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Abstract

Recent advances in large reasoning models high-
light Reinforcement Learning with Verifiable Re-
wards (RLVR) as a promising method for enhanc-
ing AT’s capabilities, particularly in solving com-
plex logical tasks. However, it remains unclear
whether RLVR truly expands a model’s reason-
ing boundary or merely amplifies high-reward
outputs that the base model already knows for
improved precision. This study presents a theo-
retical and empirical investigation that provides
fresh insights into the potential limits of RLVR.
First, we offer a new theoretical perspective that
RLVR is constrained by the base model’s sup-
port—unable to sample solutions with zero ini-
tial probability—and operates as a conservative
reweighting mechanism that may restrict the dis-
covery of entirely original solutions. We also iden-
tify an entropy-reward tradeoff: while RLVR reli-
ably enhances precision, it may progressively nar-
row exploration and potentially overlook correct
yet underrepresented solutions. Extensive empiri-
cal experiments validate that while RLVR consis-
tently improves pass@1, the shrinkage of empir-
ical support generally outweighs the expansion of
empirical support under larger sampling budgets,
failing to recover correct answers that were previ-
ously accessible to the base model. Interestingly,
we also observe that while RLVR sometimes in-
creases token-level entropy—resulting in greater
uncertainty at each generation step—answer-level
entropy declines, indicating that these seemingly
more uncertain paths ultimately converge onto a
smaller set of distinct answers. Taken together,
these findings reveal potential limits of RLVR in
extending reasoning horizons. Breaking this invis-
ible leash may require future algorithmic innova-
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tions such as explicit exploration mechanisms or
hybrid strategies that seed probability mass into
underrepresented solution regions.

1. Introduction

The rise of large reasoning models, such as DeepSeek-
R1 (Guo et al., 2025) and OpenAl-03 (Jaech et al., 2024),
marks a breakthrough in Al capabilities, particularly in
solving complex logical tasks involving mathematics (Luo
et al., 2025c; Zeng et al., 2025) and programming (Luo
et al., 2025b; Liu & Zhang, 2025). The key ingredient
behind this remarkable progress is large-scale Reinforce-
ment Learning with Verifiable Rewards (RLVR), where
a pretrained base model—or one fine-tuned on long-form
Chain-of-Thought (CoT) data—is optimized via reinforce-
ment learning (RL) using simple, automatically computed
rewards. Despite the empirical success, a fundamental ques-
tion remains under active debate within the research com-
munity: does RLVR expand a base model’s reasoning capa-
bilities, or does it simply reinforce patterns the base model
already knows, sometimes at the expense of exploring alter-
native correct solutions?

Recent studies offer divergent perspectives on this ques-
tion. On the one hand, several works (Yue et al., 2025a;
Zhao et al., 2025b; Shah et al., 2025; Ma et al., 2025; He
et al., 2025) highlight a paradoxical failure mode: while
RLVR-trained models outperform their base models on
pass@k at low sampling budgets (e.g., k = 1), base models
achieve higher pass@k scores when £ is large, suggesting
a narrowing of the reasoning horizon after RLVR training.
Some even report that RLVR-trained models benefit from
seemingly random or spurious reward signals (Shao et al.,
2025), raising questions about whether the observed im-
provements genuinely reflect enhanced reasoning. On the
other hand, Liu et al. (2025) report that previous studies
focused primarily on special domains such as math, where
base models may have been over-trained, which can then
lead to premature termination of RLVR unless the level of
entropy is carefully controlled. They then demonstrate that
RLVR can expand the reasoning horizon considerably on
certain domains, such as Reasoning Gym, where the base
models struggle, with marked improvement on pass@k at
large k.
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While seeking a definitive answer to this debate remains an
open challenge, we present a theoretical and empirical inves-
tigation that provides novel insights on the potential limits of
RLVR, when using the currently competitive RLVR recipe.
We first present a novel theoretical perspective that RLVR
predominantly preserves the support of the base model. The
intuition is that LLMs cannot sample solutions that have
zero probability mass from the initial distribution, thus, the
support of the base models inherently restricts the discovery
of truly original reasoning patterns. Additionally, we pro-
vide a unified view of the RLVR objective via variational
inference, revealing why RLVR is inherently conservative: it
makes minimal updates to the base model’s distribution, pre-
serving relative probabilities within the reward-consistent
subset. Lastly, we highlight the entropy-reward tradeoff:
while RLVR reliably enhances precision, it may also pro-
gressively narrow the exploration of reasoning trajectories,
potentially overlooking correct yet underrepresented solu-
tions.

Empirically, we validate these theoretical insights via exten-
sive experiments across diverse domains, including mathe-
matics, logical reasoning, factual QA, and code generation
tasks. To characterize RLVR’s impact on the output distri-
bution, we introduce the notion of empirical support—the
set of correct completions assigned non-negligible proba-
bility under a model’s sampling distribution. We find that
while RLVR consistently improves pass@1, the shrink-
age of empirical support generally outweighs the expan-
sion of empirical support under larger sampling budgets.
While RLVR can occasionally assign non-negligible prob-
ability mass to previously underrepresented correct com-
pletions (empirical-support expansion), we observe that
the opposite—empirical-support shrinkage—is more fre-
quent: RLVR often fails to recover correct answers that
were previously accessible to the base model. This trend
highlights RLVR’s role as a conservative reweighting mech-
anism rather than a driver of fundamentally novel reasoning
modes. To further understand how RLVR reshapes the
sampling distribution, we decouple local uncertainty and
global diversity via two entropy metrics: token-level and
answer-level entropy. Interestingly, we observe that RLVR
sometimes increases token-level entropy—reflecting greater
uncertainty at each generation step—Ilikely due to longer
reasoning chains or more complex intermediate decisions.
Yet, answer-level entropy declines, indicating that these
more uncertain generation paths ultimately collapse onto a
smaller set of distinct answers. This contrast reveals that
RLVR models may appear more exploratory at the step level,
even as they converge on fewer final completions.

Taken together, these findings suggest that there might exist
inherent limits in RLVR for extending LLMs’ reasoning
horizons despite its empirical success. To break this in-
visible leash, RLVR may need augmenting with explicit

exploration or hybrid strategies that seed probability mass
into underrepresented regions of the solution space. We
hope this work offers novel insights into RLVR’s strengths
and limitations, guiding future efforts in building LLM sys-
tems that can unlock genuinely new reasoning capacity.

2. Theoretical Limits of RLVR

2.1. Preliminaries

Let X denote the space of natural language prompts, and )
denote the space of token sequences (e.g., reasoning traces
or completions). For a fixed prompt z € X, q(y | x) is the
output distribution of the base model, and R(z,y) € {0,1}
is a verifiable reward function indicating whether y is a
correct solution. Various RLVR algorithms, including
PPO (Schulman et al., 2017), RLOO (Kool et al., 2019),
GRPO (Guo et al., 2025), DAPO (Yu et al., 2025), or RE-
INFORCE++ (Hu, 2025), learn a new distribution 7y (y | x)
to optimize different variants of the following regularized
objective:

meax Eywﬂg(~|m),m~D R(J?, y) - B_l 1Og

where D is the distribution of prompts. An optional log
ratio corresponds to a regularized policy update that pe-
nalizes divergence from the base model ¢ controlled by a
hyperparameter 5 > 0.

2.2. Support Preservation: Why RLVR Rarely
Discovers New Modes

We begin by formalizing a core limitation of RLVR: it is
inherently constrained to operate within the support of the
base model’s distribution. Since RLVR relies on gradient
signals derived from samples generated by the base model,
it cannot assign a nonzero probability to any solution that
can never be sampled from ¢(- | ). As a result, any correct
output y* with ¢(y* | ) = 0 remains inaccessible to policy
gradient updates, regardless of reward.

]
Definition 2.1 (Support of Correct Completions).
LetC = {y € Y | R(x,y) = 1} denote the set of
correct completions under the reward function R.
Then the effective support on correct completions of
a distribution p(y | x) is defined as

supp(p) :={y €C | p(y | z) > 0}.

We formalize this intuition with the following theorem,
which makes precise how RLVR’s reliance on the base
model’s sampling prevents discovering truly new solutions.

Theorem 2.2 (Support Preservation under RLVR). Let
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mo(y | x) be the RLVR-trained distribution obtained via

standard on-policy gradient updates on verifiable rewards
R. Then forall x € X,

supp(ma (- | z)) C supp(¢(- | x)).

In particular, if q(y* | ) = 0 for some correct solution y*,
then RLVR cannot discover y*.

Corollary 2.3 (Asymptotic Sampling Upper Bound). Let
pass@ky(x) be the probability that at least one out of k
samples y; ~ p(- | ) is correct, i.e. pass@k,(x) =1—
(Pry~p[R(z,y) = O])k. Under the conditions of Thm. 2.2
and the sampling independence, we have

limsup pass@ky, () < limsuppass@ky(z).

k—o0 k—o0

Those theorems formalize a critical limitation of RLVR: its
optimization cannot expand the search space beyond the
initial support of the base model. This limitation arises be-
cause on-policy sampling means the model updates only
from what it already samples — lacking representational
coverage means no gradient can ever push probability mass
toward truly unseen solutions. Even when rewards provide
a clear training signal, RLVR cannot access or discover so-
lutions that the base model assigns zero probability. Proofs
are in Appx. A.1 and A.2.

This manifests as a trade-off between sharpness and diver-
sity: RLVR can improve pass@1 by concentrating mass
on known high-reward modes but tends to reduce pass@k
performance for larger k, where broader coverage is benefi-
cial. By contrast, the base model may occasionally sample
correct answers from its long-tail distribution, giving it a
statistical edge under high-k evaluations (Yue et al., 2025a;
Liu et al., 2025). This asymptotic upper bound captures a
ceiling: no matter how many samples are drawn, the RLVR-
trained model cannot exceed the base model’s pass@k in
the limit.

Empirical-Support Relaxation. Thm. 2.2 assumes that
q has exact zeros in its support and RLVR operates strictly
on-policy. However, these conditions rarely hold in practice.
Softmax layers yield strictly positive probabilities across
all tokens, making the nominal support of ¢ span the entire
space Y. This factor, along with sampling noise and or
temperature scaling, contributes to what we refer to as em-
pirical support diffusion: over time, the model may assign
growing probability mass to completions that initially had
negligible—but still nonzero—probability under the base
model.

While ¢(y | ) is technically positive for all y due to the
softmax, many completions lie so deep in the tail that they
are effectively invisible to the training algorithm under finite

sampling. To formalize this, we develop relaxation and
define the empirical support under € as

supp.(q) :=={y €C| q(y | z) > €},

where € > 0 denotes a small cutoff (e.g., 10~%) that sep-
arates completions with practically observable likelihood
from those that are statistically negligible. Completions
outside this threshold are unlikely to be sampled in typical
on-policy RL settings with finite rollouts. The choice of
€ is thus crucial for assessing which completions are em-
pirically reachable. Intuitively, e should correspond to the
minimum probability required for a correct completion to
appear within k£ samples. We derive a principled estimate
for this threshold based on sampling confidence bounds in
Appx. A.7.

Definition 2.4 (Empirical-Support Expansion and
Shrinkage). Given a threshold € > 0,

» We say RLVR achieves empirical-support expan-
sion under threshold € if supp, (mg) \ supp,.(q) #
(), i.e. there exists at least one completion y* € C
such that

qiy* |z) <e but me(y*|z) > e

That is, the RLVR-trained model assigns non-
negligible probability mass to correct completions
that were effectively negligible under the base
model.

» We say RLVR exhibits empirical-support shrinkage
under threshold e if supp,(q) \ supp,(mg) # 0,
i.e. there exists at least one completion y* € C
such that

qiy* | x) >e bur we(y*|x) <e.

This formalizes the phenomenon where RLVR con-

centrates probability mass onto a narrower subset

of outputs, effectively excluding correct solutions
that were previously accessible under the base
model.

Recall C is the set of correct completions, and let S :=
C \ supp, (¢) denote the set of low-density completions. We
consider a single-step RLVR update of the form:

mo (- [ 2) = (1 =)m(- [ @) +yme(- | ),

where Ty represents a reward-weighted distribution (e.g., ex-
ponential tilting), 7, denotes an exploration distribution, and
~ € [0, 1] is the mixing weight. This formula arises by con-
sidering an interpolation between a reward-tilted distribution
Ty, which sharpens on known high-reward modes, and an
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explicit exploration distribution 7. that seeds probability
mass into underexplored regions. The mixing parameter y
controls the exploration-exploitation balance.

Theorem 2.5 (Empirical-Support Preservation). Given a
fixed T > 0 and under the update rule above, if the pre-
ceding policy satisfies the KL budget Dy, (7r9 I q) < 4,
the probability mass that the updated policy assigns to any
y' € S in the low—density tail obeys

mo(y | @) < v+ (1—7) e’ (1+V20).

Thus, unless ~ (exploration weight) or T (tail threshold)
is substantially large, the probability mass assigned to re-
gions outside the base model’s empirical support remains
negligible.

In practice, RLVR algorithms typically impose strong KL
regularization (small §), and use conservative temperature
settings (small ). These choices jointly control the ampli-
fication factor e? and the additive tolerance v/26. When
combined with minimal exploration (small ), 7/ (' | )
remains negligible for completions in the low-density tail S.
Consequently, RLVR tends to behave like probability sharp-
ening—concentrating mass around the high-probability
modes of g—rather than exploring or discovering entirely
novel solutions. Overcoming this tendency requires explicit
exploration mechanisms or off-policy data sources that in-
tentionally seed mass into new regions. For instance, Xie
et al. (2024) proposes an exploration-augmented preference
optimization that addresses similar constraints in RL from
human feedback (RLHF).

In this sense, RLVR inherits both the inductive biases and
structural limitations of its initialization. Without delib-
erate intervention or scaling, it remains confined to the
functional expressivity of the base model. Our framework
formalizes why RLVR often improves sampling efficiency
but rarely produces qualitatively new reasoning capabilities.
We further explore these dynamics in the KL-free regime
in Sec. 2.3, which clarifies how removing explicit regu-
larization changes support behavior. Proof is provided in
Appx. A.3.

2.3. A Variational and Conservative Policy Update

We now present a unified view of the RLVR objective
through the lens of variational inference. This reveals why
RLVR is inherently conservative: it makes minimal updates
to the base distribution while ensuring improved perfor-
mance.

Proposition 2.6 (KL Projection onto Reward-Consistent
Distributions). Let A(Y) be the probability simplex over
the finite output space Y. Define the set of feasible policies
that achieve at least a target expected reward p:

Py = 1{ply | x) € AQ) | Ep[R(z,y)] > p} .

Then the solution to the variational problem,
mingep, KL(7 || q), is the distribution within P,
that is closest in KL divergence to the base model. The
optimal policy takes the form:

™ (y | x) < q(y | ) - exp(BR(z,y)),

where 3 € Rxq is the dual variable associated with the
reward constraint and 3 = 0 degenerates to the base policy

q.

Notably, by standard convex duality, this solution also
arises as the optimizer of the entropy-regularized problem
maxr<q Ex[R(z,y)] — 3 KL(7 || ), which softens the
constraint into a penalty. Thus, RLVR can be interpreted ei-
ther as a hard projection onto the closest distribution achiev-
ing the reward target, or as a soft trade-off that balances
expected reward with closeness to the base model. Similar
exponential tilting policy improvement oracles have been
analyzed in the context of KL-regularized contextual ban-
dits and RLHF (Zhao et al., 2024), though their focus is on
sample complexity under coverage.

KL-Free Limit. A relevant special case is the KL-free
limit, where explicit KL regularization is removed (8 —
00) (Wei et al., 2023; Yu et al., 2025; Luo et al., 2025a; Yue
et al., 2025b). In this regime, RLVR simplifies to a hard-
filtered projection onto reward-maximizing completions.

Corollary 2.7 (KL-Free Projection). In the limit § — oo,
the RLVR update converges to the renormalized restriction
of the base model to the correct completion set:

qly | ») 1{y € C}
Syecdly |z)

lim mg(y | z) =
B—o0

Together, Prop. 2.6 and Cor. 2.7 illustrate a continuum
of RLVR behaviors—from softly regularized reweighting
(small 3) to sharply constrained filtering (large ). Even in
the KL-free limit, updates remain fundamentally anchored
to the base model’s distribution, preserving relative proba-
bilities within the reward-consistent subset. Consequently,
while this projection ensures stable, efficient updates, it in-
herently limits RLVR’s exploratory capacity. As established
in Thm. 2.2, RLVR remains confined to the initial support of
the base model unless explicit mechanisms introduce mean-
ingful probability mass to new regions. Thus, the variational
interpretation clarifies RLVR’s strengths in improving pre-
cision and efficiency within existing capabilities, alongside
its limitations in fundamentally expanding model reasoning.
A detailed proof is provided in Appx. A.4 and A.5.

2.4. Entropy—Reward Trade-off: Precision at the Cost
of Answer Diversity

Another structural property of RLVR is its tendency to sys-
tematically reduce the entropy of the answer distribution.



The Invisible Leash: Why RLVR May Not Escape Its Origin

Table 1. Empirical-support categorization across math reasoning benchmarks under high sampling budgets. Each completion is categorized
by correctness and support status: Preservation indicates the solution is found by both base and ProRL; Shrinkage indicates the base
model found it but ProRL did not; Expansion indicates only ProRL found it; and — denotes solutions found by neither. The bottom rows
report the overall accuracy of each model on the corresponding benchmark.

Category ‘ Correctness ‘ AIME2024 AIME2025 AMC Math Minerva Olympiad
‘ Base ProRL ‘ pass@8192  pass@8192 pass@8192 pass@8192 pass@8192 pass@8192
Preservation v v 23 20 39 494 173 600
Shrinkage v X 3 3 1 4 22 26
Expansion X v 0 0 0 0 0 3
= X X 4 7 0 2 77 46
Accurac Base 86.7% 76.7% 100% 99.6% 71.7% 92.7%
¥ ProRL 76.7% 66.7% 97.5% 98.8% 63.6% 89.3%
Table 2. Empirical-support categorization across non-math reasoning benchmarks.
‘ Correctness ‘ SimpleQA  LiveBench-R LiveBench-C LiveBench-L  SciBench
Category
\ Base ProRL \ pass@512 pass@2048 pass@2048 pass@2048  pass@2048
Preservation v v 64 94 59 6 616
Shrinkage v X 20 6 17 5 35
Expansion X v 11 0 7 3 10
- X X 338 0 45 36 31
Accurac Base 19.4% 100.0% 59.4% 22.0% 94.1%
y ProRL 17.3% 94.0% 51.6% 18.0% 90.4%

This behavior arises naturally from reward optimization,
which statistically favors sharper distributions concentrated
on high-reward completions. While such entropy reduction
is beneficial in domains like board games or math—where
precision is paramount—it may also suppress valuable di-
versity in contexts that benefit from broader coverage or
multiple valid outputs, such as story or dialogue genera-
tion (Chen et al., 2023) and coding copilots (Peng et al.,
2023).

Theorem 2.8 (Entropy Reduction and Precision—Coverage
Trade-off). Assume a finite output space ) and define the
Shannon entropy of a distribution as H[p| := —3_, 5, p(y |
x)logp(y | ©). Then the following statements hold:

(a) Entropy reduction. Any RLVR update mq satisfies
Hlmg] < Hlql,

with equality only if the reward is constant on the sup-
port of q.

(b) Trade-off with coverage. Lower entropy increases sam-
pling precision for small budgets, but for large k, re-
duces the diversity of explored outputs—potentially
missing alternative correct completions.

This trade-off underpins RLVR’s empirical strengths in tasks
with narrowly defined optimal solutions such as mathemat-
ical proofs or tactical game endgames (where precision is
paramount), while also emphasizing the need for explicit

diversity mechanisms in more open-ended domains such as
code generation, creative writing (Feizi et al., 2023; Ding
et al., 2024), or brainstorming (Chang & Li, 2025). Impor-
tantly, entropy reduction is not inherently undesirable: when
a task admits a unique correct solution, lower answer-level
entropy simply reflects desirable convergence. Importantly,
even in multi-solution domains, concentrating mass on a nar-
rower set may still be desirable under constrained compute
budgets. However, our results show that entropy reduc-
tion can still lead to empirical-support shrinkage even in
predominantly single-solution domains like math, where
RLVR sometimes fails to recover valid completions still
accessible to the more diverse base model. This highlights
that entropy-induced narrowing is a general phenomenon,
not limited to multi-solution tasks, underscoring the broader
need for explicit exploration or diversity-promoting strate-
gies. Complete proofs are provided in Appx. A.6.

3. Experiments

3.1. Evidence of Hidden-Support Dynamics

Setup. We adopt ProRL (Liu et al., 2025) as our RLVR
method due to its robust long-horizon training framework.
Starting from DeepSeek-R1-Distill-Qwen-1.5B
as the base model, ProRL’s
Nemotron-Research-Reasoning-Qwen-1.5B

leverages GRPO enhanced with decoupled clipping,
dynamic sampling, KL divergence regularization, and
periodic reference resets to sustain exploration and prevent
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Figure 1. Pass@k curves on tasks like Graph Coloring, Palindrome Generation, and Advanced Geometry, illustrating RLVR’s typical

empirical-support preservation.

entropy collapse throughout prolonged RL training.

Performance is evaluated across two categories. (1) math
reasoning tasks : MATH500 (Hendrycks et al., 2021), Min-
erva (Lewkowycz et al., 2022), OlympiadBench (He et al.,
2024), AIME 2024, AIME 2025, and AMC 2023. (2) non-
math reasoning tasks: SimpleQA (Wei et al., 2024) (fac-
tuality), LiveBench (White et al., 2025) (logical reason-
ing, coding, language comprehension), SciBench (Wang
et al., 2023) (multi-domain scientific problem-solving), and
Reasoning Gym (Stojanovski et al., 2025) (cognition, ge-
ometry, graph theory, and common games). These bench-
marks contain more general reasoning questions. In Rea-
soning Gym, we especially focus on tasks that ProRL ex-
plicitly highlighted as challenging for the base model. For
SimpleQA, we use GPT-4.1 (Achiam et al., 2023) as the
judge. The sampling is set at & = 8192 for math tasks,
k € {1024,2048, 4096, 8192, 16384} for Reasoning Gym,
and k& € {512,2048} for non-math datasets, ensuring that
any unreachable completion y* € C is below a pretty low
threshold under empirical support of the base model. More
detailed implementation is provided in Appendix B.

3.1.1. RESULTS: PREDOMINANT PRESERVATION WITH
LIMITED EXPANSION

Support preservation dominates. Across most tasks,
RLVR primarily sharpens the distribution within the effec-
tive support of the base model, aligning with our theoretical
guarantees (Thm. 2.2 and 2.5). This is evident on Reason-
ing Gym tasks such as graph_color and palindrome,
where RLVR accelerates convergence toward near-perfect
pass@k under large sampling budgets (Fig. 1). Heatmaps
and overlap counts in Tabs. 1 and 2 further highlight this
predominant support preservation: for example, RLVR and
the base model jointly recover 600 correct completions on
Olympiad and 616 on SciBench, underscoring how RLVR
chiefly reweights probability mass within the high-reward
regions already represented by the base model.

Selective empirical-support expansion. Nonetheless,
RLVR does occasionally assign non-negligible probabil-
ity mass to completions that were effectively negligible
under the base model’s empirical support, uncovering gen-
uinely new correct solutions. For instance, on Olympiad-
Bench, it discovers 3 additional solutions; on SimpleQA
and SciBench, 11 and 10, respectively. Likewise, Reasoning
Gym tasks like graph_color_vertex20 and arc_1d
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Figure 2. Examples of empirical-support shrinkage on Reasoning Gym tasks such as Leg Counting, Family Relationships, and Power

Function.
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Figure 3. Rare instances of empirical-support expansion under RLVR, as seen in Boxnet, Dice, and Arc 1D tasks.

demonstrate striking empirical-support expansion (Fig. 3),
where RLVR achieves near-perfect pass@k despite the
base model struggling even under extensive sampling. These
examples suggest that RLVR scaling may, at times, redis-
tribute mass into underexplored solution modes, modestly
broadening effective support.

Frequent empirical-support shrinkage. However, we
find that empirical-support shrinkage—where RLVR fails
to recover correct completions accessible to the base
model—is even more pronounced. This aligns with the
entropy-reducing, mode-concentrating effects predicted by
Thm. 2.8. On the math benchmarks, RLVR misses 3 so-
lutions on AIME2024, 3 on AIME2025, and experiences
sharper losses on Minerva (22) and OlympiadBench (26).
Similarly, it forfeits 20 and 35 correct completions on Sim-
pleQA and SciBench, respectively. In Reasoning Gym, tasks
such as leg._counting, family_relationships,
and power_function illustrate this vividly: RLVR’s dis-
tributions become markedly sharper (Fig. 2), rapidly saturat-
ing pass@k yet failing to explore alternative valid outputs
that the more entropic base model uncovered.

Perplexity analysis on support constraints. Tab. 3
presents perplexity scores under two complementary set-
tings. When evaluated against external reasoning traces
from DeepSeek-R1 and Claude Sonnet 4 with extended
thinking—Tlikely outside the base model’s support—RLVR
shows markedly higher perplexity (e.g., AIME 2024 rising
from 8.76 to 14.91), confirming that it cannot assign mass to

fundamentally novel solution modes (Thm. 2.2). Note that
differences in language style and reasoning format across ex-
ternal references (e.g., Claude vs DeepSeek) also contribute
to perplexity gaps, beyond purely structural support con-
straints. Breakdowns by correctness patterns highlight the
precision—coverage trade-off (Thm. 2.8): in shrinkage cases,
ProRL’s perplexity rises when it fails to recover solutions
still accessible to the base, reflecting entropy-driven con-
centration. Meanwhile, the modest perplexity gaps in rare
expansion cases indicate these new completions were actu-
ally drawn from the base’s long-tail low-density regions—
amplified but not truly beyond its support.

Overall takeaway: conservative optimization. A granu-
lar comparison reveals that empirical-support shrinkage gen-
erally outweighs expansion. Across Minerva and Olympiad-
Bench, RLVR gains only 3 new completions but loses
48 previously found by the base model; on SimpleQA
and SciBench, it gains 21 yet forfeits 55. Reasoning
Gym presents a nuanced picture, with tasks like boxnet
and arc_1d showing notable expansion, while others,
such as palindrome_generation_hard, exhibit clas-
sic shrinkage patterns. Overall, these findings reinforce
that RLVR chiefly acts as a sampling reweighting mech-
anism—concentrating probability mass within the exist-
ing representational landscape of the base model—offering
higher precision but limited robust exploration. This res-
onates with the Temporal Forgetting phenomenon (Li et al.,
2025), where fine-tuning often erases paths previously solv-
able at intermediate stages, affecting up to 56% of final
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Table 3. Perplexity of reasoning tokens from base and ProRL models across math benchmarks, segmented by correctness patterns and
reference types. Top: on problems correctly solved by the base model but not ProRL, perplexity is measured against the base model’s
reasoning traces. Middle: on problems correctly solved by ProRL but not the base, perplexity is measured against ProRL’s traces. Bottom:
on problems unsolved by both, perplexity is computed against external references (DeepSeek-R1 and Claude Sonnet 4), reflecting each

model’s compatibility with broader solution modes.

Correctness Reference \ Target \ AIME 2024 AIME 2025 Olympiad

Base 1.36 1.47 1.30

v Base, X ProRL Base ProRL 1.60 1.84 1.50
Base - - 1.52

X Base, v ProRL ProRL ProRL ] ) 132
Base 1.82 1.75 1.62

DeepSeek-R1

X Base, X ProRL ProRL 2.20 2.15 1.94
Base 8.76 6.05 5.98

Claude Sonnet 4 | p oy 14.91 9.76 9.55

failures. Together, our results underscore RLVR’s role as
a precision enhancer rather than a broad driver of novel
reasoning discovery.

3.2. Entropy Reduction and the pass@k Trade-off

Setup. To study how RLVR reshapes the sampling dis-
tribution, we examine the base model and RLVR with a
medium sampling budget £ = 32 on the math reasoning
benchmarks. We quantify changes in the output distribution
using two entropy metrics:

* Token-Level Entropy: Let V denote the vocabulary and
y) = (ygi), yéi), ce y(Tig,i)) denote the i-th generated se-
quence of length 79 for 1 < i < N. At each timestep ¢,
the model outputs a probability distribution pgi) (v) over
vocabulary tokens v € V. The entropy of this distri-
bution is given by: Ht(j’) = =D ey pgi) (v) logpgi) (v).
The average token-level entropy over all N sequences
and their timesteps is computed as: TokenEntropy =

D )
Ly (% i Ht(l)), capturing the local uncer-

tainty at each generation step.

+ Answer-level Entropy: Let {o("), ... 0o(")} denote the
answers extracted from each generated sequence y(*) (us-
ing NA for incomplete outputs), and let {o7,...,0%,}
be the M unique answers. Let f; be the frequency of

f—l\; Then:

AnswerEntropy = — Zj\il pjlogp;. This captures
global diversity over output completions, with lower val-
ues indicating increased mode collapse.

answer o7, with empirical probability p; =

3.2.1. RESULTS: PRECISION GAINS, ENTROPY
DYNAMICS, AND TRADE-OFFS

Consistent gains in precision, but sharper global dis-
tributions. As shown in Tab. 4, RLVR consistently im-
proves pass@1 accuracy across all benchmarks, raising

average performance from 48.9% to 65.4%, which under-
scores its strength in reweighting probability mass toward
high-reward completions and concentrating on likely cor-
rect answers (Dang et al., 2025). However, this increased
precision comes at a cost: RLVR systematically reduces
answer-level entropy, indicating a collapse onto fewer dis-
tinct solutions and empirically validating our theoretical
prediction (Thm. 2.8) that reward optimization sharpens
output distributions around known modes, thereby reducing
effective support coverage. Notably, intrinsically harder
tasks like AIME or Minerva still exhibit higher absolute
answer-level entropy for both the base and RLVR mod-
els, suggesting that challenging problems inherently foster
broader solution spaces requiring exploration over more
diverse completions.

Decoupled local uncertainty and global diversity. Inter-
estingly, while answer-level entropy consistently declines
across all benchmarks, token-level entropy exhibits more
varied behavior. In some models—such as ProRL and
DAPO—it increases, suggesting greater local uncertainty
during generation, possibly due to longer or more elaborated
reasoning chains that introduce additional decision points or
“forking” tokens (Wang et al., 2025). However, this pattern
is far from universal: other RLVR models like AceReason
display similar or even lower token-level entropy relative
to their base counterparts, and prior work has documented
sharp entropy collapse in early training phases (Cui et al.,
2025). This disparity underscores that lower token-wise en-
tropy is neither a necessary nor reliable outcome of RLVR
training.

More importantly, increased token-level entropy does not
imply greater exploration of the output space. Despite
appearing more stochastic at the step level, RLVR mod-
els frequently converge onto a smaller set of final an-
swers—reflected in lower answer-level entropy. This reveals
a critical decoupling between local uncertainty and global
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Table 4. Summary of avg@32 accuracy, response length, and entropy metrics across math reasoning benchmarks (row colors: base

models,

RLVR models). RLVR consistently improves accuracy and alters distributional properties. While answer-level entropy

consistently decreases, token-level entropy shows more varied behavior across models.

Metric ‘ Model ‘ AIME 2024 AMC 2023 MATH 500 Minerva Olympiad Avg.
DeepSeek-1.5B 31.15 72.81 85.01 32.18 51.55 54.54

ProRL-1.5B 45.62 85.70 92.01 39.27 64.56 65.43

DeepSeek-7B 53.23 89.30 93.95 43.07 66.67 69.24

avg@32 AceReason-7B 65.83 95.08 95.81 45.35 73.92 75.20
Acc. (%) DeepSeek-14B 67.81 95.39 95.28 46.43 72.06 75.39
AceReason-14B 77.29 98.67 97.01 47.20 77.74 79.58

Qwen2.5-32B 18.12 55.23 75.84 24.55 41.40 43.03

DAPO-32B 51.25 92.81 80.75 32.50 49.15 61.29
DeepSeek-1.5B 16363 9979 5700 8194 11873 10422

ProRL-1.5B 7786 6294 5070 6569 6678 6479

DeepSeek-7B 13613 6402 4125 5595 8988 7745

Response AceReason-7B 10740 5961 4313 6261 7703 6995
Length DeepSeek-14B 11295 5735 3781 4919 8042 6755
AceReason-14B 13871 7239 4622 7720 10033 8697

Qwen2.5-32B 1247 874 585 3544 881 1426

DAPO-32B 6908 3157 3386 5665 5827 4989

DeepSeek-1.5B 0.45 0.40 0.42 0.49 0.44 0.44

ProRL-1.5B 0.47 0.51 0.54 0.55 0.52 0.52

DeepSeek-7B 0.38 0.34 0.35 0.39 0.38 0.37

Token-Level AceReason-7B 0.18 0.23 0.27 0.24 0.23 0.23
Entropy DeepSeek-14B 0.33 0.30 0.32 0.35 0.33 0.33
AceReason-14B 0.12 0.13 0.15 0.15 0.14 0.14

Qwen2.5-32B 0.17 0.16 0.15 0.28 0.15 0.18

DAPO-32B 0.26 0.19 0.27 0.44 0.30 0.29

DeepSeek-1.5B 2.15 0.91 0.46 1.65 1.33 1.30

ProRL-1.5B 1.24 0.35 0.18 0.90 0.63 0.66

DeepSeek-7B 1.47 0.36 0.18 0.96 0.80 0.75

Answer-Level AceReason-7B 0.96 0.14 0.11 0.77 0.53 0.50
Entropy DeepSeek-14B 1.01 0.14 0.13 0.83 0.59 0.54
AceReason-14B 0.66 0.06 0.07 0.67 0.44 0.38

Qwen2.5-32B 2.37 1.32 0.68 2.27 1.41 1.61

DAPO-32B 1.12 0.09 0.26 0.96 0.63 0.61

diversity. We refer to this phenomenon as local stochasticity
without global exploration: the model exhibits variability
in generation but ultimately collapses to a narrow set of
solutions. Thus, token-level entropy should not be con-
flated with genuine exploratory behavior, and interpreting
entropy dynamics in RLVR requires distinguishing between
stepwise uncertainty and overall support expansion.

Implications. Taken together, these findings reveal a fun-
damental trade-off in RLVR: it improves precision by ampli-
fying high-reward outputs, but simultaneously narrows the
diversity of global solutions. This limitation is especially
consequential in domains that admit multiple valid answers
or benefit from creative reasoning, underscoring the need
for explicit exploration mechanisms or diversity-promoting
strategies to complement standard RLVR. Moreover, the
observed divergence between token-level and answer-level

entropy highlights the need for a more nuanced interpreta-
tion of stochasticity in reward-optimized models—showing
that precision gains often come at the expense of global di-
versity, and that maintaining controlled variability is critical
for sustaining effective exploration.

4. Conclusion

We presented a unified theoretical and empirical analysis re-
vealing that RLVR primarily acts as a conservative sampling
reweighting mechanism: it improves precision by sharpen-
ing distributions around known high-reward trajectories, yet
largely preserves the support of the base model. Importantly,
we found that this sharpening does not merely prune incor-
rect outputs—it can also concentrate probability mass on a
narrower subset of correct solutions, occasionally excluding
valid alternatives that the more diverse base model could
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still recover. This highlights a hidden trade-off between
enhanced precision and comprehensive reasoning coverage.
Notably, the divergence between token-level uncertainty and
answer-level diversity also indicates that stepwise stochas-
ticity alone is insufficient for global exploration, motivating
future work to explicitly bridge this gap. Our findings sug-
gest that to expand reasoning capabilities beyond the base
model’s scope truly, RLVR must be coupled with explicit
exploration strategies or off-policy mechanisms that seed
probability mass into underrepresented regions of the solu-
tion space.
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A. Mathematical Analysis

A.1. Proof of Thm. 2.2

Base case. By construction we initialize the RLVR policy to the base model:
mo,(y | 2) = qly | ).

Hence
supp (7, (- | )) = supp(q(- | z)).

Inductive step. Assume that at some iteration  we have
mo(y* | ) = 0 for a particular y*.

All standard policy-gradient updates (e.g. REINFORCE, PPO, GRPO) take the form

0 = 0+ NVoE,yun,(e) |R(z,y) — 57 log T,

Since the outer expectation is over y ~ g, any y* € C with myg(y* | ) = 0 is never sampled and thus contributes no
gradient component. Therefore

mo(y* | x) =0,
and the support of 7y, remains a subset of that of g.

Conclusion. By induction, none of the updates can introduce positive probability mass on any y* € C for which
q(y* | z) = 0. Equivalently,

supp(mo(- | z)) C supp(q(- | z)),
indicating that any correct solution y* with ¢(y* | ) = 0 remains unreachable by the RLVR policy.

A.2. Proof of Corollary 2.3
From Thm. 2.2, support preservation implies
supp(mg(-[z)) S supp(q(-|z)).

Thus, for any y € C,
mo(ylz) >0 = q(ylz) > 0.

Define the total mass on correct completions by

70(C) = Pr[R(z,y) =1, ¢(C) = Pr[R(z,y)=1].

Yyn~mo y~q

Here, we assume samples are independent across LLMs’ different draws; otherwise, we can only assert an upper bound by
union bounds. As k — 00, the pass@k success probability to be written as

paSS@k/’ﬂ.e([L‘)zl_(l_ﬂ—e(C))k N {1, We(C)>Z,

and similarly for q.

Because support preservation ensures that any correct completion reachable under 7y must also be reachable under ¢,
m(C) >0 = ¢(C) > 0.

Hence, the asymptotic success probability satisfies

lim pass@ky,(z) < lim pass@ky(x).
k— o0 k—o0
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A.3. Proof of Thm. 2.5
We consider the one-step RLVR policy update given by:
mo (| @) = (L =) 7o(- | x) + yme(- | @),

where Ty (y | x) x mo(y | z) - exp(S R(x,y)) is the exponentially tilted distribution. 7. (- | x) is an arbitrary exploration
distribution, v € [0, 1] is the mixing coefficient, and S > 0 is the inverse temperature.

We aim to bound 7y (y' | x) for any ¢’ € S. By the RLVR update rule and since 7. (y’ | ) < 1,
mo(y [ 2) = (L=NFe( [ 2) +yme(y' | 2) < (A=) Fo(y' | ) + .

Bound on 7y(y). LetZ =3 _y mo(y | ) exp(B R(:v y)) be the normalizing constant of the exponential tilting. Since
exp(Br) > 1,2 >3 cymo(y | x) = 1. Then forall y’ € S and R(z,y) € [0, 1], it implies

/ BR(z,y") ’
mo(y' | x)e < mo(y' | 2)e"BEY) < my(y’ | z)e?

To(y' | x) =

Tail mass of the current policy. Now we bound 7y (y’ | ) in terms of ¢(y’ | z). Using Pinsker’s inequality:
KL(mgllq) <8 = |mpg—ql1 <V26 = |7r9(y’ | z) —q(y' | ;v)| < V24.

Thus, for all y’ € S,
mo(y | 2) < aq(y' | @) + V20 < 7+ V20

Final bound. Combining the above gives
To(y' | ) < €P - (1 +V20),

and so

o (y' | @) < (1 =) e’ (7 + V20) +

A 4. Proof of Prop. 2.6
We provide two closely related derivations to illuminate the same optimal solution from both a hard-constrained and a

soft-regularized perspective.

Convexity of Feasible Set P,. We first prove the convexity of P,. Recall P, = {p €AY): >, p(y)R(x,y) > p},
where A()) denotes the probability simplex over ).

Take any two distributions p1, p» € P, and let A € [0, 1]. Consider the convex combination
px = Ap1+ (1= A)p2
Since A()) is convex, we have py € A(Y).

Next, because p1, p2 € P,, it follows that

Zpl R(z,y)>p and Y pa(y)R(z,y) > p.

Y

Thus,

> @ R,y) =AY pi(y)R(x,y) sz R(z,y) > Ap+ (1= Np = p.

Hence py € P,. This shows that P, is convex.
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Convexity, existence, and strong duality. We then verify the foundational properties of the optimization problem. Recall
we wish to solve

7{2119 KL(7|lg), where P, = {w €AY): Y m(y)R(x,y) > p} :
y
The objective function KL(7||q) is convex in 7 over the probability simplex A()), since relative entropy is jointly convex
and thus convex in 7 for fixed g. The feasible set P, is also convex.

Moreover, if there exists a strictly feasible distribution 7 such that 3 m(y)R(z,y) > p, then by Slater’s condition, strong
duality holds. This guarantees that the optimal value of the primal problem equals the optimal value of its Lagrangian
dual, and the Karush-Kuhn-Tucker (KKT) conditions characterize the optimal solution. In typical applications—where ¢
arises from softmax-based models with full support—such strictly feasible distributions exist, ensuring that our subsequent
Lagrangian approach is valid.

1) Hard-constrained formulation (projection perspective). Consider the optimization problem:

mgnKL(ﬂHq) s.t. Ex[R(z,y)] > p, Zﬂ'(y |z)=1, =(y|z)>0.
y
Using the method of Lagrange multipliers, the Lagrangian is:

LB = 3 wly | )log LD _ g (Zw(ylew)—p) 2 (Zw<y|x>—1>.

, q(y | =) ” .

Here, we compute the derivative concerning 7(y | x) for fixed multipliers, thereby finding the stationary points of the
Lagrangian. Specifically, we take derivative with respect to 7(y | ) and set it to zero:

log "W 1 2)
q(y | =)

+1—-BR(z,y) +A=0.

Solving for 7 yields:
m(y | z) ocqly | x) - exp(BR(z,y)).

2) Soft-regularized formulation (dual perspective). Alternatively, assume RLVR solves the entropy-regularized objective

7o = argmax . [R(z,y)] - B'KL(r || ),

for some inverse temperature parameter 5 > 0. Here, the constraint 7 < ¢ denotes that 7 is absolutely continuous with
respect to ¢, meaning 7(y | #) > 0 only if ¢(y | ) > 0.!The objective is equivalent to the following minimization:

T =arg min_ KL(7 [| q) = BEy~r[R(z, y)].

The Lagrangian becomes

£ =Y w)og ™ — 53 a(y)RGe,y) A [ Sw) -1 |

yey q(y) yey yey

where A € R is the Lagrange multiplier enforcing the normalization constraint.

Taking the derivative with respect to 7(y) and setting it to zero:

oL (y)
on(y) (y)

"Formally, absolute continuity = < ¢ ensures that the KL divergence KL( || ¢) is finite. If 7 assigns positive mass to any output that
q assigns zero probability, the divergence becomes infinite. This condition also enforces support preservation: supp(m) C supp(q).

:1og7qT +1- BR(z,y) + A =0.
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Solving for 7(y) gives:
m(y) = q(y) - exp (BR(z,y) — A —1).

Letting the normalization constant be:

Z = qy)-exp(BR(z,y")),

y' ey

we absorb constants into Z and write:

mo(y | @) = qly | 2) 'epr(ﬁR(x,y))'

Both derivations recover the same exponentially tilted distribution that emphasizes high-reward completions relative to the
base model. In the hard-constrained view, (3 is a Lagrange multiplier tuned to meet the target reward p; in the soft-regularized
view, [3 sets the strength of the trade-off between reward and divergence. This completes the constructive proof of Prop. 2.6.

A.5. Proof of Cor. 2.7
Since R(z,y) € {0,1}, we have
e’ if R(z,y) =1,
exp(BR(z,y)) = _
1 if R(z,y) = 0.

Thus the RLVR distribution becomes

roly | 2) = W12 exP(BR@.y) _ aly | @) [P1{R(x.y) =1} + 1{R(z.y) = 0}]
’ Zs(@) 5 |

where

Zgx)=¢" D g o)+ D g |a).

y':R(z,y’)=1 y':R(x,y’)=0

As 3 — o0, the term with ¢” dominates whenever there exists at least one y with R(x,y) = 1. Thus

Zs(x) ="y aly' | @)
y'eC
Similarly, in the numerator we have
qly | z)e” ifyec,
q(y | z) exp(BR(z,y)) = {

q(y | x) otherwise.

Dividing by Z3(x) and taking 8 — oo, the probabilities assigned to y with R(z,y) = 0 vanish:

5
q(y | z)e __ alyl=) ity ec,

w5y | 2) 4 @ XyecaW 12)  Xyecaly'| )

0 otherwise.

Thus we obtain
. qly | z)1{y € C
lim 7y | ) (y | 2) {/ }7
5*)00 Zy’EC Q(y |33)
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A.6. Proof of Thm. 2.8

(a) Entropy reduction. Consider the exponentially tilted distribution

roly | ) = WD PEREI) i 2§74ty | ) exp( 30, ).

yey

By standard properties of KL divergence,

x
L(mollq) = Z?reylxlog ((y||x)) > 0.

Rearranging gives
Hlmo] = Hlq] — KL(mollg) < Hql.
Thus, any such RLVR update decreases entropy relative to the base distribution, unless the reward is constant (in which case

Tg = q).

(b) Trade-off with diversity at different sampling budgets. The RLVR-trained policy sharpens the probability mass
around high-reward completions. Explicitly,

mo(y | 2) o q(y | z) exp(BR(z,y)),

where $ > 0 controls concentration.

* Small sampling budgets (k = 1): The increased probability on high-reward outputs generally improves single-shot
success rates. Formally,

pass@ly (@)= Y  mlyle) > D alyle)=passel,(z),

y:R(z,y)=1 y:R(z,y)=1
provided the reweighting boosts correct completions relative to incorrect ones.

« Large sampling budgets (k£ > 1): However, reduced entropy leads to concentration on fewer modes. As /3 grows, my
may collapse onto a narrow subset of correct completions, neglecting other valid solutions accessible under the more
dispersed ¢g. Thus,

limsup pass@k,,(z) < limsup pass@kq(x),

k—o0 k— o0

under typical conditions of entropy reduction and selective mass shifting.

 Loss of tail coverage: In particular, if there exist rare but correct completions that have small mass under ¢ but are
further downweighted (or eliminated) by the tilting, then the total mass on correct completions can decrease:

m(C) < q(C), C={y:R(z,y) =1}

This restricts the long-run probability of recovering diverse solutions via large k£ sampling.

Conclusion. This establishes a trade-off: RLVR improves sampling efficiency by concentrating probability on high-reward
outputs (increasing pass@1), but this comes at the cost of reduced entropy and narrower exploration of the solution space
(potentially lowering pass@k for large k). Empirical studies confirm this phenomenon in settings like code generation and
symbolic reasoning, where many semantically distinct correct completions exist.
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A.7. Estimating the Sampling Threshold ¢ from pass@k

We provide a statistical analysis of the threshold € in the pass@k sampling. Suppose we sample £ times from a model
7(- | ), and let y* € C be a correct completion with unknown probability p = 7(y* | ). If y* is not observed in any of
those k samples, we can upper bound p using the following argument.

The probability of not sampling y* in a single trial is 1 — p, so the probability of missing it in all £ independent trials is
(1 — p)*. To ensure this event occurs with probability at most J, we solve:

(1-p* <o

Taking logarithms of both sides:
k -log(1 — p) < logo.

Using the inequality log(1 — p) < —p forp € (0, 1), we get:

—logd
k-(-p)>logd = p< Zg.

Consequently, if the correct completion y* is not observed in k samples, then with confidence 1 — 4, its probability satisfies:

—logd

* <
ny @) < —

Example. If £ = 8096 in the math reasoning tasks and we desire 95% confidence (i.e., = 0.05), then

—log(0.05) . 2.996

* ~ ~ 3.70 x 1074
™y 12) < 3506 8096 x

B. Experimental Details

We provide comprehensive details of the experimental setup, including dataset descriptions and evaluation methodologies.
A key aspect of our evaluation approach is the answer processing enhancement framework for Reasoning Gym, which
addresses format compatibility challenges between base and ProRL models to ensure fair evaluation.

B.1. Evaluation Settings

We employed vLLM (Kwon et al., 2023) as the inference backend. For all models, we utilized a sampling temperature of
0.6, a top_p value of 0.95, and a maximum response length of 32k.

B.2. Datasets

Math benchmarks. We utilized the complete datasets from MATH500 (Hendrycks et al., 2021), Minerva (Lewkowycz
et al., 2022), OlympiadBench (He et al., 2024), AIME 2024, AIME 2025, and AMC 2023 for evaluation.

Non-math benchmarks. For SimpleQA (Wei et al., 2024), we uniformly sampled 10% of the original dataset (433
samples) to enable efficient large-scale evaluation under high-pass conditions. For LiveBench (White et al., 2025), we used
the 2024-11-25 version available on HuggingFace. To ensure unambiguous evaluation, we focused exclusively on tasks
with binary correct/incorrect judgments and excluded tasks involving intermediate floating-point judgments, as these lack
clear correctness criteria. Based on this selection criterion, we evaluated the following subsets: web_of _lies_v2 and spatial
subsets for Reasoning tasks (LiveBench-R), the typos subset for Language tasks (LiveBench-L), and all available data for
Coding tasks (LiveBench-C). For SciBench (Wang et al., 2023), we evaluated on the complete dataset.

Reasoning Gym. For Reasoning Gym (Stojanovski et al., 2025), we employ the easy set from the version updated after
commit /7a8431 in its repository as our default task configuration. This choice ensures consistency with the default
task configuration used in prior evaluations, maintaining comparable experimental conditions. Additionally, we utilize the
hard set as our challenging evaluation benchmark for further evaluations.
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B.3. Answer Processing Enhancement in Reasoning Gym

We identified significant evaluation challenges when testing the base model on Reasoning Gym. The ProRL model, having
been trained on Reasoning Gym data, predominantly produces responses that conform to the expected format, leading to
much higher accuracy scores. In contrast, the base model struggled with format adherence due to insufficiently detailed
prompts, and its limited 1.5B parameter capacity made it particularly susceptible to evaluation inconsistencies. To address
these issues, we enhanced both the answer extraction protocol and prompt design to ensure fair and objective accuracy
assessments across both models.

B.3.1. GENERAL ANSWER EXTRACTION PROTOCOL

First, we enhanced the answer extraction protocol with a hierarchical, priority-based extraction mechanism that processes
responses through multiple fallback levels. Each level attempts to capture the model’s intended answer, and successful
extraction at any level bypasses subsequent processing steps.

The strategy first attempts to extract content using the Reasoning Gym’s extract_answer () function, which captures
answers within <answer></answer> tags. This approach receives the highest priority since these tags represent
Reasoning Gym’s default format. When this method fails, the system searches for content within the final \boxed{}
formatting.

For dice tasks using the base model, failed ext ract_answer () attempts trigger additional processing through Lighte-
val (Habib et al., 2023)’s math_normalizer () function. This function handles \boxed{} capture and converts a/b
fractions to IATEX format \frac{a}{b}. When extract_answer () successfully captures a/b fraction answers, the
system applies Lighteval’s fix_a_slash_b () function to achieve the same IZTEX conversion.

For non-dice tasks or when using ProRL models, failed extract_answer () attempts utilize Lighteval’s
last boxed_only_string() and remove_boxed () functions. These functions locate content within the final
\boxed{}, primarily addressing cases where base model prompt modifications shifted from answer tags to boxed format-
ting.

As a final fallback, the system extracts content following </think> tags when all previous methods fail and the response
contains these markers. This safety mechanism captures base model responses that ignore formatting requirements in
lengthy tasks.

B.3.2. TASK-SPECIFIC PROCESSING MODIFICATIONS

Our core answer processing pipeline applies to both models, with additional processing steps designed primarily to address
format compatibility issues commonly encountered with base model responses. Specifically, the processing logic for each
task is enhanced as follows:

dice The ground truth for dice tasks uses a/b fraction format. Base models frequently express fractions in ISTEX format,
requiring format standardization for accurate evaluation. For base models only, we convert ground truth fractions from
a/b format to KTEX format \ frac{a}{b} to ensure both model answers and ground truth use consistent ISTgX formatting.
ProRL dice processing maintains a/b formatting for both model answers and ground truth, leveraging the dice samples
present in its training data.

prime_factorization The ground truth format requires answers to be combinations of numbers and multiplication symbol
(i.e., x) only. We implement three key modifications to ensure compatibility with this requirement. First, we standardize
IATEX multiplication symbols by replacing \t imes with x to meet the evaluation requirements, as base models frequently
use IATEX multiplication symbols instead of standard multiplication signs. Second, we expand I4IEX exponentiation by
converting formats like a " b into repeated multiplication (¢ X a X ... X a for b iterations), preventing errors when base
models consolidate repeated factors into exponential notation. Third, we process response equations by retaining only
right-side content when answers contain equals signs, transforming responses like “561 =3 x 11 x 177 to “3 x 11 x 17 to
eliminate question restatement that base models commonly include.

palindrome_generation The ground truth format expects palindromic character strings (sequences that read the same
forwards and backwards). We remove excess whitespace to address frequent spacing issues in base model responses. This
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transformation converts spaced responses like “k h g a g h k” to “khgaghk”, preventing string reversibility judgment failures
that occur when spaces interfere with palindrome verification.

advanced_geometry The ground truth format requires floating-point numbers. Our processing includes three main steps
to handle I&TEX formatting issues commonly produced by base models. First, we remove redundant IATEX expressions
by eliminating \1eft and \right markers while converting ~\circ to ° symbol, addressing base models’ tendency
to use IATEX for brackets and degree symbols. Second, we convert IATEX numerical expressions, transforming fractions
\frac{a}{b} and other XTX formats (\sqrt{a}, \sin{a}, \log{a}, \pi, etc.) into three-decimal floating-point
numbers using the latex2sympy2_extended library’s latex2sympy () function. Third, we evaluate arithmetic
expressions containing radicals (such as 2v/164-51/4—3) by converting them into three-decimal floating-point numbers using
Python’s built-in mathematical functions, handling cases where base models output final results as arithmetic expressions
rather than computed values.

power_function The ground truth format uses e-notation scientific notation. We convert mixed I£TgX and arithmetic
symbol scientific notation to ensure format consistency. The system transforms patterns like “—2.36 x 1076 or “1.5 x 105~
to e-notation format (“-2.36e-16", “1.5e5”), preventing numerically correct but format-incompatible evaluation errors when
base models use mixed ITEX and arithmetic symbols for scientific notation.

arc_1d The ground truth format requires space-separated digit sequences. We handle two types of responses to meet this
grid format requirement. For pure numerical responses, we insert spaces between consecutive digits, converting sequences
like “22220000000000000000111”t0 “22220000000000000000 1 1 1”. For mixed numerical and textual
responses, we extract digits and insert spaces, transforming ISTgX grid formats like \begin{array}{cccc} 0 & 0
§ 0&0&0&06&06&0&76&3&0%8&0s&4s 6 \\\end{farray}to“00000000730046",
addressing base models’ tendency to output correct answers in ITEX grid format.

boxnet The ground truth format requires dictionary list formatting [{key: value}, ...]. We implement com-
prehensive JSON format cleaning to meet these evaluation requirements. Our processing pipeline includes several steps:
rejecting pure numerical responses to prevent non-JSON format interference; removing JSON markdown wrappers that
eliminate * * *json {content} *““ markers; converting single dictionaries to single-element dictionary lists (dict
— [dict]); and filtering illegal elements by removing non-dictionary components from JSON lists. Additionally, we
clean nested structure values within individual dictionary entries. For nested lists, we extract the first element as the value
([{keyl: [valuel, value2, ...1}, ...]1 = [{keyl: wvaluel}, ...]).Fornested dictionaries, we
select matching key values when available ([{keyl: {keyl: wvaluel, key2: wvalue2, ...}}, ...]

— [{keyl: wvaluel}, ...1) ordefault to the first element value when keys don’t match ([{keyl: {key2:
value2, key3: wvalue3}}, ...] — [{keyl: wvalue2}, ...]). These modifications preserve model re-
sponse content to the maximum extent while ensuring ground truth format compliance.

B.4. Entropy Analysis

Setup In entropy analysis, we configure the models with a sampling temperature of 0.6, a top_p value of 0.95, and a
maximum response length of 32k tokens to balance response diversity and quality. Each model generates 32 completions per
problem following the avg@32 evaluation protocol, and all reported metrics (accuracy, response length, token-level entropy,
and answer-level entropy) are averaged across these 32 completions and then across all test problems in each benchmark.

Models We evaluate a diverse set of reasoning models to understand the entropy characteristics across different training
paradigms and parameter scales, as summarized in the following table.

Entropy Computation For token-level entropy computation, we employ teacher-forcing to obtain probability estimates.
Specifically, after generating the 32 completions with the specified sampling parameters, we feed each generated sequence
back to the model and perform a single forward pass to compute the probability distribution over the vocabulary at each token
position. Answer-level entropy is computed by first extracting the final answer from each completion using Lighteval (Habib
et al., 2023), then calculating the entropy over the distribution of unique answers across the 32 completions. This approach
allows us to compute both token-level and answer-level entropy directly from the model’s probability distributions without
introducing additional sampling variance.
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Table 5. Models evaluated in the entropy analysis.

Name Full Model Name Type Parameters
DeepSeek-1.5B  DeepSeek-R1-Distill-Qwen-1.5B Base 1.5B
ProRL-1.5B Nemotron-Research-Reasoning-Qwen-1.5B RLVR 1.5B
DeepSeek-7B DeepSeek-R1-Distill-Qwen-7B Base 7B
AceReason-7B AceReason-Nemotron-7B RLVR 7B
DeepSeek-14B DeepSeek-R1-Distill-Qwen-14B Base 14B
AceReason-14B AceReason-Nemotron-14B RLVR 14B
Qwen2.5-32B Qwen?2.5-32B Base 32B
DAPO-32B DAPO-Qwen—-32B RLVR 32B

C. Practical Algorithmic Patterns Explained by RLVR Theory

Recent methods in RLVR often utilize data-filtering strategies and self-supervised reward construction techniques to enhance
training stability and reasoning capabilities. While empirically motivated, these techniques can be well understood through
our RLVR theoretical framework.

C.1. Prompt Filtering and Selection Heuristics

Several methods (Bae et al., 2025; Zhu et al., 2025) incorporate prompt selection and filtering heuristics to enhance training
efficiency. A common strategy is to dynamically filter or down-sample prompts that yield only incorrect completions (ACC
= 0), thereby avoiding the instability and inefficiency these introduce. For example, Reinforce-Rej (Xiong et al., 2025)
reported that retaining such prompts led to high gradient variance and degraded KL efficiency. PODS (Xu et al., 2025)
advances this by actively sampling prompts with the highest reward variance to foster strong contrastive signals. Techniques
like DAPO’s Clip-Higher ensure each mini-batch contains a balanced mix of correct and incorrect completions (0 < ACC
< 1), sustaining reward variance and diversity. Meanwhile, Polaris (An et al., 2025) and SRPO (Zhang et al., 2025b) further
refine selection by excluding trivial prompts (ACC = 1) that offer little gradient information. Though initially inspired
by GRPO, which implicitly nullifies gradients on all-wrong prompts, these designs closely reflect our theoretical findings:
Thm.2.2 shows zero-accuracy prompts provide no useful signal, Thm.2.8 warns that over-emphasizing easy prompts risks
entropy collapse and diminished pass@k, and Prop. 2.6 underscores that meaningful updates rely on in-support reward
variability.

C.2. Self-Supervised Bootstrap Learning

Recent studies (Prabhudesai et al., 2025; Shao et al., 2025) explore self-supervised RL techniques that improve reasoning
without external ground-truth labels. Unlike traditional RLVR relying on externally verifiable rewards, they build intrinsic
reward signals from the model’s outputs, leveraging internal consistency, semantic coherence, or self-play. For example,
EMPO (Zhang et al., 2025a) minimizes semantic entropy across self-generated clusters, RLIF (Zhao et al., 2025¢) uses
model confidence scores (INTUITOR) as intrinsic rewards, SRT (Shafayat et al., 2025) and TTRL (Zuo et al., 2025)
employ majority voting among completions, Absolute Zero (Zhao et al., 2025a) adopts a self-play mechanism guided
by environment feedback, and EM-RL (Agarwal et al., 2025) combines entropy regularization with gradient alignment.
Even random intrinsic rewards can yield improvements by exploiting model inductive biases (Shao et al., 2025). These
approaches succeed by aligning rewards with natural structural redundancies in model outputs. EMPO and RLIF favor
internally coherent or confident completions, SRT and TTRL reinforce consensus, Absolute Zero evolves proposal and
solution generations through self-play, and EM-RL maintains stability by regulating entropy and gradients. Viewed through
our lens, they implicitly respect theoretical constraints: consistent with Thm. 2.2, they remain within the base model’s
support through sampling or clustering; aligned with Thm. 2.8, they systematically reduce entropy, sharpening distributions
over promising modes; and as shown by Prop. 2.6, they maintain stability via entropy-regularized or gradient-constrained
updates.
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