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Abstract

Large Language Models have demon-001
strated exceptional proficiency on coding002
tasks, but it is challenging to precisely eval-003
uate their code reasoning ability. Exist-004
ing benchmarks are insufficient as they are005
unrealistic and conflate semantic reasoning006
ability with performance on software engi-007
neering tasks. We introduce CRQBench,008
a benchmark of 100 C++ code reasoning009
questions and answers derived from con-010
textualized code review comments. To cu-011
rate CRQBench, we use an LLM assis-012
tant alongside human inspection, reducing013
manual effort. We conduct an evaluation014
of GPT-4 on CRQBench and find that it015
produces correct responses grounded in the016
given context for 65 of the 100 questions.017

1 Introduction018

Large Language Models (LLMs) have demon-019

strated effectiveness in coding tasks and ap-020

pear to understand deep semantic properties021

of code (Chen et al., 2021; Chowdhery et al.,022

2022; Touvron et al., 2023). However, evalua-023

tions across various tasks (Jimenez et al., 2023;024

Zhong and Wang, 2023) show less promising025

results, suggesting that models may have a026

limited syntactic understanding of programs.027

To evaluate a model’s semantic reasoning abil-028

ity in isolation, a benchmark specifically tai-029

lored for code reasoning question answering is030

needed.031

The predominant benchmarks for032

evaluating LLMs trained on code are033

HumanEval (Chen et al., 2021) and034

MBPP (Austin et al., 2021). They mea-035

sure a model’s ability to synthesize programs036

from docstrings. These text-to-code bench-037

marks are synthetic, handwritten, and involve038

generating a standalone function. Other,039

more realistic, benchmarks (Jimenez et al.,040

2023; Zhong and Wang, 2023) are designed to 041

evaluate code reasoning indirectly through a 042

software engineering task, and as a result con- 043

flate the model’s ability to perform reasoning 044

with the ability to perform the downstream 045

task. In this work, we set out to curate 046

a real-world, contextualized, benchmark 047

for evaluating semantic reasoning ability in 048

isolation. 049

Ideally, a benchmark for evaluating seman- 050

tic reasoning ability should reflect real-world 051

programming scenarios. Code review com- 052

ments present an appealing target for this as 053

they are non-synthetic and tied to a surround- 054

ing code context. Through a study of con- 055

textualized code review comments at a Cor- 056

poration1, we find that a subset embody se- 057

mantically deep questions about code, but a 058

majority are superficial (related to refactoring 059

or style). Furthermore, we find that comments 060

are rarely concise and unambiguous questions. 061

Although code review comments provide a 062

source of authentic semantic queries, it is non- 063

trivial to extract clean questions. 064

We present CRQBench: a benchmark of 065

real-world, contextualized, code reasoning 066

questions. To reduce human curator effort, 067

we propose a cooperative LLM and human-in- 068

the-loop approach which leverages in-context 069

learning (Brown et al., 2020) to filter and 070

rephrase code reasoning questions from code 071

review comments. We reproduce our Cor- 072

porate results for open source release using 073

Github pull request comments in the CodeRe- 074

viewer dataset (Li et al., 2022). 075

In summary, our work presents a benchmark 076

of 100 C++ (code reasoning questions, answer, 077

code context) tuples derived from pull request 078

comments in the CodeReviewer dataset. In 079

addition, we present our curation technique as 080

1Anonymized for double-blind review
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a re-usable methodology and evaluate its effec-081

tiveness in reducing manual effort in bench-082

mark curation. Lastly, we evaluate GPT-083

4 (OpenAI et al., 2024) on CRQBench and find084

that it produces correct responses grounded in085

the given context for 65 of the 100 questions.086

2 Motivating Examples087

In this section, we illustrate the presence of088

code reasoning questions in code review com-089

ments, while highlighting the challenges in090

extracting them. Reviewers’ identities are091

anonymized.092

Observation 1: Most code review comments093

are not related to code reasoning. Through094

a manual analysis, we find that a majority of095

Github (65%) and Corporate (80%) code re-096

view comments are not related to code rea-097

soning. We consider a comment to be related098

to code reasoning if in order to ask, answer, or099

address, it requires reasoning over reachability,100

data flow, control flow, or program variable101

and state. Instead, code review comments are102

often shallow edit suggestions related to style,103

structure, documentation, or syntactic reason-104

ing. Consider Figures 1 (and 6 in appendix),105

in which the reviewers make shallow comments106

regarding style and syntactic reasoning respec-107

tively. During our analysis, we also found com-108

ments that are discussions of the intended be-109

havior or specification (Figure 7 in appendix).110

We quantify the density of these comment cat-111

egories in Table 1.

Corp. Github

CRQ 20% 35%
Shallow Edit Suggestion 60% 35%

Func Behavior Discussion 20% 30%

Table 1: Code Review Comments By Type.
112

Observation 2: Code review comments113

are often not phrased as questions. Through114

our manual analysis, we find that even when115

the comment is related to code reasoning, it116

is very rarely phrased as a concise and un-117

ambiguous code reasoning question. Consider118

Figure 2, in which the comment is phrased119

as an edit suggestion (removing the call to120

std::move) rather than the underlying code121

reasoning question: Does calling std::move122

on the return value s.releasePeerSet() im-123

pact the program’s behavior? Furthermore, 124

the comment contains extraneous information, 125

referencing another reviewer. In Figure 3, the 126

comment is posed as a question, but it is 127

overly verbose. It consists of two sentences, 128

one of which is an extraneous edit sugges- 129

tion related to functional behavior. The first 130

sentence, although related to code reasoning, 131

is ambiguous and not contextualized in the 132

reviewed code. It does not explicitly state 133

which program variables “something else” en- 134

compasses. A concise, unambiguous rephras- 135

ing could be: Can error code hold a value 136

other than ECONNREFUSED or ECONNRESET? 137

We also observe that code reasoning ques- 138

tions can be categorized into two types of 139

queries that encompass all CRQs: VALUE and 140

EQUIV queries. A VALUE query (Figure 3) asks 141

about the value or possible value of a vari- 142

able or expression at a program point. An 143

EQUIV (equivalence) query (Figure 2) asks if 144

two segments of code have differences in be- 145

havior. EQUIV queries typically underlay an 146

edit suggestion. We find that in both Github 147

and Corporate code review comments, 75% 148

of code reasoning questions are EQUIV queries 149

while 25% are VALUE queries. 150

Observation 3: Answers to rephrased 151

questions are not readily available. During our 152

manual analysis, we inspected the developer’s 153

responses to comments. Responses came in 154

the form of a natural language reply and/or a 155

code edit. Answers in the form of a developer 156

reply suffer from the same ambiguities and ver- 157

bosity as the reviewer comments. Answers in 158

the form of an edit require careful manual in- 159

spection to connect the change to the under- 160

lying code reasoning question. Sometimes the 161

comment is ignored and not addressed. 162

3 Technique 163

Figure 4 illustrates our overall technique, 164

which leverages a Corporate code aware LLM 165

in combination with human validation. 166

3.1 Classifying Comments 167

As discussed in Observation 1, a minority 168

of code review comments are related to code 169

reasoning. To reduce manual inspection, we 170

create an LLM based Code Reasoning Classi- 171

fier (Figure 12 in appendix) which takes the 172
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Figure 1: Shallow Edit Suggestion.2

Figure 2: Raw Code Review Comment.3

Figure 3: Raw Code Review Comment.4

raw reviewer comment and corresponding line173

of code and decides if it is related to code rea-174

soning.175

We evaluate the performance of our Code176

Reasoning Classifier prompt on 100 randomly177

selected, manually labeled comments as shown178

in Table 3. We also experiment with a key-179

word matching approach using a hand derived180

list of undesirable keywords (Figure 20 in ap-181

pendix) 5, but find it incurs significantly more182

false positives than our LLM classification. In183

summary, our classifier correctly identified 11184

out of 20 Corporate and 22 out of 35 GitHub185

code review comments as related to code rea-186

soning, while misidentifying only 6 and 9 com-187

ments respectively.188

Corp Github

LLM KW LLM KW

Precision .64 .31 .71 .39
Recall .52 .81 .63 .1

F1 Score .57 .45 .67 .56

Table 2: Code Reasoning Classification perfor-
mance of LLM and Keyword matching approaches.

3.2 Rephrasing Comments as CRQs189

As discussed in Observation 2, comments190

are rarely phrased as concise questions191

Figure 4: Benchmark Curation Methodology. Yel-
low boxes represent LLM prompts.

grounded over program elements. To avoid 192

manual rephrasing, we again leverage the 193

Corporate LLM. This portion of our technique 194

is shown in the dotted box in Figure 4 and is 195

invoked on samples that have been accepted 196

by the Code Reasoning Classifier. Our 197

technique invokes different rephrasing tech- 198

niques for each query type. The Query Type 199

Classifier (Figure 13 in appendix) classifies a 200

comment as either an EQUIV query or VALUE 201

query, triggering the appropriate rephrasing 202

technique based on the classification. 203

204

When the Query Type Classifier decides 205

the comment is an EQUIV query, we use chain 206

of thought (Wei et al., 2022) reasoning to 207

effectively rephrase. Since EQUIV queries 208

are typically underlying edit suggestions, we 209

employ an LLM based Edit Generator (Fig- 210

ure 14 in appendix) to perform the reviewer’s 211

suggested edit as a link in a chain of thought. 212

The edit is leveraged to rephrase the reviewer 213

comment using a few shot prompt (Figure 16 214

in appendix). 215

When the Query Type Classifier decides 216

the comment is a VALUE query, we similarly 217

use a two step inference process similar to 218

a chain of thought. As a first step, our 219

Expression Extractor uses a few-shot prompt 220

(Figure 15 in appendix) leveraging the code 221

context and reviewer comment to extract the 222

relevant program expression: <EXPR>. The 223

relevant <EXPR> is used as a link to rephrase 224
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the reviewer comment as a code reasoning225

question over the given expression using a226

few-shot prompt (Figure 17 in appendix).227

228

Lastly, the rephrased question is given229

to the Validator for a self-consistency (Wang230

et al., 2023) check to reduce the occurrence231

of poorly rephrased code reasoning questions232

that are not faithful to the original line233

comment. The Validator prompt (Figure 18234

in appendix) asks the LLM to decide if, given235

the original code, the reviewer comment has236

the same meaning as the rephrased comment.237

If the LLM Validator confirms the consis-238

tency, the rephrased question is selected as a239

confident candidate, and given to a human240

inspector to validate.241

We evaluate our technique’s effectiveness in242

rephrasing code review comments into con-243

cise and unambiguous code reasoning ques-244

tions. Our rephrasing approach (entire dot-245

ted box component in Figure 4) is evaluated246

on both Corporate (150 samples) and Github247

(160 samples) code review comments that were248

flagged as related to code reasoning by our249

Code Reasoning Classifier. The samples were250

manually inspected and labelled as correct if251

they were concise, unambiguous, and faith-252

ful to the original reviewer comment. We253

achieved a precision of 66 on Corporate code254

review comments and .63 on Github pull re-255

quest comments.256

3.3 Evaluation257

We evaluate our methodology in terms of man-258

ual human curation required. In a purely man-259

ual approach, a human curator would need260

to inspect and classify 500 Corporate (or 285261

Github) code review comments and manu-262

ally rephrase 100 questions. Using our pro-263

posed methodology, a human curator would264

need to inspect only 150 Corporate (or 160265

Github) code review comments without the266

need for any manual rewriting. Figure 21267

(in appendix) and Figure 5, respectively, illus-268

trate this comparison. The pencil indicates a269

manual rephrasing while the magnifying glass270

indicates inspection using our proposed tech-271

nique. In summary, our cooperative LLM +272

human validation approach reduces the num-273

ber of samples required to inspect by 1.8x on274

Github pull request comments and 3.3x on275

Figure 5: Manual vs Cooperative LLM Curation
on Github Pull Request Comments.

Corporate code review comments. 276

4 GPT-4 Performance 277

We evaluate GPT-4 on our benchmark by 278

prompting it with the surrounding function 279

context (Figure 11 in Appendix). We evaluate 280

the outputs manually considering a response 281

to be accurate if it is both correct and contex- 282

tually relevant. Correctness refers to the tech- 283

nical accuracy of the generated natural lan- 284

guage response. Contextual relevance refers 285

to the degree that the response is grounded 286

in the given code context. We find the GPT-4 287

provides an accurate response on 65 of the 100 288

queries and are almost always (94%) grounded 289

in the given code context. 290

Acc Total %

65 100 65%

VALUE 33 54 61%
EQUIV 32 46 70%

Table 3: Performance of GPT-4 on CRQBench.

Lastly, we conducted an error analysis to 291

categorize the 35 incorrect responses. The ma- 292

jority of errors (25 instances) were due to the 293

model lacking necessary context, such as us- 294

ages of the given function, definitions of a used 295

function or macro, or usages of a variable. Five 296

errors were attributed to gaps in C++ knowl- 297

edge, and the remaining five were due to in- 298

correct evaluation of logic. Examples of each 299

error scenario are shown in the Appendix (Fig- 300

ures 8 - 10). 301

We also experimented with evaluating the 302

7 billion parameter open source model Fal- 303

con (Almazrouei et al., 2023), but found it to 304

have a much lower accuracy (2̃5%) as it is a 305

significantly smaller model. 306
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5 Limitations307

5.1 Extracting Answers to CRQs308

To extract answers, we use an entirely manual309

based approach. A human curated an answer310

through a best effort approach by inspecting311

the cloned repository at the commit being re-312

viewed. The answer is derived by reasoning313

over the code context, edit made (or not), and314

developer textual responses in the comment315

thread. In essence, our benchmark gathers the316

response which was implicitly provided by the317

developer, rather than an answer verified by a318

symbolic program analysis approach. We de-319

fault to manual curation of answers due to the320

challenges presented in Section 2.321

5.2 Size of Target Environment322

Although the number of samples to inspect323

or rephrase is greatly diminished with our ap-324

proach, the total number of comments needed325

to arrive at 100 code reasoning questions is326

much larger. Our cooperative approach re-327

quires greater than 10x more code review com-328

ments to derive 100 CRQs. This is due to false329

negatives in Code Reasoning Classifier and the330

Validator.331
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A Appendix552

Figure 6: Shallow Edit Suggestion.5

Figure 7: Functional Behavior Discussion.6

5https://github.com/scummvm/scummvm/pull/2347#discussion r445103384
6https://github.com/CleverRaven/Cataclysm-DDA/pull/18691#discussion r82533193
7The prompt used in our technique uses Corporate internal code review comments. To share the prompt, comments are substituted with

open source code reviews from Github. We attempt to find substitutions which are similar to our Corporate code based prompt.
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Figure 8: Incorrect GPT Response: Logic Error. The model recognized that the flags check for opposite
conditions but failed to deduce that the inverse of one flag is equivalent to the other.
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Figure 9: Incorrect GPT Response: Missing Context. The model was unable to determine if the expression
could be less than or equal to zero as it did not have access to the function definition.
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Figure 10: Incorrect GPT Response: Incorrect C++ knowledge. The model incorrectly responded Yes.
In particular, the model was incorrect that without using std::make pair, a compile error may occur.

Given the following code , {QUESTION}
{SURROUNDING_FUNCTION}

Figure 11: Prompt to GPT-4 for CRQBench evaluation.
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You are a senior , expert C/C++ programmer with a lot of experience analyzing C/C
++ code.

Given a C/C++ line comment:

{COMMENT}

associated with this line of code:

‘‘‘
{CODE_SEGMENT}
‘‘‘

please determine which of the following categories best classifies that
line comment:

1. unknown: unknown
2. reasoning: a code reasoning question such as requiring control -flow or value

propagation
3. explanation: a question asking what the code does
4. structure: request to reorganize or refactor code , such as extracting classes

or methods
5. planning: prioritization , planning , or choosing what to work on next
6. style: a code style , or readability question including things like renaming

symbols
7. format: a comment or question about code formatting

and provide an explanation of why that comment should be in that specific
category.

If you are uncertain about the category , respond with "0".

Generate your output in YAML format like this:

Explanation: <why you chose a specific category >
Line comment category: <category >

Response:
‘‘‘yaml

Figure 12: Code Reasoning Classifier Prompt.
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You are an expert software engineer , asked to determine whether or not a
reviewer comment is about substituting code.

Here are some examples.

Example 1:

LINE_COMMENT:
‘‘‘
also check if the tf example is empty?
‘‘‘

1. No.

Example 2:

LINE_COMMENT:
‘‘‘
This stores a pointer to a temporary object. This pointer becomes invalid right

after this statement. I suggest you initialise it with a ‘nullptr ‘ and check
for that.

’’’

1. No.

Example 3:

LINE_COMMENT:
‘‘‘
Please use stolen(fduri) instead of hardcoding 5
’’’

1. Yes.

Example 4:

LINE_COMMENT:
‘‘‘
The copy of a single int (previous type of fg , bg) is fine here , however copying

the vector is not good. Use a const reference instead.
’’’

1. Yes.

Example 5:

LINE_COMMENT:
‘‘‘
{COMMENT}
’’’

1.

Figure 13: Query Type Classifier Prompt.7
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You are an expert C++ coder and know how to review C++ code at a Corporation ,
and how to

respond to reviewer comments.
In the code below , a reviewer has left a comment marked by LINE_COMMENT.

Code:
‘‘‘
{CODE_SEGMENT_WITH_COMMENT}
’’’

The comment is asking to consider the following original code and modified code:

Figure 14: Edit Generator Prompt.
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You are an expert C++ coder and know how to review C++ code at a Corporation ,
and how to respond to reviewer comments. In the code below , a reviewer has
left a comment marked by LINE_COMMENT.

Please answer the following question.
1. Can you please list the relevant program expression?

Here are some examples.
Example 1:

Code:
‘‘‘
int comfort = 0;
comfort_response_t comfort_response;
comfort_response.aid = &item( "null" );
[*] [LINE_COMMENT] This stores a pointer to a temporary object. This pointer

becomes invalid right after this statement. I suggest you initialise it with
a nullptr and check for that.

bool plantsleep = has_trait( trait_CHLOROMORPH );
bool fungaloid_cosplay = has_trait( trait_M_SKIN3 );
bool websleep = has_trait( trait_WEB_WALKER );
‘‘‘

LINE_COMMENT: This stores a pointer to a temporary object. This pointer becomes
invalid right after this statement. I suggest you initialise it with a
nullptr and check for that.

1. comfort_response.aid

Example 2:

Code:
‘‘‘
Value *Arg = Call ->getArgOperand (0);
Value *LoweredArg = getLoweredByValOperand(Arg , Builder);
for (Value *A : Call ->arg_operands ()) {

DXASSERT(A == Arg , "oops");
[*] [LINE_COMMENT] how could A be different unless there ’s a fundamental problem

with operand iteration or something?
}
HLModule :: MarkPreciseAttributeOnValWithFunctionCall(LoweredArg , Builder , *

m_pModule);
addToDeadInsts(Call);
’’’

LINE_COMMENT: how could A be different unless there ’s a fundamental problem with
operand iteration or something?

1. A

Example 3:

Code:
‘‘‘
{CODE_SEGMENT_WITH_COMMENT}
’’’

LINE_COMMENT: {COMMENT}

Figure 15: Expression Extractor Prompt.7
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Can you please rephrase a reviewer LINE_COMMENT that suggests the following code
change? The rephrased comment should include program elements. Here are a

few examples.

Example 1:
Before:
‘‘‘
void gyroDataAnalyse(const gyroDev_t *gyroDev , biquadFilter_t *notchFilterDyn) {

static FAST_RAM float fftAcc[XYZ_AXIS_COUNT] = {0, 0, 0};
static FAST_RAM uint32_t fftAccCount = 0;

‘‘‘
After:
‘‘‘
void gyroDataAnalyse(const gyroDev_t *gyroDev , biquadFilter_t *notchFilterDyn) {

static FAST_RAM float fftAcc[XYZ_AXIS_COUNT ];
static FAST_RAM uint32_t fftAccCount = 0;

‘‘‘
[*] [LINE_COMMENT] Zero -initialized by default as well.
Rephrased: Is there a difference between initializing fftAcc to {0, 0, 0} and

not initializing fftAcc?

Example 2:
Before:
‘‘‘
if (isIntegralType(iter.dtype (), false)) {

AT_DISPATCH_INTEGRAL_TYPES(iter.dtype (), "fmod_cpu", [&]() {
cpu_kernel(iter , []( scalar_t a, scalar_t b) -> scalar_t {

return std::fmod(a, b);
});

});
}

‘‘‘
After:
‘‘‘
if (isIntegralType(iter.dtype (), false)) {

AT_DISPATCH_INTEGRAL_TYPES(iter.dtype (), "fmod_cpu", [&]() {
cpu_kernel(iter , []( scalar_t a, scalar_t b) -> scalar_t {

return a % b;
});

});
}

‘‘‘
[*] [LINE_COMMENT] Should we use fmod or % here?
Rephrased: Is there a difference between computing the modulus of a and b using

std::fmod vs using the binary operator %?

Example 3:
Before:
‘‘‘
{BEFORE}
‘‘‘
After:
‘‘‘
{AFTER}
‘‘‘
[*] [LINE_COMMENT] {COMMENT}

Figure 16: Equiv Rewriter Prompt.7
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You are an expert C++ coder and know how to review C++ code at a Corporation ,
and how to respond to reviewer comments.

A reviewer has left a comment marked by LINE_COMMENT.

Can you please rephrase the LINE_COMMENT as a question over program expressions?
The Question should start with the word "Can".

Here are some examples.

Example 1:

Comment:
‘‘‘
This stores a pointer to a temporary object. This pointer becomes invalid right

after this statement.
I suggest you initialise it with a nullptr and check for that.
‘‘‘

Program Expression: comfort_response.aid
Question: Is there a difference between initializing comfort_response.aid with &

item( "null" ) as opposed to nullptr?

Example 2:

Comment:
‘‘‘
how could A be different unless there ’s a fundamental problem with operand

iteration or something?
‘‘‘

Program Expression: A
Question: Can A ever be equal to Arg?

Example 3:

Comment:
‘‘‘
{COMMENT}
‘‘‘

Program Expression: {EXPR}

Figure 17: Value Rewriter Prompt.7

You are an expert C++ coder and know how to review C++ code at a Corporation ,
and how to respond to reviewer comments.

In the code below , a reviewer has left a comment marked by LINE_COMMENT.

Code:
‘‘‘
{CODE}
‘‘‘

Given the LINE_COMMENT , answer the following question with YES or NO:
Does ‘‘‘{Q_C}‘‘‘ have the same meaning as the LINE_COMMENT?

Figure 18: Validator Prompt.
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Interesting Keywords:

"except"

"segfault"

" fault"

"precondition"

"assumption"

"undefined behavior"

" ub "

"null",

"reach"

"ever be true"

"ever be false"

"branch taken"

"branch not taken"

"deref"

"reference"

Figure 19: Desirable Keywords for Positive Matching.

Uninteresting Keywords:

"test"

\nit"

\follow up"

\log a higher level"

"log a lower level"

"logging"

\naming"

\readability"

\TODO"

\description"

\comment"

"typo"

"clang"

"style guide"

\period"

"restructure"

"restructuring"

"refactor"

"move"

"offline"

"space"

"spacing"

Figure 20: Undesirable Keywords for Negative Matching.
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Figure 21: Manual vs Cooperative LLM Curation approaches on Corporate Code Review Comments.
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