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Abstract

Foundation models often struggle with uncertainty when faced with new situations
in online decision-making, necessitating scalable and efficient exploration to re-
solve this uncertainty. We introduce GPT-HyperAgent, an augmentation of GPT
with HyperAgent for uncertainty-aware, scalable exploration in contextual bandits,
a fundamental online decision problem involving natural language input. We prove
that HyperAgent achieves fast incremental uncertainty estimation with Õ(log T )
per-step computational complexity over T periods under the linear realizable as-
sumption. Our analysis demonstrates that HyperAgent’s regret order matches that
of exact Thompson sampling in linear contextual bandits, closing a significant
theoretical gap in scalable exploration. Empirical results in real-world contextual
bandit tasks, such as automated content moderation with human feedback, validate
the practical effectiveness of GPT-HyperAgent for safety-critical decisions. Our
code is open-sourced at https://github.com/szrlee/GPT-HyperAgent/.

1 Introduction
Real-world decision-making often faces uncertainty due to a lack of comprehensive information about
the environment. Intelligent agents must not only understand this uncertainty but also actively gather
information to resolve it. This task is particularly challenging for real-time online decisions involving
foundation models—large-scale AI models pretrained on vast datasets that process unstructured
inputs like text and images.

Content moderation on digital platforms, a real-world safety-critical task, exemplifies these chal-
lenges [Gorwa et al., 2020]. Traditionally, human reviewers detected violations of human value and
community standards [Roberts, 2019], but the high volume of posts on platforms like Facebook [Meta,
2024], Twitter [Corp., 2024], and Reddit [Reddit, 2024] required automating content moderation.
AI systems using foundation models [Weng et al., 2023] provide real-time capabilities and reduce
human workload. However, pretrained on historical data, these models may struggle with uncertainty
in online production traffic where new and rare situations exhibit, leading to errors [Markov et al.,
2023]. Reliable content moderation requires real-time human feedback to correct AI errors, reduce
uncertainty, and refine detection policies. This human-AI collaboration pipeline aims to minimize
human intervention (by exploiting the current AI capability) while ensuring long-term reliability (by
exploring uncertain content for human review to improve future ability), as illustrated in Fig. 1. To
achieve these goals, AI systems using foundation models need to quickly adjust uncertainty esti-
mates and refine policies as new data continually arrives, necessitating fast incremental uncertainty
estimation and scalable solutions to balance exploration and exploitation.

These challenges can be framed within the contextual bandit problem [Wang et al., 2005, Langford
and Zhang, 2007]—a fundamental online decision-making problem involving contextual information,
including unstructured language and vision input, that affects decisions.
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Figure 1: The Human-AI agile collaboration pipeline for risk oversight in an online production
environment: at time t ∈ N, AI moderation system receives post context(t) and decides whether it is
auto-removed or published for human review. If reviewed, AI moderation system quickly integrates
human feedback via label(t) to overturn AI decision and continually improve AI capability. This
pipeline aims to save human workload while ensuring long-term reliability and safety.

1.1 Key Contributions

We introduce GPT-HyperAgent, leveraging pretrained GPT for expressive feature embeddings and
integrating HyperAgent [Li et al., 2024b] for scalable uncertainty-guided exploration in contextual
bandits with unstructured language input. Vanilla HyperAgent [Li et al., 2024b] was designed based
on hypermodel framework [Dwaracherla et al., 2020, Li et al., 2022] and achieves state-of-the-art
computational and data efficiency for large-scale deep reinforcement learning benchmarks. Yet,
the compatibility of vanilla HyperAgent with foundation models for contextual bandits has never
been examined. More importantly, existing literature lack rigorous understanding on HyperAgent or
hypermodel-type algorithm under function approximation, and thus cannot provide much guidance
on the algorithmic configurations.

In this work, we provide an in-depth theoretical understanding that leads to practical advancement,
and close a fundamental gap in the theory for scalable randomized exploration algorithms.

Theoretical Understanding

• Efficient and Scalable Uncertainty Estimation: We theoretically prove that HyperAgent achieves fast
and scalable incremental uncertainty estimation with Õ(log T ) per-step computational complexity
over T periods under the linear realizable assumption. This enables real-time adaptation and
efficient handling of increasing data volumes. The underlying mechanism is incrementally updating
an approximate factor of the covariance matrix via the outer product of the feature vector and a
random vector draw from perturbation distribution at each time period.

• Distribution-Dependent Regret: We develop a general regret analysis framework that leads to
a regret bound dependent on the reference distribution. Certain continuous-support reference
distributions (e.g., Gaussian) outperform ensemble sampling, which is a special case of HyperAgent
with the reference distribution being a uniform distribution over coordinates. This distinction is
due to the probability of optimism, proved via new anti-concentration bounds we developed.
To highlight, with various continuous-support reference distributions, HyperAgent can match
the frequentist regret of exact Thompson sampling (TS) in linear contextual bandits, closing a
fundamental gap in the theory for scalable randomized exploration methods.

Practical Guidance and Performance

• Separated Distributions & Empirical Validation: We demonstrate that update and perturbation
distributions in HyperAgent can be chosen separately, unconventional to existing literature. This
allows dual benefits by using discrete-support update distributions for lower computation cost
while maintaining the advantages of continuous-support reference distributions. This algorithmic
insight is theoretically justified under linear realizable assumption and empirically validated in
neural contextual bandit setups.

• Foundation Model Online Decisions: By addressing the challenges of uncertainty estimation
and scalable exploration, GPT-HyperAgent advances the state-of-the-art in online decisions with
foundation models. This is crucial for applications like content moderation with human feedback,
where the balance between reducing human workload and ensuring long-term safety is paramount.
Fig. 2 demonstrates the practical effectiveness of GPT-HyperAgent.
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Figure 2: (a) The network structure of HyperAgent using GPT pretrained feature embedding. (b)
We simulate the human-AI pipeline for content moderation, focusing on hate speech detection,
using multiple random seeds. The solid line indicates average performance, while the shaded area
shows variation across simulations. The ’HyperAgent’ uncertainty-aware moderation policy reduces
labeling effort by tenfold and achieves higher detection accuracy than the uncertainty-agnostic
’Greedy’ policy, which exhibits significant variance across simulations. Additionally, using pretrained
GPT embeddings significantly enhances initial performance compared to random initialization.

2 Problem formulation and HyperAgent algorithm

2.1 Sequential decision-making under uncertainty

We consider a environment involving a set of actions A and a ground-truth real-valued functions
f∗ : A 7→ R. We will define random variables with respect to a probability space (Ω,F ,P). The
agent is uncertain about the function f∗ in the beginning. At each time t, the agent is presented with
a possibly random subset At ⊆ A and selects an action At ∈ At, after which she observes a reward
Yt. We denote by Ht the σ-algebra generated from history (A1, A1, Y1, . . . ,At−1, At−1, Yt−1,At)
of observations available to the agent when choosing an action At. The agent employs a policy
π = {πt | t ∈ N}, which is a deterministic sequence of functions, each mapping the history Ht to
a probability distribution over actions A. For each realization of Ht ∈ Ht, πt (Ht) is a distribution
over A with support At, though with some abuse of notation, we will often write this distribution
as πt. The action At is selected by sampling from the distribution πt, so that P (At ∈ · | πt) =
P (At ∈ · | Ht) = πt(·). We assume that E [Yt | Ht, At] = f∗ (At). In other words, the realized
reward is the mean reward value corrupted by zero mean noise. We will also assume that for each
t ∈ N, argmaxa∈At

f∗(a) is nonempty with probability one, though algorithms and results can be
generalized to handle cases where this assumption does not hold. The T -period regret of a policy π is
the random variable defined by R(T ) =

∑T
t=1 maxa∈At

f∗(a)− f∗ (At) .

Example 1 (Contextual Bandit Models). The contextual bandit model [Langford and Zhang, 2007,
Wang et al., 2005] is a special case of the formulation presented above. In such a model, an exogenous
Markov process Xt taking values in a set X influences rewards. In particular, the expected reward
at time t is given by f∗(a,Xt). However, this is mathematically equivalent to a problem with
stochastic time-variant decision sets At. In particular, one can define the set of actions to be the
set of state-action pairs A := {(x, a) : x ∈ X , a ∈ A(x)}, and the set of available actions to be
At = {(Xt, a) : a ∈ A (Xt)}.

Within the online automated content moderation task as in Fig. 1, the context Xt consists of text,
image or video content that the user submits to the platform while the moderator needs to choose an
action a ∈ {publish, remove}.

Example 2 (Linear Realizable Rewards). We say the reward function f∗ is linear realizable w.r.t a
known feature map ϕ : A 7→ Bd if there exists a vector θ∗ ∈ Bd, such that f∗(a) = ⟨ϕ(a), θ∗⟩.

These examples are widely studied in the literature of linear contextual bandits [Rusmevichientong
and Tsitsiklis, 2010, Abbasi-Yadkori et al., 2011a, Dani et al., 2008].
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Algorithm 1 Generic HyperAgent for bandits (time step t)
Require: Reference distribution Pζ , Update distribution Pξ , Perturbation distribution Pz; Index dim.

M , Perturbation level σ, Regularization λ, Update ratio B, Initialization θ0, Data buffer D
1: Index Sampling: sample index ζt

i.i.d.∼ Pζ and play At = argmax
a∈At

fθt−1
(a, ζt).

2: Receive noisy feedback Yt, sample perturbations zt
i.i.d.∼ Pz and add {(At, Yt, zt)} to buffer D.

3: Incremental update: take B-step gradient descent w.r.t. L̃(θ; Ξ̃, D̃) from θt−1 to θt

L̃(θ; Ξ̃, D̃) :=
1

|Ξ̃||D̃|
∑

ξ∈Ξ̃,(As,Ys,zs)∈D̃

(fθ(As, ξ)− Ys − σz⊤s ξ)
2 +

λ

|D| ∥θ∥
2 (1)

2.2 HyperAgent, hypermodel and index sampling

Vanilla HyperAgent [Li et al., 2024b] was shown state-of-the-arts performance in large-scale deep
RL benchmarks. Its success can be attributed to several key mechanisms: hypermodel [Dwaracherla
et al., 2020, Li et al., 2022], incremental updates, and index-based approximate Thompson sampling,
known as index sampling.

The hypermodel fθ, parameterized by θ, is designed for uncertainty estimation. It takes an input
x ∈ Rd and a random index ζ draw from a fixed reference distribution Pζ , producing an index
sample fθ(x, ζ), reflecting a predictive sample from a desired distribution. For instance, if we
want to approximate a linear-Gaussian distribution N(x⊤µ, x⊤Σx), one can use linear hypermodel
fθ(x, ζ) = ⟨x, µ + Aζ⟩, with θ = (A ∈ Rd×M , µ ∈ Rd) and Gaussian reference distribution
Pζ = N(0, IM ). It essentially performs a Box-Muller transformation: when AA⊤ = Σ, the index
sample fθ(x, ζ) ∼ N(x⊤µ, x⊤Σx). Another example is (symmetric) ensemble sampling, where
the reference distribution Pζ = U(±e1, . . . ,±eM ) is uniform over coordinates and θ = (A :=

[θ̃1, . . . , θ̃M ] ∈ Rd×M , µ ∈ Rd) contains M ensemble models such that each θ̃m ∼ N(0,Σ). In
this case, the variance of index sample Varζ∼Pζ

(f(x, ζ)) = 1
M

∑M
i=1[(θ̃i)

⊤x]2 → x⊤Σx as M
increases. In both cases, index samples can capture the variance of target distribution by varying
the indices {ζ}. HyperAgent incrementally adjust hypermodel’s parameters θ over time, aiming to
incrementally refine its uncertainty estimation as data accumulated. Specifically, [Li et al., 2024b]
proves that HyperAgent indeed achieves incremental posterior update without the need for conjugacy
in tabular reinforcement learning setups.

We present the general HyperAgent framework for bandit environments, as shown in Algorithm 1.
At each time step t, HyperAgent takes an index sample fθt−1

(a, ζ) and selects the greedy action
accordingly. This procedure is called index sampling (IS). After taking action At, it receives
feedback Yt and generates a perturbation vector zt drawn from Pz . The parameters are then updated
incrementally via off-the-shelf stochastic gradient methods. The objective function L̃(θ; Ξ̃, D̃) is a
sample-average approximation of the true objective:

L(θ;D) :=
1

|D|Eξ∼Pξ

∑
(As,Ys,zs)∈D

(
fθ(As, ξ)− Ys − σz⊤s ξ

)2
+

λ

|D| ∥θ∥
2, (2)

where the indices ξ ∈ Ξ̃ are drawn i.i.d. from the update distribution Pξ and D̃ is a sampled mini-batch
from D. Existing literature for Ensemble+ [Osband et al., 2019], Hypermodel [Dwaracherla et al.,
2020, Li et al., 2022], Epistemic Neural Networks (ENN) [Osband et al., 2023] and vanilla HyperA-
gent [Li et al., 2024b] when specified in bandit environments can be regarded as special cases of the
HyperAgent framework in Algorithm 1, as they all use identical reference and update distributions, i.e.
Pζ = Pξ . Specifically, Ensemble+ [Osband et al., 2019] coincides with a special case of Algorithm 1,
with Pξ and Pζ both being uniform distributions over coordinate vectors [Dwaracherla et al., 2020,
Li et al., 2024b], a discrete-support distribution. Despite repeated empirical claims [Dwaracherla
et al., 2020, Li et al., 2022, Osband et al., 2023, Li et al., 2024b] suggesting that hypermodel with
continuous-support reference distribution Pζ (e.g. Gaussian) exhibits advantages over ensemble-
based methods with discrete-support Pζ , the reasons are not well explained. Additionally, as shown
in Eq. (1), sample-based approximation on continuous-support distribution Pξ requires a large size of
|Ξ̃|, incurring high computational costs [Li et al., 2024b]. Existing works also provide no practical
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guidance on the configuration of several key distributions Pζ , Pξ and Pz due to limited theoretical
understanding. Additionally, there is no rigorous justification for HyperAgent regarding uncertainty
representation and regret-computation trade-offs, even with linear function approximation. In this
work, we build a theoretical framework to address these questions and provide practical guidance,
which is essential for integrate HyperAgent with foundation models that is computation expensive.

Integration with foundation models. As shown in Fig. 2, following the last-layer linear hypermodel
construction [Li et al., 2024b], we use the pretrained backbone of GPT-2 as the feature extractor
ϕw(·), resulting in the context-aware GPT-HyperAgent: it takes the context x and a random index ζ
as input and outputs a value for each action a ∈ A

fθ(x, ζ)[a] = ⟨ϕw(x),A
aζ + ba⟩ := fθ((x, a), ζ),

where and Aa and ba are action-specific parameters for each action a in the valid decision set A(x)
associated with the context x. Here we use unified notations in example 1.

3 Theoretical analysis
We start by providing a general analytical framework for agent, potentially randomized, operating
in the generic bandit environments. Let us introduce a few necessary definitions to facilitate the
understanding and analysis. The confidence bound is used for uncertainty estimation over the ture
function f∗ given the history Ht.

Definition 1 (Confidence bounds). Confidence bounds are a sequence of real-valued Ht-measurable
functions Lt(·) and Ut(·) for t ∈ [T ] such that, w.p. at least 1− δ, the joint event E = ∩t∈[T ]Et holds,
where Et := {f∗(a) ∈ [Lt(a),Ut(a)] ,∀a ∈ At}.

The agent may not perform well unless it is well-behaved, defined by reasonableness and optimism.
Intuitively, an agent that explores too much or too little will incur a high regret. Reasonableness and
optimism are the mechanisms for controlling these potential flaws respectively.

Definition 2 (Reasonableness). Given confidence bounds Lt(·) and Ut(·) for t ∈ [T ], an (randomized)
agent is called reasonable if it produces a sequence of functions (f̃t(·), t ∈ [T ]) such that w.p. at
least 1− δ, the joint event Ẽ = ∩t∈[T ]Ẽt holds, where Ẽt := {f̃t(a) ∈ [Lt(a),Ut(a)] ,∀a ∈ At}.

In short, reasonableness ensures that the chosen action according to f̃t is close to the best action
which ensures agent does not explore actions unnecessarily. The following optimism guarantees the
agent sufficient explores.

Definition 3 (p-optimism). Let p be a sequence of positive real number (pt, t ∈ [T ]). We say an
(randomized) agent is p-optimistic when it produces a sequence of functions (f̃t(·), t ∈ [T ]) such that
for all t ∈ [T ], f̃t(·) is pt-optimistic, i.e., P(maxa∈At

f̃t(a) ≥ maxa∈At
f∗(a) | Ht) ≥ pt.

The generic agent satisfying the conditions on reasonableness and optimism has desired behavior.

Theorem 1 (General regret bound). Given confidence bound in Definition 1 and assume the agent is
reasonable and optimistic (with parameter p = (pt, y ∈ [T ]), then we have

R(T ) ≤
T∑

t=1

1

pt
E[Ut(At)− Lt(At) | Ht] +

T∑
t=1

Ut(At)− Lt(At) (3)

A close inspection on Eq. (3) informs that the regret is sublinear as long as the confidence bounds
are converging to the true function f∗ as more information gathering in. The proof of Theorem 1 is
in Appendix B. In the following section, we illustrate these insights with linear setups and provide
rigorous justifications for HyperAgent.

3.1 Insight from Linear HyperAgent

Consider the functional form for HyperAgent in a linear setup at time t:

f̃t(a) := fθt−1
(a, ζt) = ⟨ϕ(a), βtAt−1ζt + µt−1⟩, ∀a ∈ A, (4)
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where βt is an inflation coefficient defined later, ϕ(·) is a feature map introduced in Example 2, and
θt = (At, µt) are parameters representing uncertainty.

In the context of GPT-HyperAgent, if the underlying reward function f∗ can be linearly approximated
using GPT-2’s pretrained feature embeddings, then we can freeze the GPT-2 torso during training
Hyperagent, as shown in Figure 2. This approach, referred to as the frozen-GPT-torso method, is
essentially an instance of linear HyperAgent and will be evaluated in Section 4. The assumption of
linear realizability will be discussed formally in Assumption 1.

With the form of linear HyperAgent, we theoretically identify the general conditions for the update
and perturbation distribution (Pξ, Pz) that permit scalable uncertainty estimation via incremental
posterior approximation. Then, we investigate the reasonableness and optimism condition through
several reference distributions Pζ .
Definition 4 (Isotropic). A distribution P over RM is called isotropic if EX∼P [XiXj ] = δij , i.e.,
EX∼P [XX⊤] = I . Equivalently, P is isotropic if EX∼P [⟨X,x⟩2] = ∥x∥2, for all x ∈ RM .

Proposition 1. If the update distribution Pξ is zero-mean and isotropic, linear HyperAgent (Eq. (4))
with objective in Eq. (2) and full data buffer D = H permits closed-form incremental update, i.e.,

At = Σt(Σ
−1
t−1At−1 + ϕ(At)z

⊤
t ), µt = Σt(Σ

−1
t−1µt−1 + ϕ(At)Yt) (5)

where Σ−1
t = Σ−1

t−1 + ϕ(At)ϕ(At)
⊤ and Σt = Σt−1 − Σt−1ϕ(At)ϕ(At)

⊤Σt−1

1+ϕ(At)⊤Σt−1ϕ(At)
. The initialization

is µ0 = 0 and A0 = Σ⊤
0 Z0 where Σ−1

0 = λI and Z0 = (z0,1, . . . , z0,d)
⊤ with each z0,i ∼ Pz .

The proof can be found in Appendix E. We discuss the 5 isotropic distributions in RM including
continuous-support (1) Gaussian N(0, I), (2) (Spherical) Uniform over sphere

√
MU(SM−1); and

discrete support (1) (Cube) Uniform over cube U({1,−1}M ), (2) (Coord) Uniform over coordinates
U({±ei}i∈[M ]) and (3) Sparse distribution in Appendix F. Next, we state the key lemma showing
when perturbation distribution Pz allows fast incremental uncertainty estimation.
Lemma 1 (Incremental Uncertainty Estimation). For t ∈ [T ], let Σt and At be defined as in
Proposition 1 and let the good event be

Gt := {(1/2)x⊤Σtx ≤ x⊤AtA
⊤
t x ≤ (3/2)x⊤Σtx, ∀x ∈ Rd}.

Let s2min = infa∈Sd−1 a⊤Σ−1
0 a and s2max = supa∈Sd−1 a⊤Σ−1

0 a. When

M ≥ 320
(
d log

((
1 + (48/smin)

√
s2max + T

)
/δ
)
+ log(1 + T/s2min)

)
≃ d log T , (6)

and Pz is
√

1
M -sub-Gaussian and unit-norm, the event G = ∩t∈[T ]Gt happens w.p. at least 1− δ.

Remark 1. Briefly speaking, the technical difficulty comes from the sequential dependence between
a series of the perturbation random vectors and a serious high-dimensional random variables
arise in the sequential decision processes. Our innovation is that we derive (1) a variance-aware
discretization argument and (2) a reduction to sequential random projection [Li, 2024a]. Classical
standard discretization arrives at a exponentially larger M = O(dT 2 log T ), which is unacceptable
for proving scalability. Our techniques effectively address the challenge arises in the high-dimensional
sequential dependency structure. For the discussion on specific instances of perturbation distributions,
see Remark 5. The proof of Lemma 1 can be found in Appendix C, where we clearly articulate the
technical difficulties around Fig. 4 in Appendix C.2.

Next, we are going to discuss the synergy effect of these distributions on the regret of HyperAgent.
We first state the environment assumption under which we provide specific regret analysis.
Assumption 1. The reward function f∗ is linear realizable w.r.t. the feature mapping ϕ(·) and the
noisy feedback Yt satisfies E [exp {s(Yt − f∗(At))} | Ht, At] ≤ exp

{
s2/2

}
,∀s ∈ R.

Adapting the results from [Abbasi-Yadkori et al., 2011b, Abeille and Lazaric, 2017], we define

βt =
√
λ+

√
2 log(1/δ) + log det(Σ−1

t−1/λ
d). Under assumption 1, for the purpose of analysis, we

define a slightly inflated confidence bounds as
Lt(·;Pζ) = (⟨µt−1, ϕ(·)⟩ − βtρ(Pζ)∥ϕ(·)∥Σt−1

) ∨ (−1),

Ut(·;Pζ) = (⟨µt−1, ϕ(·)⟩+ βtρ(Pζ)∥ϕ(·)∥Σt−1
) ∧ 1.

ρ(Pζ) will be defined via ρ1 = O(
√

M log(M/δ)), ρ2 = O(
√
M), and ρ3 = O(

√
log(|A|/δ)).
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Proposition 2. Under linear setups in Eq. (4) and Proposition 1, if Eq. (6) is satisfied, HyperAgent is
reasonable, i.e., ∀t ∈ [T ], f̃t(·) = fθt−1

(·, ζt) ∈ [Lt(·;Pζ), Ut(·;Pζ)] w.p. 1− δ.

Proposition 3. Under linear setups in Eq. (4) and Proposition 1, if Eq. (6) is satisfied, HyperAgent
using reference distribution Pζ is p(Pζ)-optimistic.

Pζ Gaussian N(0, IM ) Spherical
√
MU(SM−1) Cube U({1,−1}M ) Coord U({±ei}i∈[M ]) Sparse

ρ(Pζ) ρ1 ∧ ρ3 ρ2 ∧ ρ3 ρ2 ∧ ρ3 ρ2 ρ2

p(Pζ)
1

4
√
eπ

1
2 − e1/12√

2π
7/32 1

2M N/A

Table 1: The coefficient ρ(Pζ) and p(Pζ) related to the reasonableness and optimism condition.

The specific value of ρ(Pζ) and p(Pζ) is shown in Table 1, where the proof of Propositions 2 and 3
can be found in Appendix D. To highlight, the proof of optimism involves newly developed anti-
concentration bounds in Appendix F. The reasonableness and optimism, together with the general
regret bound in Theorem 1, have a direct consequence of the following specific regret bound.

Theorem 2 (Distribution-dependent regret bound). Let β = maxt∈[T ] βt. Consider assumption 1
and the linear setups in Eq. (4). If the update distribution Pξ is zero-mean and isotropic, and Eq. (6)
is satisfied, then HyperAgent(Pζ) has T -period regret

R(T ) ≤ ρ(Pζ)

p(Pζ)
β

(√
dT log

(
1 +

T

λd

)
+

√
T

λ
log

(
T

λδ

))
, with probability 1− δ.

Remark 2. Theorem 2 provides a distribution-dependent bound characterized by the ratio
ρ(Pζ)/p(Pζ). This ratio implies that as long as the distribution Pζ allows sufficient exploration
(larger p(Pζ)) but not too much (smaller ρ(Pζ)), the regret is smaller. This explains why ensemble
sampling (ES) methods perform relatively worse [Dwaracherla et al., 2020, Osband et al., 2023, Li
et al., 2022, 2024b]. Specifically, ES (HyperAgent with Coord Pζ) has a ratio of O(M3/2), while
other reference distributions have a ratio of Õ(

√
M ∧

√
log |A|). For M = Õ(d log T ), Theorem 2

suggests the regret of ES is O((d log T )5/2
√
T ), matching concurrent analysis [Janz et al., 2023].

When using continuous-support reference distribution Pζ , including Gaussian, Spherical, and Cube,
our HyperAgent achieves a tighter bound, as shown in Table 2. Notably, our bound suggests that
when M exceeds a threshold in the order of O(d log T ), the regret bound of HyperAgent with
continuous-support Pζ has no dependence on M in the setting of finite decision sets where the ratio
would be Õ(log |A|). This theoretical finding matches the empirical observation in Appendix H.1,
demonstrating the predictive power and practical guidance of distribution-dependent analysis.

Remark 3. Theorem 2 allows a fine-grained analysis for both finite and compact, and both time-
variant and time-invariant decision sets due to the action-dependent nature of the general regret bound
in Theorem 1. Existing Frequentist regret bounds for TS [Abeille and Lazaric, 2017] and approximate
TS methods, including LMC [Xu et al., 2022] and ES [Janz et al., 2023], are specialized to compact
decision sets. The Bayesian analysis of ES [Qin et al., 2022] applies only to time-invariant finite
decision sets. We summarize the regret bound and corresponding per-step computation complexity in
Table 2. Note that, except for ES [Qin et al., 2022], other upper bounds are all Frequentist regret.

Remark 4. As shown in Table 2, we provide the first result on approximate TS that achieves both
provable scalability – O(d3 log T ) per-step computation – and near-optimal regret matching exact
TS [Agrawal and Goyal, 2013, Abeille and Lazaric, 2017] across all decision set setups. Notably, we
achieve an exponential improvement in the T -factor of per-step computation complexity compared
to [Qin et al., 2022, Xu et al., 2022], and an O(d(log T )2) multiplicative factor improvement in the
regret bound compared to concurrent work on ES [Janz et al., 2023]. This closes the theoretical gap
in scalable randomized exploration in terms of both computation and regret.

The proof of Theorem 2 is detailed in Appendix D. We conduct extensive synthetic experiments in
Appendix G on both linear and nonlinear contextual bandits to validate our theoretical insights, thus
providing practical guidance for scenarios where foundation models are used for online decisions.
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Decision Sets Invariant & Compact Variant & Compact Invariant & Finite Variant & Finite
Lower Bound Ω(d

√
T ) Ω(d

√
T log T ) Ω(

√
dT log |A|) Ω(

√
dT log |A| log T )

TS O(d
3
2

√
T log T ) O(d

3
2

√
T log T ) O(d

√
T log |A| log T ) O(d

√
T log |A| log T )

ES[Qin] N/A N/A O(
√

dT log |A| log(|A|T/d)) N/A
LMC[Xu] O((d log T )

3
2

√
T ) O((d log T )

3
2

√
T ) N/A N/A

ES[Janz] O((d log T )
5
2

√
T ) O((d log T )

5
2

√
T ) N/A N/A

(Ours) O(d
3
2

√
T (log T )

3
2 ) O(d

3
2

√
T (log T )

3
2 ) O(d

√
T log |A| log T ) O(d

√
T log |A| log T )

Table 2: Regret lower and upper bounds under various decision set setups. The per-step computa-
tion complexity is O(d2 + d|A|T ) for ES [Qin et al., 2022], O(d2T ) for LMC [Xu et al., 2022],
O(d3 log T ) for ES [Janz et al., 2023], and O(d3 log T ) for our HyperAgent. The lower bounds for
the setups of (1) invariant and compact, (2) variant and compact, (3) invariant and finite, and (4)
variant and finite decision sets are from the following sources, respectively: [Rusmevichientong and
Tsitsiklis, 2010, Li et al., 2024a, Zhou, 2019, Li et al., 2024a].

4 Automated Content Moderation with Human Feedback

In this experiment, we integrate HyperAgent with existing foundation models to enhance their
decision-making capabilities. We utilize LLMs as the backbone to address language tasks that require
exploration for efficient human-AI collaborations. Given the high computational cost associated with
hyperparameter tuning in LLMs, we adopt the effective settings from the previous study on synthetic
tasks. Specifically, we employ the Coord distribution for updates and use the Sphere distribution as
both the reference and perturbation distribution.

Settings: We reinterpret the challenge of content moderation as a contextual bandit task, making
use of the language dataset2. In this task, the agent must decide to either publish or block a content.
The agent gains a reward of 0.5 by blocking any content. However, publishing a "free" content earns
the agent a reward of 1 and publishing a "hate" content causes a penalty of -0.5.

GPT-2 Pythia14M
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
u

m
u

la
ti

ve
R

eg
re

t

×106

Greedy Ensemble+ HyperAgent

(a)

0.0 0.2 0.4 0.6 0.8 1.0

Time period ×106

0

50

100

150

200

250

C
u

m
u

la
ti

ve
R

eg
re

t

×103

Pythia14M Fine-tuned Pythia14M Frozen

(b)

0.00 0.02 0.04 0.06 0.08 0.10

Time period ×106

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
u

m
u

la
ti

ve
R

eg
re

t

×103

GPT-2 Fine-tuned GPT-2 Frozen

(c)

Figure 3: Experimental results on content moderation. (a) Comparison results with other decision
head with frozen LLM. (b) and (c) Empirical study on the fine-tune to LLM backbone.
Results Analysis: We use two LLMs - Pythia14m and GPT-2 as the feature extractor ϕw(x) in this
experiemt. We firstly compare HyperAgent with Ensemble+ [Osband et al., 2018] and Greedy, a
special case with fixed Aa = 0 for all actions. As highlighted in Fig. 3(a), when freezing the feature
extractor ϕw(x), HyperAgent surpasses other methods indicating its exploration efficiency. We also
could observe larger model (GPT-2) with more prior knowledge could lead to better performance. To
fully unleash the potential of LLMs, we conduct another experiment where the ϕw(x) are fine-tuned
during the training process. As depicted in Fig. 3(b) and (c), this modification significantly reduce
cumulative regret when employing HyperAgent.

5 Related works

Foundation Model Decision-making. Recent research applies foundation models, including large
language models and generative models, to real-world decision-making applications [Yang et al.,
2023, Shinn et al., 2024, Wang et al., 2023, Lee et al., 2023]. Although these systems grant agents
decision-making and planning capabilities, they predominantly rely on pre-trained models using
offline datasets and may struggle with actively seeking information and resolving uncertainties in
an online decision environment that continually presents new, uncovered scenarios. Krishnamurthy

2https://huggingface.co/datasets/ucberkeley-dlab/measuring-hate-speech
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et al. [2024] demonstrated that even the most advanced large language model, GPT-4 [OpenAI, 2023]
with various advanced prompt design, is ineffective in making online decisions, as seen in a simple
multi-armed bandit (MAB) problem, unless supplemented with an MAB-specific uncertain estimation
method like external history summarization. More sophisticated algorithmic interventions, such as
fine-tuning or dataset curation, might be necessary to enhance LLM-based decision-making agents
in complex settings [Krishnamurthy et al., 2024]. Our work addresses this gap by integrating our
uncertainty-aware HyperAgent techniques into foundation models, thereby enabling effective online
decision-making in complex and uncertain environments.

Scalable Uncertainty Estimation & Exploration. Thompson Sampling (TS) is a favored explo-
ration strategy in online sequential decision-making, balancing exploration and exploitation by
sampling from the model’s posterior distribution, a Bayesian uncertainty estimation principle. How-
ever, TS is computationally feasible primarily in straightforward scenarios where conjugacy permits
efficient posterior updates as new data accumulates [Thompson, 1933, Russo et al., 2018]. In many
practical applications, such as those involving unstructured inputs from language and vision, more
complex models are necessary. For these models, exact Bayesian inference becomes computationally
infeasible, and no conjugacy is available for Bayesian posterior updates. Various approaches, in-
cluding Ensemble sampling (Ensemble+) and Langevin Monte-Carlo (LMC-TS), attempt to perform
approximate posterior sampling without requiring conjugacy [Osband et al., 2018, 2019, Russo et al.,
2018, Xu et al., 2022]. However, managing an ensemble of complex models can significantly increase
computational demands, especially as the ensemble size needs to grow to accurately approximate
complex posterior distributions [Dwaracherla et al., 2020, Osband et al., 2023, Li et al., 2022, Qin
et al., 2022]. Likewise, the computational costs of LMC-based inference are prohibitive in large-scale
deep learning systems [Osband et al., 2023]. Hypermodels, ENNs, and HyperAgent aim to efficiently
estimate the uncertainty by tracking the approximate posterior distribution with bounded per-step
computation, showcasing empirical computational and statistical benefits [Dwaracherla et al., 2020,
Li et al., 2022, Osband et al., 2023, Li et al., 2024b]. Ensuring bounded per-step computational
complexity is vital for scalability, as computational requirements that scale polynomially with the
state-action space and interaction data can become unsustainable [Li et al., 2024b, Lu et al., 2023].
HyperAgent, in particular, exhibits state-of-the-art computational and data efficiency in deep RL
benchmarks [Li et al., 2024b]. Nonetheless, the compatibility of HyperAgent with foundation models
remains unexamined. Moreover, the existing literature lacks a rigorous understanding of HyperAgent
under function approximation, providing limited guidance on algorithmic configurations necessary
for scaling up exploration and online decisions with large foundation models that process various
modalities, including language.

6 Conclusion and future directions
In this work, we introduced GPT-HyperAgent, a novel integration of foundation models with Hy-
perAgent for online decision-making tasks, focusing on contextual bandits with natural language
input. Our contributions include both theoretical insights and practical advancements. Specifically,
we proved a regret bound for HyperAgent under linear setups, closing a gap in the theory for scalable
exploration algorithms. We showed that perturbation and update distributions in HyperAgent can
be chosen separately for computational benefits, providing practical guidance. Empirical results in
an online content moderation task validated GPT-HyperAgent’s superior online decision capability,
demonstrating scalable and efficient performance in real-world safty-critical applications. Promising
future directions include (1) Black-Box & Multi-Modal Foundation Models: Extend GPT-HyperAgent
to work with black-box foundation models accessed via APIs. This would allow leveraging powerful
pretrained models without requiring access to their internal architectures, making the approach
applicable to a wider range of commercial AI services. Specifically, current LLM/VLM APIs provide
top-k token logits, text embedding or fine-tuning services by uploading private dataset. Additionally,
integrate multi-modal inputs (e.g., combining vision, language, and audio) to tackle more diverse
real-world scenarios and improve generalization capabilities. (2) Efficient Human-AI interplay & AI
safety: The AI moderation system, a safety-critical scenario, inevitably relies on human-AI collab-
oration pipeline. It needs further in-depth studies. Other important applications require human-AI
interplay include reward modeling from human feedback by actively query informative data for
human review. This is critical for reinforcement learning from human feedback (RLHF) and the
efficiency in data-centric AI. (3) Theory beyond linear: Theoretically understanding on the scalable
uncertainty estimation and exploration capabilities of HyperAgent with neural network or general
noninear function approximation would further bride the gap between theory and practice, beneficial
for design practical solutions for real-world application.
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A Additional related works

Broad Capabilities and Diverse Applications of Foundation Models. Foundation models, pre-
trained on diverse datasets encompassing audio, vision, language, and other modalities, have demon-
strated exceptional capabilities across a wide range of downstream tasks [Bommasani et al., 2021, Reid
et al., 2024, OpenAI, 2023, Collaboration et al., 2024]. Their applications extend to real-world scenar-
ios such as dialogue systems, autonomous driving, healthcare, robotics, and bio-engineering [OpenAI,
2023, Yan et al., 2024, Chen et al., 2023b, Zhang et al., 2023, Saab et al., 2024, Collaboration et al.,
2024, Huang et al., 2024]. In these settings, foundation models encounter unique challenges like
interacting with external environments, adapting to varied task modalities, and performing long-term
reasoning and planning [Nakano et al., 2021, Yao et al., 2022].

Foundation Models in Sequential Decision-Making. Sequential decision-making, which includes
domains such as reinforcement learning (RL) and bandit problems, has traditionally focused on
task-specific settings with limited prior knowledge, achieving notable success in tasks such as board
games, video games, and robotics manipulation [Sutton and Barto, 2018, Lattimore and Szepesvári,
2020, Schrittwieser et al., 2020, Li et al., 2024b, Kalashnikov et al., 2018]. However, these traditional
methods, learning from scratch, often face issues with generalization and data efficiency.

The integration of foundation models into this field represents a paradigm shift, giving rise to “founda-
tion agents” that utilize extensive pretraining to solve a broader range of tasks more efficiently [Yang
et al., 2023]. However, current foundation agents that use off-the-shelf models such as large lan-
guage models (LLMs) and vision language models (VLMs) face significant challenges related to
controllability, reproducibility, and efficiency [Chen et al., 2023a]. These models, not originally
designed for decision-making tasks like action generation or self-evaluation, demonstrate limited
capabilities in few-shot prompting and in-context learning, which do not effectively address the needs
for exploration and exploitation in sequential decision-making [Brown et al., 2020, Krishnamurthy
et al., 2024]. To address these shortcomings, (1) more robust algorithmic interventions such as
fine-tuning or (2) bottom-up re-design of the foundation models for sequential decision-making may
be necessary.

Bridging Theory and Practice. The transition from theoretical models to practical applications
requires a deep understanding of both the capabilities and limitations of these advanced models.
This understanding is essential for designing systems that are not only efficient but also scalable and
adaptable to real-world complexities [Li et al., 2024b, Li, 2024a,b].

B Proof of Theorem 1

Proof. Let At = maxa∈At
f̃t(a) and A∗

t = maxa∈At
f∗(a). Let Bt = maxa∈At

Lt(a), which is
Ht-measurable. Conditioned on the event E ∩ Ẽ , both f∗(A∗

t ) ≥ Bt and f̃t(At) ≥ Bt hold. By
p-optimism and the fact (f∗(A∗

t )−Bt) is Ht-measurable and positive,

pt ≤ P(ft(At)−Bt ≥ f∗(A∗
t )−Bt | Ht)

(∗)
≤ E[ft(At)−Bt | Ht]/(f

∗(A∗
t )−Bt),

where (∗) is due to Markov inequality. Rearranging and using the additional fact Bt ≥ Lt(At) yield

f∗(A∗
t )− f̃t(At) ≤ f∗(A∗

t )−Bt ≤
1

pt
E[ft(At)−Bt | Ht] ≤

1

pt
E[Ut(At)− Lt(At) | Ht]. (7)

By the reasonableness, f̃t(At) ≤ Ut(At). Then, from the definition of confidence bounds

f̃t(At)− f∗(At) ≤ Ut(At)− Lt(At) (8)

Putting Eqs. (7) and (8) together and then summing over the time index t give the final results.

C Incremental uncertainty estimation in Lemma 1

Before proving Lemma 1, we state the preliminary tools of sequential random projection for com-
pleteness, which is adapted form [Li, 2024a]. This tool was used to prove incremental posterior
approximation argument of HyperAgent in tabular RL setup [Li et al., 2024b]. As the tool in [Li,
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2024a] works only for the scalar process, we need additional technical innovations to deal with
high-dimensional vector process. We make a novel utilization of this tool in the linear function
approximation setting for the first time, by a non-trivial discretization argument in Appendix C.2 and
a reduction to the tool of sequential random projection in Appendix C.2.

C.1 Probability tools for sequential random projection

We define some important concept that would be useful in the analysis. Let (Ω,F ,F = (Ft)t∈N,P)
be a complete filtered probability space. We first consider the measurable properties within the
filtered probability space.

Definition 5 (Adapted process). For an index set I of the form {t ∈ N : t ≥ t0} for some t0 ∈ N, we
say a stochastic process (Xt)t∈I is adapted to the filtration (Ft)t∈I if each Xt is Ft-measurable.

Definition 6 ((Conditionally) σ-sub-Gaussian). A random variable X ∈ R is σ-sub-Gaussian if

E[exp(λX)] ≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

Let (Xt)t≥1 ⊂ R be a stochastic process adapted to filtration (Ft)t≥1. Let σ = (σt)t≥0 be a
stochastic process adapted to filtration (Ft)t≥0. We say the process is (Xt)t≥1 is conditionally
σ-sub-Gaussian if

E[exp(λXt) | Ft−1] ≤ exp

(
λ2σ2

t−1

2

)
, a.s. ∀λ ∈ R.

Specifically for the index t+ 1, we can say Xt+1 is (Ft-conditionally) σt-sub-Gaussian. If σt is a
constant σ for all t ≥ 0, then we just say (conditionally) σ-sub-Gaussian.

For a random vector X ∈ RM or vector process (Xt)t≥1 ⊂ RM in high-dimension, we say it is
σ-sub-Gaussian is for every fixed v ∈ SM−1 if the random variable ⟨v,X⟩ , or the scalarized process
(⟨v,Xt⟩)t≥1 is σ-sub-Gaussian.

Definition 7 (Almost sure unit-norm). We say a random variable X is almost sure unit-norm if
∥X∥2 = 1 almost surely.

Remark 5. When talking about the perturbation distribution Pz , we scale all specific distribution

discussed in Appendix F by
√

1
M . Then the spherical distribution U(SM−1) and uniform over scaled

cube U( 1√
M
{1,−1}M ) satisfy the sub-Gaussian condition in Definition 6 with parameter σ = 1√

M
and also satisfy the unit-norm condition in Definition 7 according to the discussion in Appendix F.

Additionally, we characterize the boundedness on the stochastic processes.

Definition 8 (Square-bounded process). For an index set I of the form {t ∈ N : t ≥ t0} for some
t0 ∈ N, the stochastic process (Xt)t∈I is c-square-bounded if X2

t ≤ c almost surely for all t ∈ I .

Now, we are ready to state the important tool that is fundamental to our analysis.

Theorem 3 (Sequential random projection in adaptive process [Li, 2024a]). Let ε ∈ (0, 1) be fixed
and (Ft)t≥0 be a filtration. Let z0 ∈ RM be an F0-measurable random vector satisfies E[∥z0∥2] = 1
and |∥z0∥2 − 1| ≤ (ε/2). Let (zt)t≥1 ⊂ RM be a stochastic process adapted to filtration (Ft)t≥1

such that it is
√
c0/M -sub-Gaussian and each zt is unit-norm. Let (xt)t≥1 ⊂ R be a stochastic

process adapted to filtration (Ft−1)t≥1 such that it is cx-square-bounded. Here, c0 and cx are
absolute constants. For any fixed x0 ∈ R, if the following condition is satisfied

M ≥ 16c0(1 + ε)

ε2

(
log

(
1

δ

)
+ log

(
1 +

cxT

x2
0

))
, (9)

we have, with probability at least 1− δ

∀t ∈ T , (1− ε)

(
t∑

i=0

x2
i

)
≤ ∥

t∑
i=0

xizi∥2 ≤ (1 + ε)

(
t∑

i=0

x2
i

)
. (10)
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C.2 Reduce Lemma 1 to sequential random projection

Without loss of generality, let us consider the set Sd−1. First, we define a fine-grained good event
for desired approximation error ε ∈ [0, 1]: the approximate posterior variance is ε-close to the true
posterior variance for action a at time t ∈ T := {0, 1, . . . , T}.

Gt(a, ε) =
{
|a⊤AtA

⊤
t a− a⊤Σta| ≤ εa⊤Σta

}
, (11)

and corresponding joint event over the set Sd−1,

Gt(ε) = ∩a∈Sd−1Gt(a, ε). (12)

The good event defined in Lemma 1 is indeed Gt(1/2).

A reduction. To fully utilize the probability tool for sequential random projection in Theorem 3,
we make use of the following reduction from vector process to scalar process. For a fixed a ∈ Sd−1,
we let s(a) = a⊤Σ

−1/2
0 Z0, s(a)

2 = a⊤Σ−1
0 a. Further define short notation z0 := s(a)/s(a)

and x0 := s(a). and xt = a⊤ϕ(At) for all t ∈ [T ], then we can relate the incremental update in
Proposition 1

a⊤Σ−1
t At = a⊤Σ

−1/2
0 Z0︸ ︷︷ ︸

s(a)=z0x0

+

t∑
i=1

a⊤ϕ(At)︸ ︷︷ ︸
xi

z⊤t , a⊤Σ−1
t a = a⊤Σ−1

0 a︸ ︷︷ ︸
x2
0

+

t∑
i=1

a⊤ϕ(At)ϕ(At)a︸ ︷︷ ︸
x2
i

to the scalar sequence (xt)t≥0 and the vector sequence (zt)t≥0 that would be applied in Theorem 3.

Recall that Ht the σ-algebra generated from history (A1, A1, Y1, . . . ,At−1, At−1, Yt−1,At). Denote
Z1 = σ(Z0) and Zt = σ(Z0, z1, . . . , zt−1) for t ≥ 2. We observe the following statistical
relationship, which is further demonstrated in Fig. 4

• zt ⊥⊥ (Ht, At,Zt), xt is dependent on Ht,Zt,
• At−1 ∈ σ(Ht,Zt),
• µt−1,Σt−1 ∈ Ht.

For all t ≥ N, let us define the sigma-algebra Ft = σ(Ht+1,Zt+1, At+1). We can verify Fk ⊆ Fl

for all k ≤ l. Thus F = (Ft)t∈N is a filtration. Now, we could verify (zt)t≥0 is adapted to (Ft)t≥0

and (xt)t≥1 is adapted to (Ft)t≥0, satisfying the conditions in Theorem 3.

Z0

x1

z1

x2

z2

x3

z3

. . .

. . .

xt

zt

xt+1

Time t = 1 Time t = 2 Time t = 3 Time t Time t+ 1

Figure 4: Sequential Dependence Structure in Index Sampling.

Prior approximation. First, we state a standard covering argument on sphere.

Lemma 2 (Covering number of a sphere). There exists a set Cι ⊂ Sd−1 with |Cι| ≤ (1 + 2/ι)d such
that for all x ∈ Sd−1 there exists a y ∈ Cι with ∥x− y∥2 ≤ ι.

Lemma 3 (Computing spectral norm on a covering set). Let A be a symmetric d× d matrix, and let
Cι be the an ι-covering of Sd−1 for some ι ∈ (0, 1). Then,

∥A∥ = sup
x∈Sd−1

|x⊤Ax| ≤ (1− 2ι)−1 sup
x∈Cι

|x⊤Ax|.
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For compact set Sd−1 = {x ∈ Rd : ∥x∥ = 1}, by standard covering argument in Lemma 3 and the
distributional Johnson-Lindenstrauss lemma [Li, 2024b], when M ≥ 256ε−2(d log 9 + log(2/δ)),
the initial good event for prior approximation G0(ε/2) holds with probability 1− δ.

Next, we are going to show that, under the event G0(ε/2), the initial condition on |∥z0∥2−1| ≤ (ε/2)
in Theorem 3 is satisfied. That is, under the event G0(ε/2)

(1 + ε/2)a⊤Σ0a ≤ ∥a⊤Σ1/2
0 Z0∥2 ≤ (1 + ε/2)a⊤Σ0a, ∀a ∈ Sd−1

⇔ ∥Z0Z
⊤
0 − I∥ ≤ ε/2

⇔ (1 + ε/2)a⊤Σ−1
0 a ≤ ∥a⊤Σ−1/2

0 Z0∥2 ≤ (1 + ε/2)a⊤Σ−1
0 a, ∀a ∈ Sd−1.

Recall the short notation s(a) = a⊤Σ
−1/2
0 Z0 and s(a)2 = a⊤Σ−1

0 a, we have z0 = s(a)/s(a)
satisfying |∥z0∥2 − 1| ≤ (ε/2).

Posterior approximation. Notice that x2
0 = a⊤Σ0a ≥ infa∈Sd−1 a⊤Σ−1

0 a = s2min. As by the
definition of the feature map ϕ(·) in example 2, we can examine that x2

i = (a⊤ϕ(At))
2 ≤ 1, that is,

the sequence (a⊤ϕ(At))t≥1 is 1-square-bounded for any a ∈ Sd−1.

We could also check that (zt)t≥1 is 1/
√
M -sub-Gaussian and with unit-norm when the perturbation

distribution Pz is Cube U({1,−1}M ) or Sphere U(SM−1).

Under the prior approximation event G0(ε/2), we apply Theorem 3 to show that for any fixed
a ∈ Sd−1,

∀t ∈ T , Et(a, ε) :=
{
|a⊤Σ−1

t AtA
⊤
t Σ

−1
t a− a⊤Σ−1

t a| ≤ εa⊤Σ−1
t a

}
(13)

holds with probability at least 1− δ when

M ≥ 16(1 + ε)

ε2

(
log

(
1

δ

)
+ log

(
1 +

T

s2min

))
. (14)

We need discretization (covering) argument to relate the result in Eq. (13) to the desired good event
defined in Eq. (12)

Gt(ε) =
{
∥Σ−1/2

t AtA
⊤
t Σ

−1/2
t − I∥ ≤ ε

}
.

Standard discretization produces unacceptable results. Utilizing standard discretization for
computing spectral norm in Lemma 3, let ι = 1/4, we can show that

∩a∈C1/4
Et(a, ε/2T ) ⊆ Gt(ε).

This is due to,

∥Σ−1/2
t AtA

⊤
t Σ

−1/2
t − I∥ = sup

x∈Sd−1

|x⊤(Σ−1
t AtA

⊤
t Σ

−1
t −Σ−1

t )x|
x⊤Σ−1

t x

≤ 2

λmin(Σ
−1
t )

sup
a∈C1/4

|a⊤(Σ−1
t AtA

⊤
t Σ

−1
t −Σ−1

t )a|

≤ 2ε′
supa∈C1/4

a⊤Σ−1
t a

λmin(Σ
−1
t )

≤ 2ε′ · κ(Σ−1
t ) ≤ 2Tε′.

Then by union bound over C1/4, plugging in ε/2T to Eq. (14), we require M ≥ Õ(dT 2 log T ) to
let ∩a∈C1/4

Et(a, ε/2T ) hold with probability 1 − δ. This result is not acceptable as the per-step
computation complexity is growing unbounded polynimally with the interaction steps T . In the next
section, we provide a non-trivial discretization to resolve this analytical problem.

Variance-aware discretization. The key contribution here is that we choose a variance weighted
norm to measure discretization error. This variance-awareness, together with specific choice on a
O(1/

√
T )-discretization error and a constant approximation error ε, eventually arrives at O(d log T )

log covering number and M = Õ(d log T ) in Lemma 1.
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Let St = Σ−1
t At = X⊤

t Zt and Γt = Σ
1/2
t St = Σ

−1/2
t At. Notice that, from Eq. (13), the event

holds with probability at least 1− δ′

∀t ∈ T , Et(a, ε
′) =

{ |a⊤StS
⊤
t a− a⊤Σ−1

t a|
a⊤Σ−1

t a
≤ ε′

}
when

M ≥ 16(1 + ε′)

(ε′)2

(
log

(
1

δ′

)
+ log

(
1 +

T

s2min

))
.

Let Cι ⊂ Sd−1 be the ι-covering set in Lemma 2 and the event ∩a∈Cι
Et(a, ε

′) holds. Let x ∈ Sd−1

and y ∈ Cι such that ∥x− y∥ ≤ ι. Define short notation u = Σ
−1/2
t x, v = Σ

−1/2
t y.

|x⊤StS
⊤
t x− x⊤Σ−1

t x|
x⊤Σ−1

t x
− |y⊤StS

⊤
t y − y⊤Σ−1

t y|
y⊤Σ−1

t y

=
|u⊤ΓtΓ

⊤
t u− u⊤u|
u⊤u

− |v⊤ΓtΓ
⊤
t v − v⊤v|
v⊤v

=
|∥Γtu∥2 − ∥u∥2|

∥u∥2 − |∥Γtv∥2 − ∥v∥2|
∥v∥2

≤
∣∣∣∣∥Γtu∥2
∥u∥2 − ∥Γtv∥2

∥v∥2
∣∣∣∣ = ∣∣∣∣∥Γtu∥2 − ∥Γtv∥2

∥u∥2
∣∣∣∣︸ ︷︷ ︸

(I)

+ ∥Γtv∥2
∣∣∣∣ 1

∥u∥2 − 1

∥v∥2
∣∣∣∣︸ ︷︷ ︸

(II)

.

We bound (I) and (II) separately. W.L.O.G, assume ∥u∥ ≥ ∥v∥. Recall s2max ≥ a⊤Σ−1
0 a ≥ s2min

for all a ∈ Sd−1. Since ∥u∥ = x⊤Σ−1
t x = x⊤(Σ−1

0 +
∑t

s=1 xsx
⊤
s )x, we have s2min ≤ ∥u∥ ≤

s2max + t. For (I), we have

(I) ≤ (∥Γtu∥ − ∥Γtv∥)(∥Γtu∥+ ∥Γtv∥)
∥u∥2 ≤ ∥Γt(u− v)∥

smin

(∥Γtu∥
∥u∥ +

∥Γtv∥
∥v∥

)
≤ ∥Γt∥∥u− v∥

smin
(2∥Γt∥) ≤

2∥Γt∥2∥Σ−1/2
t ∥ι

smin
≤ 2∥Γt∥2ι

√
s2max + t

smin
.

For (II), we have

(II) ≤ ∥Γtv∥2
∥v∥2

∥u∥2 − ∥v∥2
∥u∥2 ≤ ∥Γt∥2

∥u∥2 − ∥v∥2
∥u∥2 ≤ ∥Γt∥2

(∥u∥ − ∥v∥)(∥u∥+ ∥v∥)
∥u∥2

≤ 2∥Γt∥2∥u− v∥
smin

≤ 2∥Γt∥2∥Σ−1/2
t ∥ι

smin
≤ 2∥Γt∥2ι

√
s2max + t

smin
.

Then, putting (I) and (II) together, by the variance-aware discretization argument, we have the
spectral norm

∥Σ−1/2
t AtA

⊤
t Σ

−1/2
t − I∥ = sup

x∈Sd−1

|x⊤(Σ−1
t AtA

⊤
t Σ

−1
t −Σ−1

t )x|
x⊤Σ−1

t x

≤ 4∥Γt∥2ι
√

s2max + t

smin
+ sup

y∈Cι

|y⊤(Σ−1
t AtA

⊤
t Σ

−1
t −Σ−1

t )y|
y⊤Σ−1

t y

≤ 4∥Γt∥2ι
√

s2max + t

smin
+ ε′. (15)

Let
ι =

αsmin

4
√

s2max + T
,

where α to be determined. Equivalent formulation of the norm is ∥Γt∥2 = λmax(ΓtΓ
⊤
t ) and

∥Σ−1/2
t AtA

⊤
t Σ

−1/2
t − I∥ = max{λmax(ΓtΓ

⊤
t )− 1, 1− λmin(ΓtΓ

⊤
t )}.

Thus, we derive from Eq. (15),

λmax(ΓtΓ
⊤
t ) ≤

1 + ε′

1− α
, λmin(ΓtΓ

⊤
t ) ≥ 1− ε′ − αλmax(ΓtΓ

⊤
t ) ≥ 1− ε′ − α(1 + ε′)

1− α
.
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Claim 1. If 1+ε′

1−α = 1 + ε and ε′ + α(1+ε′)
1−α = ε, then

1− ε ≤ λmin(ΓtΓ
⊤
t ) ≤ λmax(ΓtΓ

⊤
t ) ≤ 1 + ε.

Let ε = 1/2, then (ε′, α) = (1/4, 1/6) suffices for the Claim 1. That is to say the following
configuration for discretization error ι suffices,

ι =
smin

24
√
s2max + T

.

The covering number is |Cι| ≤ (1 + 2/ι)d ≤ (1 + (48/smin)
√
s2max + T )d.

Then, let δ′ = δ/(1 + (48/smin)
√
s2max + T )d and by union bound, when

M ≥ 16(5/4)

(1/4)2

(
d log

(
1 + (48/smin)

√
s2max + T

δ

)
+ log

(
1 +

T

s2min

))
,

we have with probability 1− δ, the event ∩t∈T Gt(1/2) holds.

D Regret analysis

To make the proof easy to access, we restate the core results and a few notations that is needed for the
proof of the propositions.

Pζ Gaussian N(0, IM ) Sphere
√
MU(SM−1) Cube U({1,−1}M ) Coord U({±ei}i∈[M ]) Sparse

ρ(Pζ) ρ1 ∧ ρ3 ρ2 ∧ ρ3 ρ2 ∧ ρ3 ρ2 ρ2

p(Pζ)
1

4
√
eπ

1
2 − e1/12√

2π
7/32 1

2M N/A

Table 3: (Restate of Table Table 1) The coefficient ρ(Pζ) and p(Pζ) related to reasonableness and
optimism condition.

Adapting the results from [Abbasi-Yadkori et al., 2011b, Abeille and Lazaric, 2017], let βt =√
λ+

√
2 log(1/δ) + log det(Σ−1

t−1/λ
d). Under assumption 1, we define the confidence bound as

Lt(·) = (−1) ∨ (⟨µt−1, ϕ(·)⟩ − βt∥ϕ(·)∥Σt−1), Ut(·) = 1 ∧ (⟨µt−1, ϕ(·)⟩+ βt∥ϕ(·)∥Σt−1)

For the purpose of analysis within various reference distribution, we define a slightly inflated
confidence bounds as

Lt(·;Pζ) = (⟨µt−1, ϕ(·)⟩ − βtρ(Pζ)∥ϕ(·)∥Σt−1) ∨ (−1),

Ut(·;Pζ) = (⟨µt−1, ϕ(·)⟩+ βtρ(Pζ)∥ϕ(·)∥Σt−1
) ∧ 1.

ρ(Pζ) is defined via ρ1 = O(
√
M log(M/δ)), ρ2 = O(

√
M), and ρ3 = O(

√
log(|A|/δ)) and

Table 1. An immediate observation is that [Lt(·), Ut(·)] ⊂ [Lt(·;Pζ), Ut(·;Pζ)]. Thus, Lt(·;Pζ) and
Ut(·;Pζ)] are also confidence bounds. We consider the the following functional form for HyperAgent
under linear setup: for time t,

f̃t(a) := fθt−1
(a, ζt) = ⟨ϕ(a), βtAt−1ζt + µt−1⟩, ∀a ∈ A,

The condition on the propositions and theorem for regret analysis is when Eq. (9) is satisfied, that is
when M = O(d log T ), the Lemma 1 implies that with high probability, the good events G = ∩t∈T Gt

hold jointly, where

Gt :=

{
1

2
x⊤Σtx ≤ x⊤AtA

⊤
t x ≤ 3

2
x⊤Σtx, ∀x ∈ Rd

}
.

In the following section, we discuss the proof conditioned on the joint event G and also the confidence
event that f∗(a) ∈ [Lt(a), Ut(a)] for all t ∈ [T ] and a ∈ A.
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D.1 Proof of Proposition 2

Notice that from Eq. (4), we derive

|f̃t(a)− ⟨µt−1, ϕ(a)⟩| = |⟨ϕ(a), βtAt−1ζt⟩|

= βt

√
ϕ(a)⊤At−1A⊤

t−1ϕ(a)

∣∣∣∣〈 ϕ(a)⊤At−1

∥ϕ(a)⊤At−1∥
, ζt

〉∣∣∣∣
≤ (3/2)βt

√
ϕ(a)⊤Σt−1ϕ(a)

∣∣∣∣〈 ϕ(a)⊤At−1

∥ϕ(a)⊤At−1∥
, ζt

〉∣∣∣∣ ,
where the last inequality is due to the good event G. For compact action set, we use Cauchy–Schwarz
inequality, ∣∣∣∣〈 ϕ(a)⊤At−1

∥ϕ(a)⊤At−1∥
, ζt

〉∣∣∣∣ ≤ ∥ζt∥.

Using the concentration properties of Pζ in Appendix F to upper bound ∥ζt∥ yields part of the results.
For finite action set A, also taking the advantages of the concentration properties of several reference
distributions Pζ in Appendix F to bound the conditionally probability

P

(∣∣∣∣〈 ϕ(a)⊤At−1

∥ϕ(a)⊤At−1∥
, ζt

〉∣∣∣∣ ≤
√

log
2|A|
δ

| Ht,Zt

)
≥ 1− δ,

as ξt is independent of the history Ht,Zt. Finally, the inflated coefficient ρ(Pζ) defined in Table 1
suffices to make f̃t(·) ∈ [Lt(·;Pζ), Ut(·;Pζ)] reasonable.

D.2 Proof of Proposition 3

Let At = maxa∈At f̃t(a) and A∗
t = maxa∈At f

∗(a). Conditioned on G and confidence event,

f̃t(At)− f∗(A∗
t ) ≥ f̃t(A

∗
t )− f∗(A∗

t ) ≥ f̃t(A
∗
t )− U∗(A∗

t )

= ⟨ϕ(A∗
t ), 2βtAt−1ζt⟩ − βt∥A∗

t ∥Σt−1

= 2βt

√
ϕ(A∗

t )
⊤At−1A⊤

t−1ϕ(A
∗
t )

〈
ϕ(A∗

t )
⊤At−1

∥ϕ(A∗
t )

⊤At−1∥
, ζt

〉
− βt∥ϕ(A∗

t )∥Σt−1

≥ βt∥ϕ(A∗
t )∥Σt−1

( 〈
ϕ(A∗

t )
⊤At−1

∥ϕ(A∗
t )

⊤At−1∥
, ζt

〉
− 1

)
.

We consider the conditional probability,

P(f̃t(At) ≥ f∗(A∗
t ) | Ht,Zt) ≥ P

(
βt∥ϕ(A∗

t )∥Σt−1

( 〈
ϕ(A∗

t )
⊤At−1

∥ϕ(A∗
t )

⊤At−1∥
, ζt

〉
− 1

)
| Ht,Zt

)
= P(⟨v, ζt⟩ ≥ 1), (16)

where v is a fixed unit vector in RM . The final probability bound in Eq. (16) for each reference
distribution Pζ is essentially the anti-concentration bounds. Please find the anti-concentration results
for each distribution in Appendix F, resulting in the Table 1.

D.3 Proof of Theorem 2

The Theorem 2 follows directly from Propositions 2 and 3 and Theorem 1. Additionally, it requires
the Azuma’s inequality for the sum of bounded martingale difference∑

t∈[T ]

E[(Ut(At)− Lt(At)) | Ht]− (Ut(At)− Lt(At)) ≤ O(
√

T log(1/δ)), w.p. 1− δ

as Ut(·)− Lt(·) ≤ 2. Then, it suffices to bound the summation of width between upper and lower
confidence bounds ∑

t∈[T ]

(Ut(At)− Lt(At)).

Under linear bandit setups in example 2, we use the elliptical potential lemma (e.g. Lemma 19.4 in
[Lattimore and Szepesvári, 2020] and [Abbasi-Yadkori et al., 2011a]) to bound this summation.

17



E Derivation of the closed-form incremental update

Before proving Proposition 1, we provide useful technical lemmas for isotropic distributions in
Definition 4.

Lemma 4. For any isotropic distribution P over M -dim vector space, we have for any fixed vector
a ∈ RM and x ∈ Rd, EX∼P [a

⊤XxX⊤] = EX∼P [X
⊤axX⊤] = xa⊤.

Proof. The (i, j)-th entry of the matrix is

[EX [X⊤axX⊤]]ij = EX [[X⊤axX⊤]ij ] = EX [(

M∑
k=1

akXk)xiXj ] = xi

M∑
k=1

akEX [XkXj ] = xiaj

Lemma 5. For any isotropic distribution P over M -dim vector space, we have for any fixed
matrix A ∈ Rd×M and any fixed vector x ∈ Rd, EX∼P [X

⊤A⊤xX⊤] = x⊤A and symmetrically,
EX∼P [Xx⊤AX] = A⊤x.

Proof. Let A = (a1, . . . , aM ) where ai ∈ Rd for i = 1, 2, . . . ,M .

AX =

M∑
k=1

Xiai,

and

(AX)⊤x =

M∑
k=1

Xia
⊤
i x.

Note EX [X⊤A⊤xX⊤] ∈ R1×M . Then, the j-th entry of the row vector is

[EX [X⊤A⊤xX⊤]]j = EX [Xj

M∑
k=1

Xia
⊤
i x] = a⊤j x = x⊤aj

Lemma 6. For any isotropic distribution P over M -dim vector space, we have for any fixed matrix
B ∈ RM×M and any fixed vector x ∈ Rd, EX∼P [X

⊤BX] = trB.

Proof.

X⊤AX =
∑
i,j

XiXjBij

By taking the expectation,

E[X⊤AX] =
∑
i

Bii = trB

Remark 6. For any distribution P over M -dim vector space such that EX∼P [XiXj ] = δij , we have
for any fixed vector A ∈ Rd×M ,

EX [AXX⊤] = A

Definition 9 (Zero-mean). We say a distribution P over M -dim vector space is a zero-mean distribu-
tion if EX∼P [X] = 0.
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E.1 Proof of Proposition 1

In this section, we will derive the closed-form incremental update if the update distribution Pξ is
zero-mean and isotropic. We use short notation x for the feature ϕ(A) of some action A ∈ A.

Let the trainable parameters be θ = (A, b) and the linear hypermodel be

fθ(x, ξ) = ⟨Aξ + b, x⟩︸ ︷︷ ︸
Learnable fL

θ (x,ξ)

+ ⟨Σ1/2
0 Z0ξ + µ0, x⟩︸ ︷︷ ︸

Fixed prior fP (x,ξ)

= ⟨(b+ µ0), x⟩+ ⟨(A+Σ
1/2
0 Z0)ξ, x⟩ (17)

Let ∥θ∥2 = ∥A∥2F + ∥b∥22 in Eq. (2) and Σ0 = 1
λI .

By writing done the gradient w.r.t. b and taking a look at the stationary point,

∂L(θ;Dt)

∂b
= 2Eξ∼Pξ

[

t∑
s=1

(⟨(A+Σ
1/2
0 Z0)ξ + (b+ µ0), xs⟩ − ys − σz⊤ξ)xs] +Σ−1

0 b

=

t∑
s=1

xsx
⊤
s (b+ µ0)− xsys +Σ−1

0 b (if Pξ is zero-mean.)

Let b̃t be the stationary point. Definition 9 implies posterior mean matching.

µt := (b̃t + µ0) = (

t∑
s=1

xsx
⊤
s +Σ−1

0 )−1(

t∑
s=1

xtyt +Σ−1
0 µ0) = Σ−1

t (

t∑
s=1

xtyt +Σ−1
0 µ0) (18)

By writing done the gradient w.r.t. A and taking a look at the stationary point,

∂L(θ;Dt)

∂A
= Eξ∼Pξ

[

t∑
s=1

(⟨(A+Σ
1/2
0 Z0)ξ + (b+ µ0), xs⟩ − ys − σz⊤s ξ)xsξ

⊤] + 2Σ−1
0 A

=

t∑
s=1

(xsx
⊤
s (A+Σ

1/2
0 Z0)− σxsz

⊤
s ) +Σ−1

0 A,

where the last equality holds if Pξ is isotropic and zero-mean and we use Lemmas 4 to 6. Let Ãt be
the stationary point. We have

At := Ãt +Σ
1/2
0 Z0 = Σt

(
Σ

−1/2
0 Z0 +

1

σ

t∑
s=1

xsz
⊤
s

)
(19)

From the observation of Eqs. (18) and (19), the solution µt and At can be recursively updated from
µt−1 and At−1 respectively as more data gathering in.

F Isotropy, Concentration and Anti-concentration

Isotropy property is used for update distribution and proving the Proposition 1. The sub-Gaussianness
in concentration property is used for perturbation distributions and proving Lemma 1. The concen-
tration and anti-concentration properties are used for reference distributions and discussion on the
resonableness and optimism condition for HyperAgent. Let us discuss each distribution case by case.

F.1 Sphere Pζ = U(
√
MSM−1)

Isotropy. By the rotational invariance of sphere distribution, we know for any fixed orthogonal
matrix Q,

⟨ζ, x⟩ ∼ ⟨Qζ, x⟩ = ⟨ζ,Q⊤x⟩, ∀x ∈ Rd.

Then, for any fixed x, we select M orthogonal matrix Q1, . . . , QM to rotate x such that Q⊤
i x = ∥x∥ei

where ei is the i-th coordinate vector. With this construction, for any fixed x,

ME[⟨ζ, x⟩2] = E[
M∑
i=1

⟨ζ, xi⟩2] = E[∥x∥2
M∑
i=1

ζ2i ] = M∥x∥2
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and hence E[⟨ζ, x⟩2] = ∥x∥2, which is the definition of isotropic random vector.

Concentration. By definition, ∥ζ∥ =
√
M . For a random variable ζ ∼ U(SM−1) and any fixed

v ∈ SM−1, the inner product follows the transformed Beta distribution

⟨ζ, v⟩ ∼ 2Beta(
M − 1

2
,
M − 1

2
)− 1.

Evidenced by [Skorski, 2023, Li, 2024a], Pζ = U(
√
MSM−1) is 1-sub-Gaussian. For finite action

set A, using the concentration of Beta random variables with union bound, we have

P

(
∀a ∈ A, ⟨ζ, ϕ(a)⟩ ≤ ∥ϕ(a)∥

√
log

2|A|
δ

)
≥ 1− δ,

Anti-concentration. Let’s start by rewriting the problem in terms of the incomplete Beta function:

Given:

X ∼ Beta
(
M − 1

2
,
M − 1

2

)
We want to find:

P (⟨ζ, v⟩ ≥ 1) = P
(
2X − 1 >

1√
M

)
= P

(
X >

1

2
+

1

2
√
M

)
.

Theorem 4. For all d ≥ 2, the random variable X ∼ Beta
(
d−1
2 , d−1

2

)
has the following anti-

concentration behavior

P
(
X >

1

2
+

1

2
√
d

)
≥ 1

2
− e1/12√

2π
.

Remark 7. We did not find any literature that can help derive such anti-concentration results for
Beta distribution.

Proof. Using the incomplete Beta function Ix(a, b), this probability can be expressed as:

P
(
X >

1

2
+

1

2
√
d

)
= 1− I( 1

2+
1

2
√

d

)(d− 1

2
,
d− 1

2

)
To compute I( 1

2+
1

2
√

d

) (d−1
2 , d−1

2

)
, we will use the following relationship for the regularized incom-

plete Beta function Ix(a, b):

Ix(a, b) =
B(x; a, b)

B(a, b)

where B(x; a, b) is the incomplete Beta function and B(a, b) := B(1; a, b) is the complete Beta
function.

For a = b = d−1
2 , the complete Beta function is:

B

(
d− 1

2
,
d− 1

2

)
=

Γ
(
d−1
2

)
Γ
(
d−1
2

)
Γ(d− 1)

Using the property of the Gamma function:

Γ(n+ 1) = nΓ(n).

Let’s compute the incomplete Beta function for x = 1
2 + 1

2
√
d

and a = b = d−1
2 :

1. Calculate the incomplete Beta function B
(
x; d−1

2 , d−1
2

)
:

B

(
1

2
+

1

2
√
d
;
d− 1

2
,
d− 1

2

)
=

∫ 1
2+

1

2
√

d

0

t
d−3
2 (1− t)

d−3
2 dt
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As f(t) = t
d−3
2 (1− t)

d−3
2 is symmetric at t = 1/2 in the interval [0, 1],

B

(
1

2
+

1

2
√
d
;
d− 1

2
,
d− 1

2

)
=

1

2
B

(
d− 1

2
,
d− 1

2

)
+

∫ 1
2+

1

2
√

d

1
2

t
d−3
2 (1− t)

d−3
2 dt.

2. Calculate the regularized incomplete Beta function Ix(a, b):

I( 1
2+

1

2
√

d

)(d− 1

2
,
d− 1

2

)
=

B
(

1
2 + 1

2
√
d
; d−1

2 , d−1
2

)
B
(
d−1
2 , d−1

2

)
As the function f(t) = t

d−3
2 (1− t)

d−3
2 achieves the maximum at t = 1/2, we could upper bound

the incomplete Beta function by∫ 1
2+

1

2
√

d

1
2

t
d−3
2 (1− t)

d−3
2 dt ≤

(
1

4

) d−3
2
(

1

2
√
d

)
=

(
1

2

)d−3(
1

2
√
d

)
. (20)

The complete Beta function can be expressed as

B

(
d− 1

2
,
d− 1

2

)
=

Γ
(
d−1
2

)
Γ
(
d−1
2

)
Γ(d− 1)

,

where Γ(·) is the Gamma function. We use the Stirling’s Approximation on Gamma function which
could provide strict lower bound[Nemes, 2015]

Γ(z) ≥
√
2πzz−

1
2 e−z,

and upper bound [Gronwall, 1918]

Γ(z) ≤
√
2πzz−

1
2 e−z+ 1

12z

for all z > 0. Immediately, the lower bound of the complete Beta function is

B

(
d− 1

2
,
d− 1

2

)
≥

√
2π((d− 1)/2)d−2e−(d−1)

(d− 1)d−
3
2 e−d+1+ 1

12(d−1)

=
√
2π

(
1

2

)d−2

(d− 1)−1/2e−
1

12(d−1) .

As e−
1

12(d−1) ≥ e−1/12 whenever d ≥ 2, we further lower bound

B

(
d− 1

2
,
d− 1

2

)
≥

√
2πe−1/12

(
1

2

)d−2
1√
d
. (21)

Finally, combining Eqs. (20) and (21) yields

I( 1
2+

1

2
√

d

)(d− 1

2
,
d− 1

2

)
≤ 1

2
+

2e1/12( 1
2
√
d
)

√
2π 1√

d

≤ 1

2
+

e1/12√
2π

,

and

P (X >
1

2
+

1

2
√
d
) ≥ 1

2
− e1/12√

2π
≈ 0.0668.

F.2 Cube Pζ = U({1,−1}M )

Isotropy. Easy to verify by definition.
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Concentration. By definition, ∥ξ∥ =
√
M. Also notice that we could sample the random vector ζ

by sample each entry independently from ζi ∼ U({1,−1}) for i ∈ [M ]. Then, for any v ∈ SM−1,
by independence,

E[exp(λ⟨v, ζ⟩)] =
m∏
i=1

E[exp(λvizi)] ≤
m∏
i=1

exp(λ2v2i ) = exp(λ2
∑
i

v2i ).

The inequality is due to MGF of rademacher distribution (e.g. Example 2.3 in [Wainwright, 2019]).
Then we confirm that Pζ = U({1,−1}M ) is 1-sub-Gaussian. For finite action set A, we have from
sub-Gaussian property

P

(
∀a ∈ A, ⟨ζ, ϕ(a)⟩ ≤ ∥ϕ(a)∥

√
log

2|A|
δ

)
≥ 1− δ.

Anti-concentration. Using the anti-concentration result from [Hollom and Portier, 2023], we have
for any fixed unit vector v in RM

P (⟨ζ, v⟩) ≥ 7/32 ≈ 0.21875.

F.3 Gaussian Pζ = N(0, IM )

Isotropy. Easy to verify by definition.

Concentration. The concentration property comes directly from the Chernoff bound for standard
Gaussian random variable together with union bound argument. For any α > 0, we have

P(∥ζ∥ ≤ α
√
M) ≥ P (∀1 ≤ i ≤ M, |ζi| ≤ α) ≥ 1−MP (|ζi| ≥ α) .

Standard concentration inequality for Gaussian random variable gives, ∀α > 0,

P (|ζi| ≥ α) ≤ 2e−α2/2.

Plugging everything together with α =
√
2 log 2M

δ gives the desired result, which is

∥ζ∥ ≤
√
2M log

2M

δ
, w.p. 1− δ.

For the case of finite action set A,

P

(
∀a ∈ A, ⟨ζ, ϕ(a)⟩ ≤ ∥ϕ(a)∥

√
log

2|A|
δ

)
≥ 1− δ.

Anti-concentration. Here ⟨ζ, v⟩ ∼ N(0, 1) for for any fixed unit vector v in RM .

P (N(0, 1) ≥ 1) =
1

2
erfc

(
1√
2

)
≥ 1

4
√
eπ

≈ 0.0856

F.4 Coord Pζ = U(
√
M{±e1, . . . ,±eM})

Isotropy. Easy to verify by definition.

Concentration. By definition, ∥ζ∥ =
√
M.

Anti-concentration.

P (⟨ζ, v⟩ ≥ 1) =
1

2M

∑
j∈[M ]

(1vj≥ 1√
M

+ 1−vj≥ 1√
M
) =

1

2M

∑
j∈[M ]

(1|vj |≥ 1√
M
) ≥ 1

2M
,

where the last inequality is due to a simple fact that for any fixed v ∈ RM with unit norm ∥v∥ = 1,
there always exists an entry j ∈ [M ] with |vj | ≥ 1√

M
.
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F.5 Sparse distribution Pζ

Definition 10 (s-sparse distribution). The sparse vector is in the form ζ =
√

M
s η ⊙ ω where

Pω := U({1,−1}M ), and η is independently and uniformly sampled from all possible s-hot vectors,
where s-hot vectors is with exactly s non-zero entries with number 1. This construction is introduced
by [Kane and Nelson, 2014].

Isotropy. By definition,

E[ζjζk] =
M

s
E[ηjηk]E[ωjωk] =

M

s
δjkE[ωj ] = δhk. (22)

Therefore, the sparse distribution in Definition 10 is indeed isotropic distribution.

Concentration. ∥ζ∥ =
√
M .

Anti-concentration. Not clear.

G Synthetic Experiments

We conduct experiments on synthetic bandit tasks, involving both linear and nonlinear reward
functions, to validate the theoretical insights and provide practical guidance. We firstly demonstrate
the superiority of HyperAgent over Ensemble+ [Osband et al., 2018] in linear contextual bandits
and then we validate the advantage of separating the reference and update distributions in neural
contextual bandits.

G.1 Linear Contextual Bandits

We begin by examining the advantages of HyperAgent in linear bandit, which can be understood as
scenario where the foundation model backbone is fixed. In this experiment, we primarily focus on
studying the impact of perturbations and reference distributions on HyperAgent.

Settings: We study the finite-action linear bandit guided by prior research [Russo and Van Roy,
2018] to evaluate HyperAgent. In this task, we construct the finite action set A by uniformly sampling
from the range [−1/

√
5, 1/

√
5]d where d is the ambient dimension of the linear reward function

perturbed by an additive Gaussian noise term. To ensure robust results, each experiment is executed a
total of 1000 time steps and repeated 200 times. We provide a detailed implementation of the task in
Appendix H.1.
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HyperAgent uses A as the reference distribu-
tion and B as the perturbation distribution.

Results Analysis: This experiment involves all 25 combinations of perturbation and reference
distribution as highlighted in Fig. 5, using accumulated regret as evaluative metric. Notably, the Gaus-
sian reference demonstrates enhanced performance across all scenarios, while the Sphere reference
shows better results with a larger index dimension M . However, the Coord reference distribution, as
implemented in Ensemble+, failed to meet satisfactory performance. This underperformance aligns
with the theoretical results presented in Theorem 2.
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Computation Efficiency: We evaluate HyperAgent employing the Gaussian reference distribution
across different index dimensions M , demonstrated in Fig. 6. It is apparent that larger M improves
performance, implying that increasing the index dimension could enhance the approximation of the
posterior covariance in the closed-form solution. Remarkably, HyperAgent shows performance on
par with Thompson sampling with a minimal M = 8, highlighting its computational efficiency.

We carry out supplementary experiments on two linear bandit tasks with varying action sizes and
dimensions, all of which display similar phenomena that convincingly reinforce most of our theoretical
findings. For further information of experimental results, please refer to Appendix H.1, where we
discuss when Theorem 2 perfect predicts the empirical results and when it does not.

G.2 Neural Contextual Bandits

We then extend HyperAgent to nonlinear tasks, using MLP networks as feature extractors for
convenient analysis. In this experiment, we primarily focus on studying the impact of update
distributions and demonstrating the advantages of HyperAgent compared to other algorithms that
employ approximate posterior sampling.

Settings: We use the neural network to build the ground-truth nonlinear reward function f∗, which
includes three fully connected layers, each consisting of 50 units, and connected by ReLU activation
functions. The action dimension is set at 100, while the size of A designated as 1000.
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Figure 7: Experimental results on Neural Bandit. (a) Comparison results with baselines. (b) The
impact of various update distribution. (c) The impact of |Ξ̃| when using Sphere update distribution.

Data Efficiency: We set the update, reference, and perturbation distributions with the same Sphere
distribution for HyperAgent and juxtaposed it against several baselines that utilize approximate
posterior sampling. These baselines include Ensemble+ [Osband et al., 2018], EpiNet [Osband et al.,
2023], and LMCTS [Xu et al., 2022]. To maintain fairness of comparison, all methods employed
the identical feature network ϕw(a), and the update ratio of LMCTS is uniformed with that of
HyperAgent. We assessed the performance by using cumulative regret after completion of the
training. As depicted in Fig. 7(a), HyperAgent remarkably exceeds other baselines, showcasing its
superior data efficiency.

Computation Efficiency: We keep reference and perturbation with the Sphere distribution and
evaluate different update distributions. As displayed in Fig. 7(b), the outcomes revealed that discrete
update distributions consistently outperformed continuous ones. This is principally because we require
a sampling-based approximation for expectation estimation with continuous options, but finite indices
allow us to calculate the expectation precisely with discrete distributions as implied in Proposition 1.
Notably, as depicted in Fig. 7(c), when employing Sphere update distribution, HyperAgent can
further boost performance with larger |Ξ̃| in Eq. (1). However, larger |Ξ̃| significantly increases the
computational costs. As a pragmatic solution, employing Coord for the update distribution strikes a
favourable balance, achieving superior performance with reduced computational expenditure.

We also conduct comparisons involving differing reference and perturbation distributions and other ab-
lation studies. We observe that continuous reference and perturbation distributions offered advantages,
consistent with the findings from linear bandit. Please refer to Appendix H.2 for details.
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H In-depth empirical and ablation studies

In this section, we dive into the intricacies of each evaluation testbed. Through a comprehensive set
of empirical results, we’ll further illuminate the benefits afforded by HyperAgent. All experiments
are conducted on P40 GPUs to maintain processing standardization.

H.1 Linear Bandit Task

We consider the linear bandit tasks to study the impact pf perturbation and reference distribution
indicated by the theoretical analysis.

Task Settings: We use the action feature set X to denote the set of features ϕ(a) : a ∈ A induced
by action set A and feature mapping ϕ(·). We build two linear bandit tasks with different action
distribution as follow:

• Finite-action Linear Bandit: We construct the finite set X by uniformly sampling a set of
action features from the range [−1/

√
5, 1/

√
5]d where d is the ambient dimension of the

linear reward function. This task builds upon prior research Russo and Van Roy [2018]. We
vary the action size |X | over a set of {100, 1000, 10000}, and the ambient dimension across
{10, 50}.

• Compact-action Linear Bandit: Let the action feature set X = Sd−1 be the unit sphere. In
this task, we vary the ambient dimension d over a set of {10, 50, 100}.

In both tasks, the reward of each feature Xt ∈ Rd is computed as rt = X⊤
t θ+ϵ, where θ ∼ N (0, 10I)

is drawn from the multivariate Gaussian prior distribution, and ϵ ∼ N (0, 1) is an independent additive
Gaussian noise term. At every step t, only the reward from the chosen feature Xt is discernible. To
ensure robust results, each experiment is executed a total of 1000 time steps and repeated 200 times.

Analysis of Results: We investigated all 25 combinations of perturbation and reference distribution
under different scales of the linear bandit tasks and numerous index dimensions denoted as M .
As depicted in Figs. 8 to 10, the outcomes across diverse problem scales corroborate each other.
The use of a Gaussian reference distribution significantly enhances performance when the index
dimension M is relatively small, such as when M is 2 or 4. As the index dimension M grows, all
combinations show an analogous performance under varying problem scales. However, it is worth
noting that for extremely large index dimensions, such as 512 or 1024, combinations involving the
Coord perturbation and Coord reference distribution significantly underperform compared to other
combinations. Given that Coord distributions are used in the ensemble-based methods, the results
prompt a compelling argument. HyperAgent equipped with a continuous reference distribution
presents a superior performance, suggesting its potential for surpassing traditional ensemble-based
methods. These findings strongly support the superior advantage of our index sampling method,
validating our theoretical analysis.

Analysis of Computational Efficiency: We delve deeper into the effects of varying the in-
dex dimension M within the HyperAgent. We assessed its performance across distinctive com-
binations of perturbation and reference distributions over an assortment of index dimensions
M ∈ {4, 8, 16, 32, 64, 128, 256, 512, 1024}. The outcomes, visualized in Figs. 11 and 12, are con-
gruent with findings illustrated in Figs. 8 to 10. We observed that for large index dimensions M , the
Coord perturbation and Coord reference distributions degrade the performance. This implies that the
index sampling method employed by ensemble-based methods lacks efficiency. When HyperAgent
utilizes Gaussian or Sphere reference distributions, it achieves satisfactory performance, comparable
with Thompson sampling with small M . These results significantly showcase the computational
efficiency of HyperAgent, which attains satisfactory performance with small index dimensions M .

Remark 8 (Limitation of Theorem 2.). Notice that Theorem 2 suggest that when M ≥
O(d log T ), the regret bound of Ensemble sampling would increase with factor M3/2, which
contradicts with our empirical evidence in Figs. 8 to 12.
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Remark 9 (Good prediction of Theorem 2.). Our empirical evidence in Figs. 8 to 12 confirms
the Theorem 2 in finite decision set setting for continuous-support reference distributions:
when M is larger then a threshold O(d log T ), the regret has no dependence on M .
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Figure 8: Results on the combinations of perturbation and reference distribution in Finite-action
Linear Bandit under action dimension d = 10. A deeper color signifies lower accumulated regret and
hence superior performance. Gaussian reference distribution significantly enhances performance.

H.2 Nonlinear Bandit Task

We utilize the nonlinear bandit tasks to further study the impact of update distribution in HyperAgent.
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Figure 9: Results on the combinations of perturbation and reference distribution in Finite-action
Linear Bandit under action dimension d = 50. A deeper color signifies lower accumulated regret and
hence superior performance. Gaussian reference distribution significantly enhances performance.
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Figure 10: Results on the combinations of perturbation and reference distribution in Compact-action
Linear Bandit. A deeper color signifies lower accumulated regret and hence superior performance.
Gaussian reference distribution significantly enhances performance.
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Figure 11: Results on regret under various index dimension M in Finite-action Linear Bandit. The
label A−B indicates that HyperAgent uses A as the reference distribution and B as the perturbation
distribution. HyperAgent with Gaussian or Sphere reference distribution could achieve comparable
performance with that of Thompson sampling under small M .
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Figure 12: Results on regret under various index dimension M in Compact-action Linear Bandit. The
label A−B indicates that HyperAgent uses A as the reference distribution and B as the perturbation
distribution. HyperAgent with Gaussian or Sphere reference distribution could achieve comparable
performance with that of Thompson sampling under small M .

Task Settings: We We formulated two nonlinear contextual bandit tasks, with rewards generated by
nonlinear functions in each.

• Neural Bandit: It employs a nonlinear neural model denoted as f1(a) in reward generation.
This model features three fully connected layers, each consisting of 50 units, and connected
by ReLU activation functions.

• Quadratic Bandit: Its reward generation mechanism built on a quadratic function, expressed
as f2(a) = 10−2(a⊤ΘΘ⊤a). Here, a ∈ Rd stands for the action while Θ ∈ Rd×d is a
matrix filled with random variables originating from N (0, 1).

In both tasks, the original reward r is disrupted by Gaussian noise ϵ drawn from N (0, 0.1). We set
the action dimension d at 100 and the size of action set X to 1000. Each experiment was run over 5
million time steps and repeated with 10 distinct random seeds to secure robust results

Results on Quadratic Bandit: We have conducted a comprehensive analysis of the results from the
Neural Bandit task as depicted in Fig. 7, demonstrating the distinct advantages of HyperAgent. The
outcomes from the Quadratic Bandit task, represented in Fig. 13, resonate with the observations from
the Neural Bandit task. HyperAgent consistently outperforms other baselines and exhibits enhanced
performance when implementing a discrete update distribution (i.e., Sparse, Cube, and Coord).
The quantity of indices |Ξ̃|, in accordance with Eq. (1), continues to influence the performance
of HyperAgent when the Sphere update distribution is applied. The uniformity of results across
both Neural and Quadratic Bandit tasks highlights the superior generalization and efficient data and
computational capability of HyperAgent in decision-making tasks.

Ablation Study on Neural Bandit: We performed comparisons experiment on different reference
and perturbation distributions on Neural Bandit. Firstly, we assigned the same Sphere to both the
update and reference distributions, aiming to observe the impact of different perturbation distributions.
From Fig. 14(a), it’s evident that various perturbations resulted in near-identical performances. This
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Figure 13: Experimental results on Quadratic Bandit. (a) Comparison results with baselines. (b) The
impact of various update distribution. (c)The impact of |Ξ̃| when using Sphere update distribution.

observation aligns with the findings reported in the linear bandit task, suggesting that perturbations
do not significantly influence the performance of the model. We then explored the impact of different
reference distributions by allocating the Coord update distribution and Sphere perturbation distribution
for HyperAgent. The results in Fig. 14(b) reveal a slight divergence from the linear bandit task, with
Gaussian reference distribution showing suboptimal performance in the Neural Bandit. Nevertheless,
the Sphere reference distribution demonstrated consistent efficacy, in line with the theoretical analysis
presented in Theorem 2. While the sub-par results under the Gaussian reference distribution set the
stage for future investigations.
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Figure 14: Ablation studies on the Neural Bandit.

Additional Results: To ensure fair comparison between HyperAgent and LMCTS, we have meticu-
lously adjusted LMCTS’s update ratio to match that of HyperAgent’s in Figs. 7 and 13. To further
investigate the influence of the update ratio, we also evaluated LMCTS under its original settings,
referred to as LMCTS (original). In this setting, the update ratio initially follows a linearly increasing
trend before stabilizing at 100. As demonstrated in Fig. 15, despite the incremental computational
cost, LMCTS (original) falls short in attaining satisfactory performance in comparison to HyperAgent.
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Gergő Nemes. Error bounds and exponential improvements for the asymptotic expansions of the
gamma function and its reciprocal. Proceedings of the Royal Society of Edinburgh: Section A
Mathematics, 145(3):571–596, 2015. doi: 10.1017/S0308210513001558.

OpenAI. Hello gpt-4o, 2023. URL https://openai.com/index/hello-gpt-4o/. Accessed:
15-May-2024.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Ian Osband, Benjamin Van Roy, Daniel J. Russo, and Zheng Wen. Deep exploration via randomized
value functions. Journal of Machine Learning Research, 20(124):1–62, 2019. URL http:
//jmlr.org/papers/v20/18-339.html.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Epistemic neural networks. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
dZqcC1qCmB.

Chao Qin, Zheng Wen, Xiuyuan Lu, and Benjamin Van Roy. An analysis of ensemble sampling.
Advances in Neural Information Processing Systems, 35:21602–21614, 2022.

Reddit. Automoderator guide. https://www.reddit.com/r/reddit.com/wiki/
automoderator/, 2024. Accessed: 2024-07-09.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Sarah T Roberts. Behind the screen. Yale University Press, 2019.

Paat Rusmevichientong and John N Tsitsiklis. Linearly parameterized bandits. Mathematics of
Operations Research, 35(2):395–411, 2010.

Daniel Russo and Benjamin Van Roy. Learning to optimize via information-directed sampling.
Operations Research, 66(1):230–252, 2018.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Khaled Saab, Tao Tu, Wei-Hung Weng, Ryutaro Tanno, David Stutz, Ellery Wulczyn, Fan Zhang,
Tim Strother, Chunjong Park, Elahe Vedadi, et al. Capabilities of gemini models in medicine.
arXiv preprint arXiv:2404.18416, 2024.

34

https://openreview.net/forum?id=X0nrKAXu7g-
https://transparency.meta.com/policies/community-standards/
https://transparency.meta.com/policies/community-standards/
https://openai.com/index/hello-gpt-4o/
http://jmlr.org/papers/v20/18-339.html
http://jmlr.org/papers/v20/18-339.html
https://openreview.net/forum?id=dZqcC1qCmB
https://openreview.net/forum?id=dZqcC1qCmB
https://www.reddit.com/r/reddit.com/wiki/automoderator/
https://www.reddit.com/r/reddit.com/wiki/automoderator/


Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Maciej Skorski. Bernstein-type bounds for beta distribution. Modern Stochastics: Theory and
Applications, 10(2):211–228, 2023.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Martin J. Wainwright. High-Dimensional Statistics: A Non-Asymptotic Viewpoint. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 2019. doi:
10.1017/9781108627771.

Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. Bandit problems with side observations.
IEEE Transactions on Automatic Control, 50(3):338–355, 2005.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv
preprint arXiv:2305.16291, 2023.

Lilian Weng, Vik Goel, and Andrea Vallone. Using gpt-4 for content moderation. August 2023. URL
https://openai.com/index/using-gpt-4-for-content-moderation/. OpenAI.

Pan Xu, Hongkai Zheng, Eric V Mazumdar, Kamyar Azizzadenesheli, and Animashree Anandkumar.
Langevin monte carlo for contextual bandits. In International Conference on Machine Learning,
pages 24830–24850. PMLR, 2022.

Xu Yan, Haiming Zhang, Yingjie Cai, Jingming Guo, Weichao Qiu, Bin Gao, Kaiqiang Zhou, Yue
Zhao, Huan Jin, Jiantao Gao, et al. Forging vision foundation models for autonomous driving:
Challenges, methodologies, and opportunities. arXiv preprint arXiv:2401.08045, 2024.

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Hongbo Zhang, Junying Chen, Feng Jiang, Fei Yu, Zhihong Chen, Jianquan Li, Guiming Chen,
Xiangbo Wu, Zhiyi Zhang, Qingying Xiao, Xiang Wan, Benyou Wang, and Haizhou Li. Huatuogpt,
towards taming language model to be a doctor, 2023.

Yuan Zhou. Lecture 14: Lower bounds for linear bandits. Lecture Notes in IE498, 2019. URL
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_14.pdf. Accessed: Jan
17th, 2024.

35

https://openai.com/index/using-gpt-4-for-content-moderation/
https://yuanz.web.illinois.edu/teaching/IE498fa19/lec_14.pdf

	Introduction
	Key Contributions

	Problem formulation and HyperAgent algorithm
	Sequential decision-making under uncertainty
	HyperAgent, hypermodel and index sampling

	Theoretical analysis
	Insight from Linear HyperAgent

	Automated Content Moderation with Human Feedback
	Related works
	Conclusion and future directions
	Additional related works
	Proof of thm:general
	Incremental uncertainty estimation in lem:incre-seq-post-approx
	Probability tools for sequential random projection
	Reduce lem:incre-seq-post-approx to sequential random projection

	Regret analysis
	Proof of prop:hyperagent-reasonable
	Proof of prop:hyperagent-optimism
	Proof of thm:regret-linear-hyperagent

	Derivation of the closed-form incremental update
	Proof of prop:closed-form-incre

	Isotropy, Concentration and Anti-concentration
	Sphere P = U(MSM-1)
	Cube P = U({1, -1}M)
	Gaussian P = N(0, IM)
	Coord P = U(M{e1, …, eM })
	Sparse distribution P

	Synthetic Experiments
	Linear Contextual Bandits
	Neural Contextual Bandits

	In-depth empirical and ablation studies
	Linear Bandit Task
	Nonlinear Bandit Task


