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Abstract

Although rapidly increasing capabilities of text-to-image (T2I) models have profound im-
plications across various industries, they concurrently suffer from numerous shortcomings,
necessitating the implementation of effective alignment strategies with human preference.
Diffusion-DPO and SPO have emerged as robust approaches for aligning diffusion-based
T2I models with human preference feedback. However, they tend to suffer from text-image
misalignment, aesthetic overfitting and low-quality generation. To tackle such matters, we
improve the alignment paradigm through a tripartite perspective, which are the calibration
enhancement (Calibration Enhanced Preference Alignment), the overfitting mitigation (Iden-
tical Preference Alignment, Jensen-Shannon Divergence Constraint) and the performance
optimization (Margin Strengthened Preference Alignment, SFT-like Regularization). Fur-
thermore, combining them with the step-aware preference alignment paradigm, we propose
the Diffusion-RainbowPA, a suite of total six improvements that collectively improve the
alignment performance of Diffusion-DPO. With comprehensive alignment performance evalu-
ation and comparison, it is demonstrated that Diffusion-RainbowPA outperforms current
state-of-the-art methods. We also conduct ablation studies on the introduced components
that reveal incorporation of each has positively enhanced alignment performance.

∗Corresponding authors: Bo Xia, Xueqian Wang
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Figure 1: In this study, we propose the Diffusion-RainbowPA, a method that integrates six improvement
components, collectively designed to enhance the alignment performance of Diffusion-DPO (Wallace et al.,
2024). As shown in samples above, after the fine-tuning process on Stable Diffusion v1.5 model, our method
has yielded images that possess an extraordinarily high level of visual allure and text alignment.

1 Introduction

“The whole is greater than the sum of its parts.”

—— Aristotle

As generative capabilities of diffusion-based text-to-image (T2I) models advance, the challenge of aligning
them with human preference has garnered extensive attention within the community. In relatively early
works, alignment was commonly achieved through supervised fine-tuning (SFT) or Reinforcement Learning
from Human Feedback (RLHF) (Black et al., 2024; Fan et al., 2024). While these methods are effective, they
are hindered by convoluted implementation process. With notable success of Direct Preference Optimization
(DPO) (Rafailov et al., 2024) in aligning Large Language Models (LLMs), preference-based alignment for
T2I diffusion models offers a promising methodology that eliminates the need of reward modeling, thus
streamlining training process. Diffusion-DPO (Wallace et al., 2024) and D3PO (Yang et al., 2024a) take the
pioneering step for scaling of diffusion model alignment methods, introducing innovative alignment paradigm
that learns from human preferences.

In the past year, numerous studies have been developed based on the paradigm (detailed in Section 2 and
Appendix B). In particular, the recent SPO (Liang et al., 2024) introduces step-aware preference paradigm to
address the misalignment between preference label and denoising performance at each stage. Nonetheless,
there are still limitations persist. Firstly, as demonstrated in Table 1-4, execution of human preference
alignment could worsen the misalignment between text and image. Furthermore, as depicted in Figure 2,
they often tend to suffer from aesthetic overfitting and low-quality generation.
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Figure 2: In the alignment training process over 10 epochs, generative examples of SPO (Liang et al., 2024)
(left) and Diffusion-RainbowPA (right) with the prompt of “A beautiful lake”. It can be observed that SPO
leads to aesthetic overfitting, resulting in scenes with an unauthentic presence of snowy mountains adjacent to
the lake, accompanied by chaotic coloration and excessive glare, thereby degrading quality of generated images.
Conversely, Diffusion-RainbowPA has effectively mitigated such issues, providing an authentic depiction of
scene and a natural rendering of color and light.

To address such issues, we improve alignment paradigm of diffusion-based T2I models from three aspects:
the calibration enhancement (Section 4.2), the overfitting mitigation (Section 4.3) and the performance
optimization (Section 4.4). In order to achieve such goals, we conduct an exhaustive investigation into the
current alignment methods for LLMs (Wang et al., 2024; Winata et al., 2024) and carefully study their
feasibility for adaptation to diffusion models (DMs). For the purpose of calibration enhancement, we introduce
the Calibration Enhancement Preference Alignment (CEPA), introducing the calibration terms between the
scaled ground-truth reward and the implicit reward function. In order to mitigate the issue of overfitting, we
introduce the Identical Preference Alignment (IPA) and the Jensen-Shannon Divergence Constraint. Identical
Preference Alignment (Section 4.3.1) skillfully circumvents the Bradley-Terry modeling assumption and
employs an identical mapping to the preference function, thereby mitigating alignment preference overfitting.
Jensen-Shannon Divergence Constraint (Section 4.3.2) substitutes Kullback-Leibler divergence with Jensen-
Shannon divergence to stabilize alignment training and alleviate overfitting. Moreover, analysis of DPO-based
methods for diffusion-based T2I models from the contrastive loss perspective shows that they only consider
the “dissimilarity” part. Based on such observation, we introduce two performance optimization techniques:
the Margin Strengthened Preference Alignment (MSPA) and the SFT-like Regularization. To accelerate
increase of the diffusion win ratio and the margin between ratios, we introduce the Margin Strengthened
Preference Alignment (Section 4.4.1). Furthermore, the SFT-like Regularization (Section 4.4.2) is proposed,
which introduces a term to improve the impact of positive items. Based on the aforementioned five improving
components that grounded in three perspectives, further integrating the step-aware preference alignment
paradigm (Section 4.1), we propose the Diffusion-RainbowPA (Section 4.5), a novel method that integrates
total six improvements on the Diffusion-DPO.

In the experiment evaluation, we utilize the Stable Diffusion v1.5 (Rombach et al., 2022) as our benchmark
model, which is widely recognized and frequently utilized within the domain of T2I model alignment
(encompassing both preference-based and RL-based methodologies). We evaluate the alignment performance
with four published automatic metrics: {VQAScore (Lin et al., 2025), CLIPScore (Radford et al., 2021),
HPS-V2 (Wu et al., 2023) and ImageReward (Xu et al., 2024)} on four zero-shot datasets: {GenEval (Ghosh
et al., 2024), T2I-CompBench++ (Huang et al., 2025), GenAI-Bench (Li et al., 2024a), and DPG-Bench (Hu
et al., 2024)}. Results (Section 5.2) indicate that alignment performance of Diffusion-RainbowPA outperforms
current state-of-the-art (SOTA) methods. In Figure 1, we show generation examples of the aligned model
that utilizing Diffusion-RainbowPA. Further ablation study (Section 5.3) on the introduced components
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of Diffusion-RainbowPA demonstrates that each component has a positive impact on the improvement of
alignment performance.

Our contributions are summarized as follows:

1. We point out that current existing SOTA methods still tend to suffer from text-image misalignment,
aesthetic overfitting and low-quality generation.

2. To address such issues, we improve the alignment paradigm through a tripartite perspective: the
calibration enhancement, the overfitting mitigation and the performance optimization.

3. We propose the Diffusion-RainbowPA, a novel method combining total six improvements on Diffusion-
DPO, which outperforms current SOTA methods.

2 Related Work

Fueled by resounding success of Direct Preference Optimization (DPO) (Rafailov et al., 2024), which has
revolutionized alignment processes for LLMs by obviating the requirement for explicit reward model, Diffusion-
DPO (Wallace et al., 2024) and D3PO (Yang et al., 2024a) have taken the forefront in aligning diffusion-based
T2I models with human preferences. Amid their remarkable success, several subsequent works (Yang et al.,
2024b; Li et al., 2024b; Gu et al., 2024; Hong et al., 2024) have expanded upon their foundation. For instance,
SPIN-Diffusion (Yuan et al., 2024), empowers the model to outperform its predecessors, thereby fostering
an iterative cycle of continuous self-improvement. In the work (Liang et al., 2024), it is emphasized that
there is a discrepancy between the preference for the final image and the performance at each denoising step.
To tackle such challenge, a step-aware preference strategy is effectively deployed. Recently, in the study
(Sun et al., 2025b), the authors suggest that substituting Jensen-Shannon divergence for Kullback-Leibler
divergence can significantly improve alignment performance. SePPO (Zhang et al., 2024) employs the concept
of online sampling, leveraging previously saved checkpoints as reference models, and has become one of the
state-of-the-art methods. We provide more details about diffusion-based T2I models in Appendix A and offer
a more in-depth and detailed discussion on diffusion-based T2I alignment in Appendix B. Although they
have achieved promising results, challenges remain, including text-image misalignment, aesthetic overfitting
and low-quality generation. This study adopts an integrated approach to address them concurrently.

3 Preliminaries

In this part, we provide a brief description on the Diffusion-DPO and the SPO for readers who are unfamiliar
with diffusion-based text-to-image alignment.

3.1 Diffusion-DPO

Within framework of diffusion models, Diffusion-DPO (Wallace et al., 2024) extends the optimization objective
from pθ(x0|c) to pθ(x0:T |c). By incorporating latent variables x1:T , an implicit reward model is established
across the entire sequence. Based on this, the optimization objective pertaining to the conditional distribution
can be formulated as follows:

L(θ) = −E (c,xw
0 ,xl

0)∼D,
xw

1:T ∼pθ(xw
1:T |xw

0 ,c),

xl
1:T ∼pθ(xl

1:T |xl
0,c)

log σ

(
β log pθ(xw

0:T |c)
pref(xw

0:T |c) − β log pθ(xl
0:T |c)

pref(xl
0:T |c)

)
, (1)

where a fixed dataset D = {(c, xw
0 , xl

0)} is employed with c denoting the input prompt, xw
0 indicating the

human preferred generation and xl
0 signifying the dispreferred one; pθ(x0:T |c) represents the reverse process

parametrization, pref(x0:T |c) pertains to that of the reference model; β is the measure of regularization
intensity and σ(·) is the Sigmoid function.
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Through application of reverse decompositions to pθ and pref, leveraging Jensen’s inequality and convexity of
function − log σ, the authors derive the following upper bound on optimization:

L(θ) ≤ −E(c,xw
0 ,xl

0)∼D,t∼U(0,T ),
xw

t−1,t∼pθ(xw
t−1,t|c,xw

0 ),

xl
t−1,t∼pθ(xl

t−1,t|c,xl
0)

log σ

(
βT log

pθ(xw
t−1|c, xw

t )
pref(xw

t−1|c, xw
t ) − βT log

pθ(xl
t−1|c, xl

t)
pref(xl

t−1|c, xl
t)

)
. (2)

3.2 Step-aware Preference Optimization

In the work (Liang et al., 2024), it is noted that previous methods, such as Diffusion-DPO (Wallace et al.,
2024) and D3PO (Yang et al., 2024a), solely evaluate the whole generation trajectory based on the final image
x0, assigning all intermediate states the same preference as x0. Hence, based on such observation, the authors
introduce Step-aware Preference Optimization (SPO) methodology. It primarily hinges on two key aspects.
Firstly, during each denoising step, an image pair is determined from the generated image subset, and the
winner and loser are thereby ascertained. To achieve the target, a step-aware preference model is trained
to synchronize with denoising performance. Furthermore, a step-wise resampler is designed to eliminate
trajectory-level dependencies. Merging objectives across all T timesteps, the ultimate objective function for
SPO training can be derived as follows:

L(θ) = −Et∼U [1,T ],c∼p(c),xT ∼N (0,I),

(xw
t−1,xl

t−1)∼pθ(xt−1|c,t,xt)
log σ

(
β log

pθ(xw
t−1|c, t, xt)

pref(xw
t−1|c, t, xt)

− β log
pθ(xl

t−1|c, t, xt)
pref(xl

t−1|c, t, xt)

)
, (3)

where the preference pair (xw
t−1, xl

t−1), comprising the most preferred item xw
t−1 and the most dispreferred

item xl
t−1 from the sampling set {x1

t−1, x2
t−1, ..., xk

t−1}.

4 Method

Diffusion-DPO (Wallace et al., 2024) has emerged as a significant milestone in bridging the gap of align-
ment paradigm between large language models (LLMs) and diffusion models (DMs). Recently, numerous
improvements have been proposed to enhance the preference-based alignment paradigm of DMs. However,
they still tend to suffer from the issues of text-image misalignment, aesthetic overfitting and low-quality
generation. Subsequently, to mitigate such issues, we improve the alignment paradigm with five additional
components through a tripartite perspective: calibration enhancement (Section 4.2), overfitting mitigation
(Section 4.3) and performance optimization (Section 4.4). Further integrating the step-aware preference
alignment paradigm (Section 4.1), we propose the Diffusion-RainbowPA (Section 4.5), a suite of total six
improvements integrated that collectively enhance alignment performance of Diffusion-DPO.

4.1 Step-aware Preference Alignment Paradigm

In Section 3.2, we conduct a brief review of SPO, which advocates the employment of a step-aware preference
model and a step-wise resampler to facilitate precise step-aware supervision, while maintaining the same
initialization throughout the subsequent denoising phase. Throughout our study, we consistently integrate the
paradigm of step-aware preference and utilize the open-source step-aware preference model in our alignment
framework.

Moreover, unlike original SPO, we abandon multi-sample setup utilized in step-wise resampler (which samples
4 images in SPO) and adopt a setup that samples 2 images. Such a choice is informed by the following
observations, as depicted in the left side of Figure 2, it is found that SPO leads to overfitting in aesthetic
rating. This is further corroborated by Table 6 of SPO (Liang et al., 2024), where, despite optimal aesthetic
rating at the sampling number of 4, human preference ratings (HPS-V2 and ImageReward) are the lowest.

4.2 Calibration Enhancement

As previously mentioned, the issue of text-image misalignment still persists. Hence, we introduce the
Calibration Enhancement Preference Alignment (CEPA) to address it. Firstly, we draw inspiration from

5



Published in Transactions on Machine Learning Research (07/2025)

Cal-DPO (Xiao et al., 2024) and define the calibrated objective for diffusion-based preference optimization in
Definition 1.
Definition 1. If we have β · log pθ(xt−1|c,t,xt)

pref(xt−1|c,t,xt) = r(c, x0), we call that the estimated implicit reward β ·
log pθ(xt−1|c,t,xt)

pref(xt−1|c,t,xt) for the sampling probability of DM pθ is calibrated with the ground truth reward.

Hence, we introduce the CEPA term with the purpose of constraining distance between the learned implicit
reward and the ground-truth reward. Furthermore, it is observed that formula form of the term is similar to
SPPO (Wu et al., 2024), which treats alignment problem as a constant-sum two-player game and approximate
Nash equilibrium through iterative policy updates. Such observation further illustrates its effectiveness and
inspires us to set the reward for preference feedback as: r(c, xw

0 ) = 1/2 and r(c, xl
0) = −1/2. In practice, the

setting works well. Then, we show terms of the CEPA as follows:

LCEPA(θ) = Et∼U [1,T ],c∼p(c),xT ∼N (0,I),

(xw
t−1,xl

t−1)∼pθ(xt−1|c,t,xt)

[
β log

pθ(xw
t−1|c, t, xw

t )
pref(xw

t−1|c, t, xw
t ) − 1

2

]2

+
[

β log
pθ(xl

t−1|c, t, xl
t)

pref(xl
t−1|c, t, xl

t)
+ 1

2

]2

. (4)

From Equation (4), we can see that CEPA foucs on increasing the discrepancy between the diffusion win ratio
and the diffusion lose ratio to a scale of 1. Furthermore, it endeavors to adjust the diffusion win ratio close to
1/2 and the diffusion lose ratio close to −1/2 for simultaneously increasing log-likelihood of the preferred
item and decreasing that of the dispreferred one.

4.3 Overfitting Mitigation

Large diffusion models that have undergone extensive data pre-training are prone to overfitting during and
alignment process (Gao et al., 2023; Clark et al., 2024; Kim et al., 2025). In this study, we effectively mitigate
propensity for overfitting during the alignment process by employing the Identical Preference Alignment
(IPA) and the Jensen-Shannon Divergence Constraint.

4.3.1 Identical Preference Alignment

In the work (Azar et al., 2024), it is proposed that overfitting issue is partly due to the replacement of pairwise
preferences with a pointwise reward model, as implemented in Bradley-Terry (Bradley & Terry, 1952) model,
encountering challenges when preferences are predictable or nearly predictable. Hence, in instances where the
preference leans towards determinism, as is often the case in image generation, discrepancy between reward
functions would asymptotically tend towards infinity, thereby substantially diminishing the effectiveness
of divergence constraint enforced by β. Based on such observation (Azar et al., 2024) propose the IPO to
tackle such challenge, which adeptly sidesteps the Bradley-Terry modeling assumption concerning preferences
and applies an identical mapping to the preference function. Furthermore, the very recent work (Sun et al.,
2025c) suggests that such paradigm can mitigate overfitting in the alignment process of text-to-image models,
leading to improved alignment performance and generation diversity. Hence, inspired by the idea of identical
mapping, we introduce the Identical Preference Alignment (IPA) that further extends it to diffusion-based
T2I alignment and concurrently merges the step-aware preference alignment paradigm:

LIPA(θ) = Et∼U [1,T ],c∼p(c),xT ∼N (0,I),

(xw
t−1,xl

t−1)∼pθ(xt−1|c,t,xt)

[
log
(

pθ(xw
t−1|c, t, xw

t )pref(xl
t−1|c, t, xl

t)
pθ(xl

t−1|c, t, xl
t)pref(xw

t−1|c, t, xw
t )

)
− 1

2β

]2

, (5)

where β is the regularization intensity.

4.3.2 Jensen-Shannon Divergence Constraint

Kullback-Leibler (KL) divergence has been typically chosen as the divergence constraint for policy training in
traditional methods such as Diffusion-DPO and SPO. In the work (Sun et al., 2025b), it extends the KL
divergence constraint to f -divergence, including the Forward KL divergence, the Reverse KL divergence, the α-
divergence and the Jensen-Shannon (JS) divergence. Their detailed analysis and comprehensive experiments
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show that JS divergence exhibits superior generative diversity as well as better alignment performance
compared to KL divergence. Generalized formula under the constraint of f -divergence is presented as:

Lf (θ) = −Et∼U [1,T ],c∼p(c),xT ∼N (0,I),

(xw
t−1,xl

t−1)∼pθ(xt−1|c,t,xt)
log σ

(
βf ′

(
pθ(xw

t−1|c, t, xt)
pref(xw

t−1|c, t, xt)

)
− βf ′

(
pθ(xl

t−1|c, t, xt)
pref(xl

t−1|c, t, xt)

))
, (6)

where f ′(·) represents the derivatives of generator function f(·). Upon further comparing Equation (6)
and Equation (3), it can be observed that generalization from KL divergence to f -divergence only requires
the substitution from log x to f ′(x), where x represents the win ratio and the loss ratio. Therefore, if
this component is activated, for JS divergence, f(x) = x log 2x

x+1 + log 2
x+1 and f ′(x) = log 2x

x+1 , following
substitution is needed:

log
pθ(x∗

t−1|c, x∗
t )

pref(x∗
t−1|c, x∗

t ) −→ log
[

2 ·
pθ(x∗

t−1|c, x∗
t )

pref(x∗
t−1|c, x∗

t )/
(

1 +
pθ(x∗

t−1|c, x∗
t )

pref(x∗
t−1|c, x∗

t )

)]
(7)

4.4 Performance Optimization

In practice, aligned diffusion models still suffer from low-quality generation. In this section, we aim to achieve
further performance optimization.

Let’s begin by re-examining DPO-based methods from the perspective of contrastive loss functions (Sun
et al., 2025d; Lv et al., 2025). With the purpose of minimizing distances of similar items and maximizing
distances of dissimilar ones, contrastive loss (Hadsell et al., 2006) has been widely applied in large model
training, such as the CLIP model (Radford et al., 2021):

Lcon = −
[ ∑

D(yi, yj)︸ ︷︷ ︸
dissimilar items’ distance

−λ ·
∑

min
(

L(yi) − ϵ, 0
)

︸ ︷︷ ︸
similar items’ term

]
, (8)

where D(yi, yj) is the distance between a positive item yi and a negative item yj ; λ represents regularization
intensity of positive items and ϵ is the introduced threshold. Define the dissimilar instances’ distance between
the positive (preferred) item xw

t−1 and the negative (dispreferred) item xl
t−1 as:

D = log
pθ(xw

t−1|c, t, xt)
pref(xw

t−1|c, t, xt)
− log

pθ(xl
t−1|c, t, xt)

pref(xl
t−1|c, t, xt)

(9)

Hence, it can be observed that conventional DPO framework incorporates only the dissimilarity component
(distance between positive and negative items) within the framework of contrastive loss, while neglecting
to consider the constituent element that are relevant to the similar items’ term. In this part, we break the
balance between positive and negative items in two ways to improve the alignment process’s learning of
positive items, i.e. the Margin Strengthened Preference Alignment (MSPA) and the SFT-like Regularization.

4.4.1 Margin Strengthened Preference Alignment

As shown in the Equation (3), we aim to maximize the diffusion win ratio while concurrently minimizing
the diffusion lose ratio during the training phase. However, it is usually the case that both ratios decline
concurrently to achieve margin expansion, with the diffusion lose ratio exhibiting a more pronounced rate of
decrease. Continuous decline of the diffusion win ratio is highly detrimental to the stability of training process
and the safety of fine-tuned model. Similar to LLM contexts (Yan et al., 2025), it will gradually fail to control
alignment direction of the preferred items, ultimately devolving into simply unlearning the dispreferred items.
Furthermore, such training process can lead to a dispersion effect on unseen responses, e.g. model’s capacity
of generating unseen content in images has risen dramatically, posing a substantial risk to generative safety.

Based on such observations and reflections, we would like to optimize the alignment process by targeting
the following two objectives: increasing margin between the diffusion win ratio and the diffusion lose ratio;
decelerating decrease and subsequently accelerating increase in the diffusion win ratio. In order to achieve
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them simultaneously, a diffusion win ratio strengthened term is introduced within the σ(·) function of
Equation (3), thus transforming it into the following form:

LMSPA(θ) = −Et∼U [1,T ],c∼p(c),xT ∼N (0,I),

(xw
t−1,xl

t−1)∼pθ(xt−1|c,t,xt)
log σ

(
ηβ log

pθ(xw
t−1|c, t, xt)

pref(xw
t−1|c, t, xt)

+ β log
pθ(xw

t−1|c, t, xt)
pref(xw

t−1|c, t, xt)

−β log
pθ(xl

t−1|c, t, xt)
pref(xl

t−1|c, t, xt)

)
,

(10)

where η is strengthening intensity of the margin and the diffusion win ratio.

Moreover, it is evident that the formulation presented in Equation (10) substantively disrupts equilibrium
between the win ratio and the loss ratio, thus enabling the formula exhibits similar items’ terms within the
modified expression.

4.4.2 SFT-like Regularization

Based on the aforementioned observations and the gains achieved by modifications within MSPA, we further
consider another common performance optimization method in LLM alignment: the SFT regularization (Yan
et al., 2025). However, it’s also worth noting that diffusion models actually exhibit a different paradigm
compared to LLMs. Totally, there are three enhanced strategies: enhancing probability of preferred (pθ);
enhancing log probability of preferred (log pθ); enhancing log probability of preferred ratio (log pθ

pref
). According

to the very recent work (Sun et al., 2025d), it is suggested that enhancing log probability of preferred ratio
(log pθ

pref
) not only yields excellent effectiveness but also ensures robust training stability. Furthermore, we

introduce a threshold and the minimum operation to align its form with that of similar items’ term in
Equation (8). While, note that this is not the SFT loss, we designate it as the SFT-like Regularization:

LSFT-L(θ) = −Et∼U [1,T ],c∼p(c),xT ∼N (0,I),

(xw
t−1,xl

t−1)∼pθ(xt−1|c,t,xt)
λ · min

(
log

pθ(xw
t−1|c, t, xt)

pref(xw
t−1|c, t, xt)

, ϵ

)
, (11)

where λ is the enhancement intensity and ϵ is the threshold.

4.5 Diffusion-RainbowPA

Inspired by Aristotle’s assertion that “the whole is greater than the sum of its parts”, and further motivated by
Rainbow (Hessel et al., 2018) and RainbowPO (Zhao et al., 2025), we propose combining these improvements.
Building on the aforementioned improvements to Diffusion-DPO, encompassing five components through a
tripartite perspective and further integrating the step-aware preference alignment paradigm, we introduce the
Diffusion-RainbowPA: a comprehensive combination of six improvements to the Diffusion-DPO. Combining
the formula in Equation (4), Equation (5), Equation (10) and Equation (11), we can obtain following form:

Ltotal(θ) = LIPA(θ) + LSPPA(θ) + LPEPA(θ) + LMSPA(θ) (12)

Furthermore, with activation of the component in Section 4.3.2, specifically by executing transformation
defined in Equation (7), we convert Ltotal(θ) into LDiffusion-RainbowPA(θ), which serves as the alignment
objective of Diffusion-RainbowPA:

Ltotal(θ) Transformation−−−−−−−−−−→
in Equation (7)

LDiffusion-RainbowPA(θ) (13)
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Table 1: Comparison on the GenEval.

GenEval VQAS ↑ CLIPS ↑ HPS ↑ IR ↑

SD-1.5 61.85 33.77 26.93 -0.200

Diffusion-DPO 63.68 34.52 27.17 -0.030
SPO 61.22 33.41 27.30 0.083

SPO (LoRA) 61.38 33.40 27.30 0.081
SPIN-Diffusion 60.81 32.79 27.31 -0.073

SePPO 63.10 33.94 27.35 0.003

Ours 68.41 35.01 27.45 0.202

Table 2: Comparison on the T2I-CompBench++.

T2I-Comp++ VQAS ↑ CLIPS ↑ HPS ↑ IR ↑

SD-1.5 60.71 32.06 26.55 -0.245

Diffusion-DPO 62.61 32.66 26.78 -0.089
SPO 62.73 31.19 26.87 -0.023

SPO (LoRA) 62.77 31.19 26.87 0.021
SPIN-Diffusion 60.84 31.15 27.00 -0.086

SePPO 63.10 32.30 27.03 -0.006

Ours 67.60 33.48 27.15 0.230

Table 3: Comparison on the GenAI-Bench.

GenAI-Bench VQAS ↑ CLIPS ↑ HPS ↑ IR ↑

SD-1.5 59.50 33.62 26.94 0.237

Diffusion-DPO 60.15 34.11 27.15 0.376
SPO 59.52 32.40 27.27 0.360

SPO (LoRA) 59.48 32.41 27.27 0.359
SPIN-Diffusion 58.06 32.92 27.35 0.437

SePPO 61.11 34.09 27.48 0.536

Ours 62.58 34.47 27.53 0.593

Table 4: Comparison on the DPG-Bench.

DPG-Bench VQAS ↑ CLIPS ↑ HPS ↑ IR ↑

SD-1.5 76.28 33.42 26.31 -0.187

Diffusion-DPO 77.13 34.01 26.51 -0.036
SPO 75.61 32.13 26.73 -0.087

SPO (LoRA) 75.60 32.12 26.73 -0.091
SPIN-Diffusion 76.59 32.86 26.84 0.109

SePPO 78.30 34.09 26.85 0.175

Ours 79.18 34.72 26.95 0.166

5 Experiments

5.1 Experimental Settings

Model and Dataset. In the study, we utilize the Stable Diffusion v1-5 (SD-1.5) as our benchmark model, as
it is the most widely applied model in both the RL-based alignment research group and the preference-based
alignment research group. In selecting the training dataset, to ensure a fair comparison, we adopt the
same dataset utilized by SPO (Liang et al., 2024), which consists of 4K randomly chosen prompts from the
Pick-a-Pic V1 dataset.
Hyperparameters. We simultaneously set all terms in Equation (12) to share β = 10, corresponding to
the SPO condition. Based on the tuning results reported in (Sun et al., 2025d), the positive enhancement
intensity λ in Equation (11) is set as 100 and the threshold as log 0.9; for the MSPA term, the margin
strengthening intensity η is empirically set to 0.5.
Evaluations. To comprehensively verify the improvement in alignment performance, we adopt a total
of four zero-shot alignment performance metrics, which are: the VQAScore (Lin et al., 2025) (abbreviated
as VQAS), the CLIPScore (Radford et al., 2021) (abbreviated as CLIPS), the HPS-V2 (Wu et al., 2023)
(abbreviated as HPS), and ImageReward (Xu et al., 2024) (abbreviated as IR). We provide more details on
the evaluation metrics in Appendix C.1. In our selection of evaluation benchmark, we opt for a total of four
widely utilized benchmark datasets in the area of text-to-image generalization: the GenEval (Ghosh et al.,
2024), the T2I-CompBench++ (Huang et al., 2025), the GenAI-Bench (Li et al., 2024a), and the DPG-Bench
(Hu et al., 2024). Unlike some previous work, our evaluation uses an unified approach: comparing the quality
of generated images with the four zero-shot metrics described above, as opposed to contrasting them with
their individual benchmarking results. We provide more details on the evaluation datasets in Appendix C.2.

5.2 Comparison with State-of-the-art Methods

In order to demonstrate the superiority of Diffusion-RainbowPA, we compare quantitative results with those
of state-of-the-art methods, including RL-based methods (the SPIN-Diffusion (Yuan et al., 2024) and the
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Figure 3: Winning rate from model feedback on the GenEval.

Figure 4: Winning rate from model feedback on the T2I-CompBench++.

Figure 5: Winning rate from model feedback on the GenAI-Bench.

Figure 6: Winning rate from model feedback on the DPG-Bench.

SePPO (Zhang et al., 2024)) and preference-based methods (the Diffusion-DPO (Wallace et al., 2024) and
the SPO (Liang et al., 2024)). We provide more details on the comparison methods in Appendix C.3. In
Table 1, Table 2, Table 3, Table 4, we report quantitative comparison results across four zero-shot alignment
metrics on the GenEval, the T2I-CompBench++, the GenAI-Bench, and the DPG-Bench, respectively. It
is particularly noteworthy that improvement of Diffusion-RainbowPA in both text-image alignment and
human preference alignment is unparalleled. Specifically, in the context wherein short prompts are employed
(GenEval and T2I-CompBench++): on GenEval, our method achieves a VQAScore improvement of 6.56,
while the best other SOTAs only achieves a maximum of 1.83; on T2I-CompBench++, our method improves
the VQAScore by 6.89, while the highest among other SOTAs is only 2.39. Simultaneously, the results
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Figure 7: Qualitative comparison of Diffusion-RainbowPA with Diffusion-DPO and SPO. Top: “A pilot with
aviator sunglasses.”; Bottom: “A photo of an astronaut riding a horse on Mars.” It can be observed that
Diffusion-RainbowPA have achieved superior text-image alignment performance (aspects such as scene,
attribute, and style), alleviative overfitting and generation with higher quality.

pertaining to long prompts are exciting: on GenAI-Bench, our method yields an improvement in VQAScore
of 3.08, whereas the most superior SOTA attains a peak improvement of merely 1.61; on DPG-Bench, our
method demonstrates an improvement in VQAScore of 2.9, but top-performing SOTAs merely achieve a
maximum of 2.02. We also provide detailed quantitative results on the eight separate categories of T2I-
CompBench++ in Appendix D. Furthermore, in Figure 3, Figure 4, Figure 5, Figure 6, we present the winning
rate of Diffusion-RainbowPA against other algorithms based on model feedbacks (VQAScore, CLIPScore,
HPS-V2 and ImageReward) on the GenEval, the T2I-CompBench++, the GenAI-Bench and the DPG-Bench,
respectively. The results indicate that Diffusion-RainbowPA consistently achieves superior performance.

Furthermore, we display qualitative comparisons between Diffusion-RainbowPA and the SOTAs, as detailed in
Figure 7. It can be observed that, Diffusion-RainbowPA exhibits superior text-image alignment performance,
more realistic scene depiction, more precise attributes, and more expected generation style. For example, in
the first line, our method generates a more accurate, aesthetically pleasing, and logically coherent output for
the subject “pilot”; in the second line, our method is more accurate for scene (“Mars”), attribute (like leg
number of “horse”) and style (“photo”).

5.3 Ablation Study

To further validate the improvement of alignment performance by each component, we conduct ablation
study on the five introduced components with the aforementioned four benchmark datasets. In Table 5,
Table 6, Table 7, Table 8, we show the alignment performance on the GenEval, the T2I-CompBench++, the
GenAI-Bench, and the DPG-Bench, respectively. For the five scenarios, each involving the removal of one
of the five components from Diffusion-RainbowPA (the label “w/o X” indicates the alignment performance
without the component “X”). Firstly, observing all test results across the four datasets, it can be found
that each component has positively contributed to the alignment performance of Diffusion-RainbowPA. For
the observed bias in GenEval, it primarily stems from GenEval’s nature of short prompts and a relatively
small prompt set (comprising only 553 prompts). Of the three remaining datasets, the model excluding JS
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Table 5: Ablation Study on the GenEval.

GenEval VQAS ↑ CLIPS ↑ HPS ↑ IR ↑

SD-1.5 61.85 33.77 26.93 -0.200
Ours 68.41 35.01 27.45 0.202

w/o CEPA 68.05 34.77 27.49 0.239
w/o IPA 68.42 34.81 27.50 0.218
w/o JS 68.14 34.95 27.54 0.210

w/o MSPA 68.94 35.04 27.47 0.224
w/o SFT-L 67.25 34.43 27.45 0.197

Table 6: Ablation Study on the T2I-CompBench++.

T2I-Comp++ VQAS ↑ CLIPS ↑ HPS ↑ IR ↑

SD-1.5 60.71 32.06 26.55 -0.245
Ours 67.60 33.48 27.15 0.230

w/o CEPA 66.84 33.14 27.18 0.203
w/o IPA 66.55 33.23 27.17 0.172
w/o JS 67.29 33.36 27.23 0.219

w/o MSPA 67.16 33.20 27.12 0.184
w/o SFT-L 67.48 33.06 27.13 0.180

Table 7: Ablation Study on the GenAI-Bench.

GenAI-Bench VQAS ↑ CLIPS ↑ HPS ↑ IR ↑

SD-1.5 59.50 33.62 26.94 0.237
Ours 62.58 34.47 27.53 0.593

w/o CEPA 62.23 34.12 27.57 0.531
w/o IPA 61.55 34.25 27.54 0.517
w/o JS 62.24 34.16 27.59 0.542

w/o MSPA 62.78 34.04 27.51 0.505
w/o SFT-L 62.24 34.01 27.53 0.485

Table 8: Ablation Study on the DPG-Bench.

DPG-Bench VQAS ↑ CLIPS ↑ HPS ↑ IR ↑

SD-1.5 76.28 33.42 26.31 -0.187
Ours 79.18 34.72 26.95 0.166

w/o CEPA 78.73 34.38 26.95 0.088
w/o IPA 78.30 34.57 26.95 0.075
w/o JS 78.79 34.36 26.97 0.111

w/o MSPA 78.78 34.49 26.93 0.054
w/o SFT-L 78.56 34.46 26.94 0.023

demonstrated superior performance on HPS-V2 compared to the full model. Such observation is related
to a potential conflict between the optimization objective of JS divergence and the evaluation dimensions
of HPS-V2: JS divergence aims to stabilize the training process and alleviate overfitting by symmetrizing
KL divergence. Its core objective is to improve the distribution consistency of generated samples, rather
than directly optimizing the fine-grained attributes of human preferences (such as color accuracy, reasonable
composition); then the distribution over-smoothing and optimization direction shift introduced by the JS
divergence paradigm might slightly decrease the HPS-V2 results. Despite this, performance with the JS
divergence always holds significant advantages over that with the KL divergence in all other metrics: for
example, as shown in Table 5, ablating the JS results in a 1.05 decrease in VQAScore and a 0.06 decrease in
CLIPScore; in Table 6, removing the JS leads to reductions of 0.31 in VQAScore, 0.12 in CLIPScore, and
0.011 (5%) in ImageReward; in Table 7, JS removal decreases VQAScore by 0.34, CLIPScore by 0.31, and
ImageReward by 0.051 (9%); in Table 8, removing JS lowers VQAScore by 0.39, CLIPScore by 0.36, and
ImageReward by 0.143 (86%). Hence, considering all test results comprehensively, we can conclude that
omission of any single component would result in a degradation of the alignment performance: that is to say,
regarding the introduced five components from three aspects as “the whole” can get “greater” performance
than that of “its parts”.

6 Conclusion

In this study, we point out limitations of current state-of-the-art diffusion-based text-to-image alignment meth-
ods, which tend to suffer from text-image misalignment, aesthetic overfitting and low-quality generation. To
address such issues, we improve the alignment paradigm through a tripartite perspective: calibration enhance-
ment, overfitting mitigation and performance optimization. For calibration enhancement, we introduce the
Calibration Enhancement Preference Alignment (CEPA); for overfitting mitigation, we introduce the Identical
Preference Alignment (IPA) and the Jensen-Shannon Divergence Constraint; for performance optimization, we
introduce the Margin Strengthened Preference Alignment (MSPA) and the SFT-like Regularization. Further
combining the introduced five components with step-aware preference alignment paradigm, we propose the
Diffusion-RainbowPA, a suite of six improvements that collectively enhance the alignment performance of
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Diffusion-DPO. Comprehensive evaluations demonstrate that Diffusion-RainbowPA outperforms current
state-of-the-art methods. Furthermore, ablation study conducted on the five introduced components indicates
that each component of Diffusion-RainbowPA has positively contributed to the alignment performance.

Broader Impact Statement

Performance of Diffusion-RainbowPA is promising, while actually any effort in text-to-image generation
presents ethical risks. The improved models might be misused to generate harmful, hateful, fake or sexually
explicit content. We further utilize supplementary safety filtering mechanisms during inference to ascertain
the elimination of toxic content. Specifically, we train only the UNet model and do not train the safety
checker model to prevent potential vulnerabilities, such as the reward hacking, that could attack the safety
checker model during the training process. Moreover, as with all preference-based alignment methods, the
biases of preference that has been encoded in the dataset might be introduced. For this problem, we adopt
the solution consistent with previous methods like Diffusion-DPO and SPO, i.e. performing data filtering;
and we utilize the same datasets with them in our training process.
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A Diffusion-based Text-to-Image Models

Early researches in text-to-image (T2I) generation mainly focus on GANs (Reed et al., 2016; Zhang et al.,
2017). More recently, however, diffusion-based models have demonstrated remarkable proficiency in producing
images of exceptional quality, adhering to the input descriptions better (Ho et al., 2020; Rombach et al.,
2022; Podell et al., 2024; Esser et al., 2024; Ramesh et al., 2021; 2022; Betker et al., 2023; Yang et al., 2023).
To achieve more precise control over the generative process, recent studies have explored various techniques
aimed at enhancing the guidance of diffusion models. DiT (Peebles & Xie, 2023) exemplifies better generation
with utilization of superior transformer backbones; Pixart-alpha (Chen et al., 2024) exemplifies efficacy of
advanced text encoders in the accomplishment of robust language conditioning; DALL·E 3 (Betker et al.,
2023) exemplifies enhanced generative performance through improved captioning. Despite their effectiveness,
aligning diffusion models with human value still presents a significant challenge and remains a critical issue.
In this study, we utilize the Stable Diffusion v1.5 (Rombach et al., 2022) as our backbone, primarily based
on the goal of aligning with the RL-based T2I alignment research group. Herein, we would like to briefly
introduce the core of diffusion-based T2I for readers who are not very familiar with it, which is the mechanism
of Denoising Diffusion Probabilistic Models (DDPMs).

Let’s consider the data distribution x0 ∼ q0(x0), x0 ∈ Rn. DDPM algorithm approximates the
data distribution q0 with a parameterized model with the form of pθ(x0) =

∫
pθ(x0:T |c)dx1:T , where

pθ(x0:T |c)=pθ(xT )
∏T

t=1 pθ(xt−1|xt, c), and c is the conditioning information, (i.e., the image category and
the image caption). Then, we can describe the reverse process to be an Markov chain with dynamics as
follows:

p(xT ) = N (0, I ), pθ(xt−1|xt, c) = N (xt−1; µθ(xt, c), Σt).

Furthermore, DDPM further exploits an approximate posterior q(x1:T |x0, c), namely the forward process,
adding Gaussian noise to the data acccording to the variance coefficients β1, ..., βT :

q(x1:T |x0, c) =
T∏

t=1
q(xt|xt−1, c),

q(xt|xt−1, c) = N (
√

1 − βtxt−1, βtI),

αt = 1 − βt, α̃t =
t∏

i=1
αi, β̃t = 1 − α̃t−1

1 − α̃t
.

Based on these, in the work (Ho et al., 2020), the parameterization is further applied as follows:

µθ(xt, c) = 1
√

αt
(xt − βt√

1 − α̃t

ϵθ(xt, c))

B Brief Survey of Text-to-Image Alignment

Reinforcement learning (RL) has recently exhibited significant potential for application across a diverse array
of domains (Sun et al., 2025a; Xia et al., 2025). Furthermore, in the domain of aligning diffusion-based
text-to-image models with human preferences, a prevalent method family is the Reinforcement Learning
from Human Feedback (RLHF). To summarize, they encompass the maximization of target reward function
in conjunction with the minimization of Kullback-Leibler divergence between current policy and reference
policy. Methods such as DDPO (Black et al., 2024), DPOK (Fan et al., 2024), ReFL (Xu et al., 2024),
DRaFT (Clark et al., 2024), and AlignProp (Prabhudesai et al., 2023) initially entail training a reward
model for modeling human value, followed by employing RL pipelines like PPO (Schulman et al., 2017) and
REINFORCE (Sutton et al., 1999) to fine-tune the policy, thereby optimizing for the rewards offered by the
reward model. Despite their effectiveness, traditional RLHF methods involve the modeling of reward from
relatively limited preference datasets, which results in the training pipeline suffer from disadvantages such as
high computational costs and inadequate training stability.
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Direct Preference Optimization (DPO) (Rafailov et al., 2024) achieves remarkable success in Large Language
Models (LLMs) alignment by implicitly estimating the reward model. Based on this, some prior work has
been conducted grounding in the idea of implicit reward models (Liu et al., 2024a). Diffusion-DPO (Wallace
et al., 2024) re-formulates DPO by utilizing the evidence lower bound (ELBO) to derive a differentiable
objective function, and further approximation the reverse process with the forward. D3PO (Yang et al.,
2024a) regards the denoising process as a multi-step Markov decision process (MDP), drawing the conclusion
that directly updating the policy based on human preferences within MDP is equivalent to first learning
the optimal reward function. DenseReward (Yang et al., 2024b) further advances the DPO paradigm by
introducing a temporal discounting, which accentuates the initial stages of denoising while comparatively
weaken posterior ones. Recently, SPO (Liang et al., 2024) is proposed to evaluate and adjust the denoising
performance at step-level for ensuring accurate step-specific preference signal. These paradigms have laid a
robust groundwork for researchers to pursue further advancements.

Building upon them, recent researches on aligning diffusion-based text-to-image with human preference
primarily focus on three directions. The initial aspect involves deriving inspiration from existing numerous
alignment paradigms of generative models (such as LLMs), exploring and modifying them for application in
the context of diffusion-based text-to-image. The second aspect is to further integrate DPO paradigm with
diffusion model itself for further leveraging the advantages of denoising process. The third aspect involves
exploration of novel training paradigms to achieve superior performance and better efficiency during the
training process.

In the first aspect aforementioned, some typical works are as follows. Diffusion-KTO (Li et al., 2024b)
formulates the alignment objective as the maximization of expected human utility and further offers a robust
framework based on existing KTO methodology. Diffusion-RPO (Gu et al., 2024) applies contrastive weighting
to similar prompt-image pairs based on the success of RPO. MaPO (Hong et al., 2024) eschews conventional
reference paradigm, concurrently optimizing the likelihood margin between the preferred and the dispreferred
image sets and augmenting the likelihood of preferred set, which is also partly inspired by SimPO. Overall,
there still exists substantial potential for further investigation within this aspect.

In regard to the second aforementioned aspect, some representative works are delineated as follows. In the
studies of DNO (Tang et al., 2024), NCPPO (Gambashidze et al., 2024), and ReNO (Eyring et al., 2024),
researchers delve into examination of the impact of noise on resultant outcomes, employing methodologies
primarily centered around the noise optimization. DAS (Kim et al., 2025) offers a training-free approach to
aligning diffusion models with arbitrary reward functions, thereby maintaining their generalizable performance.

Concerning the third aspect, several exemplary works are discussed as follows. SPIN-Diffusion (Yuan et al.,
2024) enables the diffusion model to compete with its earlier versions, thereby facilitating an iterative process
of self-improvement. DUO (Park et al., 2024) endeavors to eliminate Not Safe For Work (NSFW) content
from T2I models, simultaneously safeguarding their proficiency across unrelated subjects. SafetyDPO (Liu
et al., 2024b) facilitates safety alignment of T2I models, precluding the generation of inappropriate outputs
without impacting generative capabilities on safe prompts. PopAlign (Li et al., 2024c) proposes a concept of
population-level preference optimization as a means of mitigating the population bias. RankDPO (Karthik
et al., 2024) weighs the preference loss with discounted cumulative gains, which further enhances DPO-based
methods with the help of ranking feedback. SePPO (Zhang et al., 2024) further employs previously saved
checkpoints as reference models, concurrently utilizing them to produce on-policy samples. SEE-DPO (Shekhar
et al., 2024) incorporates a self-entropy regularization term into conventional KL-regularized formulation of
RLHF objective function. In the study (Sun et al., 2025b), it is proposed that employment of Jensen–Shannon
divergence yields superior performance in achieving human value alignment comparing to Kullback-Leibler
divergence, while concurrently facilitating an optimal trade-off between alignment performance and generative
diversity. PatchDPO (Huang et al., 2024) estimates the quality of image patches within each generated image
and accordingly trains the model.

In summary, exploration on aligning diffusion-based text-to-image models with human preferences is yet to
traverse a substantial expanse; concurrently, this field is undergoing a burgeoning phase. The aforementioned
three aspects, along with their interwoven integration, constitute the predominant pathways for future
researches.
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C More Details on the Evaluation and Comparison

In this part, we provide more detailed descriptions on the evaluation metrics, evaluation datasets and
comparison methods.

C.1 Details on the Metrics

In this study, we utilize total four published zero-shot metrics: the VQAScore (Lin et al., 2025), the CLIPScore
(Radford et al., 2021), the HPS-V2 (Wu et al., 2023), and the ImageReward (Xu et al., 2024).

VQAScore. VQAScore utilizes the Visual Question Answering (VQA) model for evaluation. Its core idea
is to transform the given text into a simple yes/no question: “Does this image depict text?” The image
and the question are then input into a pre-trained VQA model, and the probability of the model predicting
“Yes” is used as the matching score between the image and the text. To further enhance the performance of
VQAScore, the authors also trained an internal VQA model named CLIP-FlanT5. This model employs a
bidirectional image-question encoder, allowing image embeddings to be adjusted according to the question
and vice versa, which is more in line with how humans understand images. CLIP-FlanT5 has achieved a new
state-of-the-art level in all benchmark tests. The simplicity and effectiveness of VQAScore make it a powerful
tool for evaluating text-to-visual generation models, particularly demonstrating significant advantages in
handling complex text prompts.

CLIPScore. CLIPScore is a widely used metric for evaluating the quality of generated images, which leverages
OpenAI’s CLIP (Contrastive Language-Image Pre-training) model to measure the semantic consistency
between a generated image and a given text description. The core idea is: first, use the CLIP model to
separately compute the embedding vectors for the generated image and the text description; then, calculate
the cosine similarity between these two vectors. The higher the similarity score, the higher the semantic
alignment between the image and the text, indicating that the image better expresses the content of the
text description. Advantage of CLIPScore lies in its strong generalization ability and attention to image
details, as it is trained on large-scale image-text datasets, capable of capturing richer semantic information,
and not just focusing on the visual quality of the image, but also on its alignment with the text description.
Although CLIPScore can to some extent reflect human perception of image quality and text consistency,
it is not perfect and may be influenced by certain specific text prompts, and there may be limitations in
understanding complex scenes and abstract concepts. Nevertheless, CLIPScore remains an important tool
for evaluating the performance of generation models, often used in combination with other metrics to more
comprehensively assess the quality of generated images.

HPS-V2. HPS-V2 is trained on a large human preference dataset, the Human Preference Dataset v2
(HPD-V2), which contains 798,090 human preference choices on 433,760 pairs of images, making it the
largest dataset of its kind. To avoid biases present in previous datasets (such as primarily containing images
generated by specific models or using biased prompts), HPD-V2 deliberately collects images from 9 different
text-to-image generation models (including Stable Diffusion, DALL-E 2, etc.) and the COCO dataset. It also
uses ChatGPT to clean up the prompts, making them more concise and clear, reducing stylistic language and
contradictory information. HPS-V2 is obtained by fine-tuning the CLIP model on HPD-V2. Experiments
show that it has better generalization capabilities than previous metrics (such as HPS-V1, PickScore, etc.),
can better predict human preferences for generated images.

ImageReward. ImageReward is a general human preference scoring model. It is trained through a systematic
annotation process that includes two stages: scoring and ranking, where over 1.37 million expert comparison
data has been collected. The process first classifies and identifies issues in the text prompts, then scores
generated images on three dimensions: text-image alignment, fidelity, and harmlessness, and finally ranks the
images to capture human preferences. Experiments show that ImageReward outperforms existing scoring
models in understanding human preferences, such as CLIP, Aesthetic, and BLIP. In evaluations of real user
prompts and the MS-COCO 2014 dataset, ImageReward is highly consistent with human preference rankings
and has a higher degree of discrimination between samples, making it a promising automatic evaluation
metric for text-to-image generation models.
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C.2 Details on the Datasets

In evaluations of this study, we utilize four published benchmarking datasets. Based on nature of prompts in
the dataset, we can categorize them into the short prompts and the long prompts. Herein, the short
prompts include the GenEval (Ghosh et al., 2024) and the T2I-CompBench++ (Huang et al., 2025); the long
prompts include the GenAI-Bench (Li et al., 2024a) and the DPG-Bench (Hu et al., 2024).

GenEval. GenEval is a relatively small dataset (containing only 553 prompts) designed for evaluating the
generation capabilities of text-to-image (T2I) models. GenEval decomposes text prompts into their constituent
parts, such as number, attribution, color, and relative position. It then uses an object detection model to
identify objects in the generated images, extracting bounding box and segmentation mask information. This
information is used to verify the presence of specified objects, the accuracy of their counts, and the adherence
to the described spatial relationships between objects. In this research, we do not use the benchmarking
results from the GenEval dataset itself but instead use the quantitative results from metrics in Appendix C.1
with the purpose of unifying results’ comparison across different datasets.

T2I-CompBench++. T2I-CompBench++ is a benchmark comprised of 8000 synthetic text prompts
designed to evaluate the compositional capabilities of text-to-image generation models. It categorizes prompts
into four main areas: Attribute Binding, Object Relationships, Generation Arithmetic, and Complex Combi-
nations, further subdividing them into eight subcategories, including newly introduced 3D spatial relationships
and numeracy. Attribute Binding comprises subcategories for Color, Shape, and Texture, assessing the model’s
ability to associate attributes with the correct objects. Object Relationships includes subcategories for 2D/3D
Spatial Relationships and Non-Spatial Relationships, evaluating the model’s understanding and generation of
various object interactions. Generation Numeracy assesses the model’s capability to handle text prompts
specifying different object quantities. Complex Combinations involve combining multiple objects or categories,
testing the model’s ability to handle more complex scenarios. To evaluate these diverse compositional
challenges, T2I-CompBench++ proposes improved evaluation metrics, including detection-based metrics for
3D spatial relationships and arithmetic, as well as analytical metrics leveraging multimodal large language
models (MLLMs) such as GPT-4V. By benchmarking 11 text-to-image models, including FLUX.1, SD3,
DALL-E 3, Pixart-α, and SDXL, on T2I-CompBench++, and conducting thorough evaluations to validate
the metrics’ effectiveness, as well as exploring the potential and limitations of MLLMs, T2I-CompBench++
provides a robust framework for assessing and advancing compositional capabilities in text-to-image generation.
Similarly, we do not use the benchmarking results itself but instead use the quantitative results from metrics
in Appendix C.1 with the purpose of unifying results’ comparison across all different datasets.

GenAI-Bench. GenAI-Bench is a novel benchmark designed for comprehensive evaluation of compositional
text-to-visual generation models. Unlike previous benchmarks that primarily focus on basic visual elements
like objects, attributes, and simple relationships, GenAI-Bench incorporates a wider range of compositional
skills, categorized into “basic” (objects, attributes, spatial/action/part relations, scenes) and “advanced”
(counting, comparison, differentiation, negation, universality) skills. This expanded skill taxonomy reflects
the complexities of real-world user prompts, sourced directly from professional designers familiar with tools
like Midjourney. The benchmark includes 1600 challenging prompts, each meticulously tagged with all
relevant skills, enabling fine-grained analysis of model performance across different aspects of compositional
reasoning. The study utilizes over 80,000 human ratings (38,400 for initial model evaluation, and an additional
43,200 for a GenAI-Rank sub-benchmark focused on image ranking) on images and videos generated by ten
leading models (including both open-source and closed-source options), revealing significant shortcomings in
handling advanced reasoning tasks even for state-of-the-art models. Furthermore, GenAI-Bench facilitates the
evaluation of automated metrics, demonstrating the superior performance of VQAScore – a metric leveraging
VQA models – compared to existing methods like CLIPScore, especially in correlating with human judgments
on compositional prompts. Similarly, we do not use the VQAScore merely but use the four quantitative
results from metrics in Appendix C.1 with the purpose of comprehensively carrying out the comparison.

DPG-Bench. DPG-Bench is a dataset introduced to evaluate ability of text-to-image models to handle
complex and dense prompts. Previous benchmarks like T2I-CompBench and PartiPrompts primarily focus
on shorter prompts with limited descriptive detail. DPG-Bench addresses this limitation by providing a more
challenging evaluation set. It consists of 1,065 lengthy and detailed prompts, significantly exceeding the length
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and complexity of those in previous benchmarks. These prompts describe multiple objects, each with diverse
attributes and intricate relationships between them. The average prompt in DPG-Bench contains around
84 tokens, compared to 10-20 tokens in previous benchmarks. The increase reflects a much richer semantic
content within each prompt. Source data is gathered from COCO, PartiPrompts, DSG-1k, and Object365.
And the existing short prompts are extended using GPT-4 to incorporate detailed descriptions of objects,
attributes, and relationships. They are then verified by human annotators to ensure quality and accuracy.
Similarly, we use the quantitative results from metrics in Appendix C.1 with the purpose of comprehensively
carrying out the comparison.

C.3 Details on the Comparison Methods

In the comparison of this paper, we mainly focus on the Diffusion-DPO, the SPO (with and without LoRA),
the SPIN-Diffusion, and the SePPO.

Diffusion-DPO. (CVPR 2024) Diffusion-DPO is the first attempt designed to align text-to-image diffusion
models with human preferences. It departs from traditional approaches using reinforcement learning or
specific datasets by directly optimizing the diffusion model. Instead of crafting an explicit reward function,
DPO subtly learns human preferences by directly tweaking the model’s parameters. It utilizes paired image
comparisons where one image is preferred over another for a given prompt. The aim is to improve the win
ratio of preferred images relative to dispreferred ones under the model’s distribution.

SPO. (CVPR 2025) Step-by-Step Preference Optimization (SPO) (with LoRA and without LoRA) is a
novel post-training method for enhancing the aesthetic quality of diffusion models. Unlike existing DPO-based
methods that propagate preferences across entire generation trajectories, SPO focuses on fine-grained detail
improvements at each denoising step. SPO operates by first sampling a pool of candidate images from a shared
noisy latent at each step. A Step-aware Preference Model (SPM), trained on open-source preference data,
then evaluates these candidates and identifies a win-lose pair exhibiting the largest quality difference: crucially,
these pairs are visually similar, highlighting subtle aesthetic details rather than large layout discrepancies.
The diffusion model is then fine-tuned using a modified DPO loss function based on this win-lose pair. Finally,
a candidate image is randomly selected from the pool to initialize the next denoising step. Such iterative
process, repeated across multiple steps, accumulates minor aesthetic improvements, leading to significantly
enhanced overall visual appeal. Key advantage of SPO is its ability to leverage generic preference data
effectively by focusing on small, detail-level differences at each step, circumventing the limitations of existing
DPO methods that struggle with noisy and conflicting preferences in holistic image evaluations.

SPIN-Diffusion. (NeurIPS 2024) SPIN-Diffusion is a novel self-play fine-tuning method for diffusion
models, addressing the limitations of standard supervised fine-tuning (SFT) and reinforcement learning from
human feedback (RLHF). Unlike SFT, which plateaus with limited data and doesn’t directly optimize for
human preference; and unlike RLHF, which requires paired “winner-loser” images per prompt, SPIN-Diffusion
iteratively improves a diffusion model by pitting it against previous versions. Core idea of SPIN-Diffusion
is a minimax game: a “main player” (the current model) tries to distinguish between real images from the
target distribution and those generated by an “opponent player” (a previous model version). The opponent
aims to fool the main player. Crucially, the opponent is simply a copy of the main player from a previous
iteration, enabling self-play. SPIN-Diffusion overcomes challenges inherent in applying self-play to diffusion
models by (a) designing an objective function considering the entire diffusion trajectory (not just the final
image), and (b) decomposing and approximating the probability function using score functions (gradients of
probabilities), leveraging the Gaussian reparameterization technique from DDIM for efficient computation.
Hence, it allows for an unbiased objective function calculated from intermediate samples, further approximated
for computational efficiency to avoid storing all intermediate images. The iterative self-play process continues
until convergence, theoretically achieving a point where further SFT improvement is impossible.

SePPO. (arXiv preprint) Semi-Policy Preference Optimization (SePPO) is a novel method for aligning
diffusion models (DMs) with human preferences without relying on reward models or paired human-annotated
data. It addresses limitations of both on-policy and off-policy reinforcement learning from human feedback
(RLHF) approaches. SePPO leverages previous DM checkpoints as reference models. They generate on-policy
reference samples, acting as replacements for “losing images” in preference pairs. It further optimizes using
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only off-policy “winning images” from a supervised fine-tuning (SFT) dataset. A key innovation is the
reference model selection strategy. Instead of using initial or latest checkpoint, SePPO randomly samples from
all previous checkpoints, broadening exploration in policy space and thus preventing overfitting. Furthermore,
SePPO employs an Anchor-based Adaptive Flipper (AAF). AAF assesses whether reference samples are
truly inferior to current model’s output using a criterion based on the probability of generating the winning
image. This adaptive mechanism prevents performance degradation due to uncertain reference sample quality,
selectively learning from generated samples based on their likely classification as winning or losing.

D More Detailed Results of Comparison with SOTAs on the T2I-CompBench++
with Eight Categories Separately

Table 9: Comparison of Diffusion-RainbowPA with SOTAs on the T2I-CompBench++ (eight categories
separately).

VQAScore

T2I-Comp++ 3d_spatial color complex non-spatial numeracy shape spatial texture

SD-1.5 50.95 55.82 70.50 76.37 49.52 59.72 61.07 61.70

Diffusion-DPO 54.26 57.94 72.11 77.67 50.46 61.06 64.47 62.95
SPO 57.57 59.01 72.83 72.96 50.32 63.67 63.07 62.44

SPO (LoRA) 57.63 59.20 72.91 73.00 50.40 63.74 63.00 62.31
SPIN-Diffusion 49.96 57.01 71.85 74.65 47.17 62.47 62.48 61.15

SePPO 54.42 60.68 72.56 78.09 50.26 60.70 65.52 62.54

Ours 61.69 66.23 74.48 79.16 53.64 65.63 69.06 70.89

CLIPScore

SD-1.5 31.46 32.76 30.98 33.19 31.54 30.94 33.91 31.67

Diffusion-DPO 32.26 33.60 31.31 33.61 32.22 31.48 34.78 32.03
SPO 31.33 32.21 29.87 31.15 30.80 30.68 33.07 30.38

SPO (LoRA) 31.32 32.21 29.87 31.14 30.79 30.68 33.10 30.36
SPIN-Diffusion 30.58 31.85 29.67 32.65 30.53 30.79 33.56 29.61

SePPO 31.63 33.40 31.07 33.36 32.36 31.11 34.18 31.31

Ours 33.45 34.58 31.53 33.68 33.37 32.12 35.66 33.46

HPS-V2

SD-1.5 26.87 27.06 25.61 26.62 26.17 26.27 27.91 25.91

Diffusion-DPO 27.12 27.29 25.74 26.80 26.39 26.50 28.29 26.10
SPO 27.21 27.44 25.99 26.81 26.37 26.61 28.42 26.15

SPO (LoRA) 27.21 27.44 25.99 26.81 26.37 26.61 28.42 26.15
SPIN-Diffusion 27.38 27.52 25.99 27.05 26.47 26.69 28.62 26.25

SePPO 27.39 27.64 26.03 27.10 26.65 26.63 28.55 26.27

Ours 27.54 27.71 26.06 27.13 26.77 26.76 28.68 26.51

ImageReward

SD-1.5 -0.552 -0.496 -0.092 0.549 -0.500 -0.431 -0.043 -0.393

Diffusion-DPO -0.341 -0.322 0.030 0.670 -0.399 -0.320 0.244 -0.275
SPO -0.113 -0.331 0.116 0.601 -0.228 -0.163 0.285 -0.352

SPO (LoRA) -0.108 -0.327 0.116 0.606 -0.228 -0.164 0.293 -0.359
SPIN-Diffusion -0.329 -0.359 0.121 0.723 -0.452 -0.176 0.233 -0.446

SePPO -0.246 -0.179 0.157 0.805 -0.295 -0.281 0.313 -0.321

Ours 0.059 0.106 0.200 0.819 -0.051 -0.017 0.553 0.168
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E More Detailed Results of Ablation Study on the T2I-CompBench++ with Eight
Categories Separately

Table 10: Ablation study of Diffusion-RainbowPA on the T2I-CompBench++ (eight categories separately).

VQAScore

T2I-Comp++ 3d_spatial color complex non-spatial numeracy shape spatial texture

SD-1.5 50.95 55.82 70.50 76.37 49.52 59.72 61.07 61.70
Ours 61.69 66.23 74.48 79.16 53.64 65.63 69.06 70.89

w/o CEPA 60.96 64.74 74.95 78.73 52.85 64.54 68.57 69.37
w/o IPA 60.24 64.76 74.34 79.09 52.96 64.39 67.83 68.80
w/o JS 61.64 64.57 74.74 79.08 54.07 64.66 69.89 69.62

w/o MSPA 60.57 65.30 74.60 78.62 53.89 64.43 69.19 70.69
w/o SFT-L 61.07 66.76 74.55 79.46 53.78 64.91 69.13 70.16

CLIPScore

SD-1.5 31.46 32.76 30.98 33.19 31.54 30.94 33.91 31.67
Ours 33.45 34.58 31.53 33.68 33.37 32.12 35.66 33.46

w/o CEPA 33.10 34.32 31.63 33.39 32.91 31.65 35.18 32.95
w/o IPA 33.13 34.48 31.72 33.48 32.92 31.98 35.31 32.83
w/o JS 33.22 34.36 31.51 33.51 33.45 32.00 35.61 33.25

w/o MSPA 32.94 34.22 31.47 33.44 32.85 31.80 35.33 33.58
w/o SFT-L 32.76 34.21 31.50 33.05 32.84 31.65 35.01 33.46

HPS-V2

SD-1.5 26.87 27.06 25.61 26.62 26.17 26.27 27.91 25.91
Ours 27.54 27.71 26.06 27.13 26.77 26.76 28.68 26.51

w/o CEPA 27.53 27.75 26.16 27.24 26.77 26.77 28.72 26.54
w/o IPA 27.56 27.76 26.15 27.16 26.76 26.81 28.70 26.48
w/o JS 27.65 27.80 26.14 27.21 26.89 26.84 28.82 26.54

w/o MSPA 27.46 27.70 26.09 27.12 26.75 26.77 28.62 26.51
w/o SFT-L 27.50 27.78 26.11 27.14 26.73 26.76 28.61 26.48

ImageReward

SD-1.5 -0.552 -0.496 -0.092 0.549 -0.500 -0.431 -0.043 -0.393
Ours 0.059 0.106 0.200 0.819 -0.051 -0.017 0.553 0.168

w/o CEPA 0.018 0.073 0.243 0.796 -0.057 -0.097 0.543 0.104
w/o IPA -0.010 0.028 0.206 0.759 -0.109 -0.066 0.518 0.047
w/o JS 0.079 0.069 0.194 0.791 -0.017 -0.067 0.583 0.121

w/o MSPA -0.025 0.035 0.186 0.765 -0.108 -0.066 0.513 0.175
w/o SFT-L 0.025 0.041 0.137 0.759 -0.134 -0.095 0.550 0.158

F Further Discussion on Computational Overhead and Complexity Introduced

In this study, the experiments are conducted on a machine equipped with 4 × NVIDIA A100-PCIE-40GB
GPUs. The training process for Diffusion-RainbowPA requires approximately 15 hours and the maximum
GPU memory consumption required by Diffusion-RainbowPA is 21.74 GB per GPU, indicating that it is
a relatively lightweight method. Furthermore, we perform experiments on consumer-grade graphics cards,
specifically utilizing a machine equipped with 4 × NVIDIA GeForce RTX 3090 GPUs (each with 24GB of
memory); and the entire training process on this setup requires approximately 27.5 hours.
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In addition, we provide an intuitive explanation of the complexity introduced by integrating multiple
alignment components. The six alignment improvements in Diffusion-RainbowPA are implemented as
additional regularization terms within a similar training loop to that of the baseline SPO (Liang et al., 2024).
Herein, in contrast to SPO, which employs a multi-sample setup in the step-wise resampler by sampling
four images, we instead adopt a configuration that samples only two images. This modification partially
reduces computational complexity. For the CEPA, two additional squared error terms are introduced, which
increase only scalar multiplication, addition, and squaring operations for the computation; hence, CEPA
can be considered a quadratic regularization extension of log pθ(xt−1|c,t,xt)

pref(xt−1|c,t,xt) , without significantly increasing
algorithmic complexity. Similarly, IPA only adds scalar subtraction and squaring operations; JS introduces
only scalar multiplication, addition, and division; MSPA adds only scalar multiplication and addition; and
SFT-L requires only comparison and truncation operations. Hence, none of them significantly increase the
algorithmic complexity. Overall, the added complexity resulting from the integration of multiple alignment
components is deemed acceptable.

G Further Discussion on Hyperparameter Tuning

In this study, hyperparameter tuning is primarily guided by two main principles. Firstly, we employ a unified
initialization for the regularization intensity β, assigning the same value to all of them. For a fair comparison,
we set this value to 10, consistent with the configuration used in D3PO (Yang et al., 2024a) and SPO (Liang
et al., 2024). Secondly, we empirically anchor each component by fixing their values based on results from
preliminary experiments. Specifically, we perform an individual grid search for each hyperparameter, including
the SFT intensity λ, the threshold θ, and the margin strengthening intensity η. While this might not be the
globally optimal combination of hyperparameters, we want to convey that this paper transcends the pursuit
of immediate performance enhancements and its contribution more lies in the articulation of novel research
avenues within the field, facilitated by methodological innovation.

In future engineering applications, especially when handling high-dimensional data or large-scale models,
hyperparameter optimization can be achieved through the following method. To begin, we need to define the
acceptable range of values for each hyperparameter; and if there are sufficient resources, we can set it as a
continuous range for finer-grained tuning, while, if resources are limited, we can empirically set it as discrete
values to reduce the search space. For example, for the regularization intensity β, it could be [10, 100, 1000];
for the positive enhancement intensity λ, it could be [50, 100, 500]; for the margin strengthening intensity
η, it could be [0.1, 0.5, 1]. Further, we can expand this by automating hyperparameter tuning (like the
methodology of Bayesian optimization that achieve dynamic balance between exploration and exploitation
to approximate the global optimum with the fewest number of evaluations), integrating with an AutoML
framework (such as the Optuna). We believe that this methodology could enable superior performance when
applied to larger models and more complex datasets in engineering applications.

H Theoretical Perspectives on CEPA, IPA and MSPA

In this section, we present further theoretical insights into CEPA, IPA, and MSPA from the perspective of
functional analysis. We begin by defining the model function space in Definition 2. Subsequently, we explicitly
formulate the functionals of CEPA, IPA, and MSPA within the model function space in Definition 3.
Definition 2 (Model Function Space). Setting that X is the sample space and that F is the real-valued
measurable function space on X . For any function (model) fθ ∈ F , ∀x ∈ X , we have that fθ(x) : X → Rw×h,
where w and h represent the width and height of the image, respectively.
Definition 3 (Functional Expression). Let the preference training dataset be D = {(xw

i , xl
i)} ⊂ X × X . In

the Hilbert space FD = L2(D), consider the three functionals: C[fθ] (for the CEPA), I[fθ] (for the IPA) and
M[fθ] (for the MSPA). Hence, for each pair sample (xw

i , xl
i), the win ratio Xw

i and the lose ratio X l
i are

uniquely determined; thus, we have that:

C[fθ] =
[
β · log fθ(Xw

i ) − 1
2

]2
+
[
β · log fθ(X l

i) + 1
2

]2
, (14)
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I[fθ] =
[

log fθ(Xw
i ) − log fθ(X l

i) − 1
2β

]2
, (15)

M[fθ] = − log σ

[(
η + 1

)
β log fθ(Xw

i ) − β log fθ(X l
i)
]
. (16)

Furthermore, let us consider the Fréchet derivative of the functionals. The Fréchet derivative measures the
linear variation of a functional’s value in response to small perturbations of its input function. In Proposition 1,
we present the calculation results of the Fréchet derivatives for CEPA, IPA and MSPA.
Proposition 1 (Fréchet Derivative of the Functionals). Let fθ be a function in a Hilbert space. We introduce
a random perturbation h and ϵ denotes the magnitude of the perturbation. Then, under mild assumption, we
can get the variation of C[fθ], I[fθ] and M[fθ] as:

δC[fθ](h) = βh(Xw
i )

fθ(Xw
i )

(
2β log fθ(Xw

i ) − 1
)

+ βh(X l
i)

fθ(X l
i)

(
2β log fθ(X l

i) − 1
)

(17)

δI[fθ](h) =
(

2 log fθ(Xw
i ) − 2 log fθ(X l

i) − 1
β

)(
h(Xw

i )
fθ(Xw

i ) − h(X l
i)

fθ(X l
i)

)
(18)

δM[fθ](h) = −
(

1 − σ
(
(η + 1)β log f(Xw

i ) − β log f(X l
i)
))[

(η + 1)β h(Xw
i )

fθ(Xw
i ) − β

h(X l
i)

fθ(X l
i)

]
(19)

Proof. Part 1. Variation Derivation of the C[fθ].

Firstly, introduce the random perturbation ϵh to the C[fθ]:

C[fθ + ϵh] =
[
β log

(
fθ(Xw

i ) + ϵh(Xw
i )
)

− 1
2

]2
+
[
β log

(
fθ(X l

i) + ϵh(X l
i)
)

+ 1
2

]2
.

For each of the two terms, we perform a Taylor expansion as follows:

β log
(
fθ(Xw

i ) + ϵh(Xw
i )
)

≈ β log fθ(Xw
i ) + ϵβh(Xw

i )
fθ(Xw

i ) ; β log
(
fθ(X l

i) + ϵh(X l
i)
)

≈ β log fθ(X l
i) + ϵβh(X l

i)
fθ(X l

i)

Setting that A = β log fθ(Xw
i ) − 1

2 and B = β log fθ(X l
i) − 1

2 , we have that:[
β log

(
fθ(Xw

i ) + ϵh(Xw
i )
)

− 1
2

]2
=
[
A + ϵβh(Xw

i )
fθ(Xw

i )

]2
= A2 + 2A

(
ϵβh(Xw

i )
fθ(Xw

i )

)
+ O(ϵ);

[
β log

(
fθ(X l

i) + ϵh(X l
i)
)

+ 1
2

]2
=
[
B + ϵβh(X l

i)
fθ(X l

i)

]2
= B2 + 2B

(
ϵβh(X l

i)
fθ(X l

i)

)
+ O(ϵ).

Performing the differentiation to the ϵ at ϵ = 0:

d

dϵ
C[f + ϵh]

∣∣∣∣
ϵ=0

= 2A · βh(Xw
i )

fθ(Xw
i ) + 2B · βh(X l

i)
fθ(X l

i)
.

Hence, the variation for C[fθ] can be expressed as:

δC[fθ](h) = βh(Xw
i )

fθ(Xw
i )

(
2β log fθ(Xw

i ) − 1
)

+ βh(X l
i)

fθ(X l
i)

(
2β log fθ(X l

i) − 1
)

.

Part 2. Variation Derivation of the I[fθ].

Firstly, introduce the random perturbation ϵh to the I[fθ]:

I[fθ + ϵh] =
[

log
(
fθ(Xw

i ) + ϵh(Xw
i )
)

− log
(
fθ(X l

i) + ϵh(X l
i)
)

− 1
2β

]2
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Similarly, perform the Taylor expansion to log
(
fθ(Xw

i ) + ϵh(Xw
i )
)

and log
(
fθ(X l

i) + ϵh(X l
i)
)
:

log
(
fθ(Xw

i ) + ϵh(Xw
i )
)

≈ log
(
fθ(Xw

i )
)

+ ϵh(Xw
i )

fθ(Xw
i ) ; log

(
fθ(X l

i) + ϵh(X l
i)
)

≈ log
(
fθ(X l

i)
)

+ ϵh(X l
i)

fθ(X l
i)

Thus, we have that:

log
(
fθ(Xw

i ) + ϵh(Xw
i )
)

− log
(
fθ(X l

i) + ϵh(X l
i)
)

= log fθ(Xw
i ) − log fθ(X l

i) + ϵ

(
h(Xw

i )
fθ(Xw

i ) − h(X l
i)

fθ(X l
i)

)
Setting that C = log fθ(Xw

i ) − log fθ(X l
i) − 1

2β , and we have that:

I[f + ϵh] ≈
[
C + ϵ

(
h(Xw

i )
fθ(Xw

i ) − h(X l
i)

fθ(X l
i)

)]2
= C2 + 2Cϵ

(
h(Xw

i )
fθ(Xw

i ) − h(X l
i)

fθ(X l
i)

)
+ O(ϵ)

Performing the differentiation to the ϵ at ϵ = 0:

d

dϵ
I[f + ϵh]

∣∣∣∣
ϵ=0

= 2C ·
(

h(Xw
i )

fθ(Xw
i ) − h(X l

i)
fθ(X l

i)

)
.

Hence, the variation for I[fθ] can be expressed as:

δI[f ](h) =
(

2 log fθ(Xw
i ) − 2 log fθ(X l

i) − 1
β

)(
h(Xw

i )
fθ(Xw

i ) − h(X l
i)

fθ(X l
i)

)
.

Part 3. Variation Derivation of the M[fθ].

Firstly, introduce the random perturbation ϵh to the M[fθ]:

− log σ

[(
η + 1

)
β log fθ(Xw

i + ϵh(Xw
i )) − β log fθ(X l

i + ϵh(X l
i))
]
.

Performing the Taylor expansion to
(

η + 1
)

β log fθ(Xw
i + ϵh(Xw

i )) − β log fθ(X l
i + ϵh(X l

i)):

≈
(

η + 1
)

β

[
log fθ(Xw

i ) + ϵh(Xw
i )

fθ(Xw
i )

]
− β

[
log fθ(X l

i) + ϵh(X l
i)

fθ(X l
i)

]
=
(

η + 1
)

β log fθ(Xw
i ) − β log fθ(X l

i) + ϵ

((
η + 1

)
β

h(Xw
i )

fθ(Xw
i ) − β

h(X l
i)

fθ(X l
i)

)
.

Setting that D =
(
η + 1

)
β log fθ(Xw

i ) − β log fθ(X l
i) and that E =

(
η + 1

)
β

h(Xw
i )

fθ(Xw
i

) − β
h(Xl

i)
fθ(Xl

i
) , then:

M[fθ + ϵh] = − log σ
(

D + ϵE
)

As we know that, d
du log σ(u) = 1

σ(u) σ′(u) = 1 − σ(u); then, performing the differentiation to the ϵ at ϵ = 0:

d

dϵ
M[f + ϵh]

∣∣∣∣
ϵ=0

= −
(

1 − σ
(
D + ϵE

))
· E
∣∣∣
ϵ=0

= −
(

1 − σ
(
D
))

· E.

Hence, the variation for M[fθ] can be expressed as:

δM[fθ](h) = −
(

1 − σ
(
(η + 1)β log f(Xw

i ) − β log f(X l
i)
))[

(η + 1)β h(Xw
i )

fθ(Xw
i ) − β

h(X l
i)

fθ(X l
i)

]
,

which completes the proof.
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Based on the above calculation results, the following conclusion can be readily drawn.

Fact 1. Intuitively, M[fθ] includes the nonlinear operator σ(·); therefore, therefore, it neither overlaps with
nor is compatible with C[fθ] or I[fθ].

Furthermore, based on the type of perturbation, we reformulate the Fréchet derivatives of C[fθ] and I[fθ]
presented in Proposition 1 into vector form as follows:

C[fθ] =
(

h(Xw
i ), h(X l

i)
)

·
(

β

fθ(Xw
i )

(
2β log fθ(Xw

i ) − 1
)

,
β

fθ(X l
i)

(
2β log fθ(X l

i) − 1
))T

︸ ︷︷ ︸
G⃗C

I[fθ] =
(

h(Xw
i ), h(X l

i)
)

·
(

2 log fθ(Xw
i ) − 2 log fθ(X l

i) − 1/β

fθ(Xw
i ) , −2 log fθ(Xw

i ) − 2 log fθ(X l
i) − 1/β

fθ(X l
i)

)T

︸ ︷︷ ︸
G⃗I

Finally, based on the results above, we further elucidate the relationship between the Fréchet derivatives of
C[fθ] and I[fθ], as presented in Theorem 1.

Theorem 1. The Fréchet derivative of the functionals C[fθ] and I[fθ] are non-redundant (linearly independent)
in the gradient space for almost every fθ ∈ F(D) that satisfies fθ(Xw

i ) > 0 and fθ(X l
i) > 0 for all i.

Proof. As we know, if C[fθ] and I[fθ] are redundant, there must be two constants a, b that makes:

G⃗C = aG⃗I + b⃗1,

where 1⃗ is the all-one-vector, representing the constant offset. Hence, there should be:

β

fθ(Xw
i )

(
2β log fθ(Xw

i ) − 1
)

= a ·
(

2 log fθ(Xw
i ) − 2 log fθ(X l

i) − 1/β

fθ(Xw
i )

)
+ b (20)

β

fθ(X l
i)

(
2β log fθ(X l

i) + 1
)

= −a ·
(

2 log fθ(Xw
i ) − 2 log fθ(X l

i) − 1/β

fθ(X l
i)

)
+ b (21)

For all fθ(Xw
i ) > 0, fθ(X l

i) > 0 and fθ(Xw
i ) ̸= fθ(X l

i), we can further derived that:

a = β · fθ(X l
i) · (2β log fθ(Xw

i ) − 1) − fθ(Xw
i ) · (2β log fθ(X l

i) + 1)
(2 log fθ(Xw

i ) − 2 log fθ(X l
i) − 1/β) · (fθ(X l

i) + fθ(Xw
i ))

b =
2β2( log fθ(Xw

i ) + log fθ(X l
i)
)

fθ(Xw
i ) + fθ(X l

i)

It is evident that both a and b are functions of fθ(Xw
i ) and fθ(X l

i), rather than fixed constants. Therefore,
in this case, the functionals C[fθ] and I[fθ] are non-redundant.

Furthermore, for all fθ(Xw
i ) > 0, fθ(X l

i) > 0 and fθ(Xw
i ) = fθ(X l

i) = Z, we have that:

a = β2

b = 2β2 · log Z

Z

We can observe that a is constant, whereas b is not. Consequently, in this context, C[fθ] and I[fθ] are also
non-redundant.

Therefore, based on the preceding discussion, we can conclude that the Fréchet derivatives of the functionals
C[fθ] and I[fθ] are non-redundant (i.e., linearly independent) in the gradient space for almost every fθ ∈ F(D)
that satisfies fθ(Xw

i ) > 0 and fθ(X l
i) > 0 for all i. This completes the proof.
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I Results across Different Initialization Seeds

To further validate the stability and robustness of the results across different initialization seeds, we evaluate the
performance of Diffusion-RainbowPA using five different random seeds (seed=40, 41, 42, 43, 44). Additionally,
it is important to note in practice that the seed value used during generation and testing should be consistent
with the one set during model training. For example, if the seed is set to 40 during training, the same seed
value should also be set to 40 during generation and testing.

Table 11: Performance Comparison over Five Seeds on the GenEval.

GenEval SD-1.5 Diffusion
-DPO SPO Diffusion-RainbowPA

Seed=40 Seed=41 Seed=42 Seed=43 Seed=44 Average

VQAScore 61.85 63.68 61.22 69.89 70.35 68.41 69.89 68.66 69.44
CLIPScore 33.77 34.52 33.41 34.04 35.73 35.01 35.70 35.42 35.18

HPS-V2 26.93 27.17 27.30 27.52 27.44 27.45 27.67 27.64 27.54
ImageReward -0.200 -0.030 0.083 0.234 0.322 0.202 0.359 0.236 0.271

Table 12: Performance Comparison over Five Seeds on the T2I-CompBench++.

T2I-Comp++ SD-1.5 Diffusion
-DPO SPO Diffusion-RainbowPA

Seed=40 Seed=41 Seed=42 Seed=43 Seed=44 Average

VQAScore 60.71 62.61 62.73 68.93 67.73 67.60 69.20 67.59 68.21
CLIPScore 32.06 32.66 31.19 33.13 33.87 33.48 34.16 33.55 33.64

HPS-V2 26.55 26.78 26.87 27.19 27.17 27.15 27.31 27.30 27.22
ImageReward -0.245 -0.089 -0.023 0.299 0.232 0.230 0.339 0.247 0.269

Table 13: Performance Comparison over Five Seeds on the GenAI-Bench.

GenAI-Bench SD-1.5 Diffusion
-DPO SPO Diffusion-RainbowPA

Seed=40 Seed=41 Seed=42 Seed=43 Seed=44 Average

VQAScore 59.50 60.15 59.52 63.03 62.24 62.58 63.99 62.49 62.87
CLIPScore 33.62 34.11 32.40 33.75 34.34 34.47 34.60 34.33 34.30

HPS-V2 26.94 27.15 27.27 27.56 27.47 27.53 27.65 27.62 27.57
ImageReward 0.237 0.376 0.360 0.567 0.490 0.593 0.584 0.514 0.550

Table 14: Performance Comparison over Five Seeds on the DPG-Bench.

DPG-Bench SD-1.5 Diffusion
-DPO SPO Diffusion-RainbowPA

Seed=40 Seed=41 Seed=42 Seed=43 Seed=44 Average

VQAScore 76.28 77.13 75.61 79.19 78.88 79.18 78.66 77.80 78.74
CLIPScore 33.42 34.01 32.13 34.76 34.56 34.72 34.86 34.80 34.74

HPS-V2 26.31 26.51 26.73 27.11 26.86 26.95 27.01 26.98 26.98
ImageReward -0.187 -0.036 -0.087 0.157 0.100 0.166 0.143 0.075 0.128
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J Detailed Prompts for Figure 1

We summarize the detailed text prompts utilized in Figure 1 as follows (each line, from left to right):

Line 1 (on generation of animal subjects):

1. A fluffy white Samoyed dog standing in a colorful flower garden in front of a rustic house, highly
detailed, digital art

2. A white puppy sitting playfully in autumn leaves, surrounded by fallen red apples, soft natural
lighting

3. A cute duck wearing a chef uniform covered in cookie batter, unreal engine render 8k

4. A realistic Venusaur animal among the trees, forest lake, moss, cold weather, dark teal and amber,
Sony A7 IV

5. A fluffy white cat standing on a lush green hillside under a clear sky with scattered clouds, serene
natural landscape, cartoon style

6. Create an image of a cat as a gardener, wearing a straw hat, gardening gloves, and surrounded by
colorful flowers

Line 2 (on generation of humanity):

1. A whimsical pink cloud-shaped building with minimalist windows and doors, floating above a vibrant
blue sky with cotton-like clouds, Studio Ghibli-style animation movie texture

2. Vibrant city skyline during sunset, modern skyscrapers, colorful abstract style, warm gradient sky,
digital art, urban landscape, vivid colors

3. Vibrant Christmas tree, glowing lights, abstract background, festive atmosphere, painterly style,
bright and vivid color

4. Heavily decorated pile of donuts in dark red, black and gold with icing and lace trimming, dramatic
lighting, dark background

5. Mystical forest with glowing mushrooms and a babbling brook

6. Album art of a hand holding a balloon emerging from the water against a red sky

Line 3 (on generation of portrait, with 3 for male and 3 for female):

1. 4d photographic image of full body image of a cute little chibi boy realistic, vivid colors octane
render trending on artstation, artistic photography, photorealistic concept art, soft natural volumetric
cinematic perfect light, UHD no background

2. Heroic elf warrior, golden glowing background, detailed fantasy armor, cinematic lighting, epic fantasy
art, high detail

3. An intricately detailed close-up portrait of an elderly man with a long gray beard, insane face details,
extremely intricate, high res, 8k, award winning

4. Extreme close-up shot portrait of a short blonde-haired beautiful woman, capturing the essence with
blue eyes, lit by overhead lighting

5. A beautiful brunette pilot girl, beautiful, moody lighting, best quality, full body portrait, real picture,
intricate details, depth of field, in a cold snowstorm, Fujifilm XT3, outdoors, Beautiful lighting, RAW
photo, 8k, film grain, unreal engine 5, ray trace
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6. Anime illustration of Princess Mononoke from Studio Ghibli, by artgerm, stunning artwork

Line 4 (on generation of futurism):

1. A dragon front face, backgrounds like hell, chain effects, angry, 3d, 8k, realistic and details, storm
effective

2. A surreal alien landscape with a massive planet in the sky, rocky terrain, dramatic lighting, cinematic
atmosphere, sci-fi theme, warm tones, highly detailed, 4K resolution

3. A lone astronaut standing on a volcanic landscape, detailed lava rocks, dramatic clouds in the sky,
cinematic lighting, vibrant colors, realistic textures, 8k

4. Futuristic metallic humanoid robot, highly detailed face, sci-fi background, cinematic lighting,
dystopian cityscape, 4K resolution

5. Futuristic cyberpunk city at night, neon lights, high-tech car, vibrant colors, cinematic lighting,
highly detailed, sci-fi atmosphere, 8k resolution, unreal engine

6. A woman in black bodysuit, standing in a dark room, futurism, dramatic lighting, full-body view,
cyberpunk, high contrast, detailed, 4k

31


	Introduction
	Related Work
	Preliminaries
	Diffusion-DPO
	Step-aware Preference Optimization

	Method
	Step-aware Preference Alignment Paradigm
	Calibration Enhancement
	Overfitting Mitigation
	Identical Preference Alignment
	Jensen-Shannon Divergence Constraint

	Performance Optimization
	Margin Strengthened Preference Alignment
	SFT-like Regularization

	Diffusion-RainbowPA

	Experiments
	Experimental Settings
	Comparison with State-of-the-art Methods
	Ablation Study

	Conclusion
	Diffusion-based Text-to-Image Models
	Brief Survey of Text-to-Image Alignment
	More Details on the Evaluation and Comparison
	Details on the Metrics
	Details on the Datasets
	Details on the Comparison Methods

	More Detailed Results of Comparison with SOTAs on the T2I-CompBench++ with Eight Categories Separately
	More Detailed Results of Ablation Study on the T2I-CompBench++ with Eight Categories Separately
	Further Discussion on Computational Overhead and Complexity Introduced
	Further Discussion on Hyperparameter Tuning
	Theoretical Perspectives on CEPA, IPA and MSPA
	Results across Different Initialization Seeds
	Detailed Prompts for Figure 1

