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Abstract

Free-text explanations are expressive and
easy to understand, but many datasets lack
annotated explanation data, making it chal-
lenging to train models for explainable pre-
dictions. To address this, we investigate how
to use existing explanation datasets for self-
rationalization and evaluate models’ out-of-
distribution (OOD) performance. We fine-
tune T5-Large and OLMo-7B models and
assess the impact of fine-tuning data qual-
ity, the number of fine-tuning samples, and
few-shot selection methods. The models
are evaluated on 19 diverse OOD datasets
across three tasks: natural language infer-
ence, fact-checking, and hallucination detec-
tion in abstractive summarization. For the
generated explanation evaluation, we con-
duct a human study on 13 selected models
and study its correlation with the Accept-
ability score (T5-11B) and three other LLM-
based reference-free metrics. Human evalua-
tion shows that the Acceptability score cor-
relates most strongly with human judgments,
demonstrating its effectiveness in evaluat-
ing free-text explanations. Our findings re-
veal: 1) few annotated examples effectively
adapt models for OOD explanation genera-
tion; 2) compared to sample selection strate-
gies, fine-tuning data source has a larger im-
pact on OOD performance; and 3) models
with higher label prediction accuracy tend to
produce better explanations, as reflected by
higher Acceptability scores.1

1 Introduction

Generating textual explanations has been a major
focus in machine learning and NLP (Wei et al.,
2022; Kunz and Kuhlmann, 2024; Calderon and Re-
ichart, 2024), as the explanations are expressive and

1We will make all our code available upon acceptance
under the MIT license.

do not require readers to have model-level knowl-
edge to understand. One popular line of work is
self-rationalization (Wiegreffe et al., 2021; Maraso-
vic et al., 2022), in which a model jointly gener-
ates the task label and a free-text explanation for
the predicted label. Compared with highlighting
words and phrases (DeYoung et al., 2020), free-
text explanations can express unstated knowledge
and common-sense in easily understandable forms.
However, datasets containing annotated free-text
explanations are rare due to expensive annotations.

A few datasets for free-text explanation genera-
tion (Camburu et al., 2018; Wang et al., 2019b;
Sap et al., 2020; Aggarwal et al., 2021; Chen
et al., 2022) exist, with e-SNLI (Camburu et al.,
2018) being one of the seminal datasets in the
NLI area. Based on SNLI (Bowman et al., 2015),
the dataset focuses on reasoning over fine-grained
nuances of common-sense knowledge. However,
datasets containing longer or more domain-specific
text, such as fact-checking on real-world claims,
lack annotated explanations (Hanselowski et al.,
2019; Saakyan et al., 2021). This poses severe
challenges for (i) training and (ii) evaluating self-
rationalizing models on these tasks. No large
scale analysis exists to understand how well self-
rationalization models can transfer from existing
data to unknown datasets.

We fill the gap by learning self-rationalization
from established sources with annotated explana-
tions and evaluating its generalization performance
on 19 out-of-distribution (OOD) datasets over three
related tasks (see evaluation setup in Figure 1):
NLI, fact-checking (FC) and hallucination detec-
tion of abstractive summarization (HDAS). NLI fo-
cuses on textual entailment within a controlled con-
text, FC extends to reason over real-world claims
with retrieved evidence, and HDAS centers around
machine-generated text. Our OOD datasets vary
in domains (e.g., news, Wikipedia, social media,
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Prompt-based

fine-tuning

Generation Evaluation Labels (l)
Explanations (e)

explain nli hypothesis: 
[h] premise: [p]
[l] “explanation: ” [e]

Premise (p): a girl with a red scarf wrapped around her 
neck is walking down the road carrying a white bag.
Hypothesis (h): the girl is accessorized. 
Annotated label (l): entailment
Annotated explanation (e): girl walking down the road 
carrying a white bag just means girl is accessorized.

Selection

OOD 
dataset

Source 
dataset

Premise (h):  it was scrapped this week at the...(924 words)
Hypothesis (p): the government is seeking legislation... (24 
words)
Label (l):?
Explanation (e):?

Generated label (l): not entailment
Generated explanation (e): the government 
is seeking legislation...but it has been 
scrapped. (18 words)

(a)

(b)

Good explanations?
Label uncertainty?

T5/
OLMo

Figure 1: OOD evaluation pipeline of self-rationalization. The pipeline comprises two main parts. The
first part (a) relates to learning to self-rationalize with a source dataset (Section 3); it involves sample
selection and fine-tuning a generative model. The second part (b) relates to OOD generation and
evaluation (Section 4); we evaluate the model on three categories of OOD tasks: NLI, fact-checking, and
hallucination detection.

science), and textual structures (e.g., synthetic
template-based, multiple premises, sentence com-
positions, long documents), presenting a diverse
and challenging OOD setting (see details of each
dataset in Table 1).

Despite the popularity of LLMs, using them
in a large experimental design is prohibitive, as
they are computationally expensive to perform in-
ference and evaluation, especially when the in-
put text is long. Further, data contamination is
a concern when performing evaluations on OOD
datasets (Sainz et al., 2023), as the training data
of most LLMs are not transparent, such as Llama
2 (Touvron et al., 2023) and GPT-4 (Achiam et al.,
2023). To address this, we selected two open-
source models—T5-Large (Raffel et al., 2020) and
OLMo-7B (Groeneveld et al., 2024)—to study self-
rationalization, both of which have fully transpar-
ent pretraining datasets. They also require fewer
computational resources than many LLMs, allow-
ing us to perform a large scale study.

We study the impact of data size and quality on
OOD performance, focusing on these three factors:
the source dataset for fine-tuning, the number of
selected samples, and sample selection strategies
for few-shot fine-tuning. To enhance the quality of
generated explanations in OOD datasets, we intro-
duce a new approach with an acceptability filtering
model (Wiegreffe et al., 2022) to select better train-
ing samples. We address the lack of gold reference
explanations by studying the effectiveness of the
Acceptability score with a human evaluation and
comparing it against three LLM-based reference-
free metrics. Out of the automatic metrics, the Ac-
ceptability score correlates highest with humans in

all three tasks. Our evaluation results show that: 1)
OOD performances are comparable between mod-
els fine-tuned with few-shot selected samples and
a full training set; 2) fine-tuning data source has a
high impact on OOD performance, while sample
selection has a lower impact; 3) higher Acceptabil-
ity scores are associated with better label prediction
performances, providing a new perspective on the
task performance vs explainability trade-off.

2 Related Work

Free-text explanation generation and evalua-
tion Self-rationalization has been a popular ap-
proach for generating free-text explanations (Wiegr-
effe et al., 2021; Marasovic et al., 2022; Ross
et al., 2022; Veerubhotla et al., 2023; Ramnath
et al., 2024). Wiegreffe et al. (2021) shows
that joint learning of label prediction and expla-
nation generation results in explanations more
aligned with predicted labels. Marasovic et al.
(2022) addressed the scarcity of annotated expla-
nation data by using prompt-based fine-tuning
on a few examples, though their evaluation was
limited to in-distribution datasets. Few works
have studied how such models can generalize to
OOD. Zhou and Tan (2021) studied how learning
with few-shot instances with template-based ex-
planations influences OOD generalization. Their
OOD dataset (e-HANS) is limited with constructed
templates based on the HANS dataset (McCoy
et al., 2019). Ross et al. (2022) studied the effect of
self-rationalization on reducing models’ reliance
on spurious cues in out-of-domain datasets, and
they showed that self-rationalization improves mod-
els robustness when fine-tuning data size is small.
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Yordanov et al. (2022) studied the setup where the
target dataset has few annotated free-text explana-
tions but abundant labels. Their approach is limited
to target datasets in which free-text explanations
exist. In contrast to the above OOD evaluations, we
focus on the OOD evaluation of self-rationalization
for 19 diverse datasets, and our evaluation does not
rely on reference explanations.

Reliable evaluation is crucial for explanation
generation. Traditional metrics that measure text
overlap with references have shown low correla-
tion with human judgments (Sulem et al., 2018),
and reference explanations are not always available.
Recent works, like TigerScore (Jiang et al., 2023),
Auto-J (Li et al., 2024a), and Themis (Hu et al.,
2024), use LLMs as evaluators. These metrics rely
on detailed instructions specifying evaluation as-
pects (e.g., relevance, accuracy, coherence) and
formatted inputs for the task. The trained metric
then generates a rating along with a textual anal-
ysis. To test their suitability for the explanation
generated with self-rationalization, in this work,
we study their correlations with human judgments.

Few-shot sample selection Recent studies show
that fine-tuning with smaller, high-quality datasets
can outperform larger datasets (Li et al., 2024b; Xia
et al., 2024). Li et al. (2024b) proposed to use a
relatively small language model to evaluate and se-
lect a few instances for instruction-tuning on larger
models. To select data to perform well in transfer
learning, Xia et al. (2024) proposed data selection
for instruction-tuning on a target-specific domain.
They show that training with 5% of the data out-
performs training with the full dataset. The main
constraint is that the validation set needs to be from
the target domains. Chen and Mueller (2024) pro-
posed to improve data quality by estimating their
model’s confidence, and for the low-quality data,
they either filter or correct them. Most methods for
sample selection are designed to perform well on
in-distribution or known target domains, and the
goal is for better classification performance. In con-
trast, our work focuses on selecting data that should
help OOD performance on both label prediction
and explanation generation.

3 Learning to Self-rationalize

Figure 1 shows our out-of-distribution (OOD)
evaluation pipeline. We first (a) fine-tune a lan-
guage model on a source dataset to learn self-
rationalization. Specifically, we require a fully an-

notated source dataset S, in which each instance
contains input xs = (hi, pi) and output ys = (li, ei),
where hi, pi represent a hypothesis and premise
pair, li and ei represent the annotated label and
explanation. We select m representative instances
per class from S for fine-tuning by following a
sample selection process. Our sample selection
method deliberately restrains from using data from
the OOD datasets, preserving them untouched. Fi-
nally, we fine-tune a language model to generate
a label and explanation. In (b), we evaluate the
fine-tuned model performance on OOD datasets
(Section 4). Given an OOD dataset O, with in-
stances xo = (hj , pj), where hj , pj represents a
new hypothesis and premise pair, the fine-tuned
model generates the label (l̂j) and explanation (êj).

3.1 Source dataset

To learn self-rationalization for NLI-related tasks,
we select two large source datasets that contain
explanations: (a) e-SNLI (Camburu et al., 2018),
derived from the NLI dataset SNLI (Bowman et al.,
2015) by adding human annotated explanations. (b)
e-FEVER (Stammbach and Ash, 2020), originated
from the fact-checking dataset FEVER (Thorne
et al., 2018) with GPT-3 generated synthetic expla-
nations. To improve data quality, we heuristically
filter out incorrect explanations from the dataset
(see details in Appendix A.1). We selected these
two datasets as they are representative for our OOD
datasets and have abundant explanations.

3.2 Acceptability-based sample selection

Inspired by Schiller et al. (2022), we examine how
varying the size and quality of fine-tuning data
(source dataset) affects OOD performance. Since
self-rationalization includes joint label prediction
and explanation generation, we propose our method
considering both the label and explanation quality:

Data filtering with acceptability score To im-
prove explanation quality, we filter the fine-tuning
data using the acceptability model from Wiegreffe
et al. (2022). This model, trained on SNLI data, pre-
dicts whether a generated explanation is acceptable
based on human judgment. We remove samples
with acceptability scores (the predicted probability
for the label “acceptable”) below a 0.3 threshold.

Data selection For data quality estimation in la-
bel prediction, we adapt two methods from the lit-
erature: (1) ambiguous: Following Swayamdipta
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et al. (2020), we select samples with high ambi-
guity, which has been shown to improve OOD
generalization. Ambiguity is measured as the dis-
tance between an instance’s predicted label prob-
ability and the mean of all predicted label proba-
bilities using the pre-fine-tuning model (details in
Appendix A.2). (2) FastVote-k (Su et al., 2022): A
graph-based method to select diverse and represen-
tative samples. We use the recommended k = 150.

With the combined two steps (data filtering + se-
lection), we denote the sample methods as accept-
ambiguous and accept-FastVote-k.

3.3 Fine-tuning on source datasets

For fine-tuning T5-Large, we use the standard NLI
template from (Marasovic et al., 2022), which has
been shown to give the best results for e-SNLI
dataset with T5. The encoder and decoder prompts
are (also shown in Figure 1) :

Input: explain nli hypothesis: [hypothesis] premise:
[premise]
Output: [label] "explanation: " [explanation]

For fine-tuning OLMo-7B, as the model is rel-
ative large, we choose parameter-efficient tuning
with LoRA (Hu et al., 2022) using the following
instruction (Zarharan et al., 2024). The response is
in a JSON format to facilitate extraction of labels
and explanations:

### Premise: [premise] Hypothesis: [hypothesis]
### Response: {"relationship": [label], "explana-
tion": [explanation]}

For the number of shots, we compare 1, 2, 4, 8,
16, 32, 64, and 128 shots. To ensure robustness,
we create five subsets from each source dataset,
with 5,000 randomly selected samples per subset
(with no overlap between subsets). We apply the
sample selection methods from Section 3.2 to each
subset and report the average results (see Appendix
A.2 for additional fine-tuning details). In total, we
fine-tuned 402 T5 models and 302 OLMo models2.

Baselines We compare the few-shot fine-tuned
models with two full-set fine-tuned models on e-
SNLI and e-FEVER, respectively. In addition, we

2For T5: 2 source datasets ×5 subsets ×8#shots ×5 sam-
pling methods +2 full-shot models. For OLMo, we discard
1 and 2 shots as our primary results show that models fail to
learn with too few examples.

include the random sample selection baseline to
compare few-shot sample selection methods.

4 OOD Generation and Evaluation

In this section, we introduce part (b) of the pipeline
in Figure 1. For all fine-tuned models, we perform
inference on all OOD datasets.

4.1 Out-of-Distribution datasets

For a comprehensive evaluation, we collect datasets
that resemble the NLI task and divide them into
three categories: NLI, Fact-checking (FC), and
Hallucination Detection of Abstractive Summa-
rization (HDAS). Table 1 lists the OOD datasets
used (see Appendix A.1 for dataset details and
pre-processing). To ensure no data contamination
in our OOD evaluation, we specifically excluded
datasets used for supervised fine-tuning of T5 (Raf-
fel et al., 2020). OLMo model was pre-trained on
Dolma (Soldaini et al., 2024) corpus, which con-
tains data from diverse sources but is not fine-tuned
with curated NLI datasets.

NLI NLI datasets access models’ ability to infer
relationships between sentences, with challenges
ranging from compositional meaning (Marelli et al.,
2014), adjective-noun composition (Pavlick and
Callison-Burch, 2016), common-sense inference
(Zhang et al., 2017), to multiple premise entail-
ment (Lai et al., 2017). DNC (Poliak et al.,
2018a) expands the challenge by incorporating di-
verse semantic phenomena into the NLI format.
HANS (McCoy et al., 2019) and WNLI (Wang
et al., 2019a) are two adversarial datasets de-
signed to reveal models’ underlying heuristic bi-
ases. Glue Diagnostics (Wang et al., 2019a) and
ConjNLI (Saha et al., 2020) further diversify the
NLI task, testing models against a wide array of lin-
guistic challenges and over conjunctive sentences.

FC FC datasets aim to evaluate the veracity
of claims against evidence from various sources,
including fact-checking platforms (Hanselowski
et al., 2019), scientific articles (Wadden et al.,
2020), Wikipedia (Schuster et al., 2021; Eisensch-
los et al., 2021), and information related to cli-
mate change and COVID-19 (Diggelmann et al.,
2020; Saakyan et al., 2021). The domain-specific
nature of some datasets, such as SciFact’s focus
on biomedicine and Climate FEVER’s on climate
change, requires models to be domain-aware and
handle evidence with varying granularity. FC
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OOD dataset Size #L. Domain #words
(Hyp.)

#words
(Pre.) IAA

SICK (Marelli et al., 2014) 4,906 3 news, image captions 10 10 0.84O

AddOneRTE (Pavlick and Callison-Burch, 2016) 387 2 news, image captions, forums, literature 13 12 0.77O

JOCI (Zhang et al., 2017) 39,092 3 image captions, commonsense stories 6 14 0.54C

MPE (Lai et al., 2017) 1,000 3 image captions 4 48 0.70O

DNC (Poliak et al., 2018a) 60,036 2 events, named entities, puns, sentiments 5 19 -
HANS (McCoy et al., 2019) 30,000 2 template-based (synthetic) 6 9 -
WNLI (Wang et al., 2019a) 71 2 fiction books 7 21 -
Glue Diagnostics (Wang et al., 2019a) 1,104 3 news, Reddit, Wikipedia, academic papers 16 16 0.73F

N
L

I

ConjNLI (Saha et al., 2020) 623 3 Wikipedia 13 13 0.83C

Snopes Stance (Hanselowski et al., 2019) 1651 3 Snopes (fact-checking platform) 16 126 0.70C

SciFact (Wadden et al., 2020) 300 3 biomedicine, scientific articles 13 247 0.75C

Climate-FEVER (Diggelmann et al., 2020) 1,381 3 climate change, Google searches 20 136 0.33K

VitaminC (Schuster et al., 2021) 55,197 3 Wikipedia, COVID-19 13 28 0.71F

COVID-FACT (Saakyan et al., 2021) 4,086 2 Reddit, COVID-19 12 73 0.50C

FC

FM2 (Eisenschlos et al., 2021) 1,380 2 Wikipedia 14 32 -

FactCC (Kryscinski et al., 2020) 503 2 news (CNN/DailyMail), rule-based 14 644 0.75C

QAGs CNNDM (Wang et al., 2020) 714 2 news (CNN/DailyMail), BART-based 16 318 0.51K

QAGs XSUM (Wang et al., 2020) 239 2 news (XSUM), BART-based 18 351 0.34KH
D

A
S

XSUM Hallucination (Maynez et al., 2020) 1,869 2 news (XSUM), 7 different models 19 361 0.92O

Table 1: OOD datasets categories and details. NLI: yellow, FC: pink, and HDAS: blue. Hyp.: hypothesis,
Pre.: premise, #words: number of words in average, IAA: inter-annotator agreement (numbers are from
the original papers). L.: labels, C: Cohen’s kappa, F : Fleiss’s kappa, K: Krippendorff’s alpha, O: other
metrics, -: unspecified. The sizes are reported on test/dev split; if the split is not provided, we report and
evaluate on the entire dataset.

datasets challenge models to evaluate the truthful-
ness of claims in real-world scenarios with applied
NLI techniques. For all FC datasets, we use gold
evidence, considering that retrieved evidence may
change the gold label of the claim).

HDAS HDAS datasets encompass a variety
of model-generated summaries, reflecting the
evolving landscape of automatic text generation
and its implications for information integrity.
FactCC (Kryscinski et al., 2020) challenges mod-
els to identify inaccuracies in summaries generated
through five rule-based transformations. QAGS
CNN and QAGS XSUM (Wang et al., 2020), de-
rived from CNN/DailyMail and XSUM datasets,
consist of summaries generated by the BART
model (Lewis et al., 2020). XSUM Hallucina-
tion (Maynez et al., 2020) contains factuality anno-
tated summaries generated by seven models.

In comparison, the three tasks vary in objective,
domain, and text length. NLI targets logical rela-
tionships between sentences, requiring models to
handle linguistic subtleties and logic-based reason-
ing in a controlled textual context. FC focuses on
real-world applicability, requiring external informa-
tion and complex reasoning between sentences and
documents. HDAS addresses the problems of au-
tomatic document summarization. Regarding text
length, FC datasets typically have longer premises

than NLI, with HDAS having the longest. Together,
these datasets present a challenging NLI-related
OOD scenario.

4.2 Inference on OOD datasets

During OOD inference, fine-tuned models may not
generate a label and explanation following the out-
put template. To address this, for T5 models, we
take the first token to represent the predicted la-
bel. For datasets that only include two classes
(“entailment” and “non-entailment”), we merge
the “contradiction” and “neutral” labels into the
“non-entailment” label (see more details on label ex-
traction in Appendix A.3). We detect explanations
by searching for the pattern “explanation: ” and, if
absent, treat all text after the first word as the expla-
nation. For OLMo models, as we instruction-tuned
the model to generate a JSON-formatted output,
we extract the labels and explanations by finding
their keys and if not found, we set both to be none.

5 Results and Analysis

In this section, we first present label prediction per-
formance results. Next, we evaluate explanations
through human judgments and analyze their corre-
lation with reference-free metrics. We then report
explanation evaluation results across all datasets
using the most correlated reference-free metric. Fi-
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nally, we present the overall OOD performance on
all 19 datasets on the best-performing models.

5.1 OOD Performance on Label Prediction

We compare the OOD label prediction performance
of fine-tuned T5-Large and OLMo-7B models on
two source datasets, considering various sample
selection methods and number of shots, as shown
in Figure 2. Label prediction performance is mea-
sured using the Macro F1 score.

T5 vs. OLMo: As shown in Figure 2, T5 and
OLMo models exhibit distinct trends in label pre-
diction performance as the number of shots in-
creases. OLMo starts with low performance, im-
proving almost monotonically with more shots. T5,
however, shows less variation, starting with slightly
higher performance and then reaching levels simi-
lar to full-shot models. This difference may be be-
cause of T5’s pre-training on NLI datasets (MNLI,
QNLI, RTE, CB), allowing it to handle NLI tasks
effectively without much benefit from additional
fine-tuning (see detailed discussion in Section 6.1).
This is further indicted by the results: T5 full-shot
fine-tuning with both source datasets have similar
F1 scores, and neither yields better results than
their best few-shot counterparts.

e-SNLI vs. e-FEVER: Overall, e-FEVER mod-
els achieve better average OOD F1 than e-SNLI,
and the OLMo model fine-tuned on e-FEVER full-
shot has the highest OOD F1 score. For e-SNLI,
T5 and OLMo models reach similar performances
at 128 shots, but the trends are the opposite. For
e-FEVER, T5 models’ performance tends to stabi-
lize after just 2-shots, while OLMo models’ perfor-
mance continues to increase and eventually outper-
form T5 models.

Sample Selection As depicted in Figure 2, no
sample selection method consistently outperforms
others in label prediction. For T5, selection meth-
ods perform similarly, especially with e-SNLI,
though “accept-ambiguous” is slightly better with
e-FEVER. For OLMo, “FastVote-k” excels with
e-SNLI, while “random” selection outperforms oth-
ers with e-FEVER (after 32 shots), nearly matching
full-shot performance. Surprisingly, “FastVote-k”
and “ambiguous” do not surpass the random base-
line, possibly due to outliers and training instability
when using small numbers of samples (Karamcheti
et al., 2021; Su et al., 2022).

Acronym Source Model #Shots Selection

TFev
64,AFk e-FEVER T5 64 accept-FastVote-k

TFev
128,R e-FEVER T5 128 random

TFev
128,Fk e-FEVER T5 128 FastVote-k

TFev
128,AFk e-FEVER T5 128 accept-FastVote-k

TFev
Full e-FEVER T5 Full -

TSn
64,Fk e-SNLI T5 64 FastVote-k

TSn
64,AFk e-SNLI T5 64 accept-FastVote-k

TSn
Full e-SNLI T5 Full -

OFev
16,AFk e-FEVER OLMo 16 accept-FastVote-k

OFev
128,AFk e-FEVER OLMo 128 accept-FastVote-k

OFev
Full e-FEVER OLMo Full -

OSn
128,AFk e-SNLI OLMo 128 accept-FastVote-k

OSn
Full e-SNLI OLMo Full -

Table 2: Selected models for human evaluation for
the models T5 and OLMo. The left most column
shows the acronym of the models, which will be
used throughout the rest of the paper.

5.2 OOD Explanation Quality Evaluation

We evaluate the generated explanations using both
human evaluation and reference-free automatic
metrics, and analyze the correlation between them.

5.2.1 Human evaluation setup
Conducting a human study is challenging due to
the extensive number of models and OOD datasets.
Thus, we select three OOD datasets (SICK, Vitam-
inC, XSUM Hallucination) representing NLI, FC,
and HDAS, respectively. To study the impact of
fine-tuning factors on OOD explanations, we select
models that demonstrated high and comparable F1
scores averaged across the three OOD datasets (see
Figure 6 in Appendix B with the selected models
highlighted). Table 2 lists the 13 selected mode de-
tails, with first column provides models’ acronyms
for across reference later (examples of generated
explanations by the selected models can be found
in Table 7, 8 and 9 in Appendix A.6).

For instance selection, following Marasovic et al.
(2022), we shuffle each dataset and select the
first 15 correctly predicted instances per class and
model. This results in 1560 instances, including
those with identical hypothesis-premise pairs but
different model-generated explanations. Each in-
stance is evaluated by three different workers, and
each worker evaluate 10 instances, requiring in to-
tal 468 crowd-workers. Evaluators are shown the
hypothesis-premise pair, its relationship (gold la-
bel), and the generated explanation and then asked
to answer two questions (see the evaluation page in
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Figure 2: Average Macro F1 score across different number of shots and sample selection methods. Each
point is the average of all 19 OOD datasets, and 5 models from the 5 subsets.

Figure 5 of Appendix A.4).

• Given the Hypothesis and Premise, does the
Explanation justify the given Relationship
(Single-selection)? Options: Yes, Weakly Yes,
Weakly No and No.

• What are the shortcomings of the Explanation
(Multi-selection)? Options: Does not make
sense, Insufficient justification, Irrelevant to
the task, Too trivial (only repeating one of
the sentences), Contains hallucinated content
(not present the premise) and None (only if the
previous answer is Yes).

We calculate the average score of each instance
from 3 evaluators by assigning the weight to the
selected answers as follows (Marasovic et al., 2022;
Yordanov et al., 2022): Yes: 1, Weakly Yes: 2/3,
Weakly No: 1/3 and No: 0.

We use the Prolific platform for recruiting work-
ers, and the open-source POTATO annotation
tool (Pei et al., 2022) for the evaluation interface.

5.2.2 Evaluation with reference-free metrics
We propose to use the Acceptability score3 (Wiegr-
effe et al., 2022) as a reference-free metric, consid-

3In this paper, when mentioning the acceptability filter
(T5-Large), we start with lowercase “a”, and the Acceptability
metric (T5-11B) capital “A”.

ering it is designed for accessing NLI explanations.
We choose the largest size of the model variance:
T5-11B. The model assigns a score between 0 and
1. We compare this metric against the state-of-
the-art NLG reference-free evaluation metrics (see
Appendix A.5 for the instructions of the evalua-
tion models):

• Auto-J (Li et al., 2024a): trained with
LLaMA-2-13B-chat model to evaluate LLM-
generated responses. The metric generates an
explanation for its judgment and a final integer
rating from 1 to 10.

• TigerScore (Jiang et al., 2023): trained
with LLaMA-2 on MetricInstruct dataset.
We choose the larger size of the metric:
TIGERScore-13B. It generates a breakdown
error analysis and a final error score from 0 to
infinity (the smaller, the better).

• Themis (Hu et al., 2024): trained with Llama-
3-8B based on their constructed dataset NLG-
Eval. It offers flexible aspect-based evalua-
tions across different tasks. We tested three
aspects—relevance, coherence, and consis-
tency—and selected relevance due to its high-
est correlation with human judgments. The
metric outputs an evaluation analysis and pro-
vides a scale rating from 1 to 5.
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Dataset Auto-J TigerScore Themis Accept.

SICK -0.011 -0.220 0.400 0.466
VitaminC 0.163 -0.263 0.394 0.469
XSUM H. 0.223 -0.216 0.326 0.475

All 0.123 -0.219 0.387 0.484

Table 3: Spearman’s correlation between human
scores and automatic scores in different OOD
datasets. All correlation coefficients are signifi-
cant with ρ < 0.001, except for Auto-J on SICK.

5.2.3 Correlation between human evaluation
and automatic evaluation metrics

Table 3 shows the Spearman’s correlation4 between
human and reference-free metrics for the three
OOD datasets. The Acceptability score (T5-11B)
has the highest correlation with human evaluation
for all datasets, followed by Themis, and Auto-
J has the lowest. The highest correlations on all
three datasets demonstrate the usability of the Ac-
ceptability score as a reference-free metric for the
explanation evaluation of NLI-related tasks.

5.2.4 Evaluation results on selected models
and instances

The average scores of human evaluations in the
three OOD datasets are shown in Table 10 in Ap-
pendix B. The scores show that SICK has the
highest explanation scores, with VitaminC slightly
lower than SICK’s, and XSUM Hallucination the
lowest, agreed by humans and two automatic met-
rics. This may be due to the extremely long
premise/document in the XSUM dataset, making
it difficult for the model to generate good explana-
tions. For shortcomings of explanations, see the
detailed results in Figure 7 in Appendix B).

Table 4 shows the evaluation results on the 13
selected models. We include Acceptability and
Themis scores as they have moderate correlations
with humans. In addition, we show the average
Acceptability score on all 19 datasets for overall
results. We discuss the evaluation results regarding
each factor in the following.

T5 vs OLMo As shown in Table 4, the differ-
ence between the two base models is most pro-
nounced with e-SNLI full-shot. T5 fine-tuned on
full shot e-SNLI (TSn

Full) provides the best expla-

4We choose Spearman over Pearson correlation as Pearson
correlation assumes variables to be continuous and from a
normal distribution.

Model Human Themis Accept. (3) Accept. (19)

TFev
64,AFk 0.631 2.058 0.317 0.250

TFev
128,R 0.623 1.983 0.276 0.206

TFev
128,Fk 0.589 1.867 0.216 0.201

TFev
128,AFk 0.611 2.092 0.328 0.256

TFev
Full 0.653 1.958 0.309 0.191

TSn
64,Fk 0.621 2.133 0.369 0.259

TSn
64,AFk 0.679 2.367 0.418 0.281

TSn
Full 0.678 2.050 0.519 0.343

OFev
16,AFk 0.631 2.417 0.423 0.305

OFev
128,AFk 0.639 2.250 0.384 0.307

OFev
Full 0.656 1.917 0.311 0.219

OSn
128,AFk 0.643 2.300 0.491 0.303

OSn
Full 0.408 1.208 0.194 0.111

Table 4: Evaluation results on OOD datasets of the
13 selected models. 3 means on the three selected
datasets, 19 means all datasets. Models are grouped
by base models and source datasets.

nations (besides TSn
64,AFk), whereas OLMo on full-

shot e-SNLI (OSn
Full) generates the worse explana-

tions. This may be due to catastrophic forgetting
in the OLMo model when fine-tuned on too many
e-SNLI samples, as its few-shot version produces
explanations comparable to those of the T5 model.

e-SNLI vs e-FEVER Most e-SNLI models out-
perform e-FEVER in explanation quality (under
the same model type and number of shots), except
for OLMO full-shot. This could be attributed to
the higher quality of explanations in the e-SNLI
source dataset, while e-FEVER explanations are
generated by GPT-3 (see more detailed comparison
in Section 6.2).

Few vs Full Overall, few-shot models achieved
similar human scores to their full-shot counterparts,
except for the OLMo full-shot e-SNLI model. Al-
though full-shot models showed slightly higher
human scores, reference-free metrics favored the
explanations generated by few-shot models, partic-
ularly for e-FEVER models.

Sample Selection As shown in Table 4, using the
acceptability filter (“accept-FastVote-k”) improves
explanation quality compared with the same sam-
ple selection without the filter (“FastVote-k”); how-
ever, TFev

128,AFk is not better than random selection
(TFev

128,R) according to humans. Nevertheless, based
on the scores from the two reference-free metrics,
using the acceptability filter improves generated
explanation quality (see more detailed discussion
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in Section 6.2).

5.3 Self-Rationalization in the Wild: Overall
OOD Performance

A good self-rationalization model should perform
well both on label prediction and explanation gen-
eration. Thus, we first evaluate the generated ex-
planations from a large number of models using
the Acceptability score (for all instances, we use
the gold labels for calculating the Acceptability
score). Due to computational constraints, we limit
the number of shots to 4, 16, 64, 128, and full,
with data selected from the first subset (the Ac-
ceptability scores across different number of shots
and sample selections can be found in Figure 8 of
Appendix B). We then show models’ overall perfor-
mance considering both the F1 and Acceptability
score. Finally, we select the best-performing mod-
els to demonstrate overall performance on the 19
OOD datasets.

5.3.1 Relationship between label prediction
performance and explanation quality

Figure 3 shows the distribution of models under dif-
ferent fine-tuning factors, with the x-axis showing
the Acceptability score and the y-axis the macro F1
score (scores are averaged over all datasets). We
select the best models based on the Pareto fronts5.

As depicted in Figure 3, higher Acceptability
scores are usually associated with better F1 scores.
Regarding each factor, we see that 1) OLMo mod-
els’ OOD performances are less stable than T5
models’ but achieve better results with higher num-
bers of shots; 2) Sample selection methods with
the acceptability filter have higher Acceptability
scores; 3) Comparing the source datasets, fine-
tuning on e-SNLI in general achieve higher Ac-
ceptability scores while on e-FEVER yield better
F1 scores (see more discussions on the impact of
each factor in Section 6).

Regarding the best-performing models that con-
sider both labels and explanations, two models
are selected based on the Pareto front: OFev

128,AFk

(OLMo, 128 shots, accept-Fastvote-k, e-FEVER)
and TSn

Full (T5, full-shot, e-SNLI). The first
achieves the highest F1 score, while the second
has the best Acceptability score, with both models
performing competitively on the other metric.

5For each point if no other point is strictly higher in
both scores, the point is part of the Pareto front. See
definition in https://en.wikipedia.org/wiki/
Pareto_front.

5.3.2 Performance on the 19 OOD Datasets
Table 5 shows the F1 score and Acceptability score
on the best models across each OOD dataset (state-
of-the-art results on each dataset can be found in
Table 11 of Appendix B). As a comparison, we also
include two other models with the same configura-
tions as the best models but trained on a different
source dataset: TFev

Full and OSn
128,AFk.

As shown in Table 5, the OFev
128,AFk model

achieves the highest F1 score on most OOD
datasets, though its Acceptability score is slightly
lower than that of the TSn

Full model. When com-
paring e-SNLI and e-FEVER fine-tuned models, e-
FEVER models generally outperform in F1 scores
on FC and HDAS datasets, with OFev

128,AFk scor-
ing about 10 percentile higher on average for FC
(slightly less) and HDAS (slightly more). In terms
of explanation generation, OLMo-based models
exhibit better performance. Even on e-FEVER,
OLMo achieves competitive scores across most
OOD datasets, whereas the T5 model fine-tuned on
e-FEVER (TFev

Full) produces the worst explanations,
except for the HDAS task (this might also be due
to the number of shots difference, as fine-tuned on
more number of shots with e-FEVER do not always
lead to better explanations). Finally, the Accept-
ability scores show a decreasing trend from NLI to
HDAS tasks, consistent with previous human eval-
uation results (see Table 10 in Appendix B), where
datasets with longer premises generally resulted in
lower Acceptability scores.

6 Discussions

This section explains the reasons for our earlier
findings. First, we discuss how fine-tuning data
and the model affect label prediction and explana-
tion generation. Then, we analyze the relationship
between label prediction performance and Accept-
ability score across the three OOD tasks.

6.1 Impact of fine-tuning dataset and base
model on OOD label prediction

Source dataset Generally, OOD label prediction
performance is better with models fine-tuned on the
e-FEVER dataset. To explore the reasons, we show
the F1 score per class for both ID and OOD test
datasets (including cross-source and 9 OOD three-
label datasets) in Table 12 in Appendix B, based
on OSn

128,AFk and OFev
128,AFk models. OSn

128,AFk (e-
SNLI) model has a better ID performance (0.86)
but generalizes poorly to OOD (0.54), whereas

https://en.wikipedia.org/wiki/Pareto_front
https://en.wikipedia.org/wiki/Pareto_front
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Figure 3: Distribution of models under different fine-tuning factors, with the x-axis showing the Accept-
ability score, and the y-axis the macro F1 score (scores are averaged over all datasets). The dashed lines
are the estimated linear trends of the Acceptability score and macro F1 score.

OFev
128,AFk (e-FEVER) model has a worse ID (0.69)

but better OOD performance (0.59). For both
source datasets, models perform better on e-SNLI
test set than e-FEVER test set, indicating that e-
FEVER is a harder dataset to learn. In addition,
fine-tuning on e-FEVER helped improving perfor-
mance on harder classes (“Neural (NEI)”) and “En-
tailment (Supports)”.

Base model We observed that T5 models’ OOD
label prediction performances are much more sta-
ble than OLMo. We believe it is due to two rea-
sons: (1) T5 was fine-tuned for the supervised
text-to-text language modeling objective (Raffel
et al., 2020) including NLI datasets, and FC and
HDAS are relatively similar tasks. Since we format-
ted the claims/summaries and evidence/documents
as hypothesis/premise pairs, T5 can perform rela-
tively well with very few shots. On the downside,
the model did not improve with more fine-tuning
data (especially with e-SNLI). In contrast, although
OLMo models started with low performance, they
eventually outperformed T5 with increased number

fine-tuning samples. (2) The prompt for fine-tuning
T5 matches the one used during its original super-
vised fine-tuning on NLI datasets, so T5 models do
not need to adapt to the format for predicting NLI
labels. In contrast, OLMo models perform poorly
with few samples due to output formatting issues
(expected in JSON format with specific keys for
labels and explanations).

6.2 Impact of fine-tuning data on OOD
explanation quality

Source Dataset We observed that models fine-
tuned on e-SNLI generally have higher OOD Ac-
ceptability scores (when having similar F1 scores).
To understand the effect of fine-tuning data on
OOD explanations, Table 6 compares the two
source datasets based on input length (hypothe-
sis, premise, and explanations), average Accept-
ability scores of the original data (128 shots), and
Acceptability and F1 scores for ID and OOD test
sets. The results, based on OSn

128,AFk and OFev
128,AFk,

show that the input length has a large impact on the
ID Acceptability score, but the impact on OOD is
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Dataset TSn
Full TFev

Full OSn
128,AFk OFev

128,AFk TSn
Full TFev

Full OSn
128,AFk OFev

128,AFk

SICK 58.5 78.8 55.4 65.1 53.0 18.5 47.5 40.2
AddOneRTE 72.3 75.6 65.0 72.0 44.5 9.3 44.9 39.4
JOCI 52.5 41.8 49.2 53.7 51.9 12.4 43.6 41.6
MPE 68.7 37.7 62.4 60.7 49.8 6.4 45.8 39.2
DNC 60.1 66.9 53.4 58.5 35.1 10.0 25.8 32.8
HANS 58.2 43.3 51.7 65.9 38.6 27.6 24.0 27.8
WNLI 35.0 32.4 42.1 55.1 29.9 22.7 31.7 28.0
Glue Diagnostics 57.9 59.3 57.7 61.3 47.9 29.0 42.7 41.9
Conj 62.6 65.4 58.1 56.9 48.7 30.4 41.4 38.7
Snopes Stance 36.8 44.1 45.7 58.4 20.1 9.9 18.1 20.1
SciFACT 60.7 62.5 56.2 70.0 25.7 17.6 22.5 25.8
Climate FEVER 46.9 47.5 42.4 51.3 20.9 12.8 18.4 20.8
VitaminC 55.8 58.8 55.3 56.5 40.3 29.8 39.2 37.2
COVID-Fact 63.3 65.9 55.3 69.8 28.1 12.2 19.8 23.5
FM2 70.2 71.7 76.0 79.3 38.4 24.1 39.0 38.1
FactCC 56.4 59.6 56.0 65.2 16.8 27.6 19.1 24.6
QAGS CNN 51.8 59.3 60.0 72.5 20.2 26.4 19.0 25.8
QAGS XSUM 55.0 59.3 61.4 72.6 24.0 15.9 19.0 23.0
XSUM H. 47.9 50.4 55.8 56.9 17.3 11.6 17.6 15.1
Avg NLI 58.4 55.7 55.0 61.0 44.4 18.5 38.6 36.6
Avg FC 55.6 58.4 55.2 64.2 28.9 17.7 26.2 27.6
Avg HDAS 52.8 57.1 58.3 66.8 19.6 22.4 17.9 22.1
Avg All 56.3 56.9 55.7 63.2 34.3 19.1 30.3 30.7

Table 5: Macro F1 and Acceptability Scores on each OOD Dataset on the best models (OFev
128,AFk and

TSn
Full) and the different source dataset counterpart (TFev

Full and OSn
128,AFk). The best score is bold, and

second-best is underlined.

Source
Input

Length
Source
Accept.

ID
Accept.

OOD
Accept.

ID
F1

OOD
F1

e-SNLI 38 0.671 0.565 0.262 82.8 54.3
e-FEVER 118 0.394 0.367 0.263 58.9 59.9

Table 6: Performance comparison across the two
source datasets.

minor (as it should depend on OOD input length).
Despite lower OOD F1 scores, OSn

128,AFk (e-SNLI)
model has similar OOD Acceptability scores to
OFev

128,AFk (e-FEVER) model. This could be be-
cause part of the SNLI dataset was used to train the
Acceptability model. Nevertheless, Acceptability
score is more impacted by models’ label prediction
performance, as reflected by the F1 Scores.

Data Filtering Our acceptability-based (T5-
Large) filtering model had only slight impacts on
label prediction but improved explanation quality,
according to the Acceptability score. One hypoth-
esis is that since the Acceptability score metric
(T5-11b) is a larger version of the filter model
(only differing in size), the metric may favor ex-
planations generated from models fine-tuned on

acceptability-filtered samples. To investigate this,
we conducted an experiment using the Themis
metric as the filter for selecting samples (called
"Themis-FastVote-k"), filtering out samples with
ratings below 3 (on a 1-5 scale). The experiment
is based on the OLMo best model (OFev

128,AFk), and
the results are shown in Table 13 in Appendix B.
The Acceptability score with “Themis-FastVote-
k”(0.303) is similar to “accept-FastVote-k”(0.307),
despite having a lower F1 score. This suggests
that using the acceptability filter does not cause the
Acceptability metric to overestimate explanations
generated from the filtered data.

6.3 Relationship between label prediction
performance and Acceptability score

In Figure 3, we observed a positive correlation be-
tween F1 and Acceptability scores across models.
We analyze on the best e-SNLI and e-FEVER mod-
els to further explore the relationship between label
prediction performance and the Acceptability score
within a model. We calculated the average balanced
accuracy (used instead of F1 to account for varying
class counts across datasets) for each task within
different Acceptability score ranges, shown in Fig-
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Figure 4: Distribution of label prediction accuracy (balanced) across different Acceptability score ranges.
The left y-axis shows the balanced accuracy of samples from that Acceptability score range, and the right
y-axis shows the percentage of samples in that range.

ure 4. Among the three tasks, most HDAS samples
have Acceptability scores below 0.3, while FC and
NLI samples are distributed more evenly, indicat-
ing lower explanation quality in HDAS. When com-
paring source datasets, the e-SNLI model shows
a steeper accuracy curve, suggesting that lower
Acceptability scores often correspond to incorrect
predictions of the model. In both models, the Ac-
ceptability score is positively linked to label pre-
diction performance, especially in the lower score
ranges (below 0.6).

7 Conclusion

This work investigated self-rationalization mod-
els’ ability to generalize to NLI-related OOD tasks
through the evaluation on 19 diverse datasets. We
achieve this by fine-tuning T5-large and OLMo-7B
under different configurations (varying fine-tuning
dataset source, size, and instance selection strate-
gies) to study the impact of data size and quality
on OOD task performance and explanation qual-
ity. We also examined the Acceptability score as a
reference-free metric for the generated explanation
evaluation through a human evaluation. Through
the study, we gained some important insights: i)
fine-tuning a model on few-shot examples can per-
form surprisingly well in OOD datasets compared
to fine-tuning on a large full-size dataset; ii) fine-
tuning data source, compared to sample selection,
has a larger impact on OOD performance; iii) Ac-
ceptability score is positively related to models
label prediction performance.

Future work could explore ensemble learning
with multiple few-shot models, as our findings sug-
gest that few-shot models are comparable to full-
shot ones. Additionally, e-FEVER appeared to
be a more challenging dataset than e-SNLI, as its
model demonstrated worse ID but better OOD per-
formance, thus future work may explore fine-tuning
harder tasks for better OOD generalization.

Limitations

We did not compare with other LLMs, as the opac-
ity of the training data for LLMs means we cannot
confirm whether our OOD datasets are genuinely
OOD for them. Our fine-tuned models were se-
lected based on in-distribution (ID) validation sets
(for T5-Large), which may limit their OOD perfor-
mance, as ID and OOD performance are not always
correlated. Since our OOD datasets are sourced
from English-only data, this study is limited to En-
glish. We found that different sample selection
methods had a minor impact on OOD label predic-
tion performance, though this conclusion may not
generalize to other selection methods. With up to
128 shots, we observed performance similar to or
better than full-shot models, though increasing the
number of shots could yield further improvements,
which we leave for future exploration.
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A Category 1: Additional details

A.1 Data pre-processing
For the following datasets, we applied pre-
processing as defined below:

e-FEVER We filter out incorrect explanations
from e-FEVER based on the following rules
(around 14% of samples are removed from the train-
ing set):

• The explanation is: “The relevant information
about the claim is lacking in the context.” but
the label is not NEI (NOT ENOUGH INFO).

• The explanation repeats the claim, and the
label is not SUPPORTS.

AddOneRTE (Pavlick and Callison-Burch,
2016) We convert the mean human scores into
two classes entailed (when the score is no less than
4) and not_entailment (when the score is no greater
than 3, anything between 3 and 4 are removed), fol-
lowing the literature convention (Karimi Mahabadi
et al., 2020a).

Ordinal Common-sense Inference (JOCI)
(Zhang et al., 2017) We follow Karimi Ma-
habadi et al. (2020a) by mapping the labels
very likely to entailment; likely, plausible and
technically possible to neutral; and impossible to
contradiction.

Multiple Premise Entailment (MPE) (Lai et al.,
2017) We concatenate the premise sentences to-
gether to form one premise paragraph.

SciFact (Wadden et al., 2020) The dataset does
not have public available labels for test set, thus
we use the dev set. We do not perform evidence
retrieval and use the cited document abstracts as
evidence.

Climate FEVER (Diggelmann et al., 2020) We
use the paragraph-level evidence labels.

FactCC (Kryscinski et al., 2020) We map
label factual as entailment and non-factual to
not_entailment.

QAGS CNN (Wang et al., 2020) We aggregate
with majority voting from the provided human an-
notations.

QAGS XSUM (Wang et al., 2020) We aggre-
gate with majority voting from the provided human
annotations.

XSUM Hallucination (Maynez et al., 2020) We
aggregate with majority voting from the provided
human annotations.

A.2 Ambiguous sample selection method
We input the (hi, pi) to the T5-large model, and
take the probability of the first most likely output
token, since the first token represent the classifi-
cation label. We denote the probability as pi. To
select ambiguous samples, we calculate a mean
probability score pmean as follows:

pmean = (pmax + pmin)/2 (1)

where pmax and pmin represents the highest and
lowest probability score among all sample scores
respectively. Then we re-calculate the score based
on its absolute distance with pmean:

p′i = ∣(pi − pmean)∣ (2)

with the absolute distance, we re-rank the samples
from low to high to select the most ambiguous ones.
The lowest value represents the most ambiguous
sample and the highest the least ambiguous.

A.3 Additional implementation details
For T5-Large model fine-tuning, we perform a
hyper-parameter search over the learning rate for
each number of shots for each source dataset sep-
arately, with random sample selection from the
first subset. We select the learning rate based on
the highest performance on the in-distribution val-
idation set within 50 epochs. The performance is
based on the summation of label accuracy and ex-
planation BERTscore (Zhang et al., 2020). The
same hyper-parameters are used for all sample
selection methods, which share the same m and
source dataset for fine-tuning. To calculate the la-
bels’ accuracy and explanations’ BERTscore, we
divide the output sequence into the label and ex-
planation. With the template format, T5 learns
to generate a text label, followed by a separation
pattern, “explanation:”, and then the explanation to-
kens. Thus, we take the token before the separation
pattern as the text label and after as the explana-
tion. During hyper-parameter search, we test these
learning rates: 3e-7, 3e-6, 3e-5, and 3e-4. For the
validation set in fine-tuning, we randomly select
300 samples in the original validation set as the
in-distribution set, as the original one is too large;
thus, validation takes much longer. We follow the
same settings as FEB (Marasovic et al., 2022) for
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the validation instances; for the ones with more
than one explanation annotated, we merge them
into one sequence separated by [SEP] token.

For OLMo-7B fine-tuning with LoRA, we follow
recommended hyperparameters studied in Zarharan
et al. (2024): LoRA r and alpha values are both
16, the learning rate is 2e-4, and the optimizer is
“paged_adamw_32bit”. We fine-tune all few-shot
models with 50 epochs and use the models from the
last epoch. For full-shot fine-tuning, the number of
epochs is ten instead of 50.

The sentence-transformer model used in em-
bedding the input for the Fast-Vote-k method is
paraphrase-mpnet-base-v2.

In inference, for label mapping of T5 models,
we focus on probabilities of tokens corresponding
to our target labels: “entailment”, “contradiction”,
“neutral”, disregarding others (except for “entail-
ment”, as this word contains three-word tokens:
“en”, “tail” and “ment”, we take the token number
of “en”). The label is then determined based on the
highest probability among these three tokens.

A.4 Human evaluation interface

The evaluation interface is shown in Figure 5, in-
cluding the task instruction, some examples, and
the evaluation page. To select eligible participants,
our screening requires participants to have at least
an undergraduate degree, and primary language as
English, with an approval rate above 99%. For
high-quality evaluation, we inserted 2 attentions
questions to filter out low-quality evaluations (an
evaluation is rejected if the worker failed on both
attention checks, or failed on one and contains in-
valid answers through our manual checking).

A.5 Input template for explanation evaluation
with the reference-free metrics

• Acceptability score

premise: [premise] hypothesis: [hypothesis]
answer: [gold label] explanation: [explana-
tion]

• TigerScore and Auto-J

Given a hypothesis and its premise, please
explain why the hypothesis is entailment,
neutral, or contradiction.
Hypothesis: [hypothesis], Premise:
[premise].
Please explain why the hypothesis is [gold
label].

• Themis (relevance aspect, input in JSON
format)

{“task”: “Controllable Generation”, “aspect”:
“Coherence: Given the explanation for the rela-
tionship between the hypothesis and premise
pair, how much does the generated explana-
tion make sense?”, “source_des”: “Hypoth-
esis and Premise Pair”, “source”: “Hypothe-
sis: [hypothesis], Premise: [premise], please
explain why the Hypothesis is [gold label].”,
“target_des’‘: “Explanation”, “target”: [expla-
nation]}

A.6 Generated explanations by different
models and their evaluation scores



21

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

Hypothesis (contradiction)
A person in a blue jacket is jumping onto a tall cement wall

Premise
The man is performing a large jump

TFev
64,AFk Human: 0.444, Accept.: 0.027

not all men wear a blue jacket.

TFev
128,R Human: 0.556, Accept.: 0.450

A man performing a large jump is not necessarily in a blue jacket
and jumping onto a tall cement wall.

TFev
128,Fk Human: 0.889, Accept.: 0.036

"the relevant information about the claim is lacking in the con-
text."

TFev
128,AFk Human: 1.0, Accept.: 0.494

The man is not necessarily wearing a blue jacket and the jump is
not necessarily onto a tall wall.

TFev
Full Human: 0.222, Accept.: 0.036

"the relevant information about the claim is lacking in the con-
text."

TSn
64,Fk Human: 0.556, Accept.: 0.520

the man is performing a large jump onto a tall cement wall.

TSn
64,AFk Human: 1.0, Accept.: 0.394

the man is performing a large jump onto a tall cement wall does
not indicate that he is in a blue jacket.

TSn
Full Human: 1.0, Accept.: 0.842

a large jump does not imply that the man is jumping onto a tall
cement wall.

OFev
16,AFk Human: 0.778, Accept.: 0.036

"the relevant information about the claim is lacking in the con-
text."

OFev
128,AFk Human: 0.889, Accept.: 0.473

A person in a blue jacket is performing a large jump onto a tall
cement wall

OFev
Full Human: 0.667, Accept.: 0.285

The man is performing a large jump, however it does not say
what kind of jacket he is wearing.

OSn
128,AFk Human: 0.778, Accept.: 0.536

a man in a blue jacket is performing a large jump onto a tall
cement wall.

OSn
Full Human: 0.667, Accept.: 0.805

The man is performing a large jump, but it does not say whether
he is jumping onto a tall cement wall.

Table 7: An example of generated explanations
by the 13 selected models for human evaluation,
with the instance randomly selected from the SICK
dataset (all models have the correct prediction).

Hypothesis (entailment)
Guns N ’ Roses is an American hard rock band.

Premise
Guns N ’ Roses, often abbreviated as GnR, is an American hard
rock band from Los Angeles formed in 1985.

TFev
64,AFk Human: 0.889, Accept.: 0.588

guns n roses is an american hard rock band.

TFev
128,R Human: 1.0, Accept.: 0.510

guns n’roses is an american hard rock band from los angeles
formed in 1985.

TFev
128,Fk Human: 0.333, Accept.: 0.174

guns n’roses is an american hard rock band, however it does not
say whether it is a rock band.

TFev
128,AFk Human: 0.778, Accept.: 0.527

guns n roses is an american hard rock band from los angeles
formed in 1985.

TFev
Full Human: 1.0, Accept.: 0.556

guns n’roses is an american hard rock band from los angeles
formed in 1985.

TSn
64,Fk Human: 0.778, Accept.: 0.498

the band was formed in 1985.

TSn
64,AFk Human: 0.889, Accept.: 0.573

the band is from Los Angeles and formed in 1985.

TSn
Full Human: 1.0, Accept.: 0.302

guns n’roses is an american hard rock band is a rephrasing of
guns n’roses, often abbreviated as gnr, is an american hard rock
band

OFev
16,AFk Human: 1.0, Accept.: 0.603

Guns N’Roses is an American hard rock band, formed in Los
Angeles in 1985.

OFev
128,AFk Human: 0.889, Accept.: 0.556

Guns N’Roses is an American hard rock band from Los Angeles
formed in 1985.

OFev
Full Human: 1.0, Accept.: 0.556

Guns N’Roses is an American hard rock band from Los Angeles
formed in 1985.

OSn
128,AFk Human: 0.889, Accept.: 0.618

Guns N’Roses is a hard rock band.

OSn
Full Human: 0.111, Accept.: 0.088

Guns is hard to form a hard hard hard hard.

Table 8: An example of generated explanations by
the 13 selected models for human evaluation, with
the instance randomly selected from the VitaminC
dataset (all models have the correct prediction).
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Figure 5: Screenshots of human evaluation interface
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Hypothesis (entailment)
a hospital trust is being investigated by the health watchdog over its finances.

Premise
Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust “on behalf of patients”, the
NHS regulator said. Finances became a concern when a planned £7.8m deficit grew, for which Monitor could see no recovery
plan. The hospital blamed the larger-than-anticipated deficit on growth in demand and increased staff recruitment. Hospital
chairman Alan Tobias OBE, said: “The overspend is a result of vital investment in services and more staff to ensure high
standards of patient care as well as the rise in attendances. "We welcome this review to clearly demonstrate to Monitor - as well
as patients and stakeholders - our future financial plans are both robust and sustainable.” The hospital has pledged to cut the
deficit while maintaining “high quality care for local people” and said it was committed to returning to a surplus within three
years. Monitor said its investigation will look into the state of the hospital trustś finances, assess the strength of its financial
management and explore ways of improving its sustainability, on behalf of patients across the region. The investigation will
also examine how the trust works with other local health and care organisations to respond to the financial challenges it faces.
Katherine Cawley, regional director at Monitor, said: “People are relying on Southend to provide them with quality healthcare
now and in the future, and we are concerned that this may be at risk because of the trustś poor financial performance. "We have
launched this investigation to find out more about the financial situation at the trust and to establish what can be done to improve
things.”

TFev
64,AFk Human: 0.667, Accept.: 0.267

monitor is looking into the financial sustainability of southend university hospital foundation trust “on behalf of patients”.

TFev
128,R Human: 0.889, Accept.: 0.276

Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust ‘on behalf of patients’.

TFev
128,Fk Human: 1.0, Accept.: 0.310

southend university hospital foundation trust is being investigated by monitor over its finances.

TFev
128,AFk Human: 0.889, Accept.: 0.319

a hospital trust is being investigated by monitor over its finances.

TFev
Full Human: 0.889, Accept.: 0.266

monitor is investigating the financial sustainability of southend university hospital foundation trust “on behalf of patients”.

TSn
64,Fk Human: 0.778, Accept.: 0.240

the health watchdog is looking into the financial sustainability of Southend University Hospital Foundation Trust “on behalf of
patients”

TSn
64,AFk Human: 1.0, Accept.: 0.263

monitor is looking into the financial sustainability of southend university hospital foundation trust “on behalf of patients”

TSn
Full Human: 0.778, Accept.: 0.219

monitor is the health watchdog.

OFev
16,AFk Human: 1.0, Accept.: 0.262

a hospital trust is being investigated by the health watchdog over its finances.

OFev
128,AFk Human: 1.0, Accept.: 0.302

The hospital trust is being investigated by the health watchdog over its finances.

OFev
Full Human: 0.889, Accept.: 0.310

southend university hospital foundation trust is being investigated by monitor over its finances.

OSn
128,AFk Human: 1.0, Accept.: 0.358

Monitor is looking into the financial sustainability of Southend University Hospital Foundation Trust “on behalf of pa-
tients”,“explanation”:“The hospital trust’s poor financial performance is being investigated by the health watchdog over
its finances.

OSn
Full Human: 0.444, Accept.: 0.151

The financial services watch the financial policy of the financial and financial management to the financial services to the
financial services.

Table 9: An example of generated explanations by the 13 selected models for human evaluation, with the
instance randomly selected from the XSUM Hallucination dataset (all models have the correct prediction).
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B Category 2: Complementary results

Yes Weakly Yes Weakly No No
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Insufficient justification (10.4%)
Irrelevant to the task (4.2%)
None (60.3%)

Contain hallucinated content (8.8%)
Does not make sense (2.9%)
Too trivial (13.4%)

Figure 7: Distribution of reasons of shortcomings
from by four answers for the question “Does the ex-
planation justify the answer?”. The overall explana-
tion quality is high according to the crowd workers,
around 59% instances have “Yes” for the question
“Does the explanation justify the answer?”. The
most common shortcoming across all answers is
“Too trivial”, followed by “Insufficient justification”
and “Contain hallucinated content”.

Dataset Human Themis Accept.

SICK 0.655 2.185 0.437
VitaminC 0.621 2.183 0.363
XSUM H. 0.567 1.633 0.202

All 0.620 2.046 0.350

Table 10: Human scores and automatic scores in
different OOD datasets.
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Figure 6: F1 scores of the 3 selected OOD datasets (SICK, VitaminC, XSUM Hallucination) on models
fine-tuned with data from the first subset. Models marked with the asterisks are the selected ones for
human evaluation (besides the full-shot models which we all include). We did not consider 1- and 2-shots
fine-tuned T5 models on e-SNLI, as we observed very low quality explanations in those models.
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Figure 8: Acceptability score across different number of shots and sample selection methods. Selection
methods with “accept-” has highest Acceptability scores for all models on both source datasets.
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Dataset TSn
Full TFev

Full OSn
128,AFk OFev

128,AFk MAJ SOTA

SICK 57.1 82.4 53.7 64.2 56.9 90.3 (Chen et al., 2021)
AddOneRTE 88.6 88.4 81.9 85.5 85.3 92.2 (Pavlick and Callison-Burch, 2016)
JOCI 53.6 61.5 47.1 57.9 57.9 62.6 (Poliak et al., 2018b)
MPE 71.0 41.6 65.6 60.2 42.4 70.2 (Karimi Mahabadi et al., 2020b)
DNC 60.8 68.3 55.2 62.1 50.3 69.0 (Kim et al., 2019)
HANS 63.7 54.9 59.3 68.6 50.0 79.1 (Wu et al., 2022)
WNLI 45.1 43.7 49.3 56.3 56.3 85.6 (Raffel et al., 2020)
Glue Diagnostics 60.1 61.9 58.2 62.7 41.7 57.0M (Bajaj et al., 2022)
Conj 62.6 66.9 58.3 57.3 45.1 72.7 (Liu et al., 2023)

Snopes Stance 36.6 60.3 45.4 61.1 45.9 59.6F1 (Hanselowski et al., 2019)
SciFACT 65.3 67.7 54.3 70.0 41.3 91.4F1 (Wadden et al., 2020)
Climate FEVER 47.9 49.5 43.5 51.3 47.4 75.0 (Wolfe et al., 2024)
VitaminC 59.8 63.0 58.4 61.0 50.1 91.1 (Tay et al., 2022)
COVID-Fact 66.5 74.3 65.1 76.3 68.3 83.5 (Saakyan et al., 2021)
FM2 71.7 73.2 76.6 79.7 50.7 88.5 (Guan et al., 2024)

FactCC 88.3 89.3 68.6 79.1 87.7 91.3BA (Yang et al., 2024)
QAGS CNN 75.6 78.2 62.9 76.8 74.4 81.3 (Honovich et al., 2022)
QAGS XSUM 60.3 62.8 61.5 72.8 51.5 77.4 (Honovich et al., 2022)
XSUM H. 58.9 62.4 82.9 80.0 90.1 66.4BA (Yang et al., 2024)

Table 11: Comparison of accuracy on the 19 OOD datasets with different models. MAJ: majority voting
baseline, SOTA: state-of-the-art, M: Matthews coefficient, F1: F1 score, BA: balanced accuracy.

Source Test Set E. N. C. A.

e-
SN

L
I ID (Sn) 86.56 79.62 91.76 85.98

OOD (Fev) 78.17 38.65 68.82 61.88
OOD (9) 59.26 49.56 51.97 53.60

e-
FE

V
E

R ID (Fev) 83.22 48.07 76.39 69.23
OOD (Sn) 89.04 78.18 86.63 84.61
OOD (9) 69.17 56.64 52.12 59.31

Table 12: F1 score performance on different test
sets, contrasting the two source datasets. E.: entail-
ment, N.: neutral, C.: contradiction, A.: average
F1 score. Fev: e-FEVER, Sn: e-SNLI.

Selection Accept. Themis F1
Themis-FastVote-k 0.303 3.027 58.24
accept-FastVote-k 0.307 2.774 63.24

Table 13: Evaluation results using Themis as a filter
and as Acceptability a metric (T5-11B), compared
to using acceptability as a filter (T5-Large) and
Themis as a metric.


