
CRQBench: A Benchmark of Code Reasoning Questions

Anonymous EMNLP submission

Abstract

Large Language Models have demon-001
strated exceptional proficiency on coding002
tasks, but it is challenging to precisely eval-003
uate their code reasoning ability. Exist-004
ing benchmarks are insufficient as they are005
unrealistic and conflate semantic reasoning006
ability with performance on software engi-007
neering tasks. We introduce CRQBench,008
a benchmark of 100 C++ code reasoning009
questions and answers derived from con-010
textualized code review comments. To cu-011
rate CRQBench, we use an LLM assis-012
tant alongside human inspection, reducing013
manual effort. We conduct an evaluation014
of GPT-4 on CRQBench and find that it015
produces correct responses grounded in the016
given context for 65 of the 100 questions.017

1 Introduction018

Large Language Models (LLMs) have demon-019

strated effectiveness in coding tasks and ap-020

pear to understand deep semantic properties021

of code (Chen et al., 2021; Chowdhery et al.,022

2022; Touvron et al., 2023). However, evalua-023

tions across various tasks (Jimenez et al., 2023;024

Zhong and Wang, 2023) show less promising025

results, suggesting that models may have a026

limited syntactic understanding of programs.027

To evaluate a model’s semantic reasoning abil-028

ity in isolation, a benchmark specifically tai-029

lored for code reasoning question answering is030

needed.031

The predominant benchmarks for032

evaluating LLMs trained on code are033

HumanEval (Chen et al., 2021) and034

MBPP (Austin et al., 2021). They mea-035

sure a model’s ability to synthesize programs036

from docstrings. These text-to-code bench-037

marks are synthetic, handwritten, and involve038

generating a standalone function. Other,039

more realistic, benchmarks (Jimenez et al.,040

2023; Zhong and Wang, 2023) are designed to 041

evaluate code reasoning indirectly through a 042

software engineering task, and as a result con- 043

flate the model’s ability to perform reasoning 044

with the ability to perform the downstream 045

task. In this work, we set out to curate 046

a real-world, contextualized, benchmark 047

for evaluating semantic reasoning ability in 048

isolation. 049

Ideally, a benchmark for evaluating seman- 050

tic reasoning ability should reflect real-world 051

programming scenarios. Code review com- 052

ments present an appealing target for this as 053

they are non-synthetic and tied to a surround- 054

ing code context. Through a study of con- 055

textualized code review comments at a Cor- 056

poration1, we find that a subset embody se- 057

mantically deep questions about code, but a 058

majority are superficial (related to refactoring 059

or style). Furthermore, we find that comments 060

are rarely concise and unambiguous questions. 061

Although code review comments provide a 062

source of authentic semantic queries, it is non- 063

trivial to extract clean questions. 064

We present CRQBench: a benchmark of 065

real-world, contextualized, code reasoning 066

questions. To reduce human curator effort, 067

we propose a cooperative LLM and human-in- 068

the-loop approach which leverages in-context 069

learning (Brown et al., 2020) to filter and 070

rephrase code reasoning questions from code 071

review comments. We reproduce our Cor- 072

porate results for open source release using 073

Github pull request comments in the CodeRe- 074

viewer dataset (Li et al., 2022). 075

In summary, our work presents a benchmark 076

of 100 C++ (code reasoning questions, answer, 077

code context) tuples derived from pull request 078

comments in the CodeReviewer dataset. In 079

addition, we present our curation technique as 080

1Anonymized for double-blind review

1

a re-usable methodology and evaluate its effec-081

tiveness in reducing manual effort in bench-082

mark curation. Lastly, we evaluate GPT-083

4 (OpenAI et al., 2024) on CRQBench and find084

that it produces correct responses grounded in085

the given context for 65 of the 100 questions.086

2 Motivating Examples087

In this section, we illustrate the presence of088

code reasoning questions in code review com-089

ments, while highlighting the challenges in090

extracting them. Reviewers’ identities are091

anonymized.092

Observation 1: Most code review comments093

are not related to code reasoning. Through094

a manual analysis, we find that a majority of095

Github (65%) and Corporate (80%) code re-096

view comments are not related to code rea-097

soning. We consider a comment to be related098

to code reasoning if in order to ask, answer, or099

address, it requires reasoning over reachability,100

data flow, control flow, or program variable101

and state. Instead, code review comments are102

often shallow edit suggestions related to style,103

structure, documentation, or syntactic reason-104

ing. Consider Figures 1 (and 6 in appendix),105

in which the reviewers make shallow comments106

regarding style and syntactic reasoning respec-107

tively. During our analysis, we also found com-108

ments that are discussions of the intended be-109

havior or specification (Figure 7 in appendix).110

We quantify the density of these comment cat-111

egories in Table 1.

Corp. Github

CRQ 20% 35%
Shallow Edit Suggestion 60% 35%

Func Behavior Discussion 20% 30%

Table 1: Code Review Comments By Type.
112

Observation 2: Code review comments113

are often not phrased as questions. Through114

our manual analysis, we find that even when115

the comment is related to code reasoning, it116

is very rarely phrased as a concise and un-117

ambiguous code reasoning question. Consider118

Figure 2, in which the comment is phrased119

as an edit suggestion (removing the call to120

std::move) rather than the underlying code121

reasoning question: Does calling std::move122

on the return value s.releasePeerSet() im-123

pact the program’s behavior? Furthermore, 124

the comment contains extraneous information, 125

referencing another reviewer. In Figure 3, the 126

comment is posed as a question, but it is 127

overly verbose. It consists of two sentences, 128

one of which is an extraneous edit sugges- 129

tion related to functional behavior. The first 130

sentence, although related to code reasoning, 131

is ambiguous and not contextualized in the 132

reviewed code. It does not explicitly state 133

which program variables “something else” en- 134

compasses. A concise, unambiguous rephras- 135

ing could be: Can error code hold a value 136

other than ECONNREFUSED or ECONNRESET? 137

We also observe that code reasoning ques- 138

tions can be categorized into two types of 139

queries that encompass all CRQs: VALUE and 140

EQUIV queries. A VALUE query (Figure 3) asks 141

about the value or possible value of a vari- 142

able or expression at a program point. An 143

EQUIV (equivalence) query (Figure 2) asks if 144

two segments of code have differences in be- 145

havior. EQUIV queries typically underlay an 146

edit suggestion. We find that in both Github 147

and Corporate code review comments, 75% 148

of code reasoning questions are EQUIV queries 149

while 25% are VALUE queries. 150

Observation 3: Answers to rephrased 151

questions are not readily available. During our 152

manual analysis, we inspected the developer’s 153

responses to comments. Responses came in 154

the form of a natural language reply and/or a 155

code edit. Answers in the form of a developer 156

reply suffer from the same ambiguities and ver- 157

bosity as the reviewer comments. Answers in 158

the form of an edit require careful manual in- 159

spection to connect the change to the under- 160

lying code reasoning question. Sometimes the 161

comment is ignored and not addressed. 162

3 Technique 163

Figure 4 illustrates our overall technique, 164

which leverages a Corporate code aware LLM 165

in combination with human validation. 166

3.1 Classifying Comments 167

As discussed in Observation 1, a minority 168

of code review comments are related to code 169

reasoning. To reduce manual inspection, we 170

create an LLM based Code Reasoning Classi- 171

fier (Figure 12 in appendix) which takes the 172

2

Figure 1: Shallow Edit Suggestion.2

Figure 2: Raw Code Review Comment.3

Figure 3: Raw Code Review Comment.4

raw reviewer comment and corresponding line173

of code and decides if it is related to code rea-174

soning.175

We evaluate the performance of our Code176

Reasoning Classifier prompt on 100 randomly177

selected, manually labeled comments as shown178

in Table 3. We also experiment with a key-179

word matching approach using a hand derived180

list of undesirable keywords (Figure 20 in ap-181

pendix) 5, but find it incurs significantly more182

false positives than our LLM classification. In183

summary, our classifier correctly identified 11184

out of 20 Corporate and 22 out of 35 GitHub185

code review comments as related to code rea-186

soning, while misidentifying only 6 and 9 com-187

ments respectively.188

Corp Github

LLM KW LLM KW

Precision .64 .31 .71 .39
Recall .52 .81 .63 .1

F1 Score .57 .45 .67 .56

Table 2: Code Reasoning Classification perfor-
mance of LLM and Keyword matching approaches.

3.2 Rephrasing Comments as CRQs189

As discussed in Observation 2, comments190

are rarely phrased as concise questions191

Figure 4: Benchmark Curation Methodology. Yel-
low boxes represent LLM prompts.

grounded over program elements. To avoid 192

manual rephrasing, we again leverage the 193

Corporate LLM. This portion of our technique 194

is shown in the dotted box in Figure 4 and is 195

invoked on samples that have been accepted 196

by the Code Reasoning Classifier. Our 197

technique invokes different rephrasing tech- 198

niques for each query type. The Query Type 199

Classifier (Figure 13 in appendix) classifies a 200

comment as either an EQUIV query or VALUE 201

query, triggering the appropriate rephrasing 202

technique based on the classification. 203

204

When the Query Type Classifier decides 205

the comment is an EQUIV query, we use chain 206

of thought (Wei et al., 2022) reasoning to 207

effectively rephrase. Since EQUIV queries 208

are typically underlying edit suggestions, we 209

employ an LLM based Edit Generator (Fig- 210

ure 14 in appendix) to perform the reviewer’s 211

suggested edit as a link in a chain of thought. 212

The edit is leveraged to rephrase the reviewer 213

comment using a few shot prompt (Figure 16 214

in appendix). 215

When the Query Type Classifier decides 216

the comment is a VALUE query, we similarly 217

use a two step inference process similar to 218

a chain of thought. As a first step, our 219

Expression Extractor uses a few-shot prompt 220

(Figure 15 in appendix) leveraging the code 221

context and reviewer comment to extract the 222

relevant program expression: <EXPR>. The 223

relevant <EXPR> is used as a link to rephrase 224

3

the reviewer comment as a code reasoning225

question over the given expression using a226

few-shot prompt (Figure 17 in appendix).227

228

Lastly, the rephrased question is given229

to the Validator for a self-consistency (Wang230

et al., 2023) check to reduce the occurrence231

of poorly rephrased code reasoning questions232

that are not faithful to the original line233

comment. The Validator prompt (Figure 18234

in appendix) asks the LLM to decide if, given235

the original code, the reviewer comment has236

the same meaning as the rephrased comment.237

If the LLM Validator confirms the consis-238

tency, the rephrased question is selected as a239

confident candidate, and given to a human240

inspector to validate.241

We evaluate our technique’s effectiveness in242

rephrasing code review comments into con-243

cise and unambiguous code reasoning ques-244

tions. Our rephrasing approach (entire dot-245

ted box component in Figure 4) is evaluated246

on both Corporate (150 samples) and Github247

(160 samples) code review comments that were248

flagged as related to code reasoning by our249

Code Reasoning Classifier. The samples were250

manually inspected and labelled as correct if251

they were concise, unambiguous, and faith-252

ful to the original reviewer comment. We253

achieved a precision of 66 on Corporate code254

review comments and .63 on Github pull re-255

quest comments.256

3.3 Evaluation257

We evaluate our methodology in terms of man-258

ual human curation required. In a purely man-259

ual approach, a human curator would need260

to inspect and classify 500 Corporate (or 285261

Github) code review comments and manu-262

ally rephrase 100 questions. Using our pro-263

posed methodology, a human curator would264

need to inspect only 150 Corporate (or 160265

Github) code review comments without the266

need for any manual rewriting. Figure 21267

(in appendix) and Figure 5, respectively, illus-268

trate this comparison. The pencil indicates a269

manual rephrasing while the magnifying glass270

indicates inspection using our proposed tech-271

nique. In summary, our cooperative LLM +272

human validation approach reduces the num-273

ber of samples required to inspect by 1.8x on274

Github pull request comments and 3.3x on275

Figure 5: Manual vs Cooperative LLM Curation
on Github Pull Request Comments.

Corporate code review comments. 276

4 GPT-4 Performance 277

We evaluate GPT-4 on our benchmark by 278

prompting it with the surrounding function 279

context (Figure 11 in Appendix). We evaluate 280

the outputs manually considering a response 281

to be accurate if it is both correct and contex- 282

tually relevant. Correctness refers to the tech- 283

nical accuracy of the generated natural lan- 284

guage response. Contextual relevance refers 285

to the degree that the response is grounded 286

in the given code context. We find the GPT-4 287

provides an accurate response on 65 of the 100 288

queries and are almost always (94%) grounded 289

in the given code context. 290

Acc Total %

65 100 65%

VALUE 33 54 61%
EQUIV 32 46 70%

Table 3: Performance of GPT-4 on CRQBench.

Lastly, we conducted an error analysis to 291

categorize the 35 incorrect responses. The ma- 292

jority of errors (25 instances) were due to the 293

model lacking necessary context, such as us- 294

ages of the given function, definitions of a used 295

function or macro, or usages of a variable. Five 296

errors were attributed to gaps in C++ knowl- 297

edge, and the remaining five were due to in- 298

correct evaluation of logic. Examples of each 299

error scenario are shown in the Appendix (Fig- 300

ures 8 - 10). 301

We also experimented with evaluating the 302

7 billion parameter open source model Fal- 303

con (Almazrouei et al., 2023), but found it to 304

have a much lower accuracy (2̃5%) as it is a 305

significantly smaller model. 306

4

5 Limitations307

5.1 Extracting Answers to CRQs308

To extract answers, we use an entirely manual309

based approach. A human curated an answer310

through a best effort approach by inspecting311

the cloned repository at the commit being re-312

viewed. The answer is derived by reasoning313

over the code context, edit made (or not), and314

developer textual responses in the comment315

thread. In essence, our benchmark gathers the316

response which was implicitly provided by the317

developer, rather than an answer verified by a318

symbolic program analysis approach. We de-319

fault to manual curation of answers due to the320

challenges presented in Section 2.321

5.2 Size of Target Environment322

Although the number of samples to inspect323

or rephrase is greatly diminished with our ap-324

proach, the total number of comments needed325

to arrive at 100 code reasoning questions is326

much larger. Our cooperative approach re-327

quires greater than 10x more code review com-328

ments to derive 100 CRQs. This is due to false329

negatives in Code Reasoning Classifier and the330

Validator.331

References332

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz333
Alshamsi, Alessandro Cappelli, Ruxandra Co-334
jocaru, Mérouane Debbah, Étienne Goffinet,335
Daniel Hesslow, Julien Launay, Quentin Malar-336
tic, Daniele Mazzotta, Badreddine Noune, Bap-337
tiste Pannier, and Guilherme Penedo. 2023.338
The Falcon Series of Open Language Models.339
arXiv:2311.16867340

Jacob Austin, Augustus Odena, Maxwell Nye,341
Maarten Bosma, Henryk Michalewski, David342
Dohan, Ellen Jiang, Carrie Cai, Michael Terry,343
Quoc Le, et al. 2021. Program Synthesis344
with Large Language Models. arXiv preprint345
arXiv:2108.07732 (2021).346

Tom B. Brown, Benjamin Mann, Nick Ry-347
der, Melanie Subbiah, Jared Kaplan, Pra-348
fulla Dhariwal, Arvind Neelakantan, Pranav349
Shyam, Girish Sastry, Amanda Askell, Sand-350
hini Agarwal, Ariel Herbert-Voss, Gretchen351

2https://github.com/radareorg/radare2/pull/13555#discussion r270676564
3https://github.com/XRPLF/rippled/pull/1904#discussion r88226072
4https://github.com/pytorch/pytorch/pull/30354#

discussion r350485189
5We also experimented with a hand derived desirable keyword

list (Figure 19 in appendix). We report results for the undesirable
keyword approach as it achieved a higher F1 score.

Krueger, Tom Henighan, Rewon Child, Aditya 352
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens 353
Winter, Christopher Hesse, Mark Chen, Eric 354
Sigler, Mateusz Litwin, Scott Gray, Benjamin 355
Chess, Jack Clark, Christopher Berner, Sam 356
McCandlish, Alec Radford, Ilya Sutskever, and 357
Dario Amodei. 2020. Language Models are 358
Few-Shot Learners. CoRR abs/2005.14165 359
(2020). arXiv:2005.14165 https://arxiv. 360
org/abs/2005.14165 361

Mark Chen, Jerry Tworek, Heewoo Jun, Qim- 362
ing Yuan, Henrique Ponde de Oliveira Pinto, 363
Jared Kaplan, Harrison Edwards, Yuri Burda, 364
Nicholas Joseph, Greg Brockman, Alex Ray, 365
Raul Puri, Gretchen Krueger, Michael Petrov, 366
Heidy Khlaaf, Girish Sastry, Pamela Mishkin, 367
Brooke Chan, Scott Gray, Nick Ryder, Mikhail 368
Pavlov, Alethea Power, Lukasz Kaiser, Mo- 369
hammad Bavarian, Clemens Winter, Philippe 370
Tillet, Felipe Petroski Such, Dave Cummings, 371
Matthias Plappert, Fotios Chantzis, Eliza- 372
beth Barnes, Ariel Herbert-Voss, William Heb- 373
gen Guss, Alex Nichol, Alex Paino, Nikolas 374
Tezak, Jie Tang, Igor Babuschkin, Suchir Bal- 375
aji, Shantanu Jain, William Saunders, Christo- 376
pher Hesse, Andrew N. Carr, Jan Leike, Joshua 377
Achiam, Vedant Misra, Evan Morikawa, Alec 378
Radford, Matthew Knight, Miles Brundage, 379
Mira Murati, Katie Mayer, Peter Welinder, 380
Bob McGrew, Dario Amodei, Sam McCan- 381
dlish, Ilya Sutskever, and Wojciech Zaremba. 382
2021. Evaluating Large Language Models 383
Trained on Code. CoRR abs/2107.03374 384
(2021). arXiv:2107.03374 https://arxiv. 385
org/abs/2107.03374 386

Aakanksha Chowdhery, Sharan Narang, Jacob De- 387
vlin, Maarten Bosma, Gaurav Mishra, Adam 388
Roberts, Paul Barham, Hyung Won Chung, 389
Charles Sutton, Sebastian Gehrmann, Parker 390
Schuh, Kensen Shi, Sasha Tsvyashchenko, 391
Joshua Maynez, Abhishek Rao, Parker Barnes, 392
Yi Tay, Noam Shazeer, Vinodkumar Prab- 393
hakaran, Emily Reif, Nan Du, Ben Hutchin- 394
son, Reiner Pope, James Bradbury, Jacob 395
Austin, Michael Isard, Guy Gur-Ari, Pengcheng 396
Yin, Toju Duke, Anselm Levskaya, Sanjay 397
Ghemawat, Sunipa Dev, Henryk Michalewski, 398
Xavier Garcia, Vedant Misra, Kevin Robin- 399
son, Liam Fedus, Denny Zhou, Daphne Ip- 400
polito, David Luan, Hyeontaek Lim, Barret 401
Zoph, Alexander Spiridonov, Ryan Sepassi, 402
David Dohan, Shivani Agrawal, Mark Omer- 403
nick, Andrew M. Dai, Thanumalayan Sankara- 404
narayana Pillai, Marie Pellat, Aitor Lewkowycz, 405
Erica Moreira, Rewon Child, Oleksandr Polo- 406
zov, Katherine Lee, Zongwei Zhou, Xuezhi 407
Wang, Brennan Saeta, Mark Diaz, Orhan 408
Firat, Michele Catasta, Jason Wei, Kathy 409
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav 410
Petrov, and Noah Fiedel. 2022. PaLM: 411
Scaling Language Modeling with Pathways. 412
arXiv:cs.CL/2204.02311 413

5

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374

Carlos E. Jimenez, John Yang, Alexander Wet-414
tig, Shunyu Yao, Kexin Pei, Ofir Press, and415
Karthik Narasimhan. 2023. SWE-bench: Can416
Language Models Resolve Real-World GitHub417
Issues? arXiv:cs.CL/2310.06770418

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh419
Jannu, Grant Jenks, Deep Majumder, Jared420
Green, Alexey Svyatkovskiy, Shengyu Fu, and421
Neel Sundaresan. 2022. Automating Code422
Review Activities by Large-Scale Pre-training.423
arXiv:cs.SE/2203.09095424

OpenAI, Josh Achiam, Steven Adler, Sandhini425
Agarwal, Lama Ahmad, Ilge Akkaya, Flo-426
rencia Leoni Aleman, Diogo Almeida, Janko427
Altenschmidt, Sam Altman, Shyamal Anad-428
kat, Red Avila, Igor Babuschkin, Suchir Bal-429
aji, Valerie Balcom, Paul Baltescu, Haiming430
Bao, Mohammad Bavarian, Jeff Belgum, Irwan431
Bello, Jake Berdine, Gabriel Bernadett-Shapiro,432
Christopher Berner, Lenny Bogdonoff, Oleg433
Boiko, Madelaine Boyd, Anna-Luisa Brakman,434
Greg Brockman, Tim Brooks, Miles Brundage,435
Kevin Button, Trevor Cai, Rosie Campbell, An-436
drew Cann, Brittany Carey, Chelsea Carlson,437
Rory Carmichael, Brooke Chan, Che Chang, Fo-438
tis Chantzis, Derek Chen, Sully Chen, Ruby439
Chen, Jason Chen, Mark Chen, Ben Chess,440
Chester Cho, Casey Chu, Hyung Won Chung,441
Dave Cummings, Jeremiah Currier, Yunxing442
Dai, Cory Decareaux, Thomas Degry, Noah443
Deutsch, Damien Deville, Arka Dhar, David Do-444
han, Steve Dowling, Sheila Dunning, Adrien445
Ecoffet, Atty Eleti, Tyna Eloundou, David446
Farhi, Liam Fedus, Niko Felix, Simón Posada447
Fishman, Juston Forte, Isabella Fulford, Leo448
Gao, Elie Georges, Christian Gibson, Vik449
Goel, Tarun Gogineni, Gabriel Goh, Rapha450
Gontijo-Lopes, Jonathan Gordon, Morgan Graf-451
stein, Scott Gray, Ryan Greene, Joshua Gross,452
Shixiang Shane Gu, Yufei Guo, Chris Hal-453
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike454
Heaton, Johannes Heidecke, Chris Hesse, Alan455
Hickey, Wade Hickey, Peter Hoeschele, Bran-456
don Houghton, Kenny Hsu, Shengli Hu, Xin457
Hu, Joost Huizinga, Shantanu Jain, Shawn458
Jain, Joanne Jang, Angela Jiang, Roger Jiang,459
Haozhun Jin, Denny Jin, Shino Jomoto, Bil-460
lie Jonn, Heewoo Jun, Tomer Kaftan, Lukasz461
Kaiser, Ali Kamali, Ingmar Kanitscheider, Ni-462
tish Shirish Keskar, Tabarak Khan, Logan463
Kilpatrick, Jong Wook Kim, Christina Kim,464
Yongjik Kim, Jan Hendrik Kirchner, Jamie465
Kiros, Matt Knight, Daniel Kokotajlo, Lukasz466
Kondraciuk, Andrew Kondrich, Aris Konstan-467
tinidis, Kyle Kosic, Gretchen Krueger, Vishal468
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan469
Leike, Jade Leung, Daniel Levy, Chak Ming470
Li, Rachel Lim, Molly Lin, Stephanie Lin,471
Mateusz Litwin, Theresa Lopez, Ryan Lowe,472
Patricia Lue, Anna Makanju, Kim Malfacini,473
Sam Manning, Todor Markov, Yaniv Markovski,474
Bianca Martin, Katie Mayer, Andrew Mayne,475

Bob McGrew, Scott Mayer McKinney, Christine 476
McLeavey, Paul McMillan, Jake McNeil, David 477
Medina, Aalok Mehta, Jacob Menick, Luke 478
Metz, Andrey Mishchenko, Pamela Mishkin, 479
Vinnie Monaco, Evan Morikawa, Daniel Moss- 480
ing, Tong Mu, Mira Murati, Oleg Murk, David 481
Mély, Ashvin Nair, Reiichiro Nakano, Ra- 482
jeev Nayak, Arvind Neelakantan, Richard Ngo, 483
Hyeonwoo Noh, Long Ouyang, Cullen O’Keefe, 484
Jakub Pachocki, Alex Paino, Joe Palermo, Ash- 485
ley Pantuliano, Giambattista Parascandolo, Joel 486
Parish, Emy Parparita, Alex Passos, Mikhail 487
Pavlov, Andrew Peng, Adam Perelman, Filipe 488
de Avila Belbute Peres, Michael Petrov, Hen- 489
rique Ponde de Oliveira Pinto, Michael, Poko- 490
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly 491
Powell, Alethea Power, Boris Power, Elizabeth 492
Proehl, Raul Puri, Alec Radford, Jack Rae, 493
Aditya Ramesh, Cameron Raymond, Francis 494
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, 495
Henri Roussez, Nick Ryder, Mario Saltarelli, 496
Ted Sanders, Shibani Santurkar, Girish Sas- 497
try, Heather Schmidt, David Schnurr, John 498
Schulman, Daniel Selsam, Kyla Sheppard, Toki 499
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav 500
Shyam, Szymon Sidor, Eric Sigler, Maddie 501
Simens, Jordan Sitkin, Katarina Slama, Ian 502
Sohl, Benjamin Sokolowsky, Yang Song, Natalie 503
Staudacher, Felipe Petroski Such, Natalie Sum- 504
mers, Ilya Sutskever, Jie Tang, Nikolas Tezak, 505
Madeleine B. Thompson, Phil Tillet, Amin 506
Tootoonchian, Elizabeth Tseng, Preston Tuggle, 507
Nick Turley, Jerry Tworek, Juan Felipe Cerón 508
Uribe, Andrea Vallone, Arun Vijayvergiya, 509
Chelsea Voss, Carroll Wainwright, Justin Jay 510
Wang, Alvin Wang, Ben Wang, Jonathan 511
Ward, Jason Wei, CJ Weinmann, Akila Weli- 512
hinda, Peter Welinder, Jiayi Weng, Lilian Weng, 513
Matt Wiethoff, Dave Willner, Clemens Winter, 514
Samuel Wolrich, Hannah Wong, Lauren Work- 515
man, Sherwin Wu, Jeff Wu, Michael Wu, Kai 516
Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming 517
Yuan, Wojciech Zaremba, Rowan Zellers, Chong 518
Zhang, Marvin Zhang, Shengjia Zhao, Tian- 519
hao Zheng, Juntang Zhuang, William Zhuk, and 520
Barret Zoph. 2024. GPT-4 Technical Report. 521
arXiv:2303.08774 522

Hugo Touvron, Thibaut Lavril, Gautier Izac- 523
ard, Xavier Martinet, Marie-Anne Lachaux, 524
Timothée Lacroix, Baptiste Rozière, Naman 525
Goyal, Eric Hambro, Faisal Azhar, Aurelien 526
Rodriguez, Armand Joulin, Edouard Grave, 527
and Guillaume Lample. 2023. LLaMA: Open 528
and Efficient Foundation Language Models. 529
arXiv:cs.CL/2302.13971 530

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc 531
Le, Ed Chi, Sharan Narang, Aakanksha Chowd- 532
hery, and Denny Zhou. 2023. Self-Consistency 533
Improves Chain of Thought Reasoning in Lan- 534
guage Models. arXiv:cs.CL/2203.11171 535

Jason Wei, Xuezhi Wang, Dale Schuurmans, 536

6

Maarten Bosma, brian ichter, Fei Xia, Ed Chi,537
Quoc V Le, and Denny Zhou. 2022. Chain-538
of-Thought Prompting Elicits Reasoning in539
Large Language Models. In Advances in Neural540
Information Processing Systems, S. Koyejo,541
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho,542
and A. Oh (Eds.), Vol. 35. Curran Associates,543
Inc., 24824–24837. https://proceedings.544
neurips.cc/paper_files/paper/2022/file/545
9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.546
pdf547

Li Zhong and Zilong Wang. 2023. Can ChatGPT548
replace StackOverflow? A Study on Robustness549
and Reliability of Large Language Model Code550
Generation. arXiv:cs.CL/2308.10335551

7

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

A Appendix552

Figure 6: Shallow Edit Suggestion.5

Figure 7: Functional Behavior Discussion.6

5https://github.com/scummvm/scummvm/pull/2347#discussion r445103384
6https://github.com/CleverRaven/Cataclysm-DDA/pull/18691#discussion r82533193
7The prompt used in our technique uses Corporate internal code review comments. To share the prompt, comments are substituted with

open source code reviews from Github. We attempt to find substitutions which are similar to our Corporate code based prompt.

8

Figure 8: Incorrect GPT Response: Logic Error. The model recognized that the flags check for opposite
conditions but failed to deduce that the inverse of one flag is equivalent to the other.

9

Figure 9: Incorrect GPT Response: Missing Context. The model was unable to determine if the expression
could be less than or equal to zero as it did not have access to the function definition.

10

Figure 10: Incorrect GPT Response: Incorrect C++ knowledge. The model incorrectly responded Yes.
In particular, the model was incorrect that without using std::make pair, a compile error may occur.

Given the following code , {QUESTION}
{SURROUNDING_FUNCTION}

Figure 11: Prompt to GPT-4 for CRQBench evaluation.

11

You are a senior , expert C/C++ programmer with a lot of experience analyzing C/C
++ code.

Given a C/C++ line comment:

{COMMENT}

associated with this line of code:

‘‘‘
{CODE_SEGMENT}
‘‘‘

please determine which of the following categories best classifies that
line comment:

1. unknown: unknown
2. reasoning: a code reasoning question such as requiring control -flow or value

propagation
3. explanation: a question asking what the code does
4. structure: request to reorganize or refactor code , such as extracting classes

or methods
5. planning: prioritization , planning , or choosing what to work on next
6. style: a code style , or readability question including things like renaming

symbols
7. format: a comment or question about code formatting

and provide an explanation of why that comment should be in that specific
category.

If you are uncertain about the category , respond with "0".

Generate your output in YAML format like this:

Explanation: <why you chose a specific category >
Line comment category: <category >

Response:
‘‘‘yaml

Figure 12: Code Reasoning Classifier Prompt.

12

You are an expert software engineer , asked to determine whether or not a
reviewer comment is about substituting code.

Here are some examples.

Example 1:

LINE_COMMENT:
‘‘‘
also check if the tf example is empty?
‘‘‘

1. No.

Example 2:

LINE_COMMENT:
‘‘‘
This stores a pointer to a temporary object. This pointer becomes invalid right

after this statement. I suggest you initialise it with a ‘nullptr ‘ and check
for that.

’’’

1. No.

Example 3:

LINE_COMMENT:
‘‘‘
Please use stolen(fduri) instead of hardcoding 5
’’’

1. Yes.

Example 4:

LINE_COMMENT:
‘‘‘
The copy of a single int (previous type of fg , bg) is fine here , however copying

the vector is not good. Use a const reference instead.
’’’

1. Yes.

Example 5:

LINE_COMMENT:
‘‘‘
{COMMENT}
’’’

1.

Figure 13: Query Type Classifier Prompt.7

13

You are an expert C++ coder and know how to review C++ code at a Corporation ,
and how to

respond to reviewer comments.
In the code below , a reviewer has left a comment marked by LINE_COMMENT.

Code:
‘‘‘
{CODE_SEGMENT_WITH_COMMENT}
’’’

The comment is asking to consider the following original code and modified code:

Figure 14: Edit Generator Prompt.

14

You are an expert C++ coder and know how to review C++ code at a Corporation ,
and how to respond to reviewer comments. In the code below , a reviewer has
left a comment marked by LINE_COMMENT.

Please answer the following question.
1. Can you please list the relevant program expression?

Here are some examples.
Example 1:

Code:
‘‘‘
int comfort = 0;
comfort_response_t comfort_response;
comfort_response.aid = &item("null");
[*] [LINE_COMMENT] This stores a pointer to a temporary object. This pointer

becomes invalid right after this statement. I suggest you initialise it with
a nullptr and check for that.

bool plantsleep = has_trait(trait_CHLOROMORPH);
bool fungaloid_cosplay = has_trait(trait_M_SKIN3);
bool websleep = has_trait(trait_WEB_WALKER);
‘‘‘

LINE_COMMENT: This stores a pointer to a temporary object. This pointer becomes
invalid right after this statement. I suggest you initialise it with a
nullptr and check for that.

1. comfort_response.aid

Example 2:

Code:
‘‘‘
Value *Arg = Call ->getArgOperand (0);
Value *LoweredArg = getLoweredByValOperand(Arg , Builder);
for (Value *A : Call ->arg_operands ()) {

DXASSERT(A == Arg , "oops");
[*] [LINE_COMMENT] how could A be different unless there ’s a fundamental problem

with operand iteration or something?
}
HLModule :: MarkPreciseAttributeOnValWithFunctionCall(LoweredArg , Builder , *

m_pModule);
addToDeadInsts(Call);
’’’

LINE_COMMENT: how could A be different unless there ’s a fundamental problem with
operand iteration or something?

1. A

Example 3:

Code:
‘‘‘
{CODE_SEGMENT_WITH_COMMENT}
’’’

LINE_COMMENT: {COMMENT}

Figure 15: Expression Extractor Prompt.7

15

Can you please rephrase a reviewer LINE_COMMENT that suggests the following code
change? The rephrased comment should include program elements. Here are a

few examples.

Example 1:
Before:
‘‘‘
void gyroDataAnalyse(const gyroDev_t *gyroDev , biquadFilter_t *notchFilterDyn) {

static FAST_RAM float fftAcc[XYZ_AXIS_COUNT] = {0, 0, 0};
static FAST_RAM uint32_t fftAccCount = 0;

‘‘‘
After:
‘‘‘
void gyroDataAnalyse(const gyroDev_t *gyroDev , biquadFilter_t *notchFilterDyn) {

static FAST_RAM float fftAcc[XYZ_AXIS_COUNT];
static FAST_RAM uint32_t fftAccCount = 0;

‘‘‘
[*] [LINE_COMMENT] Zero -initialized by default as well.
Rephrased: Is there a difference between initializing fftAcc to {0, 0, 0} and

not initializing fftAcc?

Example 2:
Before:
‘‘‘
if (isIntegralType(iter.dtype (), false)) {

AT_DISPATCH_INTEGRAL_TYPES(iter.dtype (), "fmod_cpu", [&]() {
cpu_kernel(iter , [](scalar_t a, scalar_t b) -> scalar_t {

return std::fmod(a, b);
});

});
}

‘‘‘
After:
‘‘‘
if (isIntegralType(iter.dtype (), false)) {

AT_DISPATCH_INTEGRAL_TYPES(iter.dtype (), "fmod_cpu", [&]() {
cpu_kernel(iter , [](scalar_t a, scalar_t b) -> scalar_t {

return a % b;
});

});
}

‘‘‘
[*] [LINE_COMMENT] Should we use fmod or % here?
Rephrased: Is there a difference between computing the modulus of a and b using

std::fmod vs using the binary operator %?

Example 3:
Before:
‘‘‘
{BEFORE}
‘‘‘
After:
‘‘‘
{AFTER}
‘‘‘
[*] [LINE_COMMENT] {COMMENT}

Figure 16: Equiv Rewriter Prompt.7

16

You are an expert C++ coder and know how to review C++ code at a Corporation ,
and how to respond to reviewer comments.

A reviewer has left a comment marked by LINE_COMMENT.

Can you please rephrase the LINE_COMMENT as a question over program expressions?
The Question should start with the word "Can".

Here are some examples.

Example 1:

Comment:
‘‘‘
This stores a pointer to a temporary object. This pointer becomes invalid right

after this statement.
I suggest you initialise it with a nullptr and check for that.
‘‘‘

Program Expression: comfort_response.aid
Question: Is there a difference between initializing comfort_response.aid with &

item("null") as opposed to nullptr?

Example 2:

Comment:
‘‘‘
how could A be different unless there ’s a fundamental problem with operand

iteration or something?
‘‘‘

Program Expression: A
Question: Can A ever be equal to Arg?

Example 3:

Comment:
‘‘‘
{COMMENT}
‘‘‘

Program Expression: {EXPR}

Figure 17: Value Rewriter Prompt.7

You are an expert C++ coder and know how to review C++ code at a Corporation ,
and how to respond to reviewer comments.

In the code below , a reviewer has left a comment marked by LINE_COMMENT.

Code:
‘‘‘
{CODE}
‘‘‘

Given the LINE_COMMENT , answer the following question with YES or NO:
Does ‘‘‘{Q_C}‘‘‘ have the same meaning as the LINE_COMMENT?

Figure 18: Validator Prompt.

17

Interesting Keywords:

"except"

"segfault"

" fault"

"precondition"

"assumption"

"undefined behavior"

" ub "

"null",

"reach"

"ever be true"

"ever be false"

"branch taken"

"branch not taken"

"deref"

"reference"

Figure 19: Desirable Keywords for Positive Matching.

Uninteresting Keywords:

"test"

\nit"

\follow up"

\log a higher level"

"log a lower level"

"logging"

\naming"

\readability"

\TODO"

\description"

\comment"

"typo"

"clang"

"style guide"

\period"

"restructure"

"restructuring"

"refactor"

"move"

"offline"

"space"

"spacing"

Figure 20: Undesirable Keywords for Negative Matching.

18

Figure 21: Manual vs Cooperative LLM Curation approaches on Corporate Code Review Comments.

19

