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Abstract

Understanding how semantic meaning is encoded
in the representation spaces of large language
models is a fundamental problem in interpretabil-
ity. In this paper, we study the two foundational
questions in this area. First, how are categorical
concepts, such as {mammal, bird, reptile,
fish}, represented? Second, how are hierar-
chical relations between concepts encoded? For
example, how is the fact that dog is a kind of
mammal encoded? We show how to extend the
linear representation hypothesis to answer these
questions. We then find a remarkably simple struc-
ture: simple categorical concepts are represented
as simplices, hierarchically related concepts are
orthogonal in a sense we make precise, and (in
consequence) complex concepts are represented
as polytopes constructed from direct sums of sim-
plices, reflecting the hierarchical structure. We
validate the results on the Gemma large language
model, estimating representations for 957 hier-
archically related concepts using data from the
WordNet hierarchy.

1. Introduction
This paper concerns how high-level semantic concepts are
encoded in the representation spaces of large language mod-
els (LLMs). Understanding this is crucial for model inter-
pretability and control. The ultimate aspiration is to monitor
(and manipulate) the semantic behavior of LLMs (e.g., is the
model’s response truthful) by directly measuring (and edit-
ing) the internal vector representations of the model (e.g., Li
et al., 2023a; Zou et al., 2023; Ghandeharioun et al., 2024).
Achieving this requires understanding how the geometric
structure of the representation spaces corresponds to the
high-level semantic concepts that humans understand. In
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this paper, we are concerned with two fundamental ques-
tions in this direction:

1. How are categorical concepts represented? For ex-
ample, what is the representation of the concept
animal = {mammal,bird,reptile,fish}?

2. How are hierarchical relations between concepts repre-
sented? For example, what is the relationship between
the representations of animal, mammal, dog, and
poodle?

Our starting point is the linear representation hypothe-
sis, the informal idea that high-level concepts are lin-
early encoded in the representation spaces of LLMs (e.g.,
Marks & Tegmark, 2023; Tigges et al., 2023; Gurnee &
Tegmark, 2024). A main challenge for the linear rep-
resentation hypothesis is that, in general, it’s not clear
what “linear” means, nor what constitutes a “high-level
concept”. Park et al. (2024) give a formalization in the
limited setting of binary concepts that can be defined by
counterfactual pairs of words. For example, the concept of
male ⇒ female is formalized using the counterfactual
pairs {(“man”, “woman”), (“king”, “queen”), . . . }. They
prove that such binary concepts have a well-defined lin-
ear representation as a direction in the representation space.
They further connect semantic structure and representation
geometry by showing that, under a suitably defined causal
inner product, concepts that can be freely manipulated (e.g.,
male ⇒ female and french ⇒ english) are repre-
sented by orthogonal directions.

Our aim here is to extend this formalization beyond binary
concepts represented as counterfactual word pairs. For ex-
ample, the animal concept does not have a natural counter-
factual definition, but such concepts are fundamental to hu-
man semantic understanding. Further, we aim to understand
how the geometry of the representation space encodes se-
mantic relationships between concepts that cannot be freely
manipulated, such as animal and mammal.

To that end, we make the following contributions:

1. We show how to move from representations of binary
concepts as directions to representations as vectors.
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(a) Pictorial depiction of the representation of hierarchically related concepts. 

(b) Hierarchy is encoded as orthogonality in Gemma. (c) Categorical concepts are represented as simplices in Gemma.

Figure 1. In large language models, categorical concepts are represented as simplices in the representation space. Further, hierarchically
related concepts (such as animal and mammal⇒ bird) live in orthogonal subspaces. The top panel illustrates the structure, the bottom
panels show the measured representation structure in the Gemma LLM. See Section 5 for details.

That is, we show how to associate a magnitude to
the representation of a binary concept. This allows
us to study semantic composition using simple vector
addition.

2. Using this result, we show that semantic hierarchy
between concepts is encoded geometrically as orthogo-
nality between representations, in a manner we make
precise.

3. Then, we construct the representation of categorical
variables (e.g., animal) as the polytope where the ver-
tices are the representations of the binary features that
define the category (e.g., mammal,bird, . . . ). We
show that for “natural” concepts, the representation is
a simplex.

4. Finally, we empirically validate these theoretical re-

sults on the Gemma large language model (Mesnard
et al., 2024). To that end, we extract concepts from
the WordNet hierarchy (Miller, 1995), estimate their
representations, and show that the geometric structure
of the representations align with the semantic hierarchy
of WordNet.

The final structure is remarkably simple, and is summarized
in Figure 1. In totality, these results provide a foundation
for understanding how high-level semantic concepts are
encoded in the representation spaces of LLMs.

2. Preliminaries
Before we proceed, we introduce notations and definitions
that we use throughout the paper.

2



The Geometry of Categorical and Hierarchical Concepts in Large Language Models

Large Language Models For the purposes of this paper,
we consider a large language model to consist of two parts.
The first part is a function λ that maps input texts x to vec-
tors λ(x) in a representation space Λ ' Rd. This is the
function given by the stacked transformer blocks. We take
λ(x) to be the output of the final layer at the final token po-
sition. The second part is an unembedding layer that assigns
a vector γ(y) in an unembedding space Γ ' Rd to each
token y in the vocabulary. Together, these define a sampling
distribution over tokens via the softmax distribution:

P(y | x) =
exp(λ(x)>γ(y))∑

y′∈Vocab exp(λ(x)>γ(y′))
. (2.1)

The broad goal is to understand how semantic structure is
encoded in the geometry of the spaces Λ and Γ. (We do not
address the “internal” structure of the LLMs in this paper,
though we are optimistic that a clear understanding of the
softmax geometry will shed light on this as well.)

Concepts We formalize a concept as a latent variable
W that is caused by the context X and causes the
output Y . That is, a concept is a thing that could—in
principle—be manipulated to affect the output of the
language model. In the particular case where a concept
is a binary variable with a word-level counterfactual,
we can identify the variable W with the counterfac-
tual pair of outputs (Y (0), Y (1)). Concretely, we
can identify male ⇒ female with (Y (0), Y (1)) ∈R
{(“man”, “woman”), (“king”, “queen”), (“he”, “her”), . . . }.
We emphasize that the notion of a concept as a latent
variable that affects the output is more general than the
counterfactual binary case.

Given a pair of concept variables W and Z, we say that
W is causally separable with Z if the potential outcome
Y (W = w,Z = z) is well-defined for all w, z. That is,
two variables are causally separable if they can be freely
manipulated—e.g., we can change the output language and
the sex of the subject freely, so these concepts are causally
separable.

Causal Inner Product and Linear Representations We
are trying to understand how concepts are represented. At
this stage, there are two distinct representation spaces: Λ
and Γ. The former is the space of context embeddings, and
the latter is the space of token unembeddings. We would
like to unify these spaces so that there is just a single notion
of representation.

Park et al. (2024) show how to achieve this unification via a
“Causal Inner Product”. This is a particular choice of inner
product that respects the semantics of language in the sense
that the linear representations of (binary, counterfactual)
causally separable concepts are orthogonal under the inner

product. Their result can be understood as saying that there
is some invertible matrix A and constant vector γ̄0 such that,
if we transform the embedding and unembedding spaces as

g(y)← A(γ(y)− γ̄0), `(x)← A−>λ(x) (2.2)

then the Euclidean inner product in the transformed spaces
is the causal inner product, and the Riesz isomorphism be-
tween the embedding and unembedding spaces is simply
the usual vector transpose operation. We can estimate A as
the whitening operation for the unembedding matrix. Fol-
lowing this transformation, we can think of the embedding
and unembedding spaces as the same space, equipped with
the familiar Euclidean inner product.1

Notice that the softmax probabilities are unchanged for
any A and γ̄0, so this transformation does not affect the
model’s behavior. The vector γ̄0 defines an origin for the
unembedding space, and can be chosen arbitrarily. We give
a particularly convenient choice below.

In this unified space, the linear representation of a binary
concept W ∈R {0, 1} is defined as:

Definition 2.1. A vector ¯̀
W is a linear representation of

a binary concept W if for all contexts `, and all concept
variables Z that are causally separable with W , we have,
for all α > 0,

P(W = 1 | `+ α¯̀
W ) > P(W = 1 | `), and (2.3)

P(Z | `+ α¯̀
W ) = P(Z | `). (2.4)

That is, the linear representation is a direction in the repre-
sentation space that, when added to the context, increases
the probability of the concept, but does not affect the
probability of any off-target concept. In the case of bi-
nary concepts that can be represented as counterfactual
pairs of words, this direction can be shown to be propor-
tional to the “linear probing” direction, and proportional
to g(Y (1))− g(Y (0)) for any counterfactual pair of words
Y (1), Y (0) that represent the concept W .

3. Binary Concepts and Hierarchical
Structure

Our high-level strategy will be to build up from binary
concepts to more complex structure. We begin by defining
the basic building blocks.

Binary and Categorical Concepts We consider two
kinds of binary concept. A binary feature W ∈R
{not w,is w} is an indicator of whether the output has
the attribute w. For example, if the feature is animal is

1We are glossing over some technical details here; see (Park
et al., 2024) for details.
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true then the output will be about an animal. A binary con-
trast a ⇒ b ∈R {a, b} is a binary variable that contrasts
two specific attribute values. For example, the variable
mammal ⇒ bird is a binary contrast. In the particular
case where the concept may be represented as counterfac-
tual pairs of words, we can identify the contrast with the
notion of linear representation in Park et al. (2024).

We also define a categorical concept to be any concept
corresponding to a categorical latent variable. This includes
binary concepts as a special case.

Hierarchical Structure The next step is to define what
we mean by a hierarchical relation between concepts. To
that end, to each attribute w, we associate a set of tokens
Y(w) that have the attribute. For example, Y(mammal) =
{“ dog”, “ cats”, “ Tiger”, . . . }. Then,

Definition 3.1. A value z is subordinate to a value w (de-
noted by z ≺ w) if Y(z) ⊆ Y(w). We say a categorical
concept Z ∈R {z0, . . . , zk−1} is subordinate to a categori-
cal concept W ∈R {w0, . . . , wn−1} if there exists a value
wZ of W such that each value zi of Z is subordinate to wZ .

For example, the binary contrast dog ⇒ cat is subordi-
nate to the binary feature {is mammal, not mammal},
and the binary contrast parrot ⇒ eagle is subordi-
nate to the categorical concept {mammal, bird, fish}.
On the other hand, dog ⇒ eagle is not subordinate
to bird ⇒ mammal, and bird ⇒ mammal and
live in house ⇒ live in water are not subordi-
nate to each other.

Linear Representations of Binary Concepts Now we
return to the question of how binary concepts are repre-
sented. A key desideratum is that if ¯̀

W is a linear repre-
sentation then moving the representation in this direction
should modify the probability of the target concept in iso-
lation. If adding ¯̀

W also modified off-target concepts, it
would not be natural to identify it with W . In Definition 2.1,
this idea is formalized by the requirement that the probabil-
ity of causally separable concepts is unchanged when the
representation is added to the context.

We now observe that, when there is hierarchical structure,
this requirement is not strong enough to capture ‘off-target’
behavior. For example, if ¯̀

animal captures the concept of
animal vs not-animal, then moving in this direction should
not affect the relative probability of the output being about
a mammal versus a bird. If it did, then the representation
would actually capture some amalgamation of the animal
and mammal concepts. Accordingly, we must strengthen
our definition:

Definition 3.2. A vector ¯̀
W is a linear representation of a

binary concept W if for all contexts `,

P(W = 1 | `+ α¯̀
W ) > P(W = 1 | `), and (3.1)

P(Z | `+ α¯̀
W ) = P(Z | `), (3.2)

for all α > 0 and all concept variables Z that are either
subordinate or causally separable with W . Here, if W is
a binary feature for an attribute w, W = 1 denotes W =
is w.

Notice that, in the case of binary concepts defined by coun-
terfactual pairs, this definition is equivalent to Definition 2.1,
because such variables have no subordinate concepts.

4. Representations of Complex Concepts
Vector Representations of Binary Features To build up
to complex concepts, we need to understand how to com-
pose representations of binary concepts. At this stage, the
representations are directions in the representation space—
they do not have a natural notion of magnitude. In particular,
this means we cannot use vector operations (such as addi-
tion) to compose representations. To overcome this, we now
show how to associate a magnitude to the representation of
a binary concept.

The key is the following result connecting binary feature
representations and word unembeddings:

Theorem 4.1 (Magnitudes of Linear Representations). Sup-
pose there exists a linear representation (normalized direc-
tion) ¯̀

W of a binary feature W for an attribute w. Then,
there is a constant bw > 0 and a choice of unembedding
space origin γ̄w0 in (2.2) such that{

¯̀>
W g(y) = bw if y ∈ Y(w)

¯̀>
W g(y) = 0 if y 6∈ Y(w).

(4.1)

Further, if there are d causally separable attributes
{w0, . . . , wd−1} with linear representations, we can choose
a canonical origin γ̄0 in (2.2) as

γ̄0 =
∑
i

γ̄wi
0 . (4.2)

All proofs are given in Appendix A.

In words, this theorem says that if a (perfect) linear repre-
sentation of the animal feature exists, then every token that
has the animal attribute has the same dot product with the
representation vector; i.e., “cat” is exactly as much animal

as “dog” is. If this weren’t true, then increasing the probabil-
ity that the output is about an animal would also increase the
relative probability that the output is about a dog rather than
a cat. In practice, such exact representations are unlikely
to be found by gradient descent in LLM training. Rather,
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we expect ¯̀>
W g(y) to be isotropically distributed around bw

with variance that is small compared to bw (so that animal
and non-animal words are well-separated.)

With this result in hand, we can define a notion of vector
representation for a binary feature:

Definition 4.2. We say that binary feature W for an at-
tribute w has a vector representation ¯̀

w ∈ Rd if ¯̀
w satisfies

Definition 3.2 and ‖¯̀w‖2 = bw in Theorem 4.1. If the vec-
tor representation of a binary feature is not unique, we say
¯̀
w is the vector representation that maximizes bw.

Hierarchical Orthogonality We have now moved from
representations as directions to representations as vectors.
Using this result, we now establish how hierarchical rela-
tions between concepts are encoded in the vector space struc-
ture of the representation space. The structure is illustrated
in Figure 2. Formally, we have the following connections
between vector and semantic structure:

Theorem 4.3 (Hierarchical Orthogonality). Suppose there
exist the vector representations for all the following binary
features. Then, we have that

(a) ¯̀
w1
− ¯̀

w0
is a linear representation ¯̀

w0⇒w1
defined

in Definition 3.2;

(b) ¯̀
w ⊥ ¯̀

z − ¯̀
w for z ≺ w;

(c) ¯̀
w ⊥ ¯̀

z1 − ¯̀
z0 for Z ∈R {z0, z1} subordinate to

W ∈R {not w,is w};

(d) ¯̀
w1
− ¯̀

w0
⊥ ¯̀

z1 − ¯̀
z0 for Z ∈R {z0, z1} subordinate

to W ∈R {w0, w1}; and

(e) ¯̀
w1
− ¯̀

w0
⊥ ¯̀

w2
− ¯̀

w1
for w2 ≺ w1 ≺ w0.

We emphasize that these results—involving differences of
representations—are only possible because we now have
vector representations (mere direction would not suffice).

Categorical Concepts as Simplices The power of having
a vector representation is that now we can use ordinary
vector space operations to construct representation of other
concepts. We now turn to the representation of categorical
concepts, e.g., {mammal,reptile,bird,fish}. There
is now a straightforward way to define the representation of
such concepts:

Definition 4.4. The polytope representation of a categorical
concept Z = {z0, . . . , zk−1} is the convex hull of the vector
representations of the elements of the concept.

Polytopes are quite general objects. The definition here also
includes representations of categorical variables that are se-
mantically unnatural, e.g., {dog,sandwich,running}.

We would like to make a more precise statement about the
representation of “natural” concepts. One possible notion
of a “natural” concept is one where the model can freely
manipulate the output values. The next theorem shows that
such concepts have a particularly simple structure:

Theorem 4.5 (Categorical Concepts are Represented as
Simplices). Suppose that {w0, . . . , wk−1} is a collection of
k mutually exclusive attributes such that for every joint
distribution Q(w0, . . . wk−1) there is some `i such that
P(W = wi | `i) = Q(W = wi) for every i. Then, the vec-
tor representations ¯̀

w0
, . . . , ¯̀

wk−1
form a (k − 1)-simplex

in the representation space. In this case, we take the sim-
plex to be the representation of the categorical concept
W = {w0, . . . , wk−1}.

Summary Together, Theorems 4.3 and 4.5 give the sim-
ple structure illustrated in Figure 1: hierarchical concepts
are represented as direct sums of simplices. The direct
sum structure is immediate from the orthogonality in Theo-
rem 4.3.

5. Experiments
We now turn to empirically testing the theoretical results in
the representation space of the Gemma-2B large language
model (Mesnard et al., 2024).

Canonical representation space The results in this paper
rely on transforming the representation space so that the Eu-
clidean inner product is a causal inner product, aligning the
embedding and unembedding representations. Following
Park et al. (2024), we estimate the required transformation
as:

g(y) = Cov(γ)−1/2(γ(y)− E[γ])

where γ is the unembedding vector of a word sampled uni-
formly from the vocabulary. Centering by E[γ] is a rea-
sonable approximation of centering by γ̄0 defined in The-
orem 4.1 because this makes the projection of a random
g(y) on an arbitrary direction close to 0. This matches the
requirement that the projection of a word onto a concept the
words does not belong to should be close to 0.

WordNet We define a large collection of binary concepts
using WordNet (Miller, 1995). Briefly, WordNet organizes
English words into a hierarchy of synsets, where each synset
is a set of synonyms. The WordNet hierarchy is based on
word hyponym relations, and reflects the semantic hierarchy
of interest in this paper. We take each synset as an attribute
w and define Y(w) as the collection of all words belonging
to any synset that is a descendant of w. For example, the
synset mammal.n.01 is a descendant of animal.n.01,
so both Y(mammal.n.01) and Y(animal.n.01) con-
tain the word “dog”. We collect all noun and verb synsets,
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Figure 2. Hierarchical semantics are encoded as orthogonality in the representation space, as predicted in Theorem 4.3. The plots show the
projection of the unembedding vectors on the 2D subspaces: span{¯̀animal, ¯̀

mammal} (left; statement (b)), span{¯̀animal, ¯̀
bird − ¯̀

mammal}
(middle; statement (c)), and span{¯̀animal − ¯̀

plant, ¯̀
bird − ¯̀

mammal} (right; statement (d)). The gray points indicate all 256K tokens in
the vocabulary, and the colored points are the tokens in Y(w). The blue and red vectors are used to span the 2D subspaces.

and augment the word collections by including plural forms
of the nouns, multiple tenses of each verb, and capital and
lower case versions of each word. We filter to include only
those synsets with at least 50 words in the Gemma vocab-
ulary. This leaves us with 593 noun and 364 verb synsets,
each defining an attribute.

Estimation via Linear Discriminant Analysis Now, we
want to estimate the vector representation ¯̀

w for each at-
tribute w. To do this, we make use of vocabulary sets Y(w).
Following Theorem 4.1, the vector associated to the concept
w should have two properties. First, when the full vocabu-
lary is projected onto this vector, the words in Y(w) should
be well-separated from the rest of the vocabulary. Second,
the projection of the unembedding vectors for y ∈ Y(w)
should be approximately the same value. Equivalently, the
variance of the projection of the unembedding vectors for
y ∈ Y(w) should be small. To capture these requirements,
we estimate the directions using a variant of Linear Discrim-
inant Analysis (LDA), which finds a projection minimizing
within-class variance and maximizing between-class vari-
ance. Formally, we estimate the vector representation of a
binary feature W for an attribute w as

¯̀
w =

(
g̃>wE(gw)

)
g̃w, with g̃w =

Cov(gw)†E(gw)

‖Cov(gw)†E(gw)‖2
,

where gw is the unembedding vector of a word sampled
uniformly from Y(w) and Cov(gw)† is a pseudo-inverse of
the covariance matrix. We estimate the covariance matrix
Cov(gw) using the Ledoit-Wolf shrinkage estimator (Ledoit
& Wolf, 2004), because the dimension of the representation
spaces is much higher than the number of samples.

5.1. Visualization of animal

As a concrete example, we check the theoretical predictions
for the concept animal. For this, we generated two sets

of tokens Y(animal) and Y(plant) using ChatGPT-4
(OpenAI, 2023) and manually inspected them. Y(animal)
is separated to six sets of tokens for each subcategory
{mammal,bird,fish,reptile,amphibian,insect}.

Figure 2 illustrates the geometric relationships between var-
ious representation vectors. The main takeaway is that the
semantic hierarchy is encoded as orthogonality in the man-
ner predicted by Theorem 4.3. The figure also illustrates
Theorem 4.1, showing that the projection of the unembed-
ding vectors for y ∈ Y(w) is approximately constant, while
the projection of y 6∈ Y(w) is zero.

Figure 3 illustrates that the representation of a cate-
gorical concept is a simplex, as predicted in Theo-
rem 4.5. It also shows that, as predicted, the simplex for
fish,mammal,bird is orthogonal to the vector represen-
tation of animal.

5.2. WordNet Hierarchy

We now turn to using the WordNet hierarchy to evaluate
the theoretical predictions at scale. For space, we report
the noun hierarchy here and defer the verb hierarchy to
Appendix C.

Existence of Vector Representations for Binary Fea-
tures To evaluate whether vector representations exist, for
each synset w we split Y(w) into train words (80%) and test
words (20%), fit the LDA estimator to the train words, and
examine the projection of the unembedding vectors for the
test words onto the estimated vector representation. Figure 4
shows the mean and standard error of the test projections,
divided by the magnitude of each estimated ¯̀

w. If a vector
representation exists for an attribute, we would expect these
values to be close to 1. We see that this is indeed the case,
giving evidence that vector representations do indeed exist
for these features.
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Figure 3. Categorical concepts are represented as simplices. The plots show the projection of the unembedding vectors on the 3D
subspaces: span{¯̀mammal, ¯̀

bird, ¯̀
fish} (left) and span{¯̀bird − ¯̀

mammal, ¯̀
fish − ¯̀

mammal, ¯̀
reptile − ¯̀

mammal} (right). The gray points
indicate all 256K tokens in the vocabulary, and the colored points are the tokens in Y(w). The left plot further shows the orthogonality
between the triangle and the projection of ¯̀

animal (black arrow).
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Figure 4. Linear representations exist for most binary features in the WordNet noun hierarchy. Comparison of projection of test and
random words on estimated vector representations for each WordNet feature. The values are divided by the norm of the estimated vector
representation. The x-axis indices denote all features in the noun hierarchy. The thick lines present the mean of the projections for each
feature and the error bars indicate the 1.96 × standard error.

Hierarchical Orthogonality It remains to evaluate the
prediction that hierarchical relations are encoded as orthog-
onality in the representation space. Figure 5 shows the
adjacency matrix of the WordNet noun hyponym inclusion
graph (left), the cosine similarity between the vector rep-
resentations ¯̀

w for each feature (middle), and the cosine
similarity between child-parent vectors ¯̀

w − ¯̀parent of w for
each feature (right). Strikingly, the cosine similarity clearly
reflects the semantic hierarchy—the adjacency matrix is
clearly visible in the middle heatmap. This is because, e.g.,
mammal.n.01 and animal.n.01 have high cosine similarity.
By contrast, as predicted by Theorem 4.3, the child-parent
and parent-grandparent vectors are orthogonal. This also
straightforwardly implies all other theoretical connections
between orthogonality and semantic hierarchy.

In Appendix C, we present zoomed-in heatmaps for the
subtree of descendants of “animal”, and the results for the
verb hierarchy.

6. Discussion and Related Work
We set out to understand how semantic structure is encoded
in the geometry of representation space. We have arrived an
astonishingly simple structure, summarized in Figure 1. The
key contributions are moving from representing concepts as
directions to representing them as vectors (and polytopes),
and connecting semantic hierarchy to orthogonality.

Related work This result connects closely to the study
of linear representations in language models (e.g., Mikolov
et al., 2013; Pennington et al., 2014; Arora et al., 2016;
Elhage et al., 2022; Burns et al., 2022; Tigges et al., 2023;
Nanda et al., 2023; Moschella et al., 2022; Li et al., 2023b;
Gurnee et al., 2023; Wang et al., 2023; Jiang et al., 2024;
Park et al., 2024). In particular, Park et al. (2024) formal-
ize the linear representation hypothesis by unifying three
distinct notions of linearity: word2vec-like embedding dif-
ferences, logistic probing, and steering vectors. Our work
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Figure 5. Hierarchical semantics in WordNet are encoded in Gemma representation space, with the orthogonal structure predicted in
Theorem 4.3. The adjacency matrix of the hierarchical relations between features in the noun hierarchy (left), the cosine similarity
between the vector representations ¯̀

w for each feature (middle), and the cosine similarity between child-parent vectors ¯̀
w − ¯̀parent of w for

each feature (right). The features are ordered by the hierarchy.

relies on this unification, and just focuses on the steering
vector notion. Our work also connects to work aimed at
theoretically understanding the existence of linear represen-
tations. Specifically, (Arora et al., 2016; 2018; Frandsen
& Ge, 2019) use RAND-WALK model where the latent
vectors are modeled to drift on the unit sphere. (Blei &
Lafferty, 2006; Rudolph et al., 2016; Rudolph & Blei, 2017)
consider a similar dynamic topic modeling. Gittens et al.
(2017) and subsequent works (Allen & Hospedales, 2019;
Allen et al., 2019) propose a paraphrasing model where a
subset of words is semantically equivalent to a single word.
Ethayarajh et al. (2018) try to explain linear representations
by decomposing the pointwise mutual information matrix
while Ri et al. (2023) connect it to contrastive loss. Jiang
et al. (2024) connect the existence of linear representations
to the implicit bias of gradient descent. In this paper, we
do not seek to justify the existence of linear representa-
tions, but rather to understand their structure if they do exist.
Though, by empirically estimating vector representations
for thousands of concepts, we add to the body of evidence
supporting the existence of linear representations. Elhage
et al. (2022) also empirically observe the formation of poly-
topes in the representation space of a toy model, and the
present work can be viewed as giving an explanation for
this phenomenon.

There is also a growing literature studying the representa-
tion geometry of natural language (Mimno & Thompson,
2017; Reif et al., 2019; Volpi & Malagò, 2021; 2020; Li
et al., 2020; Chen et al., 2021; Chang et al., 2022; Liang
et al., 2022; Jiang et al., 2023; Park et al., 2024; Valeriani
et al., 2024). Much of this work focuses on connections to
hyperbolic geometry (Nickel & Kiela, 2017; Ganea et al.,
2018; Chen et al., 2021; He et al., 2024). We do not find
such a connection in existing LLMs, but it is an interest-

ing direction for future work to determine if more efficient
LLM representations could be constructed in hyperbolic
space. Jiang et al. (2023) hypothesize that very general ”in-
dependence structures” are naturally represented by partial
orthogonality in vector spaces (Amini et al., 2022). The
results here confirm and expand on this hypothesis in the
case of hierarchical structure in language models.

Implications and Future Work The results in this paper
are foundational for understanding the structure of represen-
tation space in language models. Of course, the ultimate pur-
pose of foundations is to build upon them. One immediate
direction is to refine the attempts to interpret LLM structure
to explicitly account for hierarchical semantics. As a con-
crete example, there is currently significant interest in using
sparse autoencoders to extract interpretable features from
LLMs (e.g., Cunningham et al., 2023; Bricken et al., 2023).
This work searches for representations in terms of distinct
binary features. Concretely, it hopes to find features for,
e.g., animal, mammal, bird, etc. Based on the results here,
these representations are strongly co-linear, and potentially
difficult to disentangle. On the other hand, a representation
in terms of ¯̀

animal, ¯̀
mammal− ¯̀

animal, ¯̀
bird− ¯̀

animal, etc.,
will be cleanly separated and equally interpretable. Funda-
mentally, semantic meaning has hierarchical structure, so
interpretability methods should respect this structure. Un-
derstanding the geometric representation makes it possible
to design such methods.

In a separate, foundational, direction: the results in this
paper rely on using the canonical representation space. We
estimate this using the whitening transformation of the un-
embedding layer. However, this technique only works for
the final layer representation. It is an important open ques-
tion how to make sense of the geometry of internal layers.
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A. Proofs
A.1. Proof of Theorem 4.1

Theorem 4.1 (Magnitudes of Linear Representations). Suppose there exists a linear representation (normalized direction)
¯̀
W of a binary feature W for an attribute w. Then, there is a constant bw > 0 and a choice of unembedding space origin
γ̄w0 in (2.2) such that {

¯̀>
W g(y) = bw if y ∈ Y(w)

¯̀>
W g(y) = 0 if y 6∈ Y(w).

(4.1)

Further, if there are d causally separable attributes {w0, . . . , wd−1} with linear representations, we can choose a canonical
origin γ̄0 in (2.2) as

γ̄0 =
∑
i

γ̄wi
0 . (4.2)

Proof. For any y1, y0 ∈ Y(w) or y1, y0 6∈ Y(w), let Z be a binary concept where Y(Z = 0) = {y0} and Y(Z = 1) = {y1}.
Since Z is subordinate to W , (3.2) implies that

logitP(Y = y1 | Y ∈ {y0, y1}, `+ ¯̀
W ) = logitP(Y = y1 | Y ∈ {y0, y1}, `) (A.1)

⇐⇒ ¯̀>
W (g(y1)− g(y0)) = ¯̀>

WA(γ(y1)− γ(y0)) = 0 (A.2)

where A is the invertible matrix in (2.2). This means that ¯̀>
WAγ(y) is the same for all y ∈ Y(w), and it is also the same for

all y 6∈ Y(w).

Furthermore, for any y1 ∈ Y(w) and y0 6∈ Y(w), (3.1) implies that

logitP(Y = y1 | Y ∈ {y0, y1}, `+ ¯̀
W ) > logitP(Y = y1 | Y ∈ {y0, y1}, `) (A.3)

⇐⇒ ¯̀>
W (g(y1)− g(y0)) = ¯̀>

WA(γ(y1)− γ(y0)) > 0. (A.4)

Thus, by setting b0w = ¯̀>
WAγ(y) for any y 6∈ Y(w), and bw = ¯̀>

WAγ(y1) − ¯̀>
WAγ(y0) > 0 for any y1 ∈ Y(w) and

y0 6∈ Y(w), we get {
¯̀>
WAγ(y) = b0w + bw if y ∈ Y(w)

¯̀>
WAγ(y) = b0w if y 6∈ Y(w).

(A.5)

Then, we can choose an origin as
γ̄w0 = b0wA

−1 ¯̀
W (A.6)

satisfying (4.1).

On the other hand, if there exist ¯̀
W and ¯̀

Z for causally separable attributes w and z, then ¯̀
W and ¯̀

Z are orthogonal
by the property of the causal inner product. If they are not orthogonal, adding ¯̀

Z can change the other concept W , and
it is a contradiction. Now if there exist the linear representation for d binary features for causally separable attributes
{w0, . . . , wd−1}, we can choose a canonical γ̄0 in (2.2) as

γ̄0 =
∑
i

γ̄wi
0 . (A.7)

with (4.1) satisfied.

A.2. Proof of Theorem 4.3

Theorem 4.3 (Hierarchical Orthogonality). Suppose there exist the vector representations for all the following binary
features. Then, we have that

(a) ¯̀
w1
− ¯̀

w0
is a linear representation ¯̀

w0⇒w1
defined in Definition 3.2;

(b) ¯̀
w ⊥ ¯̀

z − ¯̀
w for z ≺ w;
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(c) ¯̀
w ⊥ ¯̀

z1 − ¯̀
z0 for Z ∈R {z0, z1} subordinate to W ∈R {not w,is w};

(d) ¯̀
w1 − ¯̀

w0 ⊥ ¯̀
z1 − ¯̀

z0 for Z ∈R {z0, z1} subordinate to W ∈R {w0, w1}; and

(e) ¯̀
w1 − ¯̀

w0 ⊥ ¯̀
w2 − ¯̀

w1
for w2 ≺ w1 ≺ w0.

Proof. (a) For ¯̀
w1

and ¯̀
w0

, by Theorem 4.1, we have
(¯̀
w1
− ¯̀

w0
)>g(y) = 0− bw0

= −bw0
if y ∈ Y(w0)

(¯̀
w1
− ¯̀

w0
)>g(y) = bw1

− 0 = bw1
if y ∈ Y(w1)

(¯̀
w1 − ¯̀

w0)>g(y) = 0− 0 = 0 if y 6∈ Y(w0) ∪ Y(w1).

(A.8)

Since ¯̀
w1
− ¯̀

w0
can change the target concept w0 ⇒ w1 without changing any other concept subordinate or causally

separable to the target concept, ¯̀
w1
− ¯̀

w0
is the linear representation ¯̀

w0⇒w1
.

(b) For ¯̀
w and ¯̀

z where z ≺ w, by Theorem 4.1, we have
(¯̀
z − ¯̀

w)>g(y) = bz − bw if y ∈ Y(z)

(¯̀
z − ¯̀

w)>g(y) = 0− bw = −bw if y ∈ Y(w) \ Y(z)

(¯̀
z − ¯̀

w)>g(y) = 0− 0 = 0 if y 6∈ Y(w).

(A.9)

When w \ z denotes an attribute defined by Y(w) \ Y(z), ¯̀
z − ¯̀

w can change the target concept w \ z ⇒ z without
changing any other concept subordinate or causally separable to the target concept. Thus, ¯̀

z − ¯̀
w is the linear

representation ¯̀
w\z⇒z . This concept means not z⇒ is z conditioned on w, and hence it is subordinate to w.

Therefore, ¯̀
w is orthogonal to the linear representation ¯̀

w\z⇒z = ¯̀
z − ¯̀

w by the property of the causal inner product.
If they are not orthogonal, adding ¯̀

w can change the other concept w \ z ⇒ z, and it is a contradiction.

(c) By the above result (b), ¯̀>
w(¯̀

z1 − ¯̀
w) = ¯̀>

w(¯̀
z0 − ¯̀

w) = 0. Therefore, ¯̀>
w(¯̀

z1 − ¯̀
z0) = 0.

(d) Let’s say that w1 is wZ defined in Definition 3.1. The binary contrast z0 ⇒ z1 is subordinate to the binary feature
for the attribute w0. By the property of the causal inner product, ¯̀

w0 is orthogonal to the linear representation
¯̀
z0⇒z1 = ¯̀

z1 − ¯̀
z0 (by (a)). Then, with the above result (c), we have (¯̀

w1
− ¯̀

w0
)>(¯̀

z1 − ¯̀
z0).

(e) By the above result (b), we have 
‖¯̀w1

− ¯̀
w0
‖22 = ‖¯̀w1

‖22 − ‖¯̀w0
‖22

‖¯̀w2
− ¯̀

w1
‖22 = ‖¯̀w2

‖22 − ‖¯̀w1
‖22

‖¯̀w2 − ¯̀
w0‖22 = ‖¯̀w2‖22 − ‖¯̀w0‖22.

(A.10)

Then,

‖¯̀w1 − ¯̀
w0‖22 + ‖¯̀w2 − ¯̀

w1‖22 (A.11)

= ‖¯̀w1
‖22 − ‖¯̀w0

‖22 + ‖¯̀w2
‖22 − ‖¯̀w1

‖22 (A.12)

= ‖¯̀w2
‖22 − ‖¯̀w0

‖22 (A.13)

= ‖¯̀w2 − ¯̀
w0‖22. (A.14)

Therefore, ¯̀
w1
− ¯̀

w0
is orthogonal to ¯̀

w2
− ¯̀

w1
.

A.3. Proof of Theorem 4.5

Theorem 4.5 (Categorical Concepts are Represented as Simplices). Suppose that {w0, . . . , wk−1} is a collection
of k mutually exclusive attributes such that for every joint distribution Q(w0, . . . wk−1) there is some `i such that
P(W = wi | `i) = Q(W = wi) for every i. Then, the vector representations ¯̀

w0 , . . . ,
¯̀
wk−1

form a (k−1)-simplex in the rep-
resentation space. In this case, we take the simplex to be the representation of the categorical conceptW = {w0, . . . , wk−1}.
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w0 w1 w2

w2

w0 w1

Figure 6. Illustration of the case k = 3 in the proof of Theorem 4.5.

Proof. If we can represent arbitrary joint distributions, this means, in particular, that we can change the probability of
one attribute without changing the relative probability between a pair of other attributes. Consider the case where k = 3,
as illustrated in Figure 6. If ¯̀

w0 ,
¯̀
w1 ,

¯̀
w2 are on a line, then there is no direction in that line (to change the value in

the categorical concept) such that adding the direction can change the probability of w2 without changing the relative
probabilities between w0 and w1. However, if ¯̀

w0
, ¯̀
w1
, ¯̀
w2

are not on a line, they form a triangle. Then, there exists a
line that is toward ¯̀

w2
and perpendicular to the opposite side of the triangle. Now adding the direction ˜̀can manipulate

the probability of w2 without changing the relative probabilities between w0 and w1. That is, for any α > 0 and context
embedding `, {

P(W = w2 | `+ α˜̀) > P(W = w2 | `), and
P(W=w1 | `+α˜̀)

P(W=w0 | `+α˜̀)
= P(W=w1 | `)

P(W=w0 | `) .
(A.15)

Therefore, the vectors ¯̀
w0 ,

¯̀
w1 ,

¯̀
w2 form a 2-simplex.

This argument extends immediately to higher k by induction. For each i ∈ {0, . . . , k − 1}, there should exist a direction
that is toward ¯̀

wi and orthogonal to the opposite hyperplane ((k− 2)-simplex) formed by the other ¯̀
wi′ ’s. Then, the vectors

¯̀
w0 , . . . ,

¯̀
wk−1

form a (k − 1)-simplex.

B. Experiment Details
We employ the Gemma-2B version of the Gemma model (Mesnard et al., 2024), which is accessible online via the
huggingface library. Its two billion parameters are pre-trained on three trillion tokens. This model utilizes 256K tokens
and 2,048 dimensions for the representation space.

We always use tokens that start with a space (‘\u2581’) in front of the word, as they are used for next-word generation with
full meaning. Additionally, like WordNet data we use, we include plural forms, and both capital and lowercase versions of
the words in Y(animal) and Y(plant) for visualization in Section 5.1.

In the WordNet synset data, each content of the synset mammal.n.01 indicates that ”mammal” is a word, ”n” denotes
”noun,” and ”01” signifies the first meaning of the word. In the WordNet hierarchy, if a parent has only one child, we
combine the two features into one. Additionally, since the WordNet hierarchy is not a perfect tree, a child can have more
than one parent. We use one of the parents when computing the ¯̀

w − ¯̀parent of w.

Code is available at github.com/KihoPark/LLM Categorical Hierarchical Representations.
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Figure 7. Subtree in WordNet noun hierarchy for descendants of animal.
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Figure 8. Zoomed-in Heatmaps of the subtree for animal in Figure 7.

C. Additional Results
C.1. Zooming in on a Subtree of Noun Hierarchy

As it is difficult to understand the entire WordNet hierarchy at once from the heatmaps in Figure 5, we present a zoomed-in
heatmap for the subtree (Figure 7) for the feature animal in Figure 8. The left heatmap displays the adjacency matrix of
the hierarchical relations between features, aligned with the subtree in Figure 7. The middle heatmap shows that the cosine
similarities between the vector representations ¯̀

w correspond to the adjacency matrix. The final heatmap demonstrates that
the child-parent vector ¯̀

w − ¯̀parent of w and ¯̀parent of w − ¯̀grandparent of w are orthogonal, as predicted in Theorem 4.3.

C.2. WordNet Verb Hierarchy

In the same way as for the noun hierarchy, we estimate the vector representations for the WordNet verb hierarchy. To
evaluate whether vector representations exist, we split Y(w) for each synset w into train words (80%) and test words (20%),
fit the LDA estimator to the train words, and examine the projection of the unembedding vectors for the test words onto
the estimated vector representation. Figure 9 shows the mean and standard error of the test projections, divided by the
magnitude of each estimated ¯̀

w. If a vector representation exists for an attribute, we would expect these values to be close
to 1. This is indeed the case, providing evidence that vector representations do indeed exist for these features.

Figure 10 displays the adjacency matrix of the WordNet verb hyponym inclusion graph (left), the cosine similarity between
the vector representations ¯̀

w for each feature (middle), and the cosine similarity between child-parent vectors ¯̀
w− ¯̀parent of w
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Figure 9. Linear representations exist for most binary features in the WordNet verb hierarchy. Comparison of projection of test and random
words on estimated vector representations for each feature. The values are divided by the norm of the estimated vector representation. The
x-axis indices denote all features in the verb hierarchy. The thick lines present the mean of the projections for each feature and the error
bars indicate the 1.96 × standard error.
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Figure 10. The adjacency matrix of the hierarchical relations between features in the WordNet verb hierarchy (left), the cosine similarity
between the vector representations ¯̀

w for each feature (middle), and the cosine similarity between child-parent vectors ¯̀
w − ¯̀parent of w for

each feature (right). The features are ordered by the hierarchy.

for each feature (right). The cosine similarity clearly reflects the semantic hierarchy—the adjacency matrix is clearly
visible in the middle heatmap. By contrast, as predicted by Theorem 4.3, the child-parent and parent-grandparent vectors
are orthogonal. This straightforwardly implies all other theoretical connections between orthogonality and the semantic
hierarchy.
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