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Abstract: This paper presents T3: Transferable Tactile Transformers, a framework
for tactile representation learning that scales across multi-sensors and multi-tasks.
T3 is designed to overcome the contemporary issue that camera-based tactile
sensing is extremely heterogeneous, i.e. sensors are built into different form factors,
and existing datasets were collected for disparate tasks. T3 captures the shared
latent information across different sensor-task pairings by constructing a shared
trunk transformer with sensor-specific encoders and task-specific decoders. The
pre-training of T3 utilizes a novel Foundation Tactile (FoTa) dataset, which is
aggregated from several open-sourced datasets and it contains over 3 million data
points gathered from 13 sensors and 11 tasks. FoTa is the largest and most diverse
dataset in tactile sensing to date and it is made publicly available in a unified
format. Across various sensors and tasks, experiments show that T3 pre-trained
with FoTa achieved zero-shot transferability in certain sensor-task pairings, can be
further fine-tuned with small amounts of domain-specific data, and its performance
scales with bigger network sizes. T3 is also effective as a tactile encoder for
long horizon contact-rich manipulation. Results from sub-millimeter multi-pin
electronics insertion tasks show that T3 achieved a task success rate 25% higher
than that of policies trained with tactile encoders trained from scratch, or 53%
higher than without tactile sensing. Data, code, and model checkpoints are open-
sourced at https://t3.alanz.info.

1 Introduction

The tactile sensing modality has gained increasing popularity within the robotics community, by
providing important fine-grained contact information for dexterous and contact-rich manipulation
tasks, such as robot grasping [1, 2] and fabric manipulation [3, 4]. Camera-based tactile sensing
[5], a sensing method that operates by embedding a camera beneath a soft elastomer to capture
the fine-grained interactions with the environment, is among the most popular methods of tactile
sensing for its higher resolution and lower cost. However, camera-based tactile sensors are extremely
heterogeneous, and there has not been a converged sensor design widely adopted by the robotics
community. Different tactile sensors can differ significantly in shapes, types and numbers of cameras,
placement and colors of illumination, etc. Such inherent heterogeneity hinders roboticists from
building a general-purpose tactile encoder that is transferable across different sensors and downstream
tasks.

Existing learning architectures and datasets focus on one specific sensor-task pairing, and when it
comes to a newly emerged sensor or task, data recollection and training an encoder from scratch
are often required. This issue harms learning efficiency in a more significant way in longer horizon
tactile manipulation tasks, where the training of the tactile encoder is guided by a more sparse reward.
Intuitively, although different tactile sensors produce vastly different tactile images and various tasks
extract different information from a tactile input, there should be shareable latent information due to
the inherent similarities in tactile sensing across sensors and tasks. Therefore, it is both technically
viable and practically desirable to design an architecture capable of extracting such shared latent
representations and transferring them across different sensor-task pairings.
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Figure 1: Architecture illustration of Transferable Tactile Transformers (T3). T3 learns a
shared representation across heterogeneous tactile sensors and downstream tasks with a shared trunk
between sensor-specific encoders and task-specific decoders. The encoders and the shared trunk are
constructed with transformer blocks. The decoder architectures are chosen according to the types
of the tasks: we use transformer for generative tasks like reconstruction for masked auto encoding,
MLP for classification tasks, and CNN + MLP for pose estimation.

Learning from heterogeneous tactile inputs shares many similarities with multi-modal representation
learning. Recent works in multi-modal foundation models have demonstrated the potential capability
to bridge the gap between different modalities and learning a common latent representation, such
as in the perception domain [6, 7, 8] as well as the robotic manipulation domain [9, 10]. However,
learning such foundation models often requires temporally aligned multi-modal inputs or a distance
function that describes the resemblance between inputs from different modalities. In heterogeneous
tactile learning, the hardware-level disparity often makes it ill-defined to align images collected from
different embodiments.

In this work, we tackle the problem of heterogeneous tactile learning using unaligned tactile data,
with the goal of learning a scalable representation that can be shared across different sensors and
tasks. We first aggregate existing open-sourced tactile datasets and assemble the Foundation Tactile
(FoTa) dataset, which is the largest and most diverse tactile dataset so far to the best of the authors’
knowledge. We then propose Transferable Tactile Transformers (T3) to learn a shared representation
across multi-sensors and multi-tasks. T3 is constructed with sensor-specific encoders, a shared trunk,
and task-specific decoders. Our experiments show that T3 pre-trained with FoTa achieves reasonable
zero-shot transferability, it can be further fine-tuned with small domain-specific datasets, and its
performance scales with bigger network sizes. We also demonstrate that T3 can be used as a tactile
encoder for longer-horizon manipulation policies with 3 behavior cloning-based sub-millimeter level
electronics insertion tasks. In summary, this paper proposes:

Foundation Tactile (FoTa): a dataset containing 3, 083, 452 tactile images collected with 13
sensors for 11 tasks in a unified format. It is aggregated with several of the largest open-sourced
tactile datasets and additional data collected in-house by the authors.

Transferable Tactile Transformers (T3): a neural network framework that learns a shared repre-
sentation across all sensors and tasks in FoTa. Pre-trained weights are provided, and we demonstrate
that T3 can be easily fine-tuned to a new task or a new sensor with few fine-tuning data.

2 Related Works

Camera-based tactile sensors Camera-based tactile sensors are often constructed with a soft
elastomer as the contact medium, a reflective layer, a light source to provide illumination, and one
or more than one camera to capture the deformation of the elastomer, which therefore provides a
detailed view of the contact surface. Specific design choices in camera-based tactile sensors are
highly diverse, such as monochrome [11] v.s. colored [12, 13, 14] in illumination, with v.s. without
markers [15, 16, 17], and different form factors such as flat [12, 13], dome-shaped [18, 14], finger-
shaped [19, 20], compliant [21, 22], multi-linked [23] or even palm-shaped [24]. Such diversity
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and disparity have enabled researchers to use those sensors across a spectrum of applications such as
in defect inspection [25] and robotic tool-using [9]. Nevertheless, they also add a substantial barrier
in leveraging machine learning to encode the information coming from those sensors. A unique
sensor-task pairing often requires data re-collection and neural network re-training.

Datasets for tactile manipulation Several large-scale tactile sensing datasets have been released
in recent years tackling visual-tactile cross-modality reasoning [26, 27, 28], object or material
classification [28, 29, 4], longer horizon tasks such as robotic grasping stability analysis [2], or shape
reconstruction [30]. Those datasets also cover interactions with a wide variety of objects, including
household objects and toys [2, 26, 27, 28, 30], fabrics and clothes [4], natural objects such as wood
and gravel [29]. Quantity-wise, several of those datasets contain well over a million images[26, 30],
making the total number of available tactile images on par with ImageNet-1K [31].

While quantity is often not an issue when using existing open-sourced tactile datasets, one significant
drawback is that all the aforementioned datasets lack diversity in terms of sensors and tasks. The vast
majority of tactile datasets were collected entirely with only one specific tactile sensor. With this
constraint, even if a sufficiently well-performing tactile encoder can be trained from one dataset, such
a pre-trained encoder will not be able to transfer to another sensor. In order to learn a general-purpose
representation for tactile sensing like [32, 33] does in the natural image domain, a large and diverse
tactile dataset with a wide variety of sensor-task pairings is a prerequisite.

Representation learning with heterogeneous data Learning from heterogeneous data domains,
such as taking multi-sensory feedback as inputs or predicting outputs for different tasks, has been an
active area of research, especially in the robot learning domain. Many existing works combine tactile,
vision, and occasionally other modalities such as robot states and sound, by passing each modality
through one modality-specific encoder, then concatenating them and passing them through a decoder
network to predict the final output [34, 15, 35, 9, 36]. Apart from learning-driven neural networks,
it is also common to use analytical tools, such as factor graphs or convex optimization, to combine
predictions from multiple domains [37].

Another branch of multi-modal robot learning actively reasons the relationship among heterogeneous
domains and cross-links them to learn a shareable latent representation. Extensive research has
explored using contrastive learning to join temporally aligned modalities [6, 10, 38]. To connect
vision and touch, Chen et al. designed a multi-modal self-attention mechanism [39] to learn a shared
representation, while Li et al. proposed a cross-modal Generative Adversarial Network and were
able to predict tactile images from visual images and vice versa [26]. Bachmann et al. applied
masked auto-encoding (MAE) on aligned RGB images, depth maps, and semantic segmentation
and learned a shared representation across three domains [7]. However, although cross-modality
representation learning shares a lot of commonalities with heterogeneous tactile representation
learning, one significant difference is that heterogeneous tactile representation learning lacks aligned
data collected with different sensors for different tasks. It is often ill-defined to infer the resemblance
of two tactile images collected from different hardware, which is a prerequisite for many self-
supervised learning techniques. It is therefore desirable to devise a new architecture that is able to
learn from unaligned tactile data and produce a representation that is transferable across different
tactile sensors and different tasks.

3 The FoTa Dataset

We provide a large tactile dataset by aggregating existing public datasets as well as adding new
data collected in-house. The FoTa dataset is provided in a unified, I/O efficient WebDataset [40]
format. It is by far the largest and most diverse dataset for tactile perception, with 3, 083, 452 data
points collected on 13 tactile sensors, and high-quality labels are provided for 11 tasks. Mixture
of constituents of FoTa is illustrated in Fig. 2.a, and example tactile images from each sensor are
shown in Fig. 2.b. Details and statistics about public datasets aggregated in FoTa as well as the
pre-processing method are provided in Appendix A.2.

Besides aggregating publicly available tactile datasets, we add new data collected with several recently
emerged tactile sensors including GelSight Finray [5], GelSight Svelte [19], GelSight Wedge [13],
DenseTact 2.0 [14], and GelSight 360 [18]. Those new data were also used for final performance
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Figure 2: FoTa dataset visualizations. (a) We show the mixture and distribution of constituent
datasets, sensors, and tasks of the FoTa dataset. Note that not all tasks are utilized in the training of
T3. (b) We visualize one tactile image from each constituent sensor in FoTa. Note that in the training
of T3, similar sensors share encoders. For example, GelSight17 var. {1-4} share the same encoder,
and GelSight var. {1-2} share the same encoder.

benchmarking as well as transferability testing for the proposed learning framework. Two platforms
were built to collect these additional data.

A 7-DoF robotic platform collects tactile data by attaching 2 tactile sensors to a parallel jaw gripper
of a 7-DoF Franka Emika Panda robot arm and commanding the robot arm to explore an object that
is fixed at a known location. Robot pose in SE(3) is recorded for each step and then transformed
into the sensor’s coordinate frame. Object IDs as well as names are also recorded.

A 3-DoF gantry platform is built with a desktop 3-axis CNC mill. Six 3D printed probes with
different textures are attached to a force/torque sensor, which is then attached to the Z axis of the
CNC. During data collection, a sensor is fixed at a known location, and the CNC machine probes the
entire sensing surface of the sensor. Translational poses, probing forces, and probe IDs are recorded
for each tactile image frame.

The two systems are introduced in more detail in Appendix A.4.

4 Heterogeneous Tactile Learning with T3

We propose Transferable Tactile Transformers (T3) as the backbone network to learn from diverse
tactile sensors and produce outputs for diverse downstream tasks.

Network architecture A training dataset contains inputs from Ns different sensors and Nt dis-
tinguished tasks. T3 is constructed with Ns encoders {Enc1, ..., EncNs

}, one for each individual
tactile sensor; Nt decoders {Dec1, ..., DecNt

}, each responsible for one downstream task; and one
shared trunk, denoted as Trunk. During both training and inference, we ensure that one batch of
data always comes from the same sensor-task pairing. For a given pair of data point (Xi, Yj) that is
collected from sensor i for task j, the corresponding encoder Enci and decoder Decj are attached to
the trunk. The constituent network components of T3 can take different architectures. In practice,
we use ViT [41] in the trunk and encoders for its proven learning capacity and scalability in the
natural image domain. For decoders, we use ViT for generative tasks (reconstruction for MAE),

4



ResNet+MLP for pose estimation tasks, and MLP for classification tasks. More details about network
configurations are discussed in Appendix A.5.

Learning objectives For each task j ∈ [1, Nt], we define a loss function Lj . Different tasks
require different numbers of tactile images as inputs. For example, tasks like object classification
and material classification only require one tactile image to perform, while the pose estimation task
requires two tactile images, e.g. X1, X2, because the prediction goal is the relative pose between the
two instances. We pass each individual tactile image through the encoder and trunk separately, and
we then concatenate them together before passing them through the decoder. The loss between a data
pair (Xi, Yj) or ([X1

i , X
2
i ], Yj) is calculated as

loss(Xi, Yj) = Lj(Yj , Decj(Trunk(Enci(Xi))))

loss([X1
i , X

2
i ], Yj) = Lj(Yj , Decj(Trunk(Enci(X

1
i ))⊕ Trunk(Enci(X

2
i ))))

(1)

where ⊕ denotes concatenation.

The training process of T3 is split into two pre-training phases and one optional fine-tuning phase.
Pre-training is divided into two phases to improve data utilization and to attain both local fine-grained
understanding and global semantic understanding. Phase 1 focuses on more pixel-level understanding
using self-supervised learning, and it is able to utilize all data from the FoTa dataset. Phase 2 focuses
on semantic understanding and it requires suitable task labels that only a subset of the FoTa dataset
possesses.

Pre-training I: Self-supervised learning with Masked Auto Encoding (MAE) MAE was first
proposed as a self-supervised pre-training technique for natural images [42] and it has gained
increased popularity in other domains such as audio processing [8], point-cloud processing [43], and
multi-modal representation learning [7]. It operates by first randomly masking out a certain portion
of the original inputs, then it constructs a decoder to reconstruct the missing portion. Neural networks
that were pre-trained with MAE have been shown to be able to outperform ones that were trained
without MAE in various domains. This pre-training stage is able to utilize all data in FoTa, including
unlabeled data (e.g. intermediate tactile images collected during the settling period of a robot grasp
in [2]), or data with semantic labels for which loss functions are hard to define (e.g. natural language
description of a scene in [27]).

In this pre-training stage, one decoder Dec0 that is designed to reconstruct partially masked images
is shared by all domains. Dec0 is constructed with 8 VisionTransformer blocks [41]. The loss L0 is
L2 pixel-wise loss normalized within each patch, following [42].

Pre-training II: Supervised learning with labels distilled from public datasets In this stage, T3
is trained under supervision from selected task labels in the FoTa dataset. For each individual task
j ∈ [1, Nt], a decoder Decj and a loss function Lj is defined. We define 10 tasks for this training
stage.

• Classification tasks include object classification for [2, 29], material classification for [30],
and fabric smoothness, fuzziness, textile type classification for [4]. Decoders for each of
them are defined as MLP neural networks, and each Lj is a cross-entropy loss function.

• Regression tasks include SE(3) relative pose estimation bewteen two overlapped tactile
images for [13, 44, 45] (with ResNet+MLP decoders), and variance of Laplacian (a metric
describing the amount of information contained in tactile images, more details in Ap-
pendix A.2) estimation for [26] (with MLP decoders). Each loss Lj is a mean squared error
loss function.

Fine-tuning: Supervised learning with task-specific data In this phase, T3 is further fine-tuned
with data collected for the specific downstream task with the specific sensor that the user aims to
use. This stage can be optional if the sensor-task pairing already exists in the pre-training dataset.
Architecture-wise, T3 is configured the same way as it is in Pre-training II but with only one target
task and sensor.
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Figure 3: Experiments on Task Performance and Transferability of T3. (a) Eval performance with
4 network sizes (tiny, small, medium, large), 3 training schemes (train from scratch, fine-tune
from pre-train 1, fine-tune from pre-train 2), and 2 amounts of fine-tuning data (half data and full
data) (b) Eval performance with different masking ratios during Pre-training I. (c) Transferability test
on a classification task. (d) Transferability test on a pose estimation task.

5 Experiments and Discussions

In this section we discuss the evaluation performance of T3 with numerous ablations and benchmarks.
For both pre-training I and II, we use all data from the FoTa dataset except data collected on the
gantry system in-house, including the object classification task and the 3D pose estimation task.
Those data are therefore not included for pre-training the foundation model and are set aside for
evaluation and fine-tuning only. We aim to answer the following questions in this section:

• How to train efficiently and how much does pre-training improve performance? Sec. 5.1.

• Is pre-trained T3 zero-shot transferable to new tasks and / or sensors? Sec. 5.2.

• Does FoTa provide meaningful improvements in longer-horizon robotic tasks? Sec. 5.3.

5.1 The worthiness of pre-training

The fine-tuning and evaluation task for this section is an object classification task (6 categories) for 2
sensors (GelSight Wedge, GelSight Mini) with around 3,300 data points for each sensor. Averaged
top-1 classification accuracy from the two sensors is reported.

The effect of pre-training and the scaling behavior on different network sizes We conducted the
classification experiment with all combinations of the following: (a) 4 network variations: tiny-12M,
small-45M, medium-174M, and large-308M; (b) 3 training schemes: train from scratch, fine-tune
from pre-training I, and fine-tune from pre-training I & II; (c) 2 amounts of training data: half data
(≈1,650 training data) and full data (≈3,300 training data). All 24 experiments were tested on the
same validation dataset, which was separated from the training set. The evaluation accuracy is shown
in Fig. 3.a. We observed that: (a) Pre-training significantly improved the evaluation performance with
all network configurations with an median improvement of 24%. (b) The evaluation performance
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improved with larger networks, where large’s classification accuracy was 19% higher than that of
tiny. However, the performance difference between medium and large was insignificant. (c) When
fine-tuned with half of the fine-tuning data, pre-trained networks performed better than trained from
scratch networks, and larger pre-trained models performed better than smaller pre-trained models.
In fact, for medium and large, the performances between fine-tuned with half data and fine-tuned
with full data were very close, signaling those models generalized better thus they require less data to
fine-tune to a novel task.

More qualitatively analysis, including visualizations of the encoder attention maps and the trunk
attention maps, can be found in Appendix. A.1.

Masking ratios in Pre-training Stage I We tested 8 different masking ratios in the MAE recon-
struction pre-training stage, and we performed the same Pre-training II stage as well as the fine-tuning
stage on the 8 tests. The evaluation results are reported in Fig. 3.b. We observe a small performance
variance, ranging from 85% (mr = 30%) to 89% (mr = 80%), and a masking ratio of 80% yielded
the highest performance.

5.2 Zero-shot transferability of pre-trained T3 to new sensors or tasks

We tested to what extent a pre-trained T3 can be transferred to a new sensor or downstream task with
and without fine-tuning. We picked two novel sensors (GelSight Svelte, DensetTact2.0) and two seen
tasks (object classification, pose estimation between two overlapped tactile images). The two seen
tasks were pre-trained with data from GelSight Wedge, GelSight Finray, and GelSight Mini. During
this experiment, we use the encoder pre-trained for GelSight Wedge as the encoder for GelSight Svelte,
and GelSight Mini’s encoder in place of DenseTact2.0’s encoder. Results on the 4 combinations are
shown in Fig. 3.c and Fig. 3.d. Zero-shot transfer yielded only minor improvements over random
guesses in the object classification task; however, it demonstrated significant improvement over
dataset averages in the pose estimation task. We further fine-tuned the networks with a small amount
of 2,000 data points. The classification accuracy immediately bounced up to 17% with fine-tuning,
and the pose estimation root mean squared error (RMSE) was reduced by 5.5mm for DenseTact2.0.
On the GelSight Svelte sensor, the pose estimation errors before and after fine-tuning were nearly
identical and close to optimal. These results indicate that zero-transferability can be achieved in
certain sensor-task pairings, and that better outcomes can be attained with minimal fine-tuning.

5.3 T3 in long-horizon manipulation tasks

Tactile sensing can be especially helpful in contact-rich manipulation tasks. Numerous human studies
have shown that the sense of touch is important for humans to perform delicate manipulation tasks
such as surgery [46, 47]. However, most state-of-the-art tactile manipulation research opted to train a
tactile encoder from scratch, with fresh data collected with the specific sensor-task pairing, due to
the lack of a pre-trained tactile encoder. In the case of long-horizon multi-modal manipulation tasks,
training from scratch is often inefficient, due to the sparseness of trajectory rewards and the number
of components that need to be trained (e.g. modality encoders and policy networks) especially in
many reinforcement learning and behavior cloning applications such as [48, 9]

To investigate whether a pre-trained T3 helps to bridge this gap, we designed a robotic precision
insertion task with behavior cloning. The goal of this task is to insert 3 electronics parts: a 3-pin
toggle switch, a 12-pin double-stack USB port, and a 17-pin VGA connector, onto a PCB with
corresponding mounting holes to each component. This task requires high precision, where the
clearance between the holes on the PCB and the pins on the parts is only 0.4mm. Achieving this
precision requires active exploration with tactile feedback. In real-world applications, relying on
vision alone is often insufficient due to heavy occlusion.

Our experiment setup consists of two GelSight Wedge tactile sensors mounted on a parallel jaw
gripper, which is attached to the end-effector of a 7-DoF Franka Emika Panda robot, a PCB board
fixed at a known location on the workbench, the 3 electronics parts, and a RGB camera on the
side of the workbench. An illustration of the setup is shown in Fig. 4 a and the parts are shown in
Fig. 4.b. Data is collected by controlling the robot in "guide mode", i.e. under zero stiffness control,
and a human operator manually grabs and moves the end-effector until the part is fully inserted.
At both data collection and inference time, the sockets are fixed, and we add randomizations to
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Figure 4: Real world sub-millimeter robotic insertion tasks. (a) Hardware setup. (b) The 3
evaluation electronics parts and their respective mounting places on a PCB. (c) Insertion success
rate and average steps taken for each task. Policies trained with the T3 tactile encoder achieved the
highest success rate and lowest averaged episode length.

the part-in-hand pose and gripper starting pose before each insertion, both generated from a 3D
zero-mean, 1mm standard deviation normal distribution.

We train and evaluate 3 policies: a baseline policy without tactile input, a policy with tactile input
encoded by a neural network trained from scratch, and a policy with tactile input encoded by T3.
Besides tactile inputs, all 3 policies have access to the same robot state modality encoded by a MLP,
and external vision modality encoded by a pre-trained ResNet18. All three policies take observations
of the current step as inputs and predict a 3-DoF action which the robot executes at the next time step.
At inference time, the robot executes predicted 3-DoF actions in about 2Hz for up to 30 steps. An
episode is deemed successful if the robot successfully inserts the component within 30 steps. The
success rate and the average steps taken of successful episodes across 15 episodes are reported in
Fig. 4.c.

The results show that (1) the tactile modality is vital for this electronics insertion task, where the
vision-only policy failed all tests to insert the two more challenging parts; (2) using a pre-trained
T3 as the tactile encoder for this policy helped further improve the overall performance, where the
task success rate is higher across all three parts; (3) T3 also helped to reduce the number of tactile
exploration steps needed to insert a part.

6 Limitations and Future Works
One limitation of the current training pipeline is that the FoTa dataset is unbalanced. Data collected
with the 2 most popular sensors constitutes over 50% of the entire dataset. Therefore, the trained
policy could also be biased towards those more popular sensors. Another limitation is that the
current architecture of T3 focuses on per-image encoding and T3 is trained with explicit labels during
pre-training II and fine-tuning. Representation learning on tactile image sequences with sparse or
implicit labels can be a future direction of this work. Furthermore, T3 is currently limited to learning
representations for camera-based tactile sensors. Extending the FoTa dataset and the T3 framwork to
non-camera-based sensors is another future line of work.

7 Conclusions
This paper presents T3, a large camera-based tactile sensing framework that transfers across mul-
tiple sensors and tasks; and FoTa, a tactile dataset that is by far the largest in quantity and most
diverse in sensors and downstream tasks. Experiments show that T3 pre-trained with FoTa improves
performance for various tasks, including longer-horizon manipulation tasks such as sub-millimeter
electronics insertion, and that T3 transfers to a new sensor-task pairing with little fine-tuning.
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A Appendix

A.1 Visualization of attention maps
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Figure 5: Visualization of self-attention weights of the encoders and the trunk of pre-trained T3.
Top: the original tactile images. Middle: encoder attention weights applied on the original images as

masks. Bottom: trunk attention weights applied on the original images as masks

We calculate the attention weights attni = softmax( Q·K
scale ) at layer i of each self-attention layers

for all encoders and the trunk. We then obtain a joint attention map, calculated as the product of the
attention weights of all layers within each encoder or trunk, map =

∏
i attni. This joint attention

map is then normalized and applied on the original tactile images as masks. A few tactile images as
well as them applied with encoder masks and trunk masks are visualized in Fig. 5. Qualitatively, we
observe that the encoder self-attentions highlight the region of the contact object, whereas the trunk
self-attentions are more spread out and they cover other features like the markers on a sensor. This
result seems to show that the encoder is more focused on the sensor agnostic regions, i.e. the "hot"
regions of the contact, while the trunk also attends to sensor specific areas.

A.2 Public datasets aggregated in the FoTa dataset

The FoTa dataset does not modify the images or labels from the constituent datasets. Pre-processing
was performed on each of them to encode the tactile images into .jpg format pictures and to extract
all labels into .json format dictionaries. In one of the constituent public datasets, VisGel [26], more
than half of the included tactile images are "flat" images, i.e. tactile images captured when there is no
contact. We sub-sampled VisGel to reduce the amount of flat images. With an image frame Ii and a
true flat frame If , the variance of Laplacian of the different image σi is calculated with Eqn. 2. We
then remove all images whose σ < σt. We empirically chose σt = 4.24 to remove most flat images.

σi =
√
V ar(Laplacian(Ii − If )), i ∈ {1...N} (2)

Note that we do not aim to eliminate flat images entirely as flat images also contain important
information such as the sensor geometry and the illumination design. Statistics of the aggregated
datasets in FoTa are listed in Tab. 2.

A.3 Data format

Each constituent dataset of FoTa is split into one train dataset and one val dataset, and each of
them is packaged in a pre-sharded WebDataset [40] format. Each shard of the FoTa dataset contains
up to 10, 000 data points packed in one .tar archive, where each data point is composed of one .jpg
tactile image and one .json file for various task labels. Utility scripts are also provided to add new
data to the FoTa dataset or to modify the pre-processing procedures on the constituent public datasets.

A.4 Data collection platforms

A.4.1 7-DoF robotic platform

We built a robotic data collection platform with a 7-DoF Franka Emika robotic arm with a custom-
made parallel jaw gripper attached at the end-effector. Two tactile sensors are attached at the tips
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Table 1: Network Sizes

Denc Henc Lenc Ltru

Params
incl. all encoders and decoders

T3-tiny 192 3 3 9 12M
T3-small 384 6 3 9 45M
T3-medium 768 12 3 9 174M
T3-large 1024 8 3 9 308M

of the parallel jaw gripper, and the transformation between the camera frame and the end-effector
frame is accurately measured. During tactile data collection, a test object, which is assumed to be
rigid enough to be clamped firmly, is fixed on the workbench of the robot at a known location. The
robot explores the object with random movements on all 6 dimensions (translation and rotation), and
tactile images from both sensors as well as the robot pose are collected at each step.

A.4.2 3-DoF gantry platform

Another gantry-based 3-DoF data collection platform was built from a desktop CNC milling machine.
The spindle was replaced with a 3D-printed probe, which is attached to the z-axis of the CNC with a
6-axis force torque sensor (MMS101, Mitsumi Electric Company). The probe can be easily swapped
out, and we designed in total 6 probes with different textures. During data collection, a tactile sensor
is attached firmly to the CNC bed, and the CNC probes the tactile sensor by applying vertical force
until the z-axis force reaches a threshold (uniformly sampled from 0.3 − 2.1N for most sensors,
except GelSight Mini and GelSight Svelte for which we use 1.5− 5N due to higher gel stiffness).
Tactile images, probing positions in the sensor’s coordinate frame (3D translational poses), and the
force values are recorded.

A.5 Network configurations

In principle, all components of T3 can adopt different architectures, provided they maintain coherence.
This section lists the specific architecture and hyper-parameter choices used in this work.

Encoders We use VisionTransformer (ViT) [41] blocks as the encoders for tactile images. An
image is first resized to 256 × 256 then center-cropped to 224 × 224, before split into 196 image
blocks each measures 16× 16 pixels. Augmentation is performed during training. Specifically, color
jittering is performed for all tasks. Random cropping, horizontal and vertical flipping are performed
for all tasks except pose estimation tasks, which rely on the spatial information to make predictions.
We use a MLP ratio of 4.0, an embedding dimension of Denc, Henc heads, and Lenc layers across
encoders for all sensors.

Trunk We use ViT blocks as the trunk. We use a MLP ratio of 4.0, an embedding dimension of
Dtru = Denc, Htru = Henc heads, and Ltru layers.

Decoders The decoder architecture varies based on the tasks. The reconstruction decoder for
masked auto encoding during pre-training I is also a ViT, with a MLP ratio of 4.0, an embedding
dimension of 512, 16 heads, and 8 layers. No pooling is performed after the trunk for this decoder.

The decoders for σi regression (Eqn. 2) and all classification tasks are MLP decoders. We used the
same size of 3 hidden layers [256, 128, 64] for all these MLP decoders. The output dimension varies
for the classification tasks depending on the number of categories. Only the classification token is
kept from the output of the trunk before it is passed through these decoders.

The decoders for both 3D and 6D pose estimation tasks are constructed with 2 ResNet [32] blocks
followed by average pooling then a MLP with hidden layers [256, 64]. Before passing through the
token outputs from the trunk into the ResNet blocks, we first remove the classification token, then
we reshape the output from [B, T,C] to [B,C,

√
T − 1,

√
T − 1]. Intuitively, we transform the

embedding space back to a 2D map, on which convolution is performed by the ResNet blocks.

Choices of hyper parameters are listed in Tab. 1.
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Table 2: Dataset Statistics

Source Objects Labels Sensor Marker Size

VisGel[26]-
small*

Household ob-
jects and toys.
Flat images
from the original
dataset were
filtered.

Variance of the
Laplacian of diff.
images

Gel-
Sight’17
[12]

Yes 726,740

TVL [27] Household ob-
jects

semantic object
description

DIGIT
[44]

No 82,463

Touch-and-
Go [29]

Natural objects Object IDs Gel-
Sight’17
[12]

Yes 262,082

Calandra’17
[2]

Household ob-
jects

Object IDs, grasp
outcome

Gel-
Sight’17
[12]

Yes 24,118

Yuan’18 [4] Clothes 11 properties such
as smoothness,
softness

Gel-
Sight’17
[12]

Yes 494,655

YCB-Sight
[28]

Household ob-
jects from the
YCB object set

Object IDs, 6D
poses

GelSight
variant No.
1 and
simulation

No 480 real
1,800 sim

ObjectFolder-
real [30]

Household ob-
jects

Object, material
IDs

GelSight
variant No.
2

No 1,417,600

Tippur’23
[18]

Probing sphere 3D poses GelSight
360

No 13,341

New data
collected
in-house

Tool objects
Object IDs
6D poses

GelSight
Wedge
[13]

No 10,000

GelSight
Mini [45]

Yes&No 24,000

DIGIT
[44]

No 4,000

Probes with
engraved letters

Object IDs
3D poses

GelSight
Wedge
[13]

No 3,516

GelSight
Finray
[21]
2 variants

No 6,432

GelSight
Svelte
[19]

No 5,335

Dense-
Tact2.0
[14]

Yes 3,531

GelSight
Mini [45]

Yes 3,359

* VisGel-small is down-sampled from the original VisGel and most flat images are removed.
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