, and
S are the positions at which the loss is computed. In standard MLM, the loss is computed for all
masked positions (i.e., S = M). We found that predicting structure tokens at all positions (i.e.,

S = {1, ..., L}), and not just masked positions, better distills structural representations.

We structure-tune our model on AlphaFold protein structures. AlphaFold sometimes produces inac-
curate structures with poorly folded areas showing few interactions. Our structure token visualization
reveals that many of these problematic residues are grouped into a single token s↗ ([struct id
17] in Figure 3). To ensure data quality, we exclude microenvironments assigned the s↗ token from
sequence model training. We compute LStruct at positions S = {i : i → {1, ..., L} and si ↘= s↗}.

The final training objective for structure-tuning is the sum of structure token(s) and amino acid
cross-entropy losses (see Section 3.1), namely L = LStruct + LMLM.

5 RESULTS

5.1 IMPLEMENTATION DETAILS

Atomic Autoencoder. Our microenvironment-based Atomic Autoencoder is a Graph Transformer
encoder with 4 layers and a vanilla Transformer decoder with 2 layers. Our autoencoder training
dataset contains 35K proteins from the Protein Data Bank(PDB). We train both stages for 5 epochs
with a learning rate of 1≃ 10↘3. See Table 5a for a list of hyperparameters.
Distillation Dataset. Once our autoencoder is fully trained, we extract per-residue microenvironment
features for 5.8M proteins from Uniclust30 with AlphaFold structures (Mirdita et al., 2017), along
with 35K PDB proteins. We identify cluster centroids by applying K-means clustering to features
from the PDB database, then assign features to tokens based on their distances to these centroids. The
number of clusters, K = 64, is chosen using the elbow method. Additionally, we extract per-residue
microenvironment features from MutRank and cluster the features into one of K = 512 tokens
(see Section 3.2).
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Table 2: Comparisons on S669 Single Mutation Thermodynamic Stability prediction. We
compare ISM to state-of-the-art methods that take various modalities as input. The middle and bottom
block approaches are fine-tuned on cDNA117K, which consists of mini-proteins that have at most
30% sequence similarity with those in S669. UR50: UniRef-50 used in ESM2 pretraining, UR100:
UniRef-100, PDB: Protein data bank, UC30: Uniclust30. OAS: Observed Antibody Space. SCOP
Structural Classification of Proteins. rs: Spearman correlation coefficient.

Method PreTrain Data rs AUC MCC RMSE≃

FoldX (Schymkowitz et al., 2005) N/A 0.27 0.62 0.14 2.35
PROSTATA (Umerenkov et al., 2022) UR-50 0.50 0.73 0.28 1.44

Amplify (Fournier et al., 2024) UR100,OAS,SCOP 0.42 0.66 0.21 1.52
S-PLM (Wang et al., 2023) UR50,SwissProt 0.41 0.68 0.18 1.53
SaProt (Su et al., 2023) UR50,UC30 0.49 0.71 0.25 1.47
ESM3 (Hayes et al., 2024) UR70,PDB,MGnify,JGI,OAS,AFDB,ESMAtlas 0.46 0.70 0.26 1.49
Stability Oracle (Diaz et al., 2024) PDB 0.53 0.75 0.34 1.44
MutateEverything (ESM) (Ouyang-Zhang et al., 2024) UR-50 0.47 0.72 0.31 1.48
MutateEverything (AF) (Ouyang-Zhang et al., 2024) PDB 0.56 0.76 0.35 1.38
ESM (fine-tuned) UR-50,PDB+UC30 0.49 0.72 0.25 1.47
ISM (MutRank only) UR50,PDB+UC30 0.51 0.74 0.33 1.45
ISM (MutRank≃2) UR50,PDB+UC30 0.50 0.73 0.32 1.45
ISM UR50,UC30 0.49 0.73 0.33 1.47
ISM UR50,PDB 0.52 0.74 0.30 1.45
ISM (Ours) UR50,PDB+UC30 0.53 0.76 0.40 1.44

Structure-tuning. We structure-tune the 650M parameter ESM2 for 20 epochs using a cosine
learning rate schedule with 4 warmup epochs. We use a total batch size of 1536 proteins cropped to a
maximum sequence length of 512 amino acids. We use AdamW optimizer with a learning rate of
1 ≃ 10↘4 and weight decay of 5≃ 10↘3. Training takes 26 wall-clock hours on 32 GH200 GPUs.
See Table 5b for a complete list of hyperparameters.

5.2 COMPARISONS ON STRUCTURE TASKS

Rich sequence representations should inherently capture a protein’s fold. In Table 1, we evaluate
the structure-enriched representation of ISM against established methods on several structure-based
downstream tasks, including structure, contact, secondary structure, and binding residue prediction.
We evaluate all models as frozen feature extractors and learn a decoding head. For structure prediction,
we initialize from pre-trained SoloSeq (Ahdritz et al., 2022), replace the ESM2 backbone model
with a frozen protein model, and tune the folding head. For other downstream tasks, we freeze
the backbone model and train a shallow head. Contact, secondary structure, and binding residue
prediction are evaluated using sequence similarity splits of 30%, 25%, and 20% respectively. More
dataset descriptions are listed in Section D. ESM (fine-tuned) follows the same training regimen
as ISM, but is trained only with masked language modeling. We report results for ISM trained on
Uniclust30 alone and Uniclust30+PDB.

Our model outperforms all sequence-only models and matches structure-sequence models on all
structure-based benchmarks. Notably, on long-range contact prediction, ISM outperforms ESM2 by
40%, with a precision of 0.49 against 0.35. This matches the performance of SaProt (0.48), which
explicitly requires the structure as input while ISM is a sequence-only model. On structure prediction,
ISM outperforms ESM2 by 5% on the GDT-TS metric (0.67 vs 0.64). On binding residue prediction
F1 metric, ISM performs similarly with SaProt’s 0.36, achieving 0.35 when trained on Uniclust30
and 0.37 when trained on Uniclust30+PDB. Overall, the structure-enriched representations of ISM

improve performance on various structure-based downstream tasks compared to sequence-only pLMs
and structural pLMs.

5.3 COMPARISONS ON MUTATION STABILITY EFFECT

Thermodynamic stability is an important phenotype that often needs to be improved during the
engineering of a commercially viable protein (Diaz et al., 2023; Liu et al., 2024; Carceller et al.,
2024). We evaluate how effectively ISM predicts the impact of single mutations on a protein’s
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Table 3: System-level Comparisons of transfer learning to various functional benchmarks. We
fine-tune all models with a shallow head for each benchmark (except HumanPPI, in which we freeze
ISM due to overfitting). ↗ reports the best checkpoint found during training.

Method Thermostability HumanPPI Metal Bind EC GO DeepLoc
MF BP CC Subcell. Binary

Spearman ϑ Acc Acc Fmax Fmax Fmax Fmax Acc Acc

ESM1b 0.71 0.82 0.74 0.87 0.66 0.45 0.47 0.80 0.92
MIF-ST 0.69 0.76 0.75 0.81 0.63 0.38 0.32 0.79 0.92
ESM2↗ 0.70 0.88 0.74 0.87 0.67 0.49 0.51 0.85 0.94
SaProt↗ 0.72 0.88 0.79 0.88 0.65 0.49 0.51 0.85 0.93

ISM
↗ 0.71 0.89 0.75 0.88 0.67 0.47 0.52 0.84 0.93

thermodynamic stability (!!G) on the S669 dataset (Pancotti et al., 2022) in Table 2. We evaluate
all pLMs (ESM, Amplify, S-PLM, ISM) identically by fine-tuning the model with a shallow decoder
head as in MutateEverything (Ouyang-Zhang et al., 2024). We fine-tune on the cDNA117K dataset
from Diaz et al. (2024), a subset of the cDNA display proteolysis dataset (Tsuboyama et al., 2023)
where all proteins have at most 30% sequence similarity to those in S669.

ISM outperforms all existing models that take a single sequence as input, achieving a Spearman
correlation of 0.53 compared to Mutate Everything (ESM)’s 0.49, and an AUC of 0.76 compared
to Mutate Everything (ESM)’s 0.72. Additionally, ISM matches the performance of state-of-the-art
models while only using the amino acid sequence input, achieving an AUC of 0.76, while Mutate
Everything (AF) and Stability Oracle achieve AUCs of 0.76 and 0.75, respectively. ISM also runs
20≃ faster on a protein of 300 amino acids. Note that Stability Oracle (Diaz et al., 2024) takes the
atomic microenvironment as input and Mutate Everything (AF) (Ouyang-Zhang et al., 2024) takes a
multiple sequence alignment as input.

We validate the effectiveness of Atomic Autoencoder by comparing with ISM variants structure-tuned
with one or two independently trained MutRank models. By incorporating Atomic Autoencoder,
ISM’s Spearman correlation increases from 0.50 to 0.53 and the AUC increases from 0.73 to 0.76.

We conducted an ablation study on the datasets used for structure-tuning and were surprised to find
that training on the smaller PDB dataset enhances downstream !!G performance more than training
on the larger Uniclust30 dataset. Specifically, ISM achieves a Spearman correlation of 0.49 when
trained on UniClust30, compared to 0.52 when trained on PDB. Even though the supervision signal
during structure-tuning is derived solely from the atomic coordinates in the structure and not !!G
labels, we suspect the PDB dataset has some overlap with the structures in the S669 dataset, resulting
in performance similar to that of structure-input models. Overall, on the S669 !!G test set, ISM is
competitive and even outperforms SOTA structure-based methods and AlphaFold’s representations, a
feat sequence-only pLMs have yet to achieve.

5.4 COMPARISONS ON A DIVERSE SET OF FUNCTIONAL PHENOTYPES

Functional characterization of proteins through biochemical techniques is typically the most resource-
intensive type of labeled data to generate, making accurate transfer learning predictions particularly
valuable for downstream bioinformatics and protein engineering and design tasks (Yu et al., 2023;
Allman et al., 2024; Kulikova et al., 2021). In Table 3, we evaluate ISM on the PEER (Xu et al., 2022)
and FLIP (Dallago et al., 2021) benchmarks, which encompass tasks that benefit from structural
representations (e.g., thermostability), evolutionary representations (e.g., biological process), or
both (e.g., EC). We fine-tune all models with a shallow readout head on all benchmarks, except
HumanPPI, for which we perform linear probing on ISM to prevent overfitting. We observed that
longer training leads to overfitting, therefore, we evaluate various training checkpoints and report the
highest performance for ESM2, SaProt, and ISM. ESM1b (Rives et al., 2019) and MIF-ST (Yang
et al., 2023) results are sourced from SaProt (Su et al., 2023).

ISM performance remains competitive with ESM2 and other pLMs on functionally diverse tasks
and does not stand out. For example, for predicting gene ontology - molecular function (GO-MF),
both ISM and ESM2 achieve 67% accuracy while SaProt achieves 65%. This finding aligns with
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Table 4: ISM ablation experiments. Default settings are marked in grey. See Section 6.1. ss:
Secondary Structure prediction, mc: MutCompute, mr: MutRank, ae: Atomic Autoencoder

(a) Other Structure Tokens
tokenizer contact ss bind
foldseek 0.42 0.88 0.32
esm3 0.18 0.85 0.11
mc+mr 0.45 0.88 0.36
ae+mr 0.48 0.89 0.37

(b) Our Structure Tokens
tokenizer contact ss bind
ae 0.38 0.88 0.35
mr 0.46 0.88 0.34
mr → 2 0.52 0.88 0.36
ae+mr 0.48 0.89 0.37

(c) Number of clusters
K contact ss bind
32 0.27 0.84 0.33
64 0.48 0.89 0.37
128 0.42 0.85 0.37

(d) Pre-training Crop length
crop val acc contact
32 0.27 0.27
128 0.36 0.42
512 0.40 0.48

(e) Label Type
label contact rs (!!G)
features 0.36 0.49
tokens 0.46 0.51

(f) Initialization
init val acc contact
random 0.36 0.10
esm2 0.40 0.48

prior work (Hu et al., 2022), which demonstrates that ESM2 outperforms Evoformer, the feature
extractor for AlphaFold, on some functional tasks. It seems that for these functional tasks, the
evolutionary signal from masked language modeling is sufficient and does not necessarily benefit
from AlphaFold representations. Nonetheless, these experiments demonstrate that the structure-
enriched representations of ISM do not corrupt ESM2’s evolutionary representation on various
function-based downstream tasks while enhancing ESM2’s structural understanding.

6 ANALYSIS

6.1 ABLATIONS

We ablate key design decisions by reporting long-range Precision at L (P@L) for contact prediction,
accuracy for secondary structure prediction, F1 for binding residue prediction, and Spearman correla-
tion for !!G prediction in Table 4. We also report the validation accuracy, indicating how often the
ISM variant correctly predicts the structure token derived from Atomic Autoencoder.
Structure Tokens. In Table 4a, we distill from various structure models from the literature. We
compare against a variant using both MutComputeX-GT (mc) and MutRank (mr) structure models.
Since Atomic Autoencoder uses the MLM loss Ll

AA from MutComputeX-GT, this variant determines
the effect of dropping the autoencoder from structure-tuning ISM. Our model outperforms MutRank
and MutComputeX-GT, indicating that the autoencoder provides important structural information.

We found that structure-tuning with ESM3’s VQVAE (Hayes et al., 2024) structure tokens do not
produce robust structural representations. A model structure-tuned with ESM3 achieves 0.18 and
0.11 on contact and binding residue prediction, compared to 0.48 and 0.37 for ISM, respectively. We
observe that the accuracy of ESM3 structure token prediction on a held-out validation accuracy on
UniClust30 is ⇐8%, while Atomic Autoencoder accuracy is ⇐40% and MutRank accuracy is ⇐47%.
We suspect that the large vocabulary of ESM3’s VQVAE (4096 structure tokens) results in redundant
and overlapping tokens that are difficult to discern and complicate loss optimization.

We also evaluate the performance of our sequence model structure-tuned on FoldSeek VQVAE
structure tokens (van Kempen et al., 2022). We train on a larger subset of UniClust30 obtained
from SaProt (Su et al., 2023) for the same number of iterations as in ISM. The model achieves a
long-range contact P@L of 0.42 and a binding residue F1 score of 0.32, which are improvements over
ESM3 structure tokens and surpasses the ESM2 baseline (F1 scores of 0.35 and 0.31, respectively).
However, representations learned from FoldSeek’s VQVAE structure tokens lag behind ISM (0.48 and
0.37). Thus, the structure tokens from Atomic Autoencoder and MutRank produce better structure
representations, their combination being the most effective (see Table 4b).
Training parameters. We evaluate how the maximum length of a sequence during structure-tuning
affects the accuracy and downstream performance in Table 4d. When the crop length is dropped to
128 and 32 amino acids, the contact long-range P@L drops from 0.48 to 0.42 and 0.27 respectively.
This shows that training with longer sequences is essential for learning long-range contacts.

Additionally, we evaluate the effectiveness of clustering MutRank representations z = (z1, ..., zL) →
RL→D into tokens s = (s1, ..., sL) → {1, ...,K}L in Table 4e (excluding Atomic Autoencoder
supervision). Our model variant uses a linear head to predict the MutRank representations z and
is trained with normalized MSE loss. Direct MutRank representation prediction achieves 0.36
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P@L, while token ID prediction reaches 0.46 P@L on long-range contact prediction. Clustering the
MutRank representations potentially removes superfluous high-frequency noise.
Evolutionary Pre-Training. We evaluate the significance of training with MLM before structure
tuning in Table 4f by initializing with random weights. This approach resulted in decreased accuracy
of structure tokens from 40% to 36%. On downstream contact prediction, training from scratch drops
long-range P@L from 0.48 to 0.1. This highlights the importance of structure-tuning a pretrained
ESM2 as opposed to structure-tuning from scratch.

6.2 QUALITATIVE VISUALIZATIONS

In Figure 3, we visualize atomic structures of microenvironments grouped by structure token id.
Specifically, we examine tokens [struct id 3] and [struct id 17], which are the least
and most frequently observed tokens in Uniclust30, respectively. We find that microenvironments of
the same structure token are semantically related. For example, [struct id 3] contains semi-
exposed residues. Interestingly, [struct id 17] includes both solvent-exposed residues from
experimental structures and unfolded residues from AlphaFold structures. These findings motivate
us to exclude [struct id 17] from our structure-tuning training objective (see Section 4.2).
Additional visualizations and analysis are provided in Section E.

(a) PDB Structures with [struct id 3] (b) AlphaFold Structures with [struct id 3]

(c) PDB Structures with [struct id 17] (d) AlphaFold Structures with [struct id 17]

Figure 3: Cluster-based Microenvironment Visualizations. Residues in sky blue are within the
microenvironment, while white residues are outside and included for context. The grey density
indicates the masked-out amino acid. Nodes are colored by element: blue for nitrogen, red for
oxygen, and yellow for sulfur. The left two columns display structures from the PDB, while the right
two columns show protein sequences from Uniclust30, folded using AlphaFold. [struct id 3]
contains semi-solvent exposed residues. [struct id 17] contains solvent exposed residues.

6.3 RUNTIME SaProt ISM (Ours)
ColabFold 418 s -
FoldSeek 43 ms -
Transformer 28 ms 28ms

Figure 4: Runtime comparison.

We compare our runtime against SaProt (Su et al., 2023)
on three proteins with 91, 355, and 689 amino acids. The
transformer is run on an A40 GPU. Colabfold structure
prediction (Mirdita et al., 2022) dominates the runtime.
Even with structures, the ISM runs 2.4≃ faster than SaProt
which additionally runs FoldSeek (van Kempen et al.,
2022) to tokenize the structure.
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