CRQBench: A Benchmark of Code Reasoning Questions

Anonymous EMNLP submission

Abstract

Large Language Models have demon-
strated exceptional proficiency on coding
tasks, but it is challenging to precisely eval-
uate their code reasoning ability. Exist-
ing benchmarks are insufficient as they are
unrealistic and conflate semantic reasoning
ability with performance on software engi-
neering tasks. We introduce CRQBench,
a benchmark of 100 C++ code reasoning
questions and answers derived from con-
textualized code review comments. To cu-
rate CRQBench, we use an LLM assis-
tant alongside human inspection, reducing
manual effort. We conduct an evaluation
of GPT-4 on CRQBench and find that it
produces correct responses grounded in the
given context for 65 of the 100 questions.

1 Introduction

Large Language Models (LLMs) have demon-
strated effectiveness in coding tasks and ap-
pear to understand deep semantic properties
of code (Chen et al., 2021; Chowdhery et al.,
2022; Touvron et al., 2023). However, evalua-
tions across various tasks (Jimenez et al., 2023;
Zhong and Wang, 2023) show less promising
results, suggesting that models may have a
limited syntactic understanding of programs.
To evaluate a model’s semantic reasoning abil-
ity in isolation, a benchmark specifically tai-
lored for code reasoning question answering is
needed.

The predominant benchmarks for
evaluating LLMs trained on code are
HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021). They mea-

sure a model’s ability to synthesize programs
from docstrings. These text-to-code bench-
marks are synthetic, handwritten, and involve
generating a standalone function. Other,
more realistic, benchmarks (Jimenez et al.,

2023; Zhong and Wang, 2023) are designed to
evaluate code reasoning indirectly through a
software engineering task, and as a result con-
flate the model’s ability to perform reasoning
with the ability to perform the downstream
task. In this work, we set out to curate
a real-world, contextualized, benchmark
for evaluating semantic reasoning ability in
isolation.

Ideally, a benchmark for evaluating seman-
tic reasoning ability should reflect real-world
programming scenarios. Code review com-
ments present an appealing target for this as
they are non-synthetic and tied to a surround-
ing code context. Through a study of con-
textualized code review comments at a Cor-
poration', we find that a subset embody se-
mantically deep questions about code, but a
majority are superficial (related to refactoring
or style). Furthermore, we find that comments
are rarely concise and unambiguous questions.
Although code review comments provide a
source of authentic semantic queries, it is non-
trivial to extract clean questions.

We present CRQBench: a benchmark of
real-world, contextualized, code reasoning
questions. To reduce human curator effort,
we propose a cooperative LLM and human-in-
the-loop approach which leverages in-context
learning (Brown et al., 2020) to filter and
rephrase code reasoning questions from code
review comments. We reproduce our Cor-
porate results for open source release using
Github pull request comments in the CodeRe-
viewer dataset (Li et al., 2022).

In summary, our work presents a benchmark
of 100 C++ (code reasoning questions, answer,
code context) tuples derived from pull request
comments in the CodeReviewer dataset. In
addition, we present our curation technique as

1Anonymized for double-blind review

a re-usable methodology and evaluate its effec-
tiveness in reducing manual effort in bench-
mark curation. Lastly, we evaluate GPT-
4 (OpenAl et al., 2024) on CRQBench and find
that it produces correct responses grounded in
the given context for 65 of the 100 questions.

2 DMotivating Examples

In this section, we illustrate the presence of
code reasoning questions in code review com-
ments, while highlighting the challenges in
extracting them. Reviewers’ identities are
anonymized.

Observation 1: Most code review comments
are not related to code reasoning. Through
a manual analysis, we find that a majority of
Github (65%) and Corporate (80%) code re-
view comments are not related to code rea-
soning. We consider a comment to be related
to code reasoning if in order to ask, answer, or
address, it requires reasoning over reachability,
data flow, control flow, or program variable
and state. Instead, code review comments are
often shallow edit suggestions related to style,
structure, documentation, or syntactic reason-
ing. Consider Figures 1 (and 6 in appendix),
in which the reviewers make shallow comments
regarding style and syntactic reasoning respec-
tively. During our analysis, we also found com-
ments that are discussions of the intended be-
havior or specification (Figure 7 in appendix).
We quantify the density of these comment cat-
egories in Table 1.

‘ Corp. Github
CRQ | 20% 35%
Shallow Edit Suggestion | 60% 35%
Func Behavior Discussion | 20% 30%

Table 1: Code Review Comments By Type.

Observation 2: Code review comments
are often not phrased as questions. Through
our manual analysis, we find that even when
the comment is related to code reasoning, it
is very rarely phrased as a concise and un-
ambiguous code reasoning question. Consider
Figure 2, in which the comment is phrased
as an edit suggestion (removing the call to
std: :move) rather than the underlying code
reasoning question: Does calling std: :move
on the return value s.releasePeerSet () im-

pact the program’s behavior? Furthermore,
the comment contains extraneous information,
referencing another reviewer. In Figure 3, the
comment is posed as a question, but it is
overly verbose. It consists of two sentences,
one of which is an extraneous edit sugges-
tion related to functional behavior. The first
sentence, although related to code reasoning,
is ambiguous and not contextualized in the
reviewed code. It does not explicitly state
which program variables “something else” en-
compasses. A concise, unambiguous rephras-
ing could be: Can error_code hold a value
other than ECONNREFUSED or ECONNRESET?

We also observe that code reasoning ques-
tions can be categorized into two types of
queries that encompass all CRQs: VALUE and
EQUIV queries. A VALUE query (Figure 3) asks
about the value or possible value of a vari-
able or expression at a program point. An
EQUIV (equivalence) query (Figure 2) asks if
two segments of code have differences in be-
havior. EQUIV queries typically underlay an
edit suggestion. We find that in both Github
and Corporate code review comments, 75%
of code reasoning questions are EQUIV queries
while 25% are VALUE queries.

Observation 3: Answers to rephrased
questions are not readily available. During our
manual analysis, we inspected the developer’s
responses to comments. Responses came in
the form of a natural language reply and/or a
code edit. Answers in the form of a developer
reply suffer from the same ambiguities and ver-
bosity as the reviewer comments. Answers in
the form of an edit require careful manual in-
spection to connect the change to the under-
lying code reasoning question. Sometimes the
comment is ignored and not addressed.

3 Technique

Figure 4 illustrates our overall technique,
which leverages a Corporate code aware LLM
in combination with human validation.

3.1 Classifying Comments

As discussed in Observation 1, a minority
of code review comments are related to code
reasoning. To reduce manual inspection, we
create an LLM based Code Reasoning Classi-
fier (Figure 12 in appendix) which takes the

/br/co re/cmd_flag.c N
591 4+
592 4+
593 4+
594 4+

if (s3) {
*s3 = "\0';
if (!strncmp (s3+1, "base64:", 7)) {
comment = (char %) r_base64_decode_dyn (s3+8, -1);

Reviewer ON Mar 31, 2019

spaces in s3+8

Figure 1: Shallow Edit Suggestion.?

A’c/r)pple/ipp/misc/HashRouter‘cpp \
104 104
105 105
106 106

107 - return std: :move(s.TITEEIB());
107 + return std::move(s. ECERIIIEI3()) ;

if (!s.shouldRelay(suppressionMap_.clock().now(), holdTime_))
return boost::none;

Reviewer on Nov 16, 2016 ‘

\ | doubt the std::move is necessary.

N @Reviewer2 ? ya

Figure 2: Raw Code Review Comment.3

/ torch/ib/c10d/Utils. cpp N\

144
145
146
147
148
149

// ECONNREFUSED happens if the server is not yet listening.
if (error_code == ECONNREFUSED) {
*anyRefused = true;
b
// ECONNRESET happens if the server's listen backlog is exhausted.
if (error_code == ECONNRESET) {

+ o+ o+ o+ o+ o+

Reviewer on Nov 25, 2019

|
_ can error_code ever be something else? Should we throw if we get an error_code that is not one of these
N_two? /

Figure 3: Raw Code Review Comment.*

raw reviewer comment and corresponding line
of code and decides if it is related to code rea-
soning.

We evaluate the performance of our Code
Reasoning Classifier prompt on 100 randomly
selected, manually labeled comments as shown
in Table 3. We also experiment with a key-
word matching approach using a hand derived
list of undesirable keywords (Figure 20 in ap-
pendix) 5, but find it incurs significantly more
false positives than our LLM classification. In
summary, our classifier correctly identified 11
out of 20 Corporate and 22 out of 35 GitHub
code review comments as related to code rea-
soning, while misidentifying only 6 and 9 com-
ments respectively.

Corp Github
LLM KW |LLM KW
Precision | .64 31 71 .39

Recall | .52 .81 .63 1
F1 Score | .57 .45 .67 .56

Table 2: Code Reasoning Classification perfor-
mance of LLM and Keyword matching approaches.

3.2 Rephrasing Comments as CRQs

As discussed in Observation 2, comments
are rarely phrased as concise questions

Code Context + Reviewer Comment
| doubt the std: :move Code

is necessar =
(@Reviewe Classifier

NOT Code

Related to Code Reasoning

7 \
! Query Type \
: Classifier !
. N !

EQUIVALENCE VALUE |
| 0
| Edit Generator Expression Extractor :
| amgm L :
! |
= return |s. releasePeerSet () ;
: + return s.releasePeerSet(); | | <EXPR> !
|
! |
\ y
~ -
Code Questi Code Quest
|
Does calling std: :move on the return Can <EXPR> be
value s.releasePeerSet () impact <VALUE>?
the program's behavior?)
J ¥
==

—X—1

Answer: No, e 5
fm* v — Validator !

x T

Figure 4: Benchmark Curation Methodology. Yel-
low boxes represent LLM prompts.

grounded over program elements. To avoid
manual rephrasing, we again leverage the
Corporate LLM. This portion of our technique
is shown in the dotted box in Figure 4 and is
invoked on samples that have been accepted
by the CODE REASONING CLASSIFIER. Our
technique invokes different rephrasing tech-
niques for each query type. The Query Type
Classifier (Figure 13 in appendix) classifies a
comment as either an EQUIV query or VALUE
query, triggering the appropriate rephrasing
technique based on the classification.

When the Query Type Classifier decides
the comment is an EQUIV query, we use chain
of thought (Wei et al., 2022) reasoning to
effectively rephrase. Since EQUIV queries
are typically underlying edit suggestions, we
employ an LLM based Edit Generator (Fig-
ure 14 in appendix) to perform the reviewer’s
suggested edit as a link in a chain of thought.
The edit is leveraged to rephrase the reviewer
comment using a few shot prompt (Figure 16
in appendix).

When the Query Type Classifier decides
the comment is a VALUE query, we similarly
use a two step inference process similar to
a chain of thought. As a first step, our
Expression Extractor uses a few-shot prompt
(Figure 15 in appendix) leveraging the code
context and reviewer comment to extract the
relevant program expression: <EXPR>. The
relevant <EXPR> is used as a link to rephrase

the reviewer comment as a code reasoning
question over the given expression using a
few-shot prompt (Figure 17 in appendix).

Lastly, the rephrased question is given
to the Validator for a self-consistency (Wang
et al., 2023) check to reduce the occurrence
of poorly rephrased code reasoning questions
that are not faithful to the original line
comment. The Validator prompt (Figure 18
in appendix) asks the LLM to decide if, given
the original code, the reviewer comment has
the same meaning as the rephrased comment.
If the LLM Validator confirms the consis-
tency, the rephrased question is selected as a
confident candidate, and given to a human
inspector to validate.

We evaluate our technique’s effectiveness in
rephrasing code review comments into con-
cise and unambiguous code reasoning ques-
tions. Our rephrasing approach (entire dot-
ted box component in Figure 4) is evaluated
on both Corporate (150 samples) and Github
(160 samples) code review comments that were
flagged as related to code reasoning by our
Code Reasoning Classifier. The samples were
manually inspected and labelled as correct if
they were concise, unambiguous, and faith-
ful to the original reviewer comment. We
achieved a precision of 66 on Corporate code
review comments and .63 on Github pull re-
quest comments.

3.3 Evaluation

We evaluate our methodology in terms of man-
ual human curation required. In a purely man-
ual approach, a human curator would need
to inspect and classify 500 Corporate (or 285
Github) code review comments and manu-
ally rephrase 100 questions. Using our pro-
posed methodology, a human curator would
need to inspect only 150 Corporate (or 160
Github) code review comments without the
need for any manual rewriting. Figure 21
(in appendix) and Figure 5, respectively, illus-
trate this comparison. The pencil indicates a
manual rephrasing while the magnifying glass
indicates inspection using our proposed tech-
nique. In summary, our cooperative LLM +
human validation approach reduces the num-
ber of samples required to inspect by 1.8x on
Github pull request comments and 3.3x on

Cooperative LLM + Human Curation Approach # Manual Approach

5,000
4,000

3,000

N Ay~

Number of Code Review Comments

_—
Candidate Candidate

Comments Related ~ Rephrased Code
to Code Reasoning Reasoning
Questions

Code Review
Comments

Code Reasoning
Questions

Figure 5: Manual vs Cooperative LLM Curation
on Github Pull Request Comments.

Corporate code review comments.

4 GPT-4 Performance

We evaluate GPT-4 on our benchmark by
prompting it with the surrounding function
context (Figure 11 in Appendix). We evaluate
the outputs manually considering a response
to be accurate if it is both correct and contex-
tually relevant. Correctness refers to the tech-
nical accuracy of the generated natural lan-
guage response. Contextual relevance refers
to the degree that the response is grounded
in the given code context. We find the GPT-4
provides an accurate response on 65 of the 100
queries and are almost always (94%) grounded
in the given code context.

Acc Total %
65 100 65%
VALUE 33 54 61%
EQUIV | 32 46 0%

Table 3: Performance of GPT-4 on CRQBench.

Lastly, we conducted an error analysis to
categorize the 35 incorrect responses. The ma-
jority of errors (25 instances) were due to the
model lacking necessary context, such as us-
ages of the given function, definitions of a used
function or macro, or usages of a variable. Five
errors were attributed to gaps in C++ knowl-
edge, and the remaining five were due to in-
correct evaluation of logic. Examples of each
error scenario are shown in the Appendix (Fig-
ures 8 - 10).

We also experimented with evaluating the
7 billion parameter open source model Fal-
con (Almazrouei et al., 2023), but found it to
have a much lower accuracy (25%) as it is a
significantly smaller model.

5 Limitations

5.1 Extracting Answers to CRQs

To extract answers, we use an entirely manual
based approach. A human curated an answer
through a best effort approach by inspecting
the cloned repository at the commit being re-
viewed. The answer is derived by reasoning
over the code context, edit made (or not), and
developer textual responses in the comment
thread. In essence, our benchmark gathers the
response which was implicitly provided by the
developer, rather than an answer verified by a
symbolic program analysis approach. We de-
fault to manual curation of answers due to the
challenges presented in Section 2.

5.2 Size of Target Environment

Although the number of samples to inspect
or rephrase is greatly diminished with our ap-
proach, the total number of comments needed
to arrive at 100 code reasoning questions is
much larger. Our cooperative approach re-
quires greater than 10x more code review com-
ments to derive 100 CRQs. This is due to false
negatives in Code Reasoning Classifier and the
Validator.

References

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz
Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Etienne Goffinet,
Daniel Hesslow, Julien Launay, Quentin Malar-
tic, Daniele Mazzotta, Badreddine Noune, Bap-
tiste Pannier, and Guilherme Penedo. 2023.
The Falcon Series of Open Language Models.
arXiv:2311.16867

Jacob Austin, Augustus Odena, Maxwell Nye,
Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry,
Quoc Le, et al. 2021. Program Synthesis
with Large Language Models.
arXiv:2108.07732 (2021).

Tom B. Brown, Benjamin Mann, Nick Ry-
der, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav
Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen

2https://github.com /radareorg/radare2/pull/13555#discussion_ r27067656F1rat
3https://github.com/XRPLF /rippled/pull/1904#discussion_r88226072

4https://github.com/pytorch/pytorch/pull/30354#
discussion_r350485189

5We also experimented with a hand derived desirable keyword
list (Figure 19 in appendix). We report results for the undesirable
keyword approach as it achieved a higher F1 score.

arXiv preprint

Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens
Winter, Christopher Hesse, Mark Chen, FEric
Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam
McCandlish, Alec Radford, Ilya Sutskever, and
Dario Amodei. 2020. Language Models are
Few-Shot Learners. CoRR abs/2005.14165
(2020). arXiv:2005.14165 https://arxiv.
org/abs/2005.14165

Mark Chen, Jerry Tworek, Heewoo Jun, Qim-
ing Yuan, Henrique Ponde de Oliveira Pinto,
Jared Kaplan, Harrison Edwards, Yuri Burda,
Nicholas Joseph, Greg Brockman, Alex Ray,
Raul Puri, Gretchen Krueger, Michael Petrov,
Heidy Khlaaf, Girish Sastry, Pamela Mishkin,
Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mo-
hammad Bavarian, Clemens Winter, Philippe
Tillet, Felipe Petroski Such, Dave Cummings,
Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Heb-
gen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Bal-
aji, Shantanu Jain, William Saunders, Christo-
pher Hesse, Andrew N. Carr, Jan Leike, Joshua
Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage,
Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCan-
dlish, Ilya Sutskever, and Wojciech Zaremba.

2021. Evaluating Large Language Models
Trained on Code. CoRR abs/2107.03374
(2021). arXiv:2107.03374 https://arxiv.

org/abs/2107.03374

Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung,
Charles Sutton, Sebastian Gehrmann, Parker
Schuh, Kensen Shi, Sasha Tsvyashchenko,
Joshua Maynez, Abhishek Rao, Parker Barnes,
Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchin-
son, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng
Yin, Toju Duke, Anselm Levskaya, Sanjay
Ghemawat, Sunipa Dev, Henryk Michalewski,
Xavier Garcia, Vedant Misra, Kevin Robin-
son, Liam Fedus, Denny Zhou, Daphne Ip-
polito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omer-
nick, Andrew M. Dai, Thanumalayan Sankara-
narayana Pillai, Marie Pellat, Aitor Lewkowycz,
Erica Moreira, Rewon Child, Oleksandr Polo-
zov, Katherine Lee, Zongwei Zhou, Xuezhi
Wang, Brennan Saeta, Mark Diaz, Orhan

Michele Catasta, Jason Wei, Kathy

Meler—Hellsterm Douglas Eck, Jeff Dean, Slav

Petrov, and Noah Fiedel. 2022. PaLM.:

Scaling Language Modeling with Pathways.

arXiv:cs.CL/2204.02311

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Carlos E. Jimenez, John Yang, Alexander Wet-

tig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. 2023. SWE-bench: Can
Language Models Resolve Real-World GitHub
Issues? arXiv:cs.CL/2310.06770

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh

Jannu, Grant Jenks, Deep Majumder, Jared
Green, Alexey Svyatkovskiy, Shengyu Fu, and
Neel Sundaresan. 2022. Automating Code
Review Activities by Large-Scale Pre-training.
arXiv:cs.SE/2203.09095

OpenAl, Josh Achiam, Steven Adler, Sandhini

Agarwal, Lama Ahmad, Ilge Akkaya, Flo-
rencia Leoni Aleman, Diogo Almeida, Janko
Altenschmidt, Sam Altman, Shyamal Anad-
kat, Red Avila, Igor Babuschkin, Suchir Bal-
aji, Valerie Balcom, Paul Baltescu, Haiming
Bao, Mohammad Bavarian, Jeff Belgum, Irwan
Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg
Boiko, Madelaine Boyd, Anna-Luisa Brakman,
Greg Brockman, Tim Brooks, Miles Brundage,
Kevin Button, Trevor Cai, Rosie Campbell, An-
drew Cann, Brittany Carey, Chelsea Carlson,
Rory Carmichael, Brooke Chan, Che Chang, Fo-
tis Chantzis, Derek Chen, Sully Chen, Ruby
Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing
Dai, Cory Decareaux, Thomas Degry, Noah
Deutsch, Damien Deville, Arka Dhar, David Do-
han, Steve Dowling, Sheila Dunning, Adrien
Ecoffet, Atty Eleti, Tyna Eloundou, David
Farhi, Liam Fedus, Niko Felix, Simé6n Posada
Fishman, Juston Forte, Isabella Fulford, Leo
Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha
Gontijo-Lopes, Jonathan Gordon, Morgan Graf-
stein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Bran-
don Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn
Jain, Joanne Jang, Angela Jiang, Roger Jiang,
Haozhun Jin, Denny Jin, Shino Jomoto, Bil-
lie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz
Kaiser, Ali Kamali, Ingmar Kanitscheider, Ni-
tish Shirish Keskar, Tabarak Khan, Logan
Kilpatrick, Jong Wook Kim, Christina Kim,
Yongjik Kim, Jan Hendrik Kirchner, Jamie
Kiros, Matt Knight, Daniel Kokotajlo, Lukasz
Kondraciuk, Andrew Kondrich, Aris Konstan-
tinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Tkai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming
Li, Rachel Lim, Molly Lin, Stephanie Lin,
Mateusz Litwin, Theresa Lopez, Ryan Lowe,
Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski,
Bianca Martin, Katie Mayer, Andrew Mayne,

Bob McGrew, Scott Mayer McKinney, Christine
McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke
Metz, Andrey Mishchenko, Pamela Mishkin,
Vinnie Monaco, Evan Morikawa, Daniel Moss-
ing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Ra-
jeev Nayak, Arvind Neelakantan, Richard Ngo,
Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe,
Jakub Pachocki, Alex Paino, Joe Palermo, Ash-
ley Pantuliano, Giambattista Parascandolo, Joel
Parish, Emy Parparita, Alex Passos, Mikhail
Pavlov, Andrew Peng, Adam Perelman, Filipe
de Avila Belbute Peres, Michael Petrov, Hen-
rique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly
Powell, Alethea Power, Boris Power, Elizabeth
Proehl, Raul Puri, Alec Radford, Jack Rae,
Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted,
Henri Roussez, Nick Ryder, Mario Saltarelli,
Ted Sanders, Shibani Santurkar, Girish Sas-
try, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie
Simens, Jordan Sitkin, Katarina Slama, Ian
Sohl, Benjamin Sokolowsky, Yang Song, Natalie
Staudacher, Felipe Petroski Such, Natalie Sum-
mers, Ilya Sutskever, Jie Tang, Nikolas Tezak,
Madeleine B. Thompson, Phil Tillet, Amin
Tootoonchian, Elizabeth Tseng, Preston Tuggle,
Nick Turley, Jerry Tworek, Juan Felipe Cerén
Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay
Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Weli-
hinda, Peter Welinder, Jiayi Weng, Lilian Weng,
Matt Wiethoff, Dave Willner, Clemens Winter,
Samuel Wolrich, Hannah Wong, Lauren Work-
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai
Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming
Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tian-
hao Zheng, Juntang Zhuang, William Zhuk, and
Barret Zoph. 2024. GPT-4 Technical Report.
arXiv:2303.08774

Hugo Touvron, Thibaut Lavril, Gautier Izac-

ard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Roziere, Naman
Goyal, Eric Hambro, Faisal Azhar, Aurelien
Rodriguez, Armand Joulin, Edouard Grave,
and Guillaume Lample. 2023. LLaMA: Open
and Efficient Foundation Language Models.
arXiv:cs.CL/2302.13971

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc

Le, Ed Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-Consistency
Improves Chain of Thought Reasoning in Lan-
guage Models. arXiv:cs.CL/2203.11171

Jason Wei, Xuezhi Wang, Dale Schuurmans,

Maarten Bosma, brian ichter, Fei Xia, Ed Chi,
Quoc V Le, and Denny Zhou. 2022. Chain-
of-Thought Prompting Elicits Reasoning in
Large Language Models. In Advances in Neural
Information Processing Systems, S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,
and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 24824-24837. https://proceedings.
neurips.cc/paper_files/paper/2022/file/
9d5609613524ecf4f15af0f7b31labcad-Paper-Conference.
pdf

Li Zhong and Zilong Wang. 2023. Can ChatGPT
replace StackOverflow? A Study on Robustness
and Reliability of Large Language Model Code
Generation. arXiv:cs.CL/2308.10335

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

A Appendix

engines/wintermute/ad/ad_scene.cpp

1117 1117 bool AdScene::updateFreeObjects() {

1118 1118 AdGame xadGame = (AdGame *)_gameRef;
1119 - // 3D-code removed
1120 - // bool is3DSet;

1119 + bool is3DSet = false;

Reviewer 0N Jun 24, 2020
\\ This would produce a warning about unused variable, no? /

Figure 6: Shallow Edit Suggestion.®

Src/pickup. cpp
157
158
159
160

g->u. invoke_iten(&pseudo);
pseudo.anmo_consume(pseudo.ammo_required(), g->u.pos());
return true;

Y

o4+

Reviewer on Oct 9, 2016

This function doesn't work for variable charge items, such as water purifier:

« ammo_required can't be relied on to provide the number of charges required, since it only depends on

the tool itself
\ « Fails to return non-consumed charges.

Figure 7: Functional Behavior Discussion.®

Shttps://github.com/scummvm/scummvm/pull/2347#discussion_r445103384
Shttps://github.com/CleverRaven/Cataclysm-DDA /pull/18691#discussion_r82533193

"The prompt used in our technique uses Corporate internal code review comments. To share the prompt, comments are substituted with
open source code reviews from Github. We attempt to find substitutions which are similar to our Corporate code based prompt.

GPT-4

Prompt: In the following code, Is there a difference between using !WI IsFlagSet and WL IsFlagClear?

caze WM WINDOWPOSCHANGING:
1
/f GH#LOZT4 - if the guake window gets mowved to ancther monitor wia aero
/S snap (wint+shift+arrows), then re-adjust the size for the new monitor.
if {IsQuakeWindow())
{
/i Betrieve the suggested dimensicns and make a rect and size.
LEWINDOWFOS lpwpos = (LPWINDOWPOS3) lparam;

// We only need toc apply restrictions if the pesition is changing.
Jf The SWP_ flags are confusing te read. This is

Jf "if we’'re not HOT moving the window"

if (IWI_IsFlagSet (lpwpos—->flags, SHF_NOMOVE))

ff Figure out the suggested dimensions and positiomn.
RECT rcSuggested;

Response: Yes. WI IsFlagSet and WI_ TIsFlagClear are (presumably, given they are not defined in the given
code) utility methods for bit flag checking in the code.

WI_ IsFlagSet checks whether a particular bit (or bits) is set in a value. If the bit is set, it means that the
corresponding feature or property is enabled or true.

WI IsFlagClear, onthe other hand, checks whether a particular bit (or bits) is not set in a value. If the
bit is not set, it means that the corresponding feature or property is disabled or false.

So the difference between them is that they check for opposite things:

-WI IsFlagsSet -» Checks if the bit(s) is/are set (1).
-WI IsFlagClear ->Checks if the bit(s) isfare not set (0).

Which to use depends on what you are trying to check in your code.

Figure 8: Incorrect GPT Response: Logic Error. The model recognized that the flags check for opposite
conditions but failed to deduce that the inverse of one flag is equivalent to the other.

GPT-4

Prompt: Can uchar from utff{&ch, &*iter, normalized src.end() - iter) De lessthan or equal to

zero?

void imgtool::simple_charconverter::from _utf8 (std::ostream &dest, const std::string &szc) const
[

// normalize the incoming unicode
std::string normalized sre = normalize unicode(sre, m_norm);

aute iter = normalized src.begin();
while (iter != normalized sroc.end())

{

f{ get the next character

char32_t ch;
iter += uchar from utfB (Ech, Eviter, normalized sre.end() - iter);

Response: No. The function uchar from wtf8 () is not defined or included in the provided code context, so it's a bit
speculative to determine its exact behavior. However, normally, such a function would return the number of
bytes processed while converting a UTF-8 sequence into a unicode code point (character).

By convention, functions like these generally retum a non-negative integer indicating the number of bytes
processed. However, it's not impossible for such a function to return a negative value or zero in case of error
conditions like an invalid UTF-8 sequence or encountering the end of the input prematurely.

Therefore, whether uchar from utf8({&ch, &*iter, normalized src.end() - iter) Can be less

than or equal to zero mostly depends on the implementation details of uchar from utf&().

In general, good coding practice would suggest handling such possible error conditions. However, assuming
well-formed UTF-8 data and no YO errors, it would typically always return a positive number.

Without the code or documentation of uchar from wtf3 (), it's challenging to give a definitive answer.

Figure 9: Incorrect GPT Response: Missing Context. The model was unable to determine if the expression
could be less than or equal to zero as it did not have access to the function definition.

10

[4 1
I GPT- l

Prompt: In the following code, Is there a difference between using =td: :make pair With emplace back
as opposed to not using std: :make pair?

if (timeout.count() != 0) {
[/ Compute the expiration time for this message based on the timeocut
auto expirationTime = computeRpcMessageExpiryTime (timeout);

// Add the Future to the right wvector in the timecutMap_

{
std: :unique_lock<std: :mutex> lock (timecutMapMutex_);
auto& timeocutFuturesVector = timeoutMap_[expirationTime];
timecutFuturesVector.emplace back(

std: :make_pair (futureResponseMessage, timeout));
}
timecutThreadCV_ .notify one();

Response: Yes, there is a difference between using std: :make pair With emplace back Versus notusing
std: :make pair.

In the context of this code,

timecutFuturesVector.emplace back(std::make pair(futureResponseMessage, timecut)):
is adding & std: :pair containing the futureResponseMessage and timecut to the
timeoutFuturesVectar.

std::make pair (§ a utility function that constructs a p=ir object with its first element set to x and its second
element set to y.

emplace back IS used to construct and insert elements directly into a vector without the need for an
intermediate pair object.

Here are the two cases for clarity:

1. *With atd: :make pair™:
In this case, std: :make pair will construct a pair object from the passed-in arguments and then
emplace back Just inserts this pair object into the vector.

2. ""Without std: :make paiz:™
If you don't use std: :make pair and directly pass arguments 10 emplace back, itwill try to construct an
object of the vector's element type from the arguments.

That being said, in this case, without std: :make pair, you may get a compile error if the vector's element type
can't be constructed directly from the arguments you pass to emplace back. So if your vector is of std: :pair
type (like in your case it seems to be), then using =td::make pair isthe right way.

Figure 10: Incorrect GPT Response: Incorrect C++ knowledge. The model incorrectly responded Yes.
In particular, the model was incorrect that without using std: :make_pair, a compile error may occur.

Given the following code, {QUESTION}
{SURROUNDING_FUNCTION}Z}

Figure 11: Prompt to GPT-4 for CRQBench evaluation.

11

You are a senior, expert C/C++ programmer with a lot of experience analyzing C/C
++ code.
Given a C/C++ line comment:

{COMMENT }

associated with this line of code:

[N ENY

{CODE_SEGMENT}

¢

please determine which of the following categories best classifies that
line comment:

-

unknown: unknown

2. reasoning: a code reasoning question such as requiring control-flow or value
propagation

3. explanation: a question asking what the code does

4. structure: request to reorganize or refactor code, such as extracting classes
or methods

5. planning: prioritization, planning, or choosing what to work on next

6. style: a code style, or readability question including things like renaming
symbols

7. format: a comment or question about code formatting

and provide an explanation of why that comment should be in that specific
category.
If you are uncertain about the category, respond with "O".

Generate your output in YAML format 1like this:

Explanation: <why you chose a specific category>
Line comment category: <category>

Response:
(2N 1 (yaml

Figure 12: Code Reasoning Classifier Prompt.

12

You are an expert software engineer,

reviewer comment is about substituting code.

Here are some examples.

Example 1:

LINE_COMMENT :

[N

also check if the tf example is empty?

[

1. No.
Example 2:

LINE_COMMENT:

€«

This stores a pointer to a temporary object.

after this statement. I suggest you initialise it with a

for that.
)2
1. No
Example 3:

LINE_COMMENT:

(SN aN4

Please use stolen(fduri) instead of hardcoding 5

PP R]

1. Yes.
Example 4:

LINE_COMMENT :

[N

The copy of a single int (previous type of fg,

the vector is not good. Use a const reference instead.

20

1. Yes.
Example 5:

LINE_COMMENT :

[N

{COMMENT}

))

Figure 13: Query Type Classifier Prompt.”

13

asked to determine whether or not a

This pointer becomes invalid right

‘nullptr ¢ and check

bg) is fine here, however

copying

You are an expert C++ coder and know how to review C++ code at a Corporation,
and how to

respond to reviewer comments.

In the code below, a reviewer has left a comment marked by LINE_COMMENT.

Code:
{CODE_SEGMENT_WITH_COMMENT}

))

The comment is asking to consider the following original code and modified code:

Figure 14: Edit Generator Prompt.

14

You are an expert C++ coder and know how to review C++ code at a Corporation,
and how to respond to reviewer comments. In the code below, a reviewer has
left a comment marked by LINE_COMMENT.

Please answer the following question.
1. Can you please list the relevant program expression?

Here are some examples.

Example 1:

Code:

¢

int comfort = 0;

comfort_response_t comfort_response;
comfort_response.aid = &item("null");

[*] [LINE_COMMENT] This stores a pointer to a temporary object. This pointer
becomes invalid right after this statement. I suggest you initialise it with
a nullptr and check for that.

bool plantsleep = has_trait(trait_CHLOROMORPH);

bool fungaloid_cosplay = has_trait(trait_M_SKIN3);

bool websleep = has_trait(trait_WEB_WALKER);

[

LINE_COMMENT: This stores a pointer to a temporary object. This pointer becomes
invalid right after this statement. I suggest you initialise it with a
nullptr and check for that.

1. comfort_response.aid
Example 2:

Code:

¢«

Value *Arg = Call->getArgOperand (0) ;

Value *LoweredArg = getLoweredByValOperand (Arg, Builder);

for (Value *A : Call->arg_operands()) {
DXASSERT (A == Arg, "oops");

[*] [LINE_COMMENT] how could A be different unless there’s a fundamental problem
with operand iteration or something?

}

HLModule::MarkPreciseAttributeOnValWithFunctionCall (LoweredArg, Builder, x*
m_pModule) ;

addToDeadInsts (Call);

200

LINE_COMMENT: how could A be different unless there’s a fundamental problem with
operand iteration or something?

1. A
Example 3:
Code:

¢

{CODE_SEGMENT_WITH_COMMENT}

20

LINE_COMMENT: {COMMENTZ}

Figure 15: Expression Extractor Prompt.”

15

Can you please rephrase a reviewer LINE_COMMENT that suggests the following code
change? The rephrased comment should include program elements. Here are a
few examples.

Example 1:

Before:

¢

void gyroDataAnalyse(const gyroDev_t *gyroDev, biquadFilter_t #*notchFilterDyn) {
static FAST_RAM float fftAcc[XYZ_AXIS_COUNT] = {0, O, 0};
static FAST_RAM uint32_t fftAccCount = 0;

[N

After:

¢

void gyroDataAnalyse(const gyroDev_t *gyroDev, biquadFilter_t #*notchFilterDyn) {
static FAST_RAM float fftAcc[XYZ_AXIS_COUNT];
static FAST_RAM uint32_t fftAccCount = 0;

¢

[*] [LINE_COMMENT] Zero-initialized by default as well.

Rephrased: Is there a difference between initializing fftAcc to {0, 0, 0} and
not initializing fftAcc?

Example 2:
Before:
¢«
if (isIntegralType (iter.dtype(), false)) {
AT _DISPATCH_INTEGRAL_TYPES (iter.dtype(), "fmod_cpu", [&]1() {
cpu_kernel (iter, [](scalar_t a, scalar_t b) -> scalar_t {
return std::fmod(a, b);
B
)M
}
« ¢

After:

¢«

(3

if (isIntegralType (iter.dtype(), false)) {
AT _DISPATCH_INTEGRAL_TYPES (iter.dtype(), "fmod_cpu", [&]1() {
cpu_kernel (iter, [](scalar_t a, scalar_t b) -> scalar_t {
return a % b;
I
b
}
¢ ¢
[*] [LINE_COMMENT] Should we use fmod or % here?
Rephrased: Is there a difference between computing the modulus of a and b using
std::fmod vs using the binary operator ¥%7?

Example 3:

Before:
¢«

{BEFORE}

¢

After:

€ ¢«

{AFTER}

¢«

[*] [LINE_COMMENT] {COMMENT}

Figure 16: Equiv Rewriter Prompt.”

16

You are an expert C++ coder and know how to review C++ code at a Corporation,
and how to respond to reviewer comments.
A reviewer has left a comment marked by LINE_COMMENT.

Can you please rephrase the LINE_COMMENT as a question over program expressions?
The Question should start with the word "Can".

Here are some examples.
Example 1:
Comment :

[

This stores a pointer to a temporary object. This pointer becomes invalid right
after this statement.

I suggest you initialise it with a nullptr and check for that.
¢« Cc¢

Program Expression: comfort_response.aid
Question: Is there a difference between initializing comfort_response.aid with &
item("null") as opposed to nullptr?

Example 2:
Comment :

¢«

how could A be different unless there’s a fundamental problem with operand

iteration or something?
[SNAN1

Program Expression: A
Question: Can A ever be equal to Arg?

Example 3:
Comment :

€<

{COMMENT }

¢

Program Expression: {EXPR}

Figure 17: Value Rewriter Prompt.”

You are an expert C++ coder and know how to review C++ code at a Corporation,
and how to respond to reviewer comments.
In the code below, a reviewer has left a comment marked by LINE_COMMENT.

Code:

¢

{CODE}

¢

Given the LINE_COMMENT, answer the following question with YES or NO:
Does ‘‘“‘{Q_C}‘‘‘ have the same meaning as the LINE_COMMENT?

Figure 18: Validator Prompt.

17

Interesting Keywords:
"except"

"segfault"

" fault"
"precondition"
"assumption"
"undefined behavior"
n ub n

"null",

"reach"

"ever be true"

"ever be false"

"branch taken"

"branch not taken"

"deref"

"reference"

Figure 19: Desirable Keywords for Positive Matching.

Uninteresting Keywords:
"test"

\nit"

\follow up"

\log a higher level"
"log a lower level"
"logging"

\naming"
\readability"
\TODQ"
\description"
\comment"

n typo n

"clang"

"style guide"
\period"
"restructure"
"restructuring"
"refactor"

"move"

"offline"

"space"

"spacing"

Figure 20: Undesirable Keywords for Negative Matching.

18

Cooperative LLM + Human Curation Approach 8 Manual Approach

6,000
5,000
2
£
EE’ 4,000
E 4
S
o
H
2
3
4
2 2000 1,500
8 o~
° 500 150 100
= o 100 100
g t
2
Code Review Candidate Candidate Code Reasoning
C C Related ode Questions
to Code Reasoning Reasoning
Questions

Figure 21: Manual vs Cooperative LLM Curation approaches on Corporate Code Review Comments.

19

