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Abstract. Few-shot learning for image classification aims at predicting
unseen classes with only a few images. Recent works, especially the works
on few-shot fine-grained image classification (FSFGIC), have achieved
great progress. However, most of them neglected the spatial information
and computed the distance between a query image and a support im-
age directly, which may cause vagueness because the dominant objects
can exist anywhere on images. A promising solution is to locate salient
regions from images for discriminative feature representation learning.
This paper develops an automatic salient region selection network with-
out the use of a bounding box or part annotation mechanism for locating
salient regions from images. Then a weighted average mechanism is intro-
duced for facilitating a neural network to focus on those salient regions,
optimizing the network, and performing the FSFGIC tasks. The experi-
mental results on four benchmark datasets demonstrate the effectiveness
of the proposed strategy.

Keywords: Few-shot fine-grained image classification - discriminative
feature representation learning - automatic salient region selection net-
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1 Introduction

Few-shot fine-grained image classification (FSFGIC) methods refer to machine
learning methods which aim to classify images belonging to subordinate object
categories of the same entry-level category with only a few samples. In the last
few years, FSFGIC has achieved stable progresses. The learning ability of deep
neural networks [26] [8] [30] for recognizing the subtle differences between highly
similar objects has been continuously improved. Meanwhile, a large number of
fine-grained image datasets (e.g., CUB-200-2010 [4], Standard Cars [15], Air-
craft [20], and Plant Disease [25]) have been collected by domain experts using
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complex rules to determine the accuracy of different types of object classification
methods and to assist researchers to improve the algorithms for achieving better
performance on FSFGIC tasks.

Learning discriminative feature representation from images plays a key role
on FSFGIC which is used not only to represent training samples but also to
construct a classifier for performing FSFGIC tasks. The primal step of discrim-
inative feature representation learning is to locate salient regions from images.
Currently, a bounding box or part annotations mechanism [28] [1] [11] [14] is
widely applied for locating salient regions and performing object classification
using the discriminative information from the selected regions. In this paper, an
automatic salient region selection network without the use of a bounding box or
part annotations mechanism is designed for learning discriminative feature rep-
resentations and performing FSFGIC tasks. First, for each image, it is divided
it into M parts equally. Then the image and its corresponding M sub-images are
sent into a given neural network (e.g., Conv-64F [30]) for training and obtaining
feature descriptors. Second, the similarity between the query and support images
is measured based on the obtained feature descriptors and they are named as
basic similarity. Meanwhile, M similarities between M pairs of sub-images from
query and support images are obtained based on their corresponding feature de-
scriptors and named as sub-similarities. Third, if some sub-similarities are larger
than the basic similarity, their corresponding sub-images are marked as salient
regions and a weighted average mechanism is designed for a neural network to
focus on these salient regions, optimizing the network, and performing the FS-
FGIC tasks. It is worth noting that if sub-similarities are less than the basic
similarity in one episode, the designed neural network is optimized by using the
basic similarity in this episode.

The main contributions in our proposed method comprise two aspects.

e An automatic salient region selection network is designed for discrimina-
tive feature representations learning and performing FSFGIC tasks. This
designed network enables the salient regions on images to be detected auto-
matically without the help of bounding box and annotation information.

e A weighed average mechanism is designed for enhancing the effect of dis-
criminative features in the tasks of classifying fine-grained images.

e Experimental evaluation are performed on four public datasets, verifying the
effectiveness of the proposed method in various FSFGIC tasks.

2 Related work

In this section, we briefly introduce the existing FSFGIC related methods: fine-
grained image classification methods, meta-learning based FSFGIC methods,
and metric-learning based FSFGIC methods.
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2.1 Fine-grained image classification

Fine-grained image classification (FGIC) is an attractive topic in the computer
vision research community. In FGIC, the training samples share the same class
space with testing samples. Current regional feature based FGIC approaches try
to discover salient regions from images without the help of bounding box and
annotation information. Peng et al. [21] proposed an object-part attention model
in which potential objects from images were detected and the most discrimina-
tive parts of the object were selected as feature representation. The classification
accuracy is improved by 1.2% on dataset CUB-200-2010 [31]. Zhang et al. [32]
proposed an approach by which all the potential object parts were generated
by using selective search method [29] and the most discriminative object part
was selected to form image representation according to its importance value
computed with the help of Fisher Vector [23]. The approach improved classifi-
cation accuracy by 3.5% on dataset CUB-200-2010 |31]. Therefore, locating the
discriminative regions can boost classification performance in FGIC tasks.

2.2 Meta-learning based FSFGIC methods

Different from FGIC, The class space of training data and the class space of
testing data are disjoint in FSFGIC. Meta-learning based FSFGIC is a branch
of FSFGIC. Finn et al. [6] proposed a model-agnostic meta-learning (MAML)
method by which any model is trained successively twice to obtain two groups
of parameters. The new gradient for updating the model is computed using
both groups of parameters. Cai et al. [3] proposed a memory matching network
(MM-Net) where a contextual learner consisting of multiple bidirectional long-
shot term memory (LSTM) [24] is devised to predict the parameters for the
embedding network. Sachin et al. [22] proposed an LSTM-based optimizer by
combining the standard gradient descent algorithm and the cell state of LSTM
[9]. In this way, a novel gradient is obtained by training a LSTM network.

2.3 Metric-learning based FSFGIC methods

The existing metric-learning based FSFGIC methods usually consist of three
steps. Firstly, the images including support images and query images are em-
bedded into their image representations by embedding networks (e.g., Conv-
64F [30]). Secondly, the distances between each query embeddings and all sup-
port embeddings are calculated by employing different distance metrics (e.g.,
cosine similarity [17], Euclidean distance [27], and Kullback-Leibler(KL) dis-
tance [16]). Thirdly, each query image is allocated to the support class according
to the closest distance principle.

Snell et al. [27] proposed a prototypical network that employs the Euclidean
distance for measuring the similarity between the support image representations
and the query image representation. Li et al. |17] proposed a deep nearest neigh-
bour neural network (DN4) using cosine similarity as the measurement. In [16],
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an asymmetric Kullback-Leibler (KL) divergence was utilized to measure the re-
lation of distribution between query image and support image. In |1§], a covari-
ance metric network is proposed to measure the relation between a query image
and support categories. However, the aforementioned methods [27] [17] [16] [1§]
did not deal with the spatial information discriminatively and calculated sim-
ilarity distance between a query image and a support class directly without
considering the effect of salient regions on images in FSFGIC.

Recently, many few-shot fine-grained learning research works focus on at-
tention mechanisms. For example, Dong et al. [5] presented a novel ATL-Net in
which a task adaptive attention module is designed to generate a relation matrix.
The relation matrix consists of cosine similarity between each local representa-
tion of a query embedding and each local representation of one support class
embeddings. All the local representations are processed by a convolution layer
and filtered through a threshold. The weights of every image patch are decided by
the threshold. However, the threshold is predicted by a multi-layer perceptron
(MLP) trained on query embeddings. Therefore, the threshold will vary with
various query images and the weights for semantic patches from query image are
not stable enough. It should have negative influence on the final classification
accuracy. Yan et al. |19] presented a novel method called dense classification in
which the weights of each patch are learned through training on auxiliary data.
The assumption is that the weights learned on auxiliary data are generic enough
to be used for new classes.

Different from the methods above, our proposed method not only has an
ability to automatically locate the semantic regions with aid of the comparison
between image patch level similarity and image level similarity, but assigns a
stable weight to most discriminative regions by using a weighted average mech-
anism.

3 Methodology

In this section, we first present a brief review of the problem definition of few-shot
classification. Then we illustrate how to automatically select salient regions from
images. Finally, a weighted average mechanism is designed for a neural network
to focus on these salient regions, optimizing the network, and performing the
FSFGIC tasks. The overview of the proposed framework for one-shot image
classification is shown in Fig. 1

3.1 Problem definition
For an FSFGIC task, the target dataset D contains two parts: a support set S

and a query set Q. The small support set S includes C unseen classes, and each
of which has K labeled samples. The query set Q contains J unlabeled samples.
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Fig. 1. The overall pipeline of our proposed automatic salient region selection frame-
work. (1) Feature descriptor acquisition: support and query and their corresponding
sub-images are sent into backbones for obtaining feature descriptors. (2) Automatic
salient region selection: if some sub-similarities are larger than the basic similarity,
their corresponding sub-images are marked as salient regions. (3) Image classification:
a weighted average mechanism is designed for a neural network to focus on these salient
regions and performing FSFGIC tasks.

Displayed equations are centered and set on a separate line.

D={S={(zsu) 2"}V Q={(x;)]1}}, (1)

where S N Q =0, z; and z; denote fine-grained samples and y; C C represents
the ground truth label of x;. The goal of FSFGIC is to successfully classify z;
into its corresponding class in C in §. Thus, the problem is denoted as a C-way
K-shot task.

It is worth noting that the training samples of each class in FSFGIC are too
limited to effectively learn transferable knowledge for performing FSFGIC
tasks. Then, an episodic training paradigm with an auxiliary set 4, which
has similar data distribution with D, is applied to tackle the aforementioned
problem as follows

A= {5 = {(ul,vz)f\él} UF = {(uj,vj)le}}, (2)

where u; and u; are fine-grained images, v; and v; are their corresponding labels;
EUF =0, DU A=0. The auxiliary set A contains sufficient classes and labeled
samples which are far larger than C' and K respectively.

In each round of training, A4 is randomly separated into two parts: an auxil—
iary support set G = { Uj, ;) CXK} and an auxiliary query set H = { Uj, Vi) 1}
With N >> C x K, £ can mimic the composition of § in each iteration. Then
A is employed to learn prior knowledge for training S.
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3.2 Automatic salient regions selection for FSFGIC

Let s (s € S) and ¢ (¢ € Q) denote a support image and a query image respec-
tively. The support image s and query image ¢ are divided into M (here M =
36) parts equally. Then sub-images (i.e., s1, $2,..., spr) of support image s and
sub-images (i.e., ¢1, ¢2,..., qar) of query image ¢ are obtained. Meanwhile, the
sub-images and query and support images are resized into the same widths and
they are sent into a given backbone (i.e., Conv-64F [30]) for training and ob-
taining their corresponding descriptors. Typically, after an input image x is sent
into a backbone 6, dhw-dimensional feature descriptors (i.e., @(z) € R¥*(hxw))
can be obtained where h and w denote the height and width of the feature ten-
sor map respectively, d is the number of filters, and R represents real space.
Therefore, the feature descriptors of the support image s, the query image ¢, the
sub-images (i.e., s1, S2,...,spr) of support image s, and the sub-images (i.e., g1,
g2, --,qnm) of query image q are obtained as

wS:[Ql(S)a"'aeT( ;

)y, O,

s)]
(9],

v = [01(q),
T =[01(s)),- -, O(s1)], (3)
Ui =101(q1), - ,O0-(q)], L =1,--- , M,

where 7 (7 = h x w) is the total number of descriptors for each image. In this
work, a cosine measure is utilized for calculating the similarity between two
different images based on the l-nearest neighbor method [2]. Then the basic
similarity between a query image and a support image is as follows,

_ O:(s)"6:(q)
AW*,¥*) = max {A(O1(su), O1(qw)), -+, A(Or(su), O (aw))},

t=1,2,--,1.

The sub-similarities between the sub-images of a support image and the sub-
images of a query image are as follows,

B Or(su)" Or(qv)
A(O4(54),O1(qw)) = | ©c(su) || - |l Orlqw) I’

5
AW W) = max {A(O1(54),01(q)),+ , A(Or(54), O+ (q)) }, (5)
t:1,2’~.. , T, u:1,2,... 7j\f7 U:1,2,~'~ 7M'

From Equation , an M x M sub-similarity matrix ¢; can be obtained. Then we
first find the maximum value in the subsimilarity matrix ¢; and its corresponding
row ¢ and column j which is denoted as 1 = (1(4,5). If n; is larger than its
corresponding basic similarity, the sub-image pair between the i-th sub-image of
the support image and the j-th subimage of the query image are marked as a pair
of salient regions. Second, we delete the i-th row and j-th column of the matrix
¢1 and construct a new (M —1) x (M — 1) matrix (». Then we find the maximum
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value in matrix (5 and its corresponding row u and column v which is denoted
as 72 = Ca(u,v). If 7y is also larger than its corresponding basic similarity, we
will continue to perform this operation until the maximum value 7 of the (k
+ 1)-th sub-similarity matrix is less than the basic similarity. Finally, &k pairs of
sub-images corresponding to the k sub-similarities are marked as salient regions,
and a weighted average § is presented on the k subsimilarities (i.e., 71, 92, ..., k)
for representing the similarity between the support image and the query image
as follows

B(s,q) = —m— (2 + 12 + -+ 72). (6)
Ei:l U

It is worth noting that if 7, is less than the basic similarity, the similarity between
the support and query images is represented by

B(s,q) = A*,&7). (7)

Furthermore, the similarity between query image ¢ and class C is calculated
which is named as image-to-class similarity measure [16] as follows,

5(% C) = Zﬂ(sjvq)a (8)
j=1

where s/ represents the j-th support image in class C. Then the Adam optimiza-
tion method [13] with a cross-entropy loss is used to train the whole network for
learning the parameters and performing FSFGIC tasks. The detailed process is
listed as Algorithm [T}

Algorithm 1: Salient regions selection mechanism

Input: sub-similarity matrix (1, M
Output: 8(s,q)

1 k=0,t=0,s=0;

2 while £ < M do

3 k=k+1;
4 | e =max(Cr);
5 if ne > AP, ¥°) then
6 (i,7) = argmax(Cx);
7 Nk+1 is contructed by i-th row and j-th column are deleted from 7y;
8 t =1+ nk;
9 s=s+ 77,3;

10 else

11 ‘ break;

12 end

13 end

14 B(s,q) =

t.
s?
15 return S(s,q)
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4 Experiment

4.1 Datasets

Our proposed network is evaluated on four fine-grained datasets, i.e., the Stan-
ford Dogs [12], Stanford Cars [15], CUB-200-2010 [31], and Plant Disease [25]
datasets. The Stanford Dogs dataset consists of 120 dog classes with 20,580 sam-
ples. The Stanford Cars dataset consists of 196 car classes with 16,185 samples.
The CUB-200-2010 dataset consists of 200 bird classes with 6,033 samples. The
Plant Disease dataset consists of 38 plant disease classes with 54,306 samples.
For fair performance comparisons, we follow the same data split as used in [17]
that are illustrated in Table. 1.

Table 1. The class split of four fine-grained datasets. Nirain, Nyai, and Nies: are the
numbers of classes in the auxiliary set, validation set, and test set respectively.

Dataset Nt'rain Nval Ntest
Stanford Dogs 70 20 30
Stanford Cars 130 17 49
CUB-200-2010 130 20 50
Plant Disease 20 10 8

4.2 Experimental setup

In this work, both the 5-way 1-shot and 5-way 5-shot FSFGIC tasks are per-
formed on the four datasets. We follow the basic feature extraction network (i.e.,
Conv-64F [30]). Each input image is resized to 84 x 84. Then we have h = w = 21,
d = 64, and 7=441. Random crop, random color transformations, random hor-
izontal flips, and random rotations are utilized for data augmentation. There
are 300,000 episodes which are randomly sampled and constructed for training
the proposed models by utilizing the episodic training paradigm [30]. For each
episode, 15 query samples per class are randomly selected for the four datasets.
The Adam optimization method [13] is utilized for training the models using 30
epochs. The learning rate is initially set as 0.001 and multiplied by 0.5 for every
100,000 episodes. In the testing stage, 600 episodes are randomly constructed
from the testing set for obtaining the classification results. The top-1 mean ac-
curacy is employed as the evaluation criteria. The above process is repeated five
times and the final mean results are obtained as the classification accuracy for
FSFGIC. Meanwhile, the 95% confidence intervals are obtained and reported.

4.3 Performance comparison

The experimental results of eight state-of-the-art metric learning methods (i.e.,
Matching Net (M-Net) [30], Prototypical Net (P-Net) [27], GNN [7], CovaM-
Net [18], DN4 [17], PABN+,; [10], LRPABN,,; |10], and ATL-Net [5] ) and the
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Table 2. Comparison results on Stanford Dogs and Stanford Cars datasets

5-way Accuracy(%)

Stanford Dogs

Stanford Cars

Model
1-shot 5-shot 1-shot 5-shot

M-Net [30] 35.80+£0.99 47.50+1.03 34.804+0.98 44.704+1.03
P-Net |27] 37.59+1.00 48.19+1.03 40.90+1.01 52.93+1.03
GNN [7] 46.98 £0.98 62.27+£0.95 55.85+0.97 71.25+0.89
CovaMNet [18] 49.10+0.76 63.04 £0.65 56.65+0.86 71.33 +0.62
DN4 [17] 45.73+0.76 66.33£0.66 61.51+0.85 89.60 + 0.44
PABN+ pt |10| 45.65 +0.71 61.24 +£0.62 54.444+0.71 67.36 +0.61
LRPABN,,; |10] 45.72+0.75 60.94 £0.66 60.28+0.76 73.29 +0.58
ATL-Net |5] 54.494+0.92 73.20+0.69 67.954+0.84 &89.16+0.48
Proposed ASRSNET 54.97+0.88 73.21+0.57 64.33+0.75 91.15+0.78
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proposed method on the four datasets are summarized in Table 2 and Table 3. It
is worth noting that the accuracies of the seven other methods are also tested on
the same feature extraction network (i.e., Conv-64F [30]). For three fine-grained
datasets, i.e., the Stanford Dogs [12], Stanford Cars [15], CUB-200-2010 [31],
we use the officially provided results for all the other methods. For the Plant
Disease [25] dataset, we utilize the codes provided to test their corresponding
results. Because the codes for PABN+.,; [10] and LRPABN,,, [10] are not pro-
vided, we leave them blank on the Plant Disease dataset.

It can be found from Table 2 and Table 3 that the proposed method gets
steady and notable improvements on almost all FSFGIC tasks. For the 5-way
5-shot task, the proposed method achieves the best performance on four fine-
grained datasets. For the 5-way 1-shot task, the proposed method also achieves
the best performance on Standford Dogs, CUB-200-2010, and Plant Disease and
achieves the second best performance on Standford Cars. For the 5-way 1-shot
and 5-way 5-shot FSFGIC tasks on the CUB-200-2010 dataset, our proposed
method achieves 41.56%, 71.65%, 23.73%, 22.33%, 20.65%, 1.22%, 0.78%, and
5.28% improvements and 38%, 81.34%, 28.92%, 28.78%,0.25%, 9.90%, 0.95%,
and 6.56% improvements over M-Net, P-Net, GNN, CovaMNet, DN4, PABN+,;,
LRPABN,,;, and ATL-Net respectively. Such improvements demonstrate the
ability of ASRSNET for effectively highlighting the feature representation in
salient regions in images and making the similarity measure between the sam-
ples within the same class larger and the similarity measure between samples
from different classes smaller with limited training samples.

5 Conclusion

Current few-shot metric-based learning methods have improved classification
accuracy greatly in FSFGIC tasks. However, they computed similarity distance
between a query image and a support class directly without considering the ef-
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Table 3. Comparison results on Plant Disease and CUB-200-2010 datasets.
5-way Accuracy(%)
Model Plant Disease CUB-200-2010
1-shot 5-shot 1-shot 5-shot

M-Net [30] 62.93+0.94 80.55+0.93 45.30+1.03 59.50+1.01
P-Net [27] 64.97£0.85 82.73+091 37.36+1.00 45.28+1.03
GNN [7] 69.85+£0.91 88.69+0.79 51.83+0.98 63.694+0.64
CovaMNet [18] 70.72+0.89 88.92+0.81 52.424+0.76 63.76 +0.64
DN4 [17] 72.47+0.76 90.68+0.44 53.15+0.84 81.90=+ 0.60
PABN=.,; |10] - - 63.36 £0.80 74.71 £ 0.60
LRPABN.,; [10] - - 63.23 £0.77 76.06 = 0.58
ATL-Net [5] 72.18£0.92 90.11+0.65 60.91+0.91 77.05+0.67
Proposed ASRSNET 73.58+0.87 91.76+0.79 64.13+0.85 82.11+0.72

fect of salient regions on images. Such image-level based similarity resulted in a
vagueness problem because the dominant objects can exist anywhere on images.
In this paper, a novel automatic salient region selection network without the
use of a bounding box or part annotation mechanism is proposed for obtaining
salient region pairs from query and support images, aiming to locate the more
discriminative regions for improving the representation ability of neural networks
trained by few samples. Meanwhile, it donates an advanced approach to allevi-
ating vagueness problem for the FSFGIC research community. Furthermore, a
weighted average mechanism is designed for facilitating a neural network to focus
on those salient regions, optimizing the network, and enhance the classification
accuracy for FSFGIC tasks. The effectiveness of our proposed method has been
demonstrated through experiments on four benchmark fine-grained datasets.
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