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Abstract

Embodied AI agents require a fine-grained understanding of the physical world
mediated through visual and language inputs. Such capabilities are difficult to
learn solely from task-specific data. This has led to the emergence of pre-trained
vision-language models as a tool for transferring representations learned from
internet-scale data to downstream tasks and new domains. However, commonly
used contrastively trained representations such as in CLIP have been shown to fail at
enabling embodied agents to gain a sufficiently fine-grained scene understanding—
a capability vital for control. To address this shortcoming, we consider representa-
tions from pre-trained text-to-image diffusion models, which are explicitly opti-
mized to generate images from text prompts and as such, contain text-conditioned
representations that reflect highly fine-grained visuo-spatial information. Using
pre-trained text-to-image diffusion models, we construct Stable Control Repre-
sentations which allow learning downstream control policies that generalize to
complex, open-ended environments. We show that policies learned using Stable
Control Representations are competitive with state-of-the-art representation learn-
ing approaches across a broad range of simulated control settings, encompassing
challenging manipulation and navigation tasks. Most notably, we show that Sta-
ble Control Representations enable learning policies that exhibit state-of-the-art
performance on OVMM, a difficult open-vocabulary navigation benchmark.

Code: github.com/ykarmesh/stable-control-representations

1 Introduction

As general-purpose, pre-trained “foundation” models [2, 5, 6, 24, 31, 34, 47] are becoming widely
available, a central question in the field of embodied AI has emerged: How can foundation models be
used to construct model representations that improve generalization in challenging robotic control
tasks [4, 40, 64]?

Robotic control tasks often employ pixel-based visual inputs paired with a language-based goal
specification, making vision-language model representations particularly well-suited for this set-
ting. However, while vision-language representations obtained via Contrastive Language-Image
Pre-training [CLIP; 33]—a state-of-the-art method—have been successfully applied to a broad
range of computer vision tasks, the use of CLIP representations has been shown to lead to poor
downstream performance for robotic control. This shortcoming has prompted the development
of alternative, control-specific representations for embodied AI [25, 30] but has left other sources
of general-purpose pre-trained vision-language representations—such as text-to-image diffusion
models—largely unexplored for control applications.
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Figure 1: Left: Our paper proposes Stable Control Representations, which uses pre-trained text-
to-image diffusion models as a source of language-guided visual representations for downstream
policy learning. Right: Stable Control Representations enable learning control policies that achieve
all-round competitive performance on a wide range of embodied control tasks, including in domains
that require open-vocabulary generalization. Empirical results are provided in Section 4.

In this paper, we propose Stable Control Representations (SCR): pre-trained vision-language
representations from text-to-image diffusion models that can capture both high and low-level details
of a scene [17, 34]. While diffusion representations have seen success in downstream vision-language
tasks, for example, in semantic segmentation [3, 46, 50], they have—to date—not been used for
control. We perform a careful empirical analysis in which we deconstruct pre-trained text-to-image
diffusion model representations to understand the impact of different design decisions.

In our investigation, we find that diffusion representations can outperform general-purpose models
like CLIP [33] across a wide variety of embodied control tasks despite not being trained for represen-
tation learning. This is the case for purely vision-based tasks as well as for settings that require task
understanding through text prompts. A highlight of our results is the finding that diffusion model rep-
resentations enable better generalization to unseen object categories in a challenging open-vocabulary
navigation benchmark [58] and provide improved interpretability through attention maps [45].

Our key contributions are as follows:
1. In Section 3, we introduce a multi-step approach for extracting vision-language representations

for control from text-to-image diffusion models. We show that these representations are capable
of capturing both the abstract high-level and fundamental low-level details of a scene, offering an
alternative to models trained specifically for representation learning.

2. In Section 4, we evaluate the representation learning capabilities of diffusion models on a broad
range of embodied control tasks, ranging from purely vision-based tasks to problems that require
an understanding of tasks through text prompts, thereby showcasing the versatility of diffusion
model representations.

3. In Section 5, we systematically deconstruct the key features of diffusion model representations
for control, elucidating different aspects of the representation design space, such as the input
selection, the aggregation of intermediate features, and the impact of fine-tuning on performance.

We have demonstrated that diffusion models learn versatile representations for control and can help
drive progress in embodied AI. Figure 1 presents a summary of our approach and results.2

2 Related Work

We begin with a review of prior work on representation learning and diffusion models for control.

Representation Learning with Diffusion Models. Diffusion models have received a lot of recent
attention as flexible representation learners for computer vision tasks of varying granularity—ranging
from key point detection and segmentation [46, 50] to image classification [48, 57]. Wang et al. [50]
has shown that intermediate layers of a text-to-image diffusion model encode semantics and depth
maps that are recoverable by training probes. These approaches similarly extract representations by
considering a moderately noised input, and find that the choice of timestep can vary based on the
granularity of prediction required for the task. Yang and Wang [57] train a policy to select an optimal

2Code link: https://github.com/ykarmesh/stable-control-representations.
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diffusion timestep, we simply used a fixed timestep per class of task. Several works [45, 46, 50]
observe that the cross-attention layers that attend over the text and image embeddings encode a
lot of the spatial layout associated with an image and therefore focus their method around tuning,
post-processing, or extracting information embedded within these layers.

Visual Representation Learning for Control. Over the past decade, pre-trained representation
learning approaches have been scaled for visual discrimination tasks first, and control tasks more
recently. Contrastively pre-trained CLIP [33] representations were employed for embodied navigation
tasks by EmbCLIP [21]. MAE representations have been used in control tasks by prior works like
VC-1 [27], MVP [54] and OVRL-v2 [56]. R3M [30] and Voltron [20] leverage language supervision
to learn visual representations. In contrast, we investigate if powerful text-to-image diffusion models
trained for image generation can provide effective representations for control.

Diffusion Models for Control. Diffusion models have seen a wide range of uses in control aside from
learning representations. These can broadly be categorized into three areas. First, diffusion models
have been used as a class of expressive models for learning action distributions for policies [7, 14, 32];
They can improve model multimodality and generate richer action distributions than Gaussians.
Second, off-the-shelf diffusion models have been used to augment limited robot demonstration
datasets by specifying randomizations for object categories seen in the data through inpainting [19,
28, 60]. Third, planning can be cast as sequence modeling through diffusion models [1, 11, 18].

3 Stable Control Representations

In this paper, we investigate the use of language-guided visual representations from the open-source
Stable Diffusion model (v1.5) and their application to language-conditioned visual control tasks. We
present background on latent diffusion models and text-to-image diffusion models, along with the
notation we adopt in this work, in Appendix B.

To extract representations, we follow a similar protocol as Wang et al. [50], Traub [48], and Yang and
Wang [57]: Given an image-text prompt, s = {simage, stext}, associated with a particular task, we use
the SD VQ-VAE model as the encoder E(·) and partially noise the encoded latents z0 =̇ E(simage) to
some diffusion timestep t, to obtain the noised latent zt. We then extract a representation composed
of the intermediate layer outputs of the U-Net ϵθ as it produces a denoising estimate ϵθ(zt, t, stext).
This process is illustrated in Figure 2. We refer to the extracted representations as Stable Control
Representations (SCR). In Sections 3.1, 3.2, 3.3, and 3.4, we describe the design space for extracting
SCR, and in Sections 3.5 and 3.6, we explain how we use the representations for control.

3.1 Layer Selection and Aggregation

We are interested in evaluating the internal representations from the denoiser network, that is, the
U-Net ϵθ(·). The first design choice we consider is which layers of ϵθ to aggregate intermediate
outputs from. The U-Net does not have a representational bottleneck, and different layers potentially
encode different levels of detail. Trading off size with fidelity, we concatenate the feature maps
output from the mid and down-sampling blocks to construct the representation. This results in a
representation size comparable to that of the other pre-trained models we study in Section 4. This
is shown at the bottom of Figure 2 and we ablate this choice in Section 5.1. Since outputs from
different layers may have different spatial dimensions, we bilinearly interpolate them so that they are
of a common spatial dimension and can be stacked together. We then pass them through a learnable
convolutional layer to reduce the channel dimension before feeding them to downstream policies. The
method used to spatially aggregate pre-trained representations can significantly affect their efficacy in
downstream tasks, as we will discuss in Section 5.4. We use the best-performing spatial aggregation
method for all the baselines that we re-train in Section 4.

3.2 Diffusion Timestep Selection

Next, we consider the choice of extraction timestep t for the denoising network (shown on the left of
Figure 2). Recall that the images we observe in control tasks are un-noised (i.e., corresponding to
x0), whereas the SD U-Net expects noised latents, corresponding to zt for t ∈ [0, 1000]. The choice
of timestep t influences the fidelity of the encoded latents since a higher value means more noising
of the inputs. Yang and Wang [57] have observed that there are task-dependent optimal timesteps
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Figure 2: Extraction of Stable Control Representations from Stable Diffusion. Given an image-text
prompt, s = {simage, stext}, we encode and noise the image and feed it into the U-Net together with
the language prompt. We then aggregate feature maps from multiple layers within the U-Net, as
described in Section 3. Shown here are features from the mid and downsampling blocks of the U-Net.

and proposed adaptive selection of t during training, while Xu et al. [55] have used t = 0 to extract
representations using un-noised inputs to do open-vocabulary segmentation. We hypothesize that
control tasks that require a detailed spatial scene understanding would benefit from a lower diffusion
timestep, corresponding to a later stage in the denoising process where the inputs have less noise.
We provide evidence consistent with this hypothesis in Section 5.2. To illustrate the effect of the
timestep, we display final denoised images for various t values in different domains in Figure 8.

3.3 Prompt Specification

Since text-to-image diffusion models allow conditioning on text, we investigate if we can influence
the representations to be more task-specific via this conditioning mechanism. For tasks that come
with a text specifier, for example, the sentence “go to object X”, we simply encode this string and
pass it to the U-Net. However, some tasks are purely vision-based and in these settings, we explore
whether constructing reasonable text prompts affects downstream policy learning when using the
U-Net’s language-guided visual representations. We present this analysis in Section 5.3.

3.4 Intermediate Attention Map Selection

Wang et al. [50] and Tang et al. [45] demonstrate that the Stable Diffusion model generates localized
attention maps aligned with text during the combined processing of vision and language modali-
ties. Wang et al. [50] leveraged these word-level attention maps to perform open-domain semantic
segmentation. We hypothesize that these maps can also help downstream control policies to gener-
alize to an open vocabulary of object categories by providing helpful intermediate outputs that are
category-agnostic. Following Tang et al. [45], we extract the cross-attention maps between the visual
features and the CLIP text embeddings within the U-Net. We test our hypothesis on an open-domain
navigation task in Section 4.3, where we fuse the cross-attention maps with the extracted feature
maps from the U-Net. We refer to this attention-map-augmented representation as SCR-ATTN.

3.5 Using Text-to-Image Diffusion Model Representations to Learn Control Policies

To solve visual control tasks with states given by s = [simage, stext], where stext may be used to specify
the task, we wish to use pre-trained vision-language representations capable of encoding the state s
as fϕ(simage, stext). This encoded state is then supplied to a downstream, task-specific policy network,
which is trained to predict the action at. Our evaluation encompasses both supervised learning
and reinforcement learning regimes for training the downstream policies. We train agents through
behavior cloning on a small set of demonstrations for the few-shot manipulation tasks we study in
Section 4.1. For the indoor navigation tasks we study in Sections 4.2 and 4.3, we use a version of the
Proximal Policy Optimization [PPO, 39] algorithm for reinforcement learning.
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Figure 3: Sample scenes from the Habitat environments for the ImageNav (left) and OVMM (center)
tasks. Instances from training and validation datasets of the OVMM object set are shown on the right.

3.6 Fine-Tuning on General Robotics Datasets

Finally, we consider fine-tuning strategies to better align the base Stable Diffusion model towards
generating representations for control. This serves to bridge the domain gap between the diffusion
model’s training data (e.g., LAION images) and robotics datasets’ visual inputs (e.g., egocentric
tabletop views in manipulation tasks or indoor settings for navigation). Crucially, we do not require
any task-specific losses for fine-tuning. Instead, we adopt the same text-conditioned generation
objective as that of the base model for the fine-tuning phase. We use a small subset of the collection
of datasets used by prior works on representation learning for embodied AI [27, 54]: we use subsets
of the EpicKitchens [9], Something-Something-v2 [SS-v2; 13], and Bridge-v2 [49] datasets. As
is standard, we fine-tune the denoiser U-Net ϵθ but not the VAE encoder or decoder. Image-text
pairs are uniformly sampled from the video-text pairs present in these datasets. A possible limitation
of this strategy is that text-video aligned pairs (a sequence of frames that correspond to a single
language instruction) may define a many-to-one relation for image-text pairs. However, as we see
in experiments in which we compare to the base Stable Diffusion model in Section 4, this simple
approach to robotics alignment is useful in most cases. Further details related to fine-tuning are
provided in Appendix E.1. We refer to the representations from this fine-tuned model as SCR-FT.

4 Empirical Evaluation

In this work, we evaluate Stable Control Representations (SCR) on an extensive suite of tasks from
6 benchmarks covering few-shot imitation learning for manipulation in Section 4.1, reinforcement
learning-based indoor navigation in Sections 4.2 and 4.3, and tasks related to fine-grained visual
prediction in Appendices D.2 and D.3. Together, these tasks allow us to comprehensively evaluate
whether our extracted representations can encode both high and low-level semantic understanding of
a scene to aid downstream policy learning. We describe the common baselines used across tasks in
Appendix C, and present the individual task setups and results in the following subsections.

4.1 Few-shot Imitation Learning

We start by evaluating SCR on commonly studied representation learning benchmarks in few-shot
imitation learning. Specifically, our investigation incorporates five commonly studied tasks from
Meta-World [59] (same as CORTEXBENCH [27]), which includes bin picking, assembly, pick-place,
drawer opening, and hammer usage; as well as five tasks from the Franka-Kitchen environments
included in the RoboHive suite [23], which entail tasks such as turning a knob or opening a door. We
adhere to the training and evaluation protocols adopted in their respective prior works to ensure our
results are directly comparable (detailed further in Appendix G.1).

Results. We report the best results of SCR and baselines in Table 1a. On Meta-World, we see
that SCR outperforms most prior works, achieving 94.9% success rate. In comparison, VC-1, the
visual foundation model for embodied AI and CLIP achieved 92.3 and 90.1% respectively. On
Franka-Kitchen, SCR obtains 49.9% success rate, which is much higher than CLIP (36.3%) and
again outperforms all other baselines except for R3M. We note that R3M’s sparse representations
excel in few-shot manipulation with limited demos but struggle to transfer beyond this setting [27, 20].
We see that while the SD-VAE encoder performs competitively on Franka-Kitchen, it achieves a
low success rate on Meta-World. This observation allows us to gauge the improved performance
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Table 1: Average Success Rate and standard error evaluated across different representations.
(a) Meta-World & Franka-Kitchen.

Model Meta-World Franka-Kitchen

R3M 96.0 ± 1.1 57.6 ± 3.3
CLIP 90.1 ± 3.6 36.3 ± 3.2
VC-1 92.3 ± 2.5 47.5 ± 3.4
Voltron 72.5 ± 5.2 33.5 ± 3.2
SD-VAE 75.5 ± 5.2 43.7 ± 3.1
SCR 94.4 ± 1.9 45.0 ± 3.3
SCR-FT 94.9 ± 2.0 49.9 ± 3.4

(b) ImageNav

Model Success

R3M 30.6
CLIP-B 52.2
VC-1 70.3
MVP 68.1
SD-VAE 46.6
SCR 73.9
SCR-FT 69.5

(c) OVMM

Model Success

Oracle 77.6
Detic 36.7
CLIP 38.7 ± 1.7
VC-1 40.6 ± 2.2
SCR 38.7 ± 1.2
SCR-FT 41.9 ± 1.0
SCR-FT-ATTN 43.6 ± 2.1

of SCR from the base performance gain we may get just from operating in the latent space of
this VAE. Additionally, we see that the task-agnostic fine-tuning gives SCR-FT an advantage (4%)
over SCR on Franka-Kitchen while making no difference on Meta-World. Note that the other
high-performing baselines (R3M and Voltron) have been developed for downstream control usage
with training objectives that take temporal information into account, while VC-1 has been trained on
a diverse curation of robotics-relevant data. In this context, SCR’s comparable performance shows
that generative foundation models hold promise for providing useful representations for control, even
with relatively minimal fine-tuning on non-task-specific data.

4.2 Image-Goal Navigation

We now assess SCR in more realistic visual environments, surpassing the simple table-top scenes in
manipulation benchmarks. In these complex settings, the representations derived from pre-trained
foundational models are particularly effective, benefiting from their large-scale training. We study
Image-Goal Navigation (ImageNav), an indoor visual navigation task that evaluates an agent’s ability
to navigate to the viewpoint of a provided goal image [63]. The position reached by the agent must
be within a 1-meter distance from the goal image’s camera position. This requires the ability to
differentiate between nearby or similar-looking views within a home environment. This task, along
with the semantic object navigation task that we study in Section 4.3, allows for a comprehensive
evaluation of a representation’s ability to code both semantic and visual appearance-related features
in completely novel evaluation environments. We follow the protocol for the ImageNav task used
by Majumdar et al. [27] and input the pre-trained representations to an LSTM-based policy trained
with DD-PPO [52] for 500 million steps on 16 A40 GPUs (further details in Appendix G.3). Given
the large compute requirements for training, we directly compare SCR and SCR-FT to the results
provided in Majumdar et al. [27].

Results. We evaluate our agent on 4200 episodes in 14 held-out scenes from the Gibson dataset
and report the success rate in Table 1b. We find that SCR outperforms all other representations,
while the fine-tuned version SCR-FT is almost on par with the second-best-performing VC-1 (69.5%
vs 70.3%), the SOTA visual representation from prior work. This can be expected given that it
was fine-tuned on images solely from table-top manipulation datasets. We also see that R3M, the
best model for few-shot manipulation from Table 1a performs very poorly (30.6%) in this domain,
showing its limited transferability to navigation tasks.

4.3 Open Vocabulary Mobile Manipulation

We now shift our focus to evaluating how Stable Diffusion’s web-scale training can enhance policy
learning in open-ended domains. We consider the Open Vocabulary Mobile Manipulation (OVMM)
benchmark [58] that requires an agent to find, pick up, and place objects in unfamiliar environments.
One of the primary challenges here is locating previously unseen object categories in novel scenes
(illustrated in Figure 3 (left)). To manage this complex sparse-reward task, existing solutions [58]
divide the problem into sub-tasks and design modular pipelines that use open-vocabulary object
detectors such as Detic [62] to enable generalization to novel objects. We study a modified version of
the Gaze sub-task (detailed in Appendix G.2), which focuses on locating a specified object category
for an abstracted grasping action.

6



Table 2: We analyze the impact of varying the denoising timestep, layers selection, and input text
prompt for the performance of SCR on the Franka-Kitchen benchmark. We report the mean and
standard error over 3 random seeds.

(a) Denoising timestep.

Timestep Success Rate

0 49.9 ± 3.4
10 48.2 ± 3.1
100 42.0 ± 3.7
110 42.0 ± 3.4
200 35.1 ± 3.2

(b) Layers selection.

Layers Success Rate

Down[1-3] + Mid 49.9 ± 3.4
Down[1-3] 43.0 ± 3.4
Mid 41.6 ± 3.3
Mid + Up[0] 42.1 ± 3.6
Mid + Up[0-1] 48.1 ± 3.6

(c) Input text prompt.

Prompt Type Success Rate

None 49.9 ± 3.4
Relevant 49.2 ± 3.5
Irrelevant 48.7 ± 3.3

The task’s success is measured by the agent’s ability to precisely focus on the target object category.
This category is provided as an input to the policy through its CLIP text encoder embedding. The
evaluation environments cover both novel instances of object categories seen during policy learning,
as well as entirely unseen categories. We compare to VC-1, the best model from Section 4.2 and
CLIP, since prior work has studied it for open-vocab navigation [21, 26]. We also incorporate a
baseline that trains a policy with access to ground truth object masks, evaluated using either the
ground truth or Detic-generated masks at test time (labeled as Oracle/Detic).

Results. Table 1c shows that SCR-FT surpasses VC-1 by 1.3%, beating CLIP and SCR by 3.2%. It
is surprising that VC-1’s visual representation does better than CLIP’s image encoder representation,
given that the downstream policy has to use these with the CLIP text encoder’s embedding of the
target object category. Comparing these to SCR-FT-ATTN, we can see the benefit of providing
intermediate outputs in the form of text-aligned attention maps to the downstream policy (+1.7%).
Samples of attention maps overlaid on images from an evaluation episode can be found in Appendix G.
These word-level cross-attention maps simultaneously improve policy performance and also aid
explainability, allowing us to diagnose successes and failures. Interestingly, the foundation model
representations (CLIP, VC-1, SCR) perform better than Detic. While object detections serve as a
category-agnostic input for downstream pick-and-place policies, noisy detections can often lead to
degraded downstream performance, as we see in this case. Nonetheless, there is still a sizeable gap to
‘Oracle’ which benefits from ground truth object masks at test-time.

5 Deconstructing Stable Control Representations

In this section, we deconstruct Stable Control Representations to explain which design choices are
most determinative of model robustness and downstream performance.

5.1 Layer Selection

We begin our investigation by examining how the performance of SCR is influenced by the selection
of layers from which we extract feature maps. We previously chose outputs from the mid and
downsampling layers of the U-Net (Figure 2), because their aggregate size closely matches the
representation sizes from the ViT-based models (VC-1, MVP, and CLIP). Appendix E.2 details the
feature map sizes obtained for all the models we study. Table 2a lists the success rates achieved on
the Franka-Kitchen domain when we use different sets of block outputs in SCR. We present similar
ablations for Meta-World in the top four rows of Table 3b.

We observe that utilizing outputs from multiple layers is instrumental to SCR’s high performance.
This finding underscores a broader principle applicable to the design of representations across different
models: Leveraging a richer set of features from multi-layer outputs should enhance performance on
downstream tasks. However, it is important to acknowledge the practical challenges in applying this
strategy to ViT-based models due to the high dimensionality of each layer’s patch-wise embeddings
(16×16×1024 for ViT-L for images of size 224×224). We present the success rates achieved on the
four benchmarks when aggregating multi-layer embeddings from CLIP models in Tables 3a and 4,
alongside SCR (the representation size for which is now half in comparison). In Table 3a, we observe
that moving towards middle layers leads to higher performance indicating that CLIP layers 10-14
encode some details useful to the Franka-Kitchen benchmark. While we see benefits from including
the output of certain additional layers, it still underperforms SCR.

7



Table 3: Layer-selection ablations across different benchmarks.
(a) Ablations for CLIP on Franka-Kitchen.

Model Layers Success

CLIP-L 23 (last layer) 36.3 ± 1.7
CLIP-L 21+23 35.4 ± 2.9
CLIP-L 19+23 38.5 ± 3.2
CLIP-L 12+23 40.8 ± 2.8
CLIP-L 10+23 40.2 ± 3.2
SCR (ours) Down[1-3] + Mid 49.9 ± 3.4

(b) Ablations for SCR on Meta-World.

Layers Noise Success

Mid 200 94.7 ± 2.8
Down[3] + Mid 200 97.3 ± 1.4
Down[1-3] 200 94.1 ± 1.9
Down[1-3] + Mid 200 94.4 ± 1.9
Down[1-3] + Mid 100 94.4 ± 1.9
Down[1-3] + Mid 0 94.1 ± 1.9

Table 4: Comparison of CLIP Layer Ablations on Meta-World, OVMM, and ImageNav
(a) Meta-World and OVMM

Model Layers Meta-World OVMM

CLIP-L 23 (Last Layer) 90.1 ± 3.6 38.7 ± 1.7
CLIP-L 21+23 91.2 ± 2.3 -
CLIP-L 12+23 91.7 ± 2.6 38.6 ± 1.6
SCR Down[1-3] + Mid 94.9 ± 2.0 43.6 ± 2.1

(b) ImageNav

Model Layers ImageNav

CLIP-B 11 (Last Layer) 52.2
CLIP-B 6+11 66.6
SCR Down[1-3] + Mid 73.9

5.2 Sensitivity to the Noising Timestep

Next, we characterize the sensitivity of task performance to the denoising step values chosen during
representation extraction. We present results on the Franka-Kitchen tasks in Table 2b, and on the
Meta-World tasks in the bottom three rows of Table 3b. We see that the performance across nearby
timesteps (0 and 10 or 100 and 110) is similar, and that there is a benefit to doing a coarse grid search
up to a reasonable noising level (0 vs 100 vs 200) to get the best value for a given task.

5.3 How is Language Guiding the Representations?

Recall that in the OVMM experiments (Section 4.3), we concatenated the target object’s CLIP text
embedding to the visual representations before feeding it to the policy. For SCR and SCR-FT, we
also provided the category as the text prompt to the U-Net, and additionally extracted the generated
cross-attention maps for SCR-FT-ATTN. In this subsection, we seek to more closely understand how
the text prompts impact the representations in SCR.

We first consider the Franka-Kitchen setup from Section 4.1, which includes manipulation tasks that
do not originally come with a language specification. We experiment with providing variations of
task-relevant and irrelevant prompts during the representation extraction in SCR. Table 2c shows the
downstream policy success rates for irrelevant (“an elephant in the jungle”) and relevant (“a Franka
robot arm opening a microwave door”) prompts, compared to the default setting of not providing a
text prompt We see that providing a prompt does not help with downstream policy performance and
may even degrade performance as the prompt gets more irrelevant to the visual context of the input.

We now move to the Referring Expressions Grounding task which requires predicting a bounding box
for an object being referred to in a sentence, within an image depicting cluttered objects. We defer the
main presentation of this task to Appendix D.2 and use it to probe the degree of language grounding
in SCR in this section. To study the role of the U-Net in shaping the visual representations guided by
the text, we examine different text integration methods to generate SCR representations in Table 5.

We compared the following approaches for providing the task’s text specification to the task decoder
(also depicted in Figure 4):

(a) No text input: Exclude text prompt from both SCR and the task decoder by passing an empty
prompt to the U-Net and using only the resulting SCR output for the decoder.

(b) Prompt only: Pass text prompt only to the U-Net.
(c) Concat only: Concatenate the CLIP embedding of the text prompt with the visual representation,

feeding an empty prompt to the U-Net.
(d) Prompt + Concat: Combine “Prompt Only” and “Concat Only”.
(e) Only text encoding: Ignore the visual representation and rely only on CLIP text embeddings.
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Figure 4: Illustration of different approaches to providing rele-
vant vision-language inputs to a downstream task-decoder.

Table 5: Ablating text input to
SCR on the referring expres-
sions grounding task.

Configuration Score

(a) No text input 14.8
(b) Prompt only 82.7
(c) Concat only 92.2
(d) Prompt + Concat 92.9
(e) Only text encoding 37.5

Investigating the results of (a) and (b) in Table 5, it is evident that incorporating the text prompt into
the U-Net significantly enhances accuracy compared to ignoring the text altogether. The difference in
scores between (b) and (c) indicates that directly providing text embeddings to the decoder improves
performance, suggesting that certain crucial aspects of object localization are not fully captured by the
representation alone. Comparing (c) to (d), we see that with concatenated text embeddings, further
modulation of the visual representations does not provide significant benefits. Finally, the significant
decrease in the score for (e) reveals the extent to which the task relies on text-based guesswork.

These findings align with both intuition and recent research on controllable generation with diffusion
models [61] that highlights the challenges associated with using long-form text guidance. There are
ongoing research efforts, focused on training models with more detailed descriptions or leveraging
approaches to encode and integrate sub-phrases of long texts, that seek to address these challenges.

5.4 The Effect of Spatial Aggregation

In this study, we refine the approach for extracting representations by integrating a convolutional
layer that downsamples the spatial grid of pre-trained representations. This adjustment, referred
to as a “compression layer” by Yadav et al. [56], aims to reduce the high channel dimension of
pre-trained model outputs without losing spatial details, facilitating more effective input processing
by downstream task-specific decoders.

We explore the effect of spatial aggregation methods by comparing the convolutional downsampling
layer method to multi-headed attention pooling (MAP) used for CLIP embeddings in Karamcheti et al.
[20]. We find that using a compression layer significantly improves performance on the fine-grained
visual prediction tasks described in Appendix D as reported in Table 6 (columns 3-4). This result
challenges the conjecture made in prior work that CLIP representations are limited in their ability to
provide accurate low-level spatial information [20] and emphasizes the critical role of appropriate
representation aggregation.

Building on this result, we assess whether better spatial aggregation can improve the performance
of CLIP representations on downstream control tasks. We present these results in Table 6 (columns
5-6) for VC-1 and CLIP on the MuJoCo tasks. We see that the compression layer often outperforms
the use of CLS token embeddings (by 1-2%), but CLIP representations still fail to match the best-

Table 6: We ablate the spatial aggregation method for VC-1 and CLIP. On the fine-grained visual
prediction tasks, we compare the average precision between using multi-head attention pooling (MAP)
and the compression layer. On the Meta-World & Franka-Kitchen tasks, we compare the average
success rates (± one standard error) between the CLS token and compression layer embeddings.

Model Aggregation Refer Exp. Grasp Affordance Meta-World Franka-Kitchen
Method Grounding Prediction

VC-1 MAP/CLS 93.2 24.7 88.8 ± 2.2 52.0 ± 3.4
VC-1 Compression 94.6 83.9 92.3 ± 2.5 47.5 ± 3.4

CLIP MAP/CLS 68.1 60.3 88.8 ± 3.9 35.3 ± 3.4
CLIP Compression 94.3 72.9 90.1 ± 3.6 36.3 ± 3.2
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performing models. This result provides evidence that the underperformance of CLIP representations
on control tasks is unlikely due to a lack of sufficiently fine-grained visual information. Finally,
we note that the compression layer aggregation technique was used for all baselines in Tables 1b
and 1c to ensure a strong baseline comparison. We recommend that future studies adopt this
methodology to enable a fairer comparison of representations.

6 Discussion

In Section 5, we deconstructed Stable Control Representations and highlighted techniques used in our
approach that could be applied to extract representations from other foundation models. Our analysis
in Sections 5.1 and 5.4 revealed that using multi-layer features and appropriate spatial aggregation
significantly affects performance, and overlooking these factors can lead to misleading conclusions
about the capabilities of previously used representations.

Next, our investigation into how language prompts shape diffusion model representations uncovered
nuanced results and showed that text influence on representations does not consistently increase
downstream utility. This is particularly evident in tasks where text specification is not required and
where training and test environments are congruent, minimizing the need for semantic generalization.
In contrast, tasks like referring expressions grounding demonstrate the necessity of direct access to text
embeddings for accurate object localization, even when representations are modulated to considerable
success. For the OVMM task, we identified a scenario where multimodal alignment is essential and
proposed a method to explicitly utilize the latent knowledge of the Stable Diffusion model through
text-aligned attention maps, which is not straightforward to do for other multimodal models. Future
research could design methods to derive precise text-associated attribution maps for other models.

Finally, we contrasted the simplicity of fine-tuning diffusion models with that of the contrastive
learning objective required to fine-tune CLIP representations. The former only requires image-text
samples for the conditional generation objective, whereas the latter requires a sophisticated negative
label sampling pipeline along with large batch sizes to prevent the model from collapsing to a
degenerate solution [33]. We demonstrate this phenomenon empirically on the Franka-Kitchen
environment by fine-tuning CLIP similarly to SCR-FT in Appendix D.1.

7 Conclusion

In this paper, we proposed Stable Control Representations, a method for leveraging representations
of general-purpose, pre-trained diffusion models for control. We showed that using representations
extracted from text-to-image diffusion models for policy learning can improve generalization across a
wide range of tasks including manipulation, image-goal and object-goal based navigation, grasp point
prediction, and referring expressions grounding. We also demonstrated the interpretability benefits
of incorporating attention maps extracted from pre-trained text-to-image diffusion models, which
we showed can improve performance and help identify downstream failures of the policy during
development. Finally, we discussed ways in which the insights presented in this paper, for example,
regarding feature aggregation and fine-tuning, may be applicable to other foundation models used for
control. We hope that Stable Control Representations will help advance data-efficient control and
enable open-vocabulary generalization in challenging control domains as the capabilities of diffusion
models continue to improve.
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A Wider Societal Impacts

This paper presents work whose goal is to advance the field of robotic control using pretrained
foundation models. Since we primarily aim to learn policies for simulated control tasks, we do not
anticipate any ethical concerns at this stage. However, when deploying foundation models in the real
world, we should be wary that our policies do not inherit any structural biases from the pretraining
stage or internet-scale data.

B Background

B.1 Diffusion Models

Diffusion models [16, 42] are a class of generative models that learn to iteratively reverse a forward
noising process and generate samples from a target data distribution p(x0), starting from pure noise.
Given p(x0) and a set of noise levels σt for t = 1, . . . , T , a denoising function ϵθ(xt, t) is trained on
the objective

LDM(θ) = Ex0,ϵ,t[∥ϵ− ϵθ
(
xt, t))∥22

]
= Ex0,ϵ,t[∥ϵ− ϵθ

(
x0 + σt · ϵ, t))∥22

]
, (B.1)

where ϵ ∼ N (0, 1), t ∼ Unif(1, T ), and x0 ∼ p(x0). To generate a sample x0 during inference,
we first sample an initial noise vector xT ∼ N (0, σT ) and then iteratively denoise this sample for
t = T, ..., 1 by sampling from p(xt−1|xt), which is a function of ϵθ(xt, t).

In some settings, we may want to generate samples with a particular property. For example, we may
wish to draw samples from a conditional distribution over data points, p(x0|c), where c captures some
property of the sample, such as classification label or a text description [34, 36]. In these settings, we
may additionally train with labels to obtain a conditioned denoiser ϵθ(xt, t, c) and generate samples
using classifier-free guidance [15].

B.2 Latent Diffusion Models

Latent diffusion models [34] reduce the computational cost of applying diffusion models to high-
dimensional data by instead diffusing low-dimensional representations of high-dimensional data.
Given an encoder E(·) and decoder D(·), Equation (B.1) is modified to operate on latent representa-
tions, z0 =̇ E(x0), yielding

LLDM(θ) = Ex0,c,ϵ,t[∥ϵ− ϵθ
(
E(x0) + σt · ϵ, t, c)∥22

]
, (B.2)

where ϵ ∼ N (0, 1), t ∼ Unif(1, T ), x0, c ∼ p(x0, c). After generating a denoised latent representa-
tion z0, it can be decoded as x0 = D(z0).

A popular instantiation of a conditioned latent diffusion model is the text-to-image Stable Diffusion
model [SD; 34]. The SD model is trained on the LAION-2B dataset [38] and operates in the latent
space of a pre-trained VQ-VAE image encoder [12]. The model architecture is shown at the top of
Figure 1 and is based on a U-Net [35], with the corresponding conditioning text prompts encoded
using a CLIP language encoder [33].

B.3 Policy Learning for Control

We model our environments as Markov Decision Processes (MDP, Sutton and Barto [43]), defined as a
tuple M = (S,A, P,R, γ), where S and A denote the state and action spaces respectively, P (s′|s, a)
the transition dynamics, R(s, a) the reward function, and γ ∈ (0, 1) the discount factor. Our goal is
to optimize a policy π(a|s) that maximizes the expected discounted return Eπ,P [

∑∞
t=0 γ

tR(st, at)].

In this paper, we consider visual control tasks that may be language-conditioned, that is, states are
given by s = [simage, stext], where stext specifies the task. We are interested in pre-trained vision-
language representations capable of encoding the state s as fϕ(simage, stext). This encoded state is
then supplied to a downstream, task-specific policy network, which is trained to predict the action at.
Our evaluation encompasses both supervised learning and reinforcement learning regimes for training
the downstream policies. We train agents through behavior cloning on a small set of demonstrations
for the few-shot manipulation tasks we study in Section 4.1. For the indoor navigation tasks we study
in Sections 4.2 and 4.3, we use a version of the Proximal Policy Optimization [PPO, 39] algorithm
for reinforcement learning.
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C Baselines

We compare SCR and its variants (i.e., SCR-FT and SCR-FT-ATTN) to the following prior work in
representation learning for control:

1. R3M [30] pre-trains a ResNet50 encoder on video-language pairs from the Ego4D dataset using
time-contrastive video-language alignment learning.

2. MVP [54] and VC-1 [27] both pre-train ViT-B/L models with the masked auto-encoding (MAE)
objective on egocentric data from Ego4D, Epic-Kitchens, SS-v2, and ImageNet, with VC-1
additionally pre-training on indoor navigation videos.

3. CLIP [33] trains text and ViT-based image encoders using contrastive learning on web-scale data.
4. Voltron [20] is a language-driven representation learning method that involves pre-training a

ViT-B using MAE and video-captioning objectives on aligned text-video pairs from SS-v2.
5. SD-VAE [34] is the base VAE encoder used by SD to encode images into latents.

To assess how well the vision-only methods would do on tasks with language specification, we
concatenate their visual representations with the CLIP text embeddings of the language prompts.
While we are limited by the architecture designs of the released models we are studying, to ensure a
more fair comparison we try to match parameter counts as much as we can. We use the ViT-Large
(307M parameters) versions of CLIP, MVP, and VC-1 since extracting SCR involves a forward pass
through 400M parameters.

D Further Empirical Results

D.1 Fine-tuning CLIP

Table 7: Performance on Franka-Kitchen
after fine-tuning CLIP.

Model Franka-Kitchen

CLIP 36.9 ± 3.2
CLIP (FT) 34.2 ± 2.9

We follow the same experimental constraints that we took
into account while fine-tuning the diffusion model to get
SCR-FT: we trained it on the same text-image pairs from
the same datasets and used CLIP’s contrastive loss to bring
the visual embedding of the middle frames of a video
closer to the video caption’s text embedding. Specifically,
for our experiment, we use the huggingface CLIP finetun-
ing implementation and train the model with a batch size
of 384 (the maximum number of samples we were able to fit on 8 A40 GPUs) with a learning rate of
5e-5 and a weight decay of 0.001 for 5000 update steps (same as SR-FT). We present the results in
Table 7 for Franka-Kitchen, and note the lack of improvement on the task post-fine-tuning.

D.2 Referring Expressions Grounding

In Sections 4.1 to 4.3, our analysis focused on the performance of various representations across an
array of control tasks. We now turn our attention to two downstream tasks involving fine-grained
visual prediction. The first task, Referring Expressions Grounding, is detailed within this section,
while the second task, Grasp Affordance Prediction, is discussed in Appendix D.3. Karamcheti et al.
[20] have previously examined the performance on these tasks as proxy measures to evaluate the
efficacy of representations for control applications.

The Referring Expressions Grounding task requires the identification and bounding box prediction
of an object in an image based on its textual description. Similar to Karamcheti et al. [20], we use the
OCID-Ref Dataset [51] for our experiments. We show a sample image-text pair from the dataset to
showcase the complexity of the task in Figure 5. The frozen visual representation is concatenated
with a text embedding and passed to a 4-layer MLP, which predicts the bounding box coordinates.

Results. We report the bounding box accuracy at a 25% Intersection-over-Union (IoU) threshold
across different scene clutter levels for SCR-variants and baselines in Table 8. Firstly, we present
the results from [20] for CLIP, R3M and Voltron and observe that Voltron outperforms the other two
baselines. We see that SCR is tied with Voltron and that VC-1 and SD-VAE perform the best with a
1.5% lead. The better performance of these vision-encoder-only methods highlights that on this task,
it is not a challenge for the downstream decoder to learn to associate the visual embeddings with the
(CLIP) text encoding of the language specification. Since the training budget is fixed, we observed
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that some of the runs could potentially improve over extended training. However, we were primarily
interested in this task not just to compare the downstream visual prediction performance, but to use it
as a testbed for exploring the following two questions: (1) Do the performance differences between
the representations we evaluated in Sections 4.1 to 4.3, stem from the absence of fine-grained spatial
information encoded within the representations? We refute this claim in Section 5.4, where we
present the impact of the representations’ spatial aggregation method on prediction performance. (2)
Additionally, we explore to what extent language prompting influences the representations from SCR
on language-conditioned tasks in Section 5.3.

The lemon on the rear left of the instant_noodles.

Figure 5: Sample from the OCID-Ref dataset
used for the Referring Expressions task.

Model Average Maximum
clutter

Medium
clutter

Minimum
clutter

CLIP 68.1 60.3 76.6 67.0
R3M 63.3 55.3 68.3 63.3
Voltron 92.5 96.9 91.8 90.2

VC-1 94.6 93.7 96.5 93.7
SD-VAE 94.3 93.2 96.3 93.4

SCR 92.9 91.1 95.9 91.8
SCR-FT 91.8 90.1 94.8 90.8

Table 8: Referring Expression Grounding (Accu-
racy at threshold IoU of 0.25 with label.).

D.3 Grasp Affordance Prediction

Table 9: Grasp Affordance Prediction:
Precision on pixels corresponding to pos-
itive graspability at varying probability
threshold levels.

Model Top99 Top95 Top90

CLIP 60.3 45.0 28.6
CLIP (Comp) 72.9 55.9 36.5

Voltron 62.5 42.8 32.1
SD-VAE 55.6 41.3 33.8

SCR 72.8 55.9 54.5
SCR-FT 72.3 54.6 44.4

In this section, we present our experiments on a second
visual prediction task continuing from the experiments
in Section 4.1. The Grasp Affordance Prediction task
requires predicting per-pixel segmentation outputs for cer-
tain areas of objects in an RGB image. These areas cor-
respond to parts of the surface that would be amenable
to grasping by a suction gripper. The evaluation metric
adopted in prior work is the precision of predictions cor-
responding to positive graspability at varying confidence
levels (90, 95, and 99th percentile of the predicted per-
pixel probabilities, denoted as Top90, Top95, and Top99
in Table 9). We refer the reader to Karamcheti et al. [20]
for the complete task setup details.

We re-ran all the methods using the evaluation repository provided with the work, and obtained
different results compared to the reported numbers in Karamcheti et al. [20], which we attribute to a
bug that we fixed related to the computation of the precision metrics. The evaluation procedure for
this task adopted in prior work involves a 5-fold cross-validation, and we observed a high variability
in the results, with different runs of 5-fold cross-validation yielding different final test metrics. Our
findings highlight that SCR and our adaptation of CLIP (in gray, detailed in Section 5.4) both excel
at this task, achieving a Top99 score of 72.9. Interestingly, we see that fine-tuning did not enhance
the performance of SCR on the visual prediction tasks explored in this section and Section 4.1,
suggesting a potential disconnect between visual prediction and control task benchmarks.
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D.4 Comparison with LIV

Table 10: Comparing to LIV on manipu-
lation and navigation tasks.

Model Franka-Kitchen OVMM

SCR 45.0 38.7
SCR-FT 49.9 41.9

LIV 54.2 8.4

We include a comparison with LIV [25] on two tasks that
involve manipulation and navigation. LIV is a vision-
language representation learned through contrastive learn-
ing on the EpicKitchens dataset [9]. Similar to R3M re-
sults in the main paper, this representation does well on
manipulation tasks but poorly on navigation tasks.

D.5 Overall Ranking of Representations

In Table 11, we present the consolidated scores across the
four control benchmarks we study in Section 4, for all the representations we evaluate in this work.
This is to give a higher-level view of the all-round performance of the different representations on
the diverse set of tasks we consider. We see that VC-1, SCR, and SCR-FT emerge as the top three
visual representations overall. While VC-1 is a representation-learning foundation model trained
specifically for robotics tasks, SCR and SCR-FT are the diffusion model representations that we
study in this paper, confirming the potential of large pre-trained foundation generative models across
a wide array of downstream robotics tasks.

Table 11: Representation Performance Comparison: Numbers in the task columns (OVMM, Image-
Nav, MetaWorld, Franka Kitchen) indicate relative scores of different representations (normalized
by the highest score on that task), and the average normalized score column indicates the averaged
scores across the task-wise relative scores where numbers are available.

Method OVMM ImageNav MetaWorld Franka Kitchen Average Norm. Score
VAE - 0.629 0.786 0.759 0.725
R3M - 0.414 1.000 1.000 0.805
VC-1 0.969 0.951 0.961 0.825 0.927
CLIP 0.924 0.706 0.939 0.630 0.800
SR 0.924 1.000 0.983 0.781 0.922
SR-FT 1.000 0.942 0.989 0.866 0.949
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E Implementation Details

E.1 Fine-tuning Stable Diffusion

We used the runwayml/stable-diffusion-v1-5 model weights provided by Huggingface to
initialize our models and fine-tuned them using the diffusers library3. As noted in Section 3.6, we
used a subset of the frames from the EpicKitchens, Something-Something-v2, and Bridge-v2 datasets.
We extracted the middle-third of the video clips and sampled four frames randomly from this chunk
to increase the chances of sampling frames where the text prompt associated with the video clip is
most relevant for describing the scene. Since the Something-Something-v2 (SS-v2) dataset includes
a human hand manipulating table-top objects while the Bridge-V2 dataset includes a robot gripper,
we append the text "human hand" and "robot hand" respectively to the text caption associated eith the
respective frames to reduce ambiguity in the image-text pairing. Using this procedure, we generated a
paired image-language dataset with 1.3 million samples. Figure 6 shows samples of the images from
the fine-tuning datasets. Since different embodiments (human and robot) are visible in the training
images, we prepended the corresponding embodiment name to the text prompt for the associated
image during training.

We fine-tuned for only a single epoch (∼5,000 gradient steps) parallely on 2 Nvidia A100 GPUs
with a mini-batch size of 512 and a learning rate of 1e−4. Although the original Stable Diffusion
model is trained on images of resolution 512× 512, we fine-tuned the model on images downscaled
to 256× 256 since it aligned with the resolution requirements of the downstream application. We
show sample generations from the diffusion model after fine-tuning in Figure 7. We found that the
model learns to associate the prompt with not just the human or robot hand but also with the style of
the background and objects of the training datasets.

Bridge v2Epic-Kitchens Something-Something v2

Figure 6: Snapshots from the datasets we use for fine-tuning the Stable Diffusion model.

Human hand

opening a drawer

slicing a cucumber with a knife

tossing a box in the trash

wiping the kitchen counter

Robot hand

wiping the kitchen counterslicing a cucumber with a knife

tossing a box in the trash opening a drawer

Figure 7: Image generations from the fine-tuned Stable Diffusion model. We provided four different
prompts, each prefixed with either “Human hand” or “Robot hand”.

3https://huggingface.co/docs/diffusers/v0.13.0/en/training/text2image
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E.2 Representation Extraction Details

Here, we describe the representation extraction details for all our baselines assuming a 224× 224
input image.:

1. Stable Control Representations: The Stable Diffusion model downsamples the input images by
a factor of 64. Therefore, we need to first resize the input image to a size of 256× 256. We pass
the image to the VAE, which converts it into a latent vector of size 32× 32× 4 and passes it to
the U-Net. We use the last three downsampling blocks’ and the mid block’s output feature map of
sizes 8× 8× 640, 4× 4× 1, 280, 4× 4× 1, 280, and 4× 4× 1, 280, respectively. The total size
is, therefore, 102, 400, and we linearly interpolated them to the same spatial dimension (8× 8)
before concatenating them channel-wise.

2. R3M [30]: For most of our experiments we use the original ResNet50 model, which outputs a
2048 dimensional vector. For the referring expressions and grasp affordance prediction tasks
from the Voltron evaluation suite [20], a VIT-S is used, which outputs an embedding of size
14× 14× 384 = 75, 264

3. MVP [54] and VC-1 [27]: The last layer (24th) outputs an embedding of size 16× 16× 1, 024 =
262, 144.

4. CLIP [33]: For ViT-B, the last layer (12th) outputs an embedding of size 14×14×768 = 150, 528.
For ViT-L, the last layer (24th) outputs an embedding of size 16× 16× 1024 = 262, 144.

5. Voltron [20]: We use the VCond-Base model which outputs a representation of size 14× 14×
768 = 150, 528.

6. SD-VAE [34]: Outputs a latent vector of size 32× 32× 4 = 4, 096.

E.3 Hyperparameters

We provide the hyperparameters used in Section 4 for Stable Control Representations in Table 12.

Table 12: Hyperparameters and configuration settings used across tasks and methods.
Benchmark Timestep Prompt Attn Layers Post Compression Dim

Meta-World 0/100/200 No No Mid + Down [1-3] 3072
Franka-Kitchen 0 No No Mid + Down [1-3] 2048
ImageNav 0 No No Mid + Down [1-3] 2048
OVMM 100 Yes Yes Mid + Down [1-3] 2048
Referring Expression 0 Yes No Mid + Down [1-3] 8192
Grasp Prediction 0 No No Mid + Down [1-3] 8192

F Runtime Analysis

We include a runtime analysis for SCR versus VC-1 in Table 13 by reporting the time taken for a
forward pass through both models over a single input image of size 256×256. We use an A100 GPU
for our experiment, and use both the models at half precision. We see that SCR takes 0.021 seconds
per inference step, being 1.5x slower than the forward pass through VC-1 Large.

Table 13: Runtimes for.
SCR VC-1

Time per forward pass (Averaged over 1,000 passes) 0.021 seconds 0.014 seconds
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G Task Descriptions

G.1 Few-Shot Imitation Learning

For all baselines, we freeze the pre-trained vision model and train a policy using imitation learning
on the provided set of 25 expert demonstrations. The results are then reported as the average of the
best evaluation performance for 25 evaluation runs over 3 seeds. All experiments are conducted on a
single A100 GPU with 24 CPUs and 188 GBs of RAM.

Meta-World. We follow Majumdar et al. [27] and use the hammer-v2, drawer-open-v2, bin-picking-
v2, button-press-topdown-v2, assembly-v2 tasks from the Meta-World benchmark suite [59]. Each
task provides the model with the last three 256×256 RGB images, alongside a 4-dimensional gripper
pose. The model consists of a 3-layer MLP with a hidden dimension of 256, utilizing ReLU as the
activation function. It undergoes training for 100 epochs, with evaluations conducted every 10 epochs,
following the approach of Majumdar et al. (2023). The training uses a mini-batch size of 256 and a
learning rate of 10−3.

Franka-Kitchen. The tasks involved here include Knob On, Knob Off, Microwave Door Open,
Sliding Door Open, and L Door Open, each observed from three distinct camera angles. For each
task, the model receives a 256 × 256 RGB image and a 24-dimensional vector representing the
manipulator’s proprioceptive state. For our experiments, we use the the RoboHive Kumar et al. [23]
GitHub repository4 and use a 2-layer MLP with a hidden dimension of 256 and train for 500 epochs.
The mini-batch size is set at 128, with a learning rate of 10−4. We additionally correct a bug in the
RoboHive implementation of the VC-1 baseline, specifically on input image normalization. Adjusting
the image normalization to a 0-1 range resulted in a significant improvement in its performance.

G.2 Open Vocabulary Mobile Manipulation

Open-Vocabulary Mobile Manipulation [OVMM; 58] is a recently proposed embodied AI bench-
mark that evaluates an agent’s ability to find and manipulate objects of novel categories in unseen
indoor environments. Specifically, the task requires an agent to “Find and pick an object on the
start_receptacle and place it on the goal_recetacle”, where object, start_receptacle
and goal_recetacle are the object category names. Given the long-horizon and sparse-reward
nature of this task, current baselines [58] divide the problem into sub-tasks, which include navigation
to the start receptacle, precise camera re-orientation to focus on the object (an abstracted form of
grasping), navigating to the goal receptacle, and object placement.

Since our aim is to investigate the open-vocabulary capabilities of pre-trained representations, we
choose to evaluate the models on only the precise camera re-orientation task (more commonly known
as the Gaze task). In the original Gaze task, the agent is initialized within a distance of 1.5m and
angle of 15◦ from the object which is lying on top of the start_receptacle. The episode is
deemed successful when the agent calls the Pick action with the camera’s center pixel occupied
by the target object and the robot’s gripper less than 0.8m from the object center. In our initial
experiments, we found the current initialization scheme would lead the agent to learn a biased policy.
This policy would call the Pick action after orienting towards the closest object in the field of view.
Therefore, we chose to instantiate a harder version of the gaze task, where the episode starts with the
agent spawned facing any random direction within 2.0m of the object.

We carry out our experiments using the HomeRobot GitHub repository5. HomeRobot uses the Habitat
simulator [44] with the episode dataset provided by Yenamandra et al. [58]. This dataset uses 38
scenes for training and 12 scenes for validation, all originating from the Habitat Synthetic Scenes
Dataset [HSSD; 22]. The episode dataset populates the scenes with extra objects from other datasets
including Amazon Berkeley Objects [ABO; 8], Google Scanned Objects [ABO; 10] and Alfred [41].
The validation scenes are populated with objects not seen during training, spanning 106 seen and 22
unseen categories. The validation set consists of a total of 1199 episodes.

Our agent is designed to resemble the Stretch robot, characterized by a height of 1.41 meters and a
radius of 0.3 meters. At a height of 1.31 meters from the base, a 640x480 resolution RGBD camera is
mounted. This camera is equipped with motorized pan and tilt capabilities. The agent’s action space

4https://github.com/vikashplus/robohive
5https://github.com/facebookresearch/home-robot
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is continuous, allowing it to move forward distances ranging from 5 to 25 centimeters and to turn left
or right within angles ranging from 5 to 30 degrees. Additionally, the agent can adjust the head’s pan
and tilt by increments ranging from 0.02 to 1 radian in a single step.

In our experiments, we use a 2 layer LSTM policy and pass in the visual encoder representations after
passing them through the compression layer. We initialize the LSTM weights with the LSTM weights
of the Oracle model to get a slight boost in performance. We train our agents using the distributed
version of PPO [52] with 152 environments spread across 4 80GB Nvidia A100 GPUs. Each run also
has access to 96 CPUs and 754 GBs of RAM. We train for 100M environment steps while evaluating
the agent every 5M steps and report the metrics based on the highest success rate observed on the
validation set.

G.3 ImageNav

We conduct our ImageNav experiments in the Habitat simulator [37], using the episode dataset
from Mezghani et al. [29]. These experiments are conducted using the VC-1 codebase6 [27]. The
dataset uses 72 training and 14 validation scenes from the Gibson [53] scene dataset with evaluation
conducted on a total of 4200 episodes. The agent is assumed to be in the shape of a cylinder of height
1.5m and radius 0.1m, with an RGB camera mounted at a height of 1.25m from the base. The RGB
camera has a resolution of 128×128 and a 90◦ field-of-view.

At the start of each training episode, an agent is randomly initialized in a scene and is tasked to find
the position from where the goal image was taken within 1000 simulation steps. At each step, the
agent receives a new observation and is allowed to take one of the four discrete actions including
MOVE_FORWARD (25cm), TURN_LEFT (30◦), TURN_RIGHT (30◦) and STOP. The episode is
a success if the agent calls the STOP action within 1m of the goal viewpoint. Similar to [56, 27]
we train our agents using a distributed version of DD-PPO [52] with 320 environments for 500M
timesteps (25k updates). Our experiments are conducted using 2 nodes containing 8 A40 GPUs
each with a total of 128 CPUs and 504 GBs of RAM. Each environment accumulates experience
across up to 64 frames, succeeded by two PPO epochs using two mini-batches. While the pre-trained
model is frozen, the policy is trained using the AdamW optimizer, with a learning rate of 2.5× 10−4

and weight decay of 10−6. We use the reward function proposed by [56]. Performance is assessed
every 25M training steps, with reporting metrics based on the highest success rate observed on the
validation set.

6https://github.com/facebookresearch/eai-vc
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Figure 8: Noising and denoising plots for images from 3 of our tasks using the fine-tuned Stable
Diffusion model. For each image, we first add noise up to timestep t, where t ∈ {100, 200, 300},
and then denoise the image back to timestep 0. We observe that inputs from different tasks are
differently sensitive to the noising ranges, based on the amount of information the images contain.
On Meta-World, SD is able to reconstruct the image correctly even at t = 200, while for the referring
expressions grounding task, noising leads to information loss even at t = 100 with several small
objects reconstructed differently to the original. This affects the range of the noise we could add
to the ended latents at the time of representation extraction. It should be noted however, that using
un-noised inputs (t = 0) always worked well in our experiments, and this hyper-parameter could be
ignored in practice.
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Figure 9: The Stable Diffusion model allows us to extract word-level cross-attention maps for any
given text prompt. We visualize these maps in a robotic manipulation environment and observe that
they are accurate at localizing objects in a scene. Since these maps are category agnostic, downstream
policies should become robust to unseen objects at test time.

(1) Find Tomato

(4) Find Spray Bottle (5) Find Plant Container

(2) Find Gaming Console (3) Find Plant Container

(6) Find Candle Holder

Figure 10: Images from OVMM benchmark with their corresponding attention maps obtained from
the fine-tuned Stable Diffusion (SD) model. The first 5 pairs of images correspond to failed episodes,
with the bottom right pair corresponding to a successful episode. The attention maps help us interpret
the cause of failure: (1) Tomato - SD wrongly attends strongly to an apple. (2) Gaming Console -
visible at the top of the image; however, SD attends to multiple objects due to low visual quality. (3)
Plant Container - SD instead focuses on the two glasses it sees in the image. (4) Spray Bottle - SD
completely misses the spray bottles in the image and attends to the lava lamp. (5) Plant Container -
SD wrongly attends to the apple. (6) Candle Holder - SD correctly attends.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately summarise the two main contributions
of the paper: (1) a procedure to derive vision-language representations from diffusion models
for inputs in control tasks (2) a broad empirical comparative study of the representations
on different domains where the visual representations from diffusion models match prior
state-of-the-art representations in terms of downstream policy learning.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 6 we discuss the interpretation of our experimental results, and
highlight limitations of our work. We discuss the dependence of downstream performance
on design choices related to representation extraction. We also include a run-time analysis
in Table 13 which highlights the run-time cost of using a pre-trained representation model
with more parameters.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This work does not include theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of our experimental procedure in Appen-
dices E and G. Section 3 describes how to extract vision(and language) representations from
the Stable Diffusion model. We only use publicly available datasets and benchmarks in this
work. We will open-source the code that we provided as part of our supplementary material.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will open-source the code provided as part of our supplementary material.
This includes documented code for the representation extraction procedure as well as the
code for re-running the experiments related to the Mujoco and ImageNav benchmarks used
in Section 4. Additionally, all the pre-trained models, benchmarks and datasets we use are
publicly available, and we include the sources and links to these in the code documentation
as well as the appendices.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
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Justification: We provide details related to the finetuning of Stable Diffusion model and
extraction of representations in Section 5 and appendix E, and details related to hyperpa-
rameters, optimisation and train/test data and environments in Section 4 and appendices D
and G. We follow the train/test splits adopted in prior work for each of the publicly available
benchmarks we study in this work.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experimental results tables in Section 4 mention the standard error as-
sociated with the reported numbers over 3 seeds. Only the experiments in Section 4.2
(ImageNav) report numbers that involve a single random seed, since we were limited by
compute resources on this benchmark as we specify in Section 4.2.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the details related to the type of GPU resources used, as well as
the batch sizes and number of optimisation steps for each task in Appendix G.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully looked at the guidelines and can confirm this work does not
violate them.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broder societal impact of this work in Appendix A.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We build on the already open-sourced image generation model, Stable Diffu-
sion and finetune it on images of human hand or robots manipulating objects. This released
model is then used for the task of predicting visual representations on simulated embodied
AI tasks. We believe this model does not pose risks more than that posed by the original
Stable Diffusion model.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Code: We have included the CC-by-NC4.0 license with our code which is
based on the license used by the Visual Cortex repository. Dataset: The datasets used in the
work are all open-sourced by prior work with different licenses and we will point the users
of our codebase to the relevant repository to download the datasets for their use. Model:
Our work releases an updated Stable Diffusion checkpoint with the license matching that of
the original license (creativeml-openrail-m).
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will open-source the code included in the supplementary material. The
code is well-documented, and can be used to reproduce our experimental results in Section 4,
as well as be used to extract diffusion representations for generic visual(-language) tasks by
independent researchers..

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not include research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve research with human subjects.
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