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Abstract

The advancement of large language models001
(LLMs) has predominantly focused on high-002
resource languages, leaving low-resource lan-003
guages, such as those in the Finno-Ugric fam-004
ily, significantly underrepresented. This paper005
addresses this gap by focusing on Võro, Livo-006
nian, and Komi. We cover almost the entire007
cycle of LLM creation, from data collection to008
instruction tuning and evaluation. Our contri-009
butions include developing multilingual base010
and instruction-tuned models; creating evalua-011
tion benchmarks, including the SMUGRI-MT-012
BENCH multi-turn conversational benchmark;013
and conducting human evaluation. We intend014
for this work to promote linguistic diversity,015
ensuring that lesser-resourced languages can016
benefit from advancements in NLP.017

1 Introduction018

The development of large language models (LLMs;019

OpenAI et al., 2024; Touvron et al., 2023, etc)020

has primarily focused on widely spoken languages,021

leaving low-resource languages with minimal sup-022

port. Potential causes for this are not only ex-023

tremely limited amounts of training data but also024

the lack of evaluation benchmarks and low numbers025

of speakers. Therefore, merely developing training026

methods for low-resource settings is insufficient for027

low-resource languages to benefit. Initiative from028

the community is also needed to draw attention029

to the lack of NLP tools for their languages and030

to support the creation of the tools, datasets and031

benchmarks (Orife et al., 2020).032

In this work, we focus on LLM development for033

low-resource Finno-Ugric languages (SMUGRI1).034

Aside from the progress in machine translation035

(Yankovskaya et al., 2023; Rikters et al., 2022;036

Tars et al., 2022, 2021), most of these languages037

1Finno-Ugric translates to Estonian as soome-ugri, to
Finnish as suomalais-ugrilaiset, to Võro as soomõ-ugri, and
to Livonian as sūomõ-ugrõ, hence we refer to it as SMUGRI.

class script code speakers

Livonian 0 Latin liv 40
Võro 1 Latin vro 100K
Komi 1 Cyrillic kpv 100K

Finno-Ugric support languages

Estonian 3 Latin et 1.1M
Finnish 4 Latin fi 5M

Table 1: Language statistics of Finno-Ugric languages
covered in this work. The first column (class) is a lan-
guage classification according to Joshi et al. (2020) in-
dicating the amount of resources available for that lan-
guage and ranging from 0 to 5.

have not yet benefited from the rapid advance- 038

ment of NLP technologies, although the advan- 039

tages of pretraining models have led to methods 040

that achieve high-quality results even in limited- 041

resource settings. We cover the full pipeline of 042

LLM creation for three low-resource Finno-Ugric 043

languages: Võro, Livonian, and Komi (see Fig- 044

ure 1). We report our experience with every step, 045

including collecting and processing training data, 046

designing training methodologies and training mod- 047

els, creating benchmarks to evaluate the resulting 048

models and running manual evaluation. Thus our 049

contributions are: 050

1. a study and experimental results of pre- 051

training and instruction-tuning strategies ap- 052

plicable in low-resource settings, result- 053

ing in open-source, multilingual base and 054

instruction-tuned models; 055

2. extension of the automatic evaluation bench- 056

marks Belebele (Bandarkar et al., 2023) and 057

SIB-200 (Adelani et al., 2024) to Komi, Livo- 058

nian, and Võro; 059

3. creation and release of a novel multi-turn con- 060

versational benchmark, titled SMUGRI-MT- 061

BENCH; using it to conduct a human evalua- 062

tion. 063
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2 Background and Related Work064

2.1 Low-resource Finno-Ugric Languages065

While all the languages covered in this paper be-066

long to the same Finno-Ugric language group, they067

vary in terms of scripts and resources available (see068

Table 1). Regarding resources, we refer not only to069

the size of the available corpora but also to the ease070

or difficulty of finding language speakers who can071

help create benchmarks and evaluate model out-072

puts. For instance, there is only around 40 speakers073

of Livonian (Ernštreits, 2019).074

Võro and Livonian belong to the smaller Balto-075

Finnic language group, spoken around the Baltic076

Sea. We will utilise the two higher-resourced077

languages in the group, Finnish and Estonian,078

as sources of cross-lingual transfer (or “support079

languages”) during pretraining to alleviate data080

scarcity. Due to the geographical location of the081

speakers, Livonian has been heavily influenced by082

Latvian, and Komi by Russian. Additionally, Komi083

speakers often know Russian, and Livonian speak-084

ers often know Latvian. Therefore, we will also085

use Latvian and Russian as supporting languages086

during pretraining.087

2.2 Multilingual LLMs088

Multilingual LLMs are a widely explored for ex-089

panding language coverage of LLMs. Traditional090

methods involve training models from scratch091

(Luukkonen et al., 2024, 2023; Wei et al., 2023;092

Kudugunta et al., 2023). However, the approach093

of adapting pre-trained English-centric models094

to other languages by continued pre-training has095

also shown promising results on various languages096

(Csaki et al., 2024; Dou et al., 2024; Rijgersberg097

and Lucassen, 2023; Lin et al., 2024; Andersland,098

2024; Basile et al., 2023; Owen et al., 2024; Cui099

et al., 2024; Cui and Yao, 2024; Zhao et al., 2024).100

The closest work to ours is from Kuulmets et al.101

(2024), who adapted Llama-2 7B to Estonian.102

The development of multilingual LLMs involves103

techniques that often improve the model’s quality.104

For example, one common practice is incorporating105

parallel data into the pre-training phase (Luukko-106

nen et al., 2024; Owen et al., 2024; Wei et al., 2023).107

Another technique is curriculum learning applied108

by Wei et al. (2023).109

2.3 Instruction Tuning110

Previous works have also explored a variety of tech-111

niques for using cross-lingual instruction-tuning112

(Li et al., 2023; Zhu et al., 2023; Zhang et al., 2024; 113

Chai et al., 2024; Ranaldi and Pucci, 2023; Chen 114

et al., 2023). Zhang et al. (2024) creates model 115

answers to instructions in a high-resource/high- 116

quality language, which are then translated and 117

code-switched. Mixing translation data during 118

instruction-tuning has also been widely explored 119

(Cui et al., 2024; Kuulmets et al., 2024; Zhu et al., 120

2023; Zhang et al., 2024; Ranaldi and Pucci, 2023; 121

Chen et al., 2023). Kuulmets et al. (2024) also find 122

that using a diverse set of instructions in English 123

can increase performance in Estonian tasks. 124

2.4 Evaluation 125

Common approaches for evaluating the multilin- 126

gual capabilities of generative LLMs include using 127

existing cross-lingual benchmarks (Ahuja et al., 128

2023a,b) or translating English benchmarks into 129

target languages, either through machine trans- 130

lation (Lai et al., 2023) or manually (Shi et al., 131

2022). However, extending the evaluation of con- 132

versational capabilities to other languages is more 133

complex as the gold standard involves using hu- 134

man annotators (Touvron et al., 2023). Human 135

annotators are required for both the recently pop- 136

ularized method of ranking models using the Elo 137

rating system (Zheng et al., 2024) and the more 138

traditional method of pairwise comparison of an- 139

swers from different models to predefined prompts 140

(Zheng et al., 2024; Touvron et al., 2023). 141

An alternative line of related work explores 142

LLM-judges as potential replacements for human 143

annotators (Zheng et al., 2024; Kim et al., 2023, 144

2024). While it has been shown that strong LLMs 145

can substitute human annotators for English, it is 146

unclear to what extent such capabilities extend 147

to non-English languages. Hada et al. (2024) 148

study this question across eight very high and high 149

resource non-English languages, finding a bias 150

in GPT-4-based evaluators towards higher scores, 151

which highlights the need for calibration. To the 152

best of our knowledge, the behaviour of LLM- 153

judges on low-resource languages, including Finno- 154

Ugric languages, has not been systematically stud- 155

ied. 156

3 Experiments 157

3.1 Training datasets 158

We utilize CulturaX (Nguyen et al., 2023) to con- 159

tinue pre-training the base model on high-resource 160

languages. The Komi documents are sourced from 161

2



FU-LAB’s Komi corpus2. The Livonian dataset162

consists of sentence-level data from Rikters et al.163

(2022). Our Võro dataset is compiled from vari-164

ous pre-existing corpora as well as data we have165

crawled. A more detailed overview can be found166

in Appendix G.167

The parallel data used during pretraining is168

collected for translation directions that involve169

Võro, Komi, and Livonian and is sourced from170

Yankovskaya et al. (2023); Rikters et al. (2022);171

Tars et al. (2022, 2021) (see Table 16).172

Lang Characters Docs Sampled Characters

Stage 1 Stage 2 Total Ratio

LIV 2.6M no - 10.3M 10.3M 4.00
VRO 14.0M yes - 56.1M 56.1M 4.00
KPV 578.9M yes - 1.4B 1.4B 2.48
LV 27.8B yes 3.0B 300.0M 3.3B 0.12
ET 32.6B yes 8.2B 300.0M 8.5B 0.26
FI 114.0B yes 7.6B 300.0M 7.9B 0.07
RU >1T yes 2.7B 300.0M 3.0B <0.01
EN >1T yes 2.7B 300.0M 3.0B <0.01

Table 2: Training dataset composition. Docs - yes if the
dataset is document level, no if sentence-level.

3.2 Continued Pre-training173

We take the approach of adapting English-centric174

Llama-2 7B (Touvron et al., 2023) to our chosen175

target languages through full fine-tuning. Due to176

computational budget limitations, we opt for a two-177

stage training approach where we first continue pre-178

training on high-resource Finno-Ugric languages179

along with other related supporting languages (see180

§2.1) and only during the second phase teach the181

model low-resource target languages. The training182

hyperparameters are listed in Appendix D.183

Stage 1: learning supporting languages. As184

a first step, we continue pre-training of Llama-2185

7B (Touvron et al., 2023) on high-resource Finno-186

Ugric languages and supporting languages. We set187

the training budget at 10B tokens and sample doc-188

uments from Estonian, Finnish, English, Latvian,189

and Russian Culturax with 32%, 32%, 12%, 12%,190

12% probability of choosing the document from191

the respective language.192

Stage 2: learning low-resource Finno-Ugric193

languages. The second stage of continued pre-194

training aims to enhance understanding and gener-195

ative capabilities for low-resource languages. We196

employ a character-based budget to achieve a bal-197

anced representation of languages in the training198

2http://wiki.fu-lab.ru/index.php/Электронная_
база_коми_текстов

dataset. This budget is set at 3 billion charac- 199

ters, with 50% allocated to sampling Võro, Komi, 200

and Livonian using Unimax with N=4 (Chung 201

et al., 2023), and the remaining 50% uniformly dis- 202

tributed among the supporting languages to main- 203

tain the quality achieved in Stage 1. We chose 204

the N value according to held-out validation set 205

perplexity (see Table 12 in Appendix E). 206

We also investigate the role of parallel trans- 207

lation examples by formatting them into various 208

templates and using them during this stage of pre- 209

training. Specifically, we add translation examples 210

up to 1% of the Stage 2 character budget (30M) and 211

use Unimax N=1 to balance the budget between 212

language pairs (see Table 16). We refer to it as 213

Stage 2 + parallel. 214

3.3 Instruction Tuning 215

We utilize existing instruction-tuning datasets 216

across multiple languages. For English, Russian, 217

and Finnish, we use Aya (Singh et al., 2024), and 218

the highest-rated conversation paths of OASST-2 219

(Köpf et al., 2023) in these languages. Kuulmets 220

et al. (2024) showed improved cross-lingual knowl- 221

edge transfer from using an additional set of high- 222

quality English instructions. We sample 5,000 such 223

instructions from FLAN-V2 (Longpre et al., 2023) 224

TULU mixture (Wang et al., 2023) and 20,000 ex- 225

amples from Alpaca-GPT-4 (Peng et al., 2023). Ad- 226

ditional 20,000 Estonian instructions are sampled 227

from Alpaca-est (Kuulmets et al., 2024). We refer 228

to the data mixture of the aforementioned sources 229

as Inst. 230

We create instruction datasets for the target lan- 231

guages by translating 1000 examples per language 232

from Alpaca-style instruction datasets into low- 233

resource Finno-Ugric languages. An external sys- 234

tem Neurotõlge3 (Yankovskaya et al., 2023) is 235

used as a translator. While Võro and Livonian are 236

translated from Alpaca-est (Kuulmets et al., 2024), 237

Komi is obtained by first translating Alpaca-GPT-4 238

(Peng et al., 2023) with GPT-3.5-turbo into Rus- 239

sian and then with Neurotõlge into Komi. We refer 240

to this dataset as TrAlpaca. 241

To investigate a scenario where a translation 242

model is not available, we additionally explore 243

handling low-resource translation directions with 244

our LLM tuned for the translation task (discussed 245

in §I). We found that LLM-based models unpre- 246

dictably leave sentences untranslated. Therefore, 247

3https://neurotolge.ee/

3

http://wiki.fu-lab.ru/index.php/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%B1%D0%B0%D0%B7%D0%B0_%D0%BA%D0%BE%D0%BC%D0%B8_%D1%82%D0%B5%D0%BA%D1%81%D1%82%D0%BE%D0%B2
http://wiki.fu-lab.ru/index.php/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%BD%D0%BD%D0%B0%D1%8F_%D0%B1%D0%B0%D0%B7%D0%B0_%D0%BA%D0%BE%D0%BC%D0%B8_%D1%82%D0%B5%D0%BA%D1%81%D1%82%D0%BE%D0%B2


we removed examples where the BLEU score is248

greater than 70 between the original and translated249

text. This also removes some valid examples, since250

sometimes a text can be the same in both languages.251

We refer to this dataset as LLMTrAlpaca.252

Finally, we explore augmenting the general in-253

structions with translation task instructions to/from254

Võro, Livonian, and Komi – 250 examples per di-255

rection from sources listed in §3.1 (see Table 16).256

We refer to this dataset as TrInst.257

Instruction tuning examples are formatted into a258

multi-turn conversational format (see Figure 6).259

Benchmark Size Type

Belebele-SMUGRI (ours) 127 multi-choice QA
SIB-SMUGRI (ours) 125 topic classification
FLORES-SMUGRI (Yankovskaya et al., 2023) 250 translation
MT-bench-SMUGRI (ours) 80 multi-turn questions

Table 3: Test benchmarks created or extended for Komi,
Võro, and Livonian. SIB-SMUGRI additionally in-
cludes 30 validation examples.

3.4 Training on Parallel Data260

One potential bottleneck of our approach is the low261

quality of machine translation when translating in-262

structions to the low-resource SMUGRI languages.263

However, adapting general-purpose LLMs to the264

machine translation task yields competitive results265

with dedicated MT systems (Xu et al., 2023; Kuul-266

mets et al., 2024). Therefore, we fine-tune our base267

model on available translation data (see §3.1) by268

sampling up to 100,000 sentence pairs from each269

language pair (see Table 16). We call this configu-270

ration TrTuning.271

In preliminary experiments, we noticed that the272

model sometimes struggles with multi-line or multi-273

sentence inputs, which is crucial for translating in-274

structions as they include entire texts from Alpaca-275

style examples for accurate translation. To address276

this, we trained a model where 50% of the train-277

ing data consists of 2–6 concatenated sentences,278

while the rest are single sentences. We refer to this279

configuration asTrTuningConcat.280

4 Benchmarks281

4.1 Automatic Evaluation282

Our automatic evaluation heavily relies on283

FLORES-200 benchmark (NLLB-Team et al.,284

2022; Goyal et al., 2022), an extensive multilingual285

dataset designed for evaluating machine translation.286

Notably, the first 250 sentences have already been287

translated into several Finno-Ugric languages by 288

Yankovskaya et al. (2023). Building on FLORES- 289

200 we extend benchmarks like topic classifica- 290

tion benchmark SIB-200 (Adelani et al., 2024) 291

and multiple-choice QA dataset Belebele (Ban- 292

darkar et al., 2023) to Livonian, Võro and Komi. 293

We align Finno-Ugric translations by Yankovskaya 294

et al. (2023) with sentences and topics in SIB-200 295

and paragraphs, questions and answers in Belebele. 296

To ensure the high quality of the benchmark, we 297

manually translate questions and answer choices 298

into the target languages since FLORES-200 does 299

not contain them. Table 3 shows the details of all 300

evaluation benchmarks. 301

We also report byte-level perplexity of base mod- 302

els on held-out validation data, sampled from the 303

same corpora as the training examples (see Ta- 304

ble 13). Further evaluation details will be described 305

in Appendix F. 306

4.2 Multi-turn Conversational Benchmark 307

4.2.1 Requirements and Limitations 308

The easiest and most likely way for speakers 309

of low-resource Finno-Ugric languages to bene- 310

fit from LLMs is through interaction via a chat- 311

like interface. Our novel Finno-Ugric bench- 312

mark is designed to cover the real-life use cases 313

of low-resource Finno-Ugric LLM. Consequently, 314

our evaluation benchmark should consist of user 315

prompts similar to real-life queries. Another bene- 316

fit of real-life data is that it helps quickly reveal the 317

model’s usefulness in practical scenarios, which 318

standard NLP benchmarks typically do not cover. 319

It also helps to identify potential weaknesses of the 320

model in real-life situations. 321

However, usefulness is a vague term as it de- 322

pends on the specific use case of the user and is, 323

therefore, difficult to measure. During the training 324

of LLM-based assistants, usefulness is indirectly 325

optimized with RLHF (Ouyang et al., 2022) that 326

rewards model outputs with high helpfulness and 327

safety scores as determined by the reward model 328

(Touvron et al., 2023). During evaluation, the mod- 329

els are ranked using a pairwise comparison, where 330

human annotators are asked to select a better re- 331

sponse (more helpful, safe, and honest) from two 332

model responses (Touvron et al., 2023). 333

One danger of pairwise comparison is the poten- 334

tial for many ties between the two models. This 335

could indicate that the models have very similar out- 336

put quality or that the evaluation prompts are too 337
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trivial to differentiate between them. Zheng et al.338

(2023) show that challenging prompts from real-339

life conversations reveal larger performance gaps340

between different models compared to a manually341

designed benchmark of high-quality challenging342

questions.343

The chosen low-resource Finno-Ugric languages344

impose a set of limitations on benchmarking LLMs345

(see §2.1). Firstly, creating high-quality bench-346

marks for these languages is tricky. They cannot be347

obtained through machine translation from other348

languages, as the machine translation systems for349

these languages are too weak. Additionally, hir-350

ing professional translators is difficult due to the351

scarcity or absence of individuals experienced in352

translating these languages, particularly when the353

languages are not officially recognized.354

Secondly, a key requirements for the benchmark355

is that it should comprise questions that are chal-356

lenging for language models. However, such ques-357

tions are often challenging for humans as well, re-358

quiring expert-level knowledge in various domains.359

For example, Zheng et al. (2024) uses graduate360

students as labelers, considering them more knowl-361

edgeable than average crowd workers. Fnding hu-362

man annotators who are both speakers of the tar-363

get language and knowledgeable enough to judge364

answers to expert-level questions is a significant365

challenge.366

Taking into account the expectations and limita-367

tions set and discussed above, we list the require-368

ments for the benchmark of low-resource Finno-369

Ugric languages:370

• translating it to a new language should be fea-371

sible both content-wise and time-wise for non-372

professional translators;373

• answering questions should not require expert374

knowledge, as expert annotators can not be375

used;376

• questions should cover real-life usage scenar-377

ios to reflect real-life usefulness;378

• questions should be challenging enough for379

LLMs to differentiate the models accurately.380

4.2.2 Initial Dataset Collection381

We manually collect the initial dataset from382

LMSYS-Chat-1M (Zheng et al., 2023), which con-383

sists of real-world user interactions with LLMs.384

First, we extract all two-turn English conversa-385

tions that have not been redacted or flagged by386

OpenAI moderation API. We only allow conver- 387

sations with user prompts no longer than 50 to- 388

kens to ease the translation process. We then use 389

all-MiniLM-L12-v2 model from SentenceTrans- 390

formers (Reimers and Gurevych, 2019) to compute 391

the sentence embedding and apply fast clustering 392

implemented in sentence-transformers which 393

finds local groups of texts that are highly simi- 394

lar. We manually examine a few examples from 395

each cluster and pick user prompts that fill the cri- 396

teria specified in §4.2.1. Finally, we remove the 397

observed clusters from the dataset and recluster 398

the remaining examples with a smaller similarity 399

threshold until we had collected 248 multi-turn 400

conversations in total. 401

4.2.3 Finalising the Dataset 402

general reasoning maths writing total

questions 20 20 20 20 80
follow-ups 14 8 11 9 42

Table 4: Statistics of human evaluation dataset.

We organize conversations into four categories: 403

math, reasoning, writing, and general. As we 404

wanted the final dataset to consist of 80 questions 405

(similar to Zheng et al. (2024)) — 20 from each 406

category (potentially with follow-ups) — the initial 407

dataset had to be filtered. For that purpose, we 408

asked GPT-4 to rate the difficulty of each question 409

as was done by Zheng et al. (2023). However, we 410

observed no correlation between the difficulty of 411

the question and the quality of the answer given 412

by ChatGPT when quality was assessed by GPT-4 413

(see Appendix A for more details). Therefore, the 414

final dataset was also picked manually by removing 415

near duplicate questions and — after looking at the 416

generated answers — also questions where judg- 417

ing the answer still seemed to require too specific 418

knowledge. The statistics of the dataset are shown 419

in Figure 4. The final dataset was translated to the 420

target languages by non-professional translators 421

who could speak the language at the native level. 422

The translators were asked to preserve any infor- 423

mality of the text in the translations, e.g. missing 424

uppercase and punctuation. 425

5 Results 426

5.1 Pre-training 427

Stage 1 pre-training on supporting high-resource 428

languages demonstrates visible improvements in 429
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Model
SIB-SMUGRI BELEBELE-SMUGRI FLORES-SMUGRI byte-PPL

5-shot, acc 3-shot, acc 5-shot, BLEU

VRO LIV KPV VRO LIV KPV ET-VRO ET-LIV RU-KPV VRO LIV KPV

Llammas-base 78.4 ± 3.7 69.6 ± 4.1 64.0 ± 4.3 30.7 ± 4.1 28.4 ± 4.0 32.3 ± 4.2 10.0 4.0 1.7 3.3548 12.1081 3.1959
Llama-2-7B 57.6 ± 4.4 60.0 ± 4.4 58.4 ± 4.4 29.1 ± 4.1 29.9 ± 4.1 36.2 ± 4.3 10.5 4.4 2.5 6.1528 14.8055 3.1198

Stage 1 80.8 ± 3.5 75.2 ± 3.9 65.6 ± 4.3 32.3 ± 4.2 26.8 ± 3.9 26.0 ± 3.9 10.3 3.6 2.4 3.4895 11.4210 3.1341
Stage 2 78.4 ± 3.7 65.6 ± 4.3 74.4 ± 3.9 31.5 ± 4.1 26.0 ± 3.9 28.4 ± 4.0 22.1 3.5 12.3 2.1885 3.8351 1.4055
Stage 2 + parallel 84.0 ± 3.3 66.4 ± 4.2 76.8 ± 3.8 35.4 ± 4.3 27.6 ± 4.0 29.1 ± 4.1 23.7 4.5 14.5 2.1837 3.7615 1.4050

Table 5: Pre-training results for low-resource Finno-Ugric languages. Standard errors are reported for the scores
(score ± stderr). Stage 2 + parallel incorporates additional parallel translation data into training. For comparison,
we report GPT-models and Llammas-base (Kuulmets et al., 2024).

SIB-200 and perplexity (Võro, Livonian, Komi)430

compared to the Llama-2-7B model (see Stage 1 in431

Table 5). This indicates that there are benefits from432

similar languages even when low-resource SMUGRI433

languages are not directly seen during training.434

Stage 2 pre-training focusing on low-resource435

Finno-Ugric languages further improves both per-436

plexity and FLORES-200 scores, suggesting the437

model has learned generative capabilities for SMU-438

GRI languages. The performance gains on the SIB-439

200 benchmark are modest for Komi and Võro, and440

there is a decrease for Livonian. Belebele scores re-441

main unchanged from those of Llama-2-7B, except442

Võro, which shows improvement.443

Incorporating parallel translation data (1%444

of the training budget) into the stage 2 pre-training445

yields minimal improvements in benchmark perfor-446

mance and byte-perplexity (Stage 2 + parallel in447

Table 5). Either the impact of including this data is448

minimal, or our benchmarks are too limited to show449

it sufficiently. Given a slightly positive impact of450

the parallel data, we will use Stage 2 + parallel451

as a foundation for subsequent instruction-tuning.452

It is possible that the available benchmarks are453

not ideal at discriminating between models at this454

stage. This could be the case for multiple reasons.455

It is possible that the model can choose the correct456

answer from clues in the text that do not require un-457

derstanding the language well. Furthermore, judg-458

ing by the low scores, Belebele questions might be459

sometimes too difficult for the models to answer.460

Finally, our benchmarks are very small and the stan-461

dard errors are too high to make confident choices462

about fine-grained model differences. Therefore463

these benchmarks are only suitable to make more464

general claims about the models’ capabilites.465

5.2 Instruction-Tuned Models466

Looking at the scores of commercial systems in Ta-467

ble 6, it is visible that they have at least some level468

of understanding of Võro, Livonian, and Komi. 469

Judging by benchmark scores, they seem to un- 470

derstand Võro and Livonian the best. A possible 471

explanation is that the languages are very similar to 472

Estonian - an average Estonian speaker will under- 473

stand most of a Võro text and some of a Livonian 474

text but not much Komi since it is more distant and 475

in a different script. The scores of these languages’ 476

benchmarks on GPT-4-Turbo and GPT-3.5-Turbo 477

are primarily in this order as well. For example, 478

since GPT-4-turbo achieves 92% accuracy on Bele- 479

bele Estonian, it is not surprising that Võro also 480

achieves a high score. 481

Our models show comparable performance to 482

GPT-3.5-Turbo on Võro and Livonian, and slightly 483

better performance on Komi. However, GPT-4- 484

Turbo significantly outperforms our models on 485

Võro and matches our performance on Livonian 486

and Komi. 487

On the SIB benchmark, a similar pattern 488

emerges: our models surpass GPT-4-Turbo on Livo- 489

nian and Komi but fall short on Võro. Meanwhile, 490

GPT-3.5-Turbo consistently scores lower across all 491

low-resource languages. 492

When examining our trained models, the differ- 493

ent instruction-tuning strategies yield similar re- 494

sults. Due to the small size of our benchmarks and 495

the resulting high standard errors, we cannot draw 496

definitive conclusions about the best strategy. 497

LLM-translated instructions. Automatic met- 498

rics show that instructions translated with our 499

translation-tuned LLM provide similar results to 500

translations obtained with an external system (Neu- 501

rotõlge). Unfortunately, there is not enough con- 502

fidence or clarity in the results to indicate a clear 503

preference in one method or another. These results 504

demonstrate that even when external translation 505

systems are unavailable the translation-tuned LLM 506

can be used. 507

Does augmenting the data with translation 508
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Model
BELEBELE-SMUGRI SIB-SMUGRI

0-shot, acc 5-shot, acc

VRO LIV KPV VRO LIV KPV

GPT-3.5-turbo 45.7 ± 4.4 37.8 ± 4.3 34.6 ± 4.2 81.6 ± 3.5 73.6 ± 4.0 68.8 ± 4.2
GPT-4-turbo 70.1 ± 4.1 40.2 ± 4.3 44.1 ± 4.4 92.0 ± 2.5 72.0 ± 4.0 67.2 ± 4.2
Llammas (Kuulmets et al., 2024) 36.2 ± 4.3 32.3 ± 4.2 27.6 ± 4.0 80.8 ± 3.5 78.4 ± 3.7 63.2 ± 4.3

Ours:
Inst 42.5 ± 4.4 30.7 ± 4.1 44.1 ± 4.4 86.4 ± 3.1 79.2 ± 3.6 88.8 ± 2.8
Inst+LLMTrAlpaca 39.4 ± 4.3 35.4 ± 4.3 42.5 ± 4.4 85.6 ± 3.1 81.6 ± 3.5 84.8 ± 3.2
Inst+TrAlpaca 35.4 ± 4.2 32.3 ± 4.2 40.2 ± 4.3 85.6 ± 3.1 79.2 ± 3.6 85.6 ± 3.1
Inst+LLMTrAlpaca+TrInst 44.9 ± 4.4 40.9 ± 4.4 44.1 ± 4.4 86.4 ± 3.1 76.0 ± 3.8 78.4 ± 3.7
Inst+TrAlpaca+TrInst 45.7 ± 4.4 32.3 ± 4.2 44.1 ± 4.4 86.4 ± 3.1 78.4 ± 3.7 78.4 ± 3.7

Table 6: Instruction-tuning evaluation results. Standard errors are reported for the scores (score ± stderr).

instructions improve the results? Incorporating509

a small amount of translation instructions (250 for510

each Võro, Komi, and Livonian direction) does not511

yield a clear and consistent improvement across dis-512

riminative benchmarks (see Table 6). On the other513

hand we see a substantial increase in the translation514

benchmark in Table 7.515

Translation abilities. Judging language genera-516

tion abilities by the FLORES translation bench-517

mark, results in Table 7 demonstrate that GPT-518

models can translate from Estonian to Võro quite519

well. This might indicate that they had Võro in520

their training data. The BLEU scores of Livonian521

and Komi are very low, suggesting almost nonexis-522

tent translation abilities. Our LLMs that have not523

seen translation examples as part of the instruction-524

tuning can not translate to the low-resource SMU-525

GRI languages. However, they are successful in526

translating in the opposite direction, even outper-527

forming GPT-models for Komi. A closer look re-528

veals that they copy the high-resource language529

sentences to the output. When the TrAlpaca and530

LLMTrAlpaca were added, we also observed that531

the models often copied the source text in these532

languages to the output when asked to translate,533

resulting in lower scores. This can be addressed by534

including a small amount of translation data during535

instruction-tuning or possibly few-shot prompting.536

5.3 Translation-tuning537

We compare our LLM-based translation models to538

Neurotõlge, which supports low-resource Finno-539

Ugric languages. Our translation-tuned models540

outperform Neurotõlge in the VRO-ET and ET-541

VRO translation directions (see Table 7). For ET-542

LIV and RU-KPV, our models achieve performance543

on par with Neurotõlge. However, when translat-544

ing from low-resource to high-resource languages545

(with the exception of Võro), our models fall short.546

In addition to regular fine-tuning with sentence547

pairs, we concatenate sentence examples into larger 548

sequences to enhance the model’s ability to trans- 549

late longer texts (TrTunedConcat). This approach 550

is particularly useful for translating instructions. 551

Notably, the concatenation of examples does not 552

compromise translation quality and increases train- 553

ing effectiveness in a similar way to packing. 554

5.4 Human evaluation 555

We pick 3 instruction-tuned models for human 556

evaluation: TrAlpaca, LLMTrAlpaca+TrInst and 557

TrAlpaca+TrInst. As a baseline we use GPT- 558

3.5-turbo, which can be freely accessed via a chat- 559

interface4. For each target language, we create a 560

survey where participants were asked to rate the 561

helpfulness of the answer from a randomly chosen 562

model in 5-point Likert scale. Additionally, we ask 563

participants to rate how natural the answer sounds 564

in the target language as Kuulmets et al. (2024) 565

reports that model outputs tend to sound unnatural 566

in the target language. The surveys were shared 567

within the communities of target language speakers 568

through social media and by directly reaching out 569

to the language speakers (see Appendix C for the 570

screenshot of the survey). We did not collect any 571

personal data from the respondents. 572

In addition to Võro, Liivi and Komi we gather 573

and present human evaluation data also for Esto- 574

nian as it is closely related to Võro and Liivi (see 575

§2.1) but at the same time is well-supported by 576

GPT-3.5-Turbo (Kuulmets et al., 2024). This gives 577

us a meaningful anchor point to compare our hu- 578

man evaluation results against. 579

The results reveal that our models underperform 580

in terms of helpfulness compared to GPT-3.5-Turbo 581

in Estonian, which is not surprising (Kuulmets 582

et al., 2024). For Võro, the disparity persists, with 583

our models still trailing behind. In the case of Võro 584

4https://chatgpt.com/
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Model VRO-ET ET-VRO LIV-ET ET-LIV KPV-RU RU-KPV

GPT-3.5-turbo 34.0 15.1 7.7 2.7 6.7 0.5
GPT-4-turbo 47.5 20.5 9.9 3.7 8.7 3.1

Neurotõlge 48.5 21.2 29.7 10.2 31.5 17.7

Instruction-tuned:
Inst 41.9 10.7 11.1 4.6 21.4 3.0
Inst+LLMTrAlpaca 23 10.8 9.2 4.6 13.5 2.9
Inst+TrAlpaca 16.8 10.6 9.7 4.7 17 3.2
Inst+LLMTrAlpaca+TrInst 47.7 21.2 20.6 6.2 20.9 16.4
Inst+TrAlpaca+TrInst 45.3 19.1 19.9 5.5 21.4 15.2

Trainslation-tuned:
TrTuning 50.5 29.2 24.0 10.0 23.4 17.3
TrTuningConcat 51.7 28.7 22.9 9.7 23.5 17.4

Table 7: BLEU scores on FLORES-SMUGRI (0-shot). Translations are generated with beam size 4 for our models.

ET VRO LIV KPV

surveys submitted 45 17 6 27
answers graded 1708 836 279 1306
grades per question 2.8 1.74 0.58 2.7

Table 8: Human evaluation data collection statistics.

Figure 1: Human evaluation scores for helpfulness.

and Livonian, the helpfulness scores of our models585

and GPT-3.5-turbo are comparable, whereas, for586

Komi, our system exceeds the commercial baseline.587

Although it is likely that variations in annotator ex-588

pectations for different languages affect individual589

language results, it is noteworthy that our mod-590

els consistently achieve similar helpfulness scores591

across various languages.592

In terms of the naturalness of responses, GPT-593

3.5-Turbo performs slightly better for Estonian;594

however, our models exhibit greater naturalness595

in all other languages, with the difference being596

particularly pronounced for Komi.597

Category-wise comparisons (see Appendix B)598

indicate that the scores of GPT-3.5-turbo are in-599

flated by maths and reasoning examples, where our600

models lag in helpfulness. However, our models601

perform comparably in the general and writing cat-602

egories. Notably, in Komi, our models outperform603

GPT-3.5-Turbo in general and writing tasks while604

Figure 2: Human evaluation scores for naturalness.

achieving similar scores in maths and reasoning 605

tasks. 606

When comparing models trained by us, no clear 607

ranking emerges, reinforcing the observations from 608

automatic benchmarks that incorporating transla- 609

tion instructions does not yield definitive benefits 610

and that there is no significant difference between 611

using LLM-translated instructions and those trans- 612

lated by an external system. 613

6 Conclusion 614

We adopted a comprehensive approach from data 615

collection to instruction-tuning and human evalua- 616

tion for three low-resource Finno-Ugric languages: 617

Võro, Livonian, and Komi. Our contributions in- 618

clude an exploration of pre-training and instruction- 619

tuning strategies, resulting in open-source multilin- 620

gual base and instruction-tuned models for these 621

languages. We extend the automatic evaluation 622

benchmarks Belebele and SIB-200 to Komi, Livo- 623

nian, and Võro and release a novel multi-turn con- 624

versational benchmark, SMUGRI-MT-BENCH. Hu- 625

man evaluation using SMUGRI-MT-BENCH shows 626

our models surpass GPT-3.5-Turbo in naturalness 627

and achieve higher helpfulness for Komi, with sim- 628

ilar levels for the other low-resource languages. 629
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Limitations630

There are several limitations that may affect the631

robustness and generalizability of our findings.632

Firstly, the automatic benchmarks used are small633

and exhibit high standard errors, making fine-634

grained comparisons difficult. This issue is com-635

pounded by our reliance on the FLORES-200636

dataset, which limits the scope of our evaluation637

to the specific topics and set of sentences it cov-638

ers. Furthermore, our automatic evaluation utilized639

only three tasks, which constrains the comprehen-640

siveness of our assessment. From these three, only641

one (translation) measured generative performance,642

as no other suitable benchmarks exist for these lan-643

guages. This narrow focus on translation might644

not fully capture the generative capabilities of the645

models across different tasks. However, human646

evaluation addresses these concerns to some extent,647

providing a more detailed and reliable assessment648

of the model’s quality in a multi-turn chat assistant649

scenario.650

Our emphasis on Finno-Ugric languages means651

that our findings might not apply to other language652

families, which could present different challenges653

or yield different results in a more diverse multilin-654

gual context. To address these limitations, future655

research should aim to develop larger and more di-656

verse benchmarks and apply similar methodologies657

to a broader range of low-resource languages to658

validate and extend our findings.659

Ethics Statement660

Our models have not been extensively tested for the661

generation of harmful content. Furthermore, we662

were unable to check the training and instruction-663

tuning data for harmful content due to their sheer664

volume. Thus, we can not guarantee the models’665

harmlessness and advise them to be used with this666

in mind only for research purposes. Furthermore,667

our models still make many mistakes when gener-668

ating the responses, and their output should not be669

considered an accurate representation of the low-670

resource languages without manual verification.671
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A Detecting Difficult Question with1091

LLMs1092

Zheng et al. (2023) uses GPT-3.5-Turbo to classify1093

whether the prompt is a good prompt for bench-1094

marking. They find the technique effective for fil-1095

tering out trivial or ambiguous user prompts. We1096

use the same prompt as Zheng et al. (2023) to as-1097

sess the difficulty of a prompt. To measure whether1098

the scores are effective, we plot the difficulty scores1099

against answer grades, obtained with GPT-4. The1100

plots in Figure 3 reveal somewhat surprisingly that1101

answers to easier questions tend to get slightly1102

lower grades from GPT-4, indicating that GPT-41103

might underestimate the difficulty of a question.1104

This is especially evident in weaker LMs such as1105

Llammas. We hypothesize that our differing results1106

from Zheng et al. (2023) may be due to our initial1107

dataset being handpicked, which likely included1108

more challenging questions.1109

B Usefulness Scores by Categories1110

The usefulness scores by categories from human1111

evaluation are shown in 41112

C Collecting Data for Human Evaluation1113

The screenshot of the survey is shown in Figure 5.1114

For Võro, Liivi, and Estonian, the instructions were1115

given in Estonian, while for Komi, they were given1116

in Russian.1117

D Training Details1118

The hyperparameters of pre-training stages 1 and1119

2 are listed in Table 9. The instruction-tuning1120

and translation-tuning parameters are in Table 10.1121

The first epoch was used for evaluating instruction-1122

tuned models.1123

All the models were trained using 4 AMD1124

MI250x GPUs (acting as 8 units) on the LUMI1125

supercomputer. We report GPU-hours elapsed for1126

model training in Table 11.1127

Parameter Stage 1 Stage 2

updates 19073 -
LR 4.00e-5 2.00e-5
LR-schedule cosine decay to 10%
context length 2048
batch size 256
warmup ratio 0.01
weight decay 0.05
precision bfloat16
optimizer AdamW
packing yes

Table 9: Pre-training hyperparameters.

Parameter Value

LR 2.00e-5
LR-schedule cosine decay to 10%
context length 2048
batch size 256
epochs 2
warmup ratio 0.01
weight decay 0.05
precision bfloat16
optimizer AdamW
packing no

Table 10: Instruction-tuning and translation-tuning hy-
perparameters.

Model GPU-hours

Base:
Stage 1 2008
Stage 2 308
Stage 2 + translate 316

Instruction:
LLMTrAlpaca+TrInst 39

TrTuning 39

Table 11: GPU-hours elapsed for training the models.
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Figure 3: Plotting the difficulty of a question (assessed by GPT-4) against the quality of an answer (assessed by
GPT-4).

E Choice of Unimax N1128

We chose the Unimax N according to the byte per-1129

plexity on our held-out validation set, with the best1130

value for our setup being 4 (see Table 12).1131

Unimax N byte-PPL

VRO LIV KPV

N=1 2.3072 4.1986 1.4508
N=4 2.1885 3.8351 1.4055
N=8 2.5983 4.725 1.4159

Table 12: The effect of Unimax N (max data repeat
epochs) on held-out validation set byte perplexity.

F Evaluation details1132

The base models are evaluated with1133

lm-evaluation-harness (Gao et al., 2023),1134

and bootstrap standard errors are reported.1135

For instruction-tuned models’ SIB-SMUGRI1136

outputs that do not conform to the expected format,1137

we use GPT-4-Turbo to verify that the prediction1138

matches the ground truth.1139

GPT-4-Turbo version used in evaluations was1140

gpt-4-turbo-2024-04-09 and GPT-3.5-Turbo1141

version used was gpt-3.5-turbo-0125.1142

We evaluate translations quality using BLEU1143

(Papineni et al., 2002) calculated with sacreBLEU51144

5signature: nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.4.2

(Post, 2018). 1145

The held-out validation set (see Table 13) used 1146

to calculate perplexity is sampled from our pre- 1147

training data. 1148

Language Characters Examples

LIV 86842 1246
VRO 131373 110
KPV 1308290 500

Table 13: Held-out validation set sizes. Examples for
Livonian are sentences, otherwise they are documents.

G Võro Data Collection 1149

We collect Võro data from Võro language 1150

Wikipedia dump (Foundation), Corpus of Fiction 1151

in Võro and Seto languages6, Additionally, we 1152

crawled Võro language newspaper articles from 1153

Uma Leht7. Since the Seto dialect is similar to 1154

Võro, we do not filter it out of our Võro datasets 1155

that contain it, and additionally include "Setomaa" 1156

newspaper corpus8 which is also in Seto dialect. 1157

The collected Võro dataset composition is shown 1158

in Table 14. 1159

6https://metashare.ut.ee/repository/browse/corpus-of-
fiction-in-voro-and-seto-languages/2cf454fca0d411eebb4773db
10791bcf485f3f9e7dee447b983f21b074ad3835

7https://umaleht.ee/
8https://metashare.ut.ee/repository/browse/setomaa-

newspaper-corpus/3303e60ca0d411eebb4773db10791b
cf2d01e0b55ce2419db34ef402460a1c99/
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Figure 4: Usefulness by different categories.

Figure 5: Screenshot of the survey that was used to
collect human annotations.

Name Documents Characters Sentences

Võro
Wikipedia (2024.02.20) 6385 3879212 88550
Fiction corpus 399 1987446 32121
Umaleht crawl 3392 6280588 93958

Seto dialect
Fiction corpus 8 76361 869
Setomaa corpus 397 1791268 20693

Table 14: Võro data composition by source.

<|user|>

Tere!

<|assistant|>

Tere! Kas saaksin teid kuidagi aidata?</s>

<|user|>

Kuidas alustada kirja kirjutamist?

<|assistant|>

Figure 6: Chat format following Wang et al. (2023)
and Kuulmets et al. (2024). The model responds after
<|assistant|>.

H Instruction-tuning details 1160

The composition of our instruction-tuning dataset 1161

is listed in Table 15. Instructions are formated into 1162

a char-format shown in Figure 6. Translation data 1163

format is shown in Figure 7. 1164

I Parallel data 1165

Composition of the parallel data is shown in Ta- 1166

ble 16. 1167
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Dataset LIV VRO KPV ET FI EN RU

Aya (Singh et al., 2024) 742 3944 423
OASST-2 (Köpf et al., 2023) 5 3514 681
FLAN-V2 (Longpre et al., 2023) 5000
Alpaca-GPT-4 (Peng et al., 2023) 20000
Alpaca-est (Kuulmets et al., 2024) 20000
Tr-Alpaca (ours) 1000 1000 1000

TOTAL 1,000 1000 1000 20000 747 32458 1104

Table 15: Instruction-tuning data with the number of sentences sampled

Dataset VRO-ET LIV-ET LIV-LV LIV-EN KPV-ET KPV-FI KPV-RU KPV-EN KPV-LV TOTAL

TrInst 500 500 500 493 500 500 500 500 500 4493
TrTuning 28505 14215 11608 493 3876 7273 100000 7288 5020 178278
Pre-training 28504 14212 11606 492 3835 7272 81487 7286 5018 159712

Table 16: Number of sentences of parallel translation data used in various configurations during training. In all
cases, the language pair data is split in two so that, for example, in ET-LIV, 50% of the reported sentences are for
ET→LIV and the other 50% for LIV→ET

<|system|>

Translate the following {src_lang} text into

{tgt_lang}.

<|user|>

{src_text}

<|assistant|>

{tgt_text}</s>

Figure 7: Translation-tuning data format based on Fig-
ure 6.
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