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Abstract

State space models (SSMs) have recently garnered significant attention in computer
vision. However, due to the unique characteristics of image data, adapting SSMs
from natural language processing to computer vision has not outperformed the
state-of-the-art convolutional neural networks (CNNs) and Vision Transformers
(ViTs). Existing vision SSMs primarily leverage manually designed scans to flat-
ten image patches into sequences locally or globally. This approach disrupts the
original semantic spatial adjacency of the image and lacks flexibility, making it dif-
ficult to capture complex image structures. To address this limitation, we propose
Dynamic Adaptive Scan (DAS), a data-driven method that adaptively allocates
scanning orders and regions. This enables more flexible modeling capabilities
while maintaining linear computational complexity and global modeling capacity.
Based on DAS, we further propose the vision backbone DAMamba, which signifi-
cantly outperforms popular vision Mamba models in vision tasks such as image
classification, object detection, instance segmentation, and semantic segmentation.
Notably, it surpasses some of the latest state-of-the-art CNNs and ViTs. Code is
available at https://github.com/ltzovo/DAMambal

1 Introduction

In recent years, to tackle the limitations of traditional convolutional neural networks (CNNs) [30] in
modeling long-range dependencies, Transformer [51]] have been introduced into computer vision,
achieving state-of-the-art performance in image classification task. However, the self-attention
mechanism within Transformer, due to its quadratic computational complexity, faces limitations when
applied to high-resolution vision downstream tasks such as object detection and image segmentation.
To address this issue, researchers have proposed various sparse attention mechanisms [54} 55} 158
9,169, 27, 167} 144]]. These mechanisms reduce complexity by introducing sparsity into attention
computations, but this usually comes at the expense of the model’s global modeling capability,
limiting their performance in some vision tasks.

State space models (SSMs) [[13], represented by Mamba [12], have recently garnered significant
attention from researchers. The core module, the S6 block, selectively retains or discards information
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(a) Sweeping Scan (b) Continuous Scan (c) Local Scan (d) Dynamic Adaptive Scan

Figure 1: Illustration of different scanning methods in vision state space models. As showed in
Figure (a), (b), and (c): previous methods such as Vim [70], VMamba [35]], PlainMamba [61],
and LocalMamba [25] relies on manually designed global or local scanning methods. These fixed
processing approaches lack flexibility and struggle to capture complex image structures. In the Figure
(d), we propose a novel scanning method that adaptively allocates scanning order and regions through
a data-driven approach. This not only achieves more flexible modeling capabilities but also maintains
Mamba’s linear computational complexity and global modeling capacity.

based on the relevance of each element in a sequence. By incorporating a selective mechanism
for parallel computation alongside hardware-aware optimization, the S6 block not only offers a
comprehensive global receptive field but also attains a computational complexity that scales linearly
with the sequence length. This characteristic enables Mamba to outperform popular Transformer
models in natural language processing tasks. Inspired by Mamba, some research efforts, such as
Vim [[70] and VMamba [35]], have extended its application to computer vision. These approaches
divide 2D images into patches and adopt specific scanning strategies to flatten the images into multiple
1D sequences from different directions. This successfully integrates the Mamba model into vision
tasks, achieving promising performance and showcasing the potential of SSMs in computer vision.

Unlike one-dimensional sequential language data, visual data typically exhibits two-dimensional
spatial structure. One of the core challenges in adapting the Mamba model for vision tasks lies in
designing an appropriate scanning strategy for an image. Scanning strategy enables SSMs, which
are designed for 1D sequence processing, to effectively accommodate the 2D spatial structure of
images. Currently, scanning strategies for vision SSMs can be broadly categorized into three types:
sweeping scan, continuous scan, and local scan. Vim and VMamba adopt the sweeping scan strategy,
simulating a row-by-row scan from left to right and top to bottom, allowing Mamba to adapt to the
2D spatial structure of images. However, PlainMamba [61]] argues that sweeping scan overlooks the
importance of spatial continuity within images and thus introduces the continuous scan strategy to
ensure the correlation between adjacent patches. Meanwhile, LocalMamba [25]] proposes the local
scan strategy, aiming to capture the local spatial relationships within images.

Although the aforementioned methods have proven effective in practice, they rely on manually
designed scanning patterns that are independent of the input data, which may not be optimal. For
instance, sweeping and continuous scan can cause spatially close patches to become distant in SSM
computations, resulting in a loss of local information. On the other hand, local scan can capture
local spatial relationships, limiting the model’s ability to capture long-range dependencies. Clearly,
there is a need for a more flexible scanning strategy that can dynamically adjust the scanning regions
based on the characteristics of each input data instance. For example, in the case of an image of a
dog, an ideal scan strategy should adaptively focus on the dog’s body while filtering out irrelevant
background information. However, such dynamic adjustment is beyond the capabilities of existing
manually designed scanning approaches.

To address the aforementioned issues, we propose a flexible and efficient scanning strategy, named
Dynamic Adaptive Scan (DAS). Unlike traditional manually designed scanning methods, DAS
dynamically learns and adjusts scanning regions and their sequences during training, enabling smarter
and more precise feature extraction. Specifically, DAS starts by defining a set of learnable positions,
with initial values corresponding to the original locations of each patch. Then, through a learnable
offset prediction network (OPN), a set of offset values is generated for each patch. By combining
these offset values with the original patch positions, the predicted patch positions are computed.



Using bilinear interpolation, these predicted positions are gradient-linked to the feature map, allowing
the offsets to be adaptively optimized during training. The predicted patches are arranged from top
to bottom and left to right based on their original positions, dynamically forming a new sequence
order according to the input data. Through this mechanism, DAS focuses on more critical regions,
capturing important features and complex spatial structures with greater flexibility.

Based on the proposed DAS, we develop a powerful vision Mamba model, termed DAMamba.
DAMamba can serve as a versatile vision backbone for various vision tasks. For instance, our
DAMamba-T achieves an image classification accuracy of 83.8%, 48.5 AP in object detection, 43.4
AP™ in instance segmentation, and 50.3 mIoU in semantic segmentation. These results surpass the
previous state-of-the-art Vision Mamba, VMamba, by 1.2% in classification accuracy, 1.2 AP®, 0.7
AP™, and 2.3 mloU. Moreover, DAMamba also outperforms some recent state-of-the-art ViTs and
CNNss in these vision tasks, demonstrating its superior performance and various applicability.

2 Related Work

2.1 Vision State Space Models

Although the Transformer [51]] has achieved remarkable success in natural language processing, its
quadratic complexity poses challenges when handling long sequence structures. To address this
issue, state-space models [13] (SSMs), represented by Mamba [12]], have gradually emerged as an
alternative to Transformers. In visual tasks, the quadratic complexity of the standard self-attention
mechanism similarly presents challenges for processing high-resolution images. Thus, the Vim [70]
and VMamba [35] attempt to incorporate Mamba into computer vision tasks. However, inputting
images into SSM models remains a critical challenge. Vim and VMamba address this by employing
bidirectional and four-directional scanning strategies to transform image patches into one-dimensional
sequences. Building on this, subsequent research introduced continuous scanning [61] and local
four-directional scan [25] to better align with the two-dimensional structure of images. Despite the
significant achievements of Mamba models in computer vision, existing scanning methods heavily
rely on manual design, making it difficult to dynamically and flexibly adapt to input variations. This
limitation hinders the model’s ability to capture complex two-dimensional structures. Therefore, our
goal is to propose a vision Mamba model capable of adaptively and flexibly adjusting scanning paths
based on input image, further enhancing its performance in vision tasks.

2.2 Vision Transformers

The Transformer [51]] model was first introduced in 2017 for natural language processing (NLP)
tasks. With its powerful global modeling capabilities and excellent parallelism, the Transformer
quickly gained popularity in the NLP. By the end of 2020, Vision Transformer [[10] (ViT) successfully
extended the Transformer model to large-scale image classification tasks, achieving state-of-the-art
performance. Subsequently, DeiT [49] improved ViT by introducing knowledge distillation [20]
and more efficient training strategies, enabling effective training even on relatively small datasets
such as ImageNet-1K [43]. Following this development trajectory, researchers proposed numerous
hierarchical Transformer models that reduce computational complexity for high-resolution images
through various sparse attention mechanisms. Notable examples include the Swin Transformer [36]
and PVT [54] 155]]. Subsequent research [54} 155} 158, 9, 169 1277, 167, 44]] introduced various sparse
attention mechanisms to strike a balance between global modeling capability and computational
complexity. However, the global modeling capabilities of these improved sparse attention mechanisms
still fall short of the standard self-attention mechanism.

2.3 Convolutional Neural Networks

Convolutional Neural Network (CNN) [30] was initially proposed for handwritten digit recognition,
but it wasn’t until the introduction of AlexNet [29] in 2012, which triggered the "ImageNet moment,"
that the full potential of CNN’s was realized. This breakthrough led to a rapid development in computer
vision, driven by the resurgence of neural networks, with CNNs becoming the standard architecture
for computer vision tasks. During this period, many representative CNN models emerged, such as
VGG [45], GoogLeNet [46], ResNet [18]], DenseNet [23], DCN [66 53], and EfficientNet [48]]. These
models focused on different aspects, including accuracy, efficiency, and scalability, while promoting



valuable design principles. In recent years, inspired by ViTs, some CNNs [37, 57, [7 134] have
incorporated large kernel convolutions to capture long-range dependencies, achieving performance
competitive with ViT. At the same time, CNNs have been widely integrated into various ViTs and
vision Mambas to enhance local modeling capabilities, creating a complementary synergy between
the two approaches. These advancements have driven the diversification and convergence of model
design in vision tasks.

3 Methodology

3.1 Preliminaries
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Figure 2: Illustration of the proposed Dynamic Adaptive Scan (DAS). For clarity, only four reference
points are shown. Left: each initial reference point represents the original position of a patch, with
its offsets learned by an Offset Prediction Network (OPN). Features of important regions are sampled
based on the predicted 2D coordinates using bilinear interpolation. Right the detailed structure of the
OPN is revealed. The query feature map is first transformed through depthwise convolution [22} 3] to
integrate local information. Then, another linear layer, after layer normalization [1] and GELU [19]
activation, converts the feature map into offset values.

State Space Models (SSMs) [13) [12] are a class of sequence modeling methods commonly used
in deep learning, capable of representing dynamic systems through an intermediate latent state
h(t) € RN, Their core equations are as follows:

h'(t) = ARh(t) + Bx(t), y(t) = Ch(t),

where the system matrices A € RV*N B € RV>1 and C € R*¥ govern the dynamic evolution
and output mapping.

To implement continuous-time models in practice, discretization techniques are required. The
commonly used Zero-Order Hold (ZOH) method keeps the input constant within each time interval,
transforming the continuous-time parameters (A, B) into their discrete forms as follows:

A=e2 B=(AA) (A - 1)AB,

where A represents the sampling time scale. The resulting discretized model can then be expressed
as:
hi = Ahy_1 + Bxy, y; = Chy.

This method not only supports efficient parallel computation but also directly generates sequence
outputs through convolution operations:

y=x+K, K= (CB,CAB,...,CA"'B),

where K € R” is the SSM kernel, and * denotes the convolution operation. This parallelization
significantly enhances computational efficiency and scalability.

Although traditional SSMs (such as S4 [13]]) achieve linear time complexity, their static parameteriza-
tion limits their ability to capture the sequence context. To overcome this limitation, the Mamba [12]]
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Figure 3: Left: The overall architecture of the proposed DAMamba, refer to Table[I]for configurations.
Right: Details of an DAMamba Block.

introduces a dynamic and input-dependent parameterization mechanism. Unlike traditional models
that use constant transition parameters A, B, the Mamba model dynamically computes the parameters
B € RBXEXN ¢ ¢ RBXEXN "and A € RBXLXD from the input sequence z € REXLXD | This
allows for richer and more sequence-aware dynamic modeling.

In Mamba, continuous-time parameters are adaptively adjusted to input-dependent parameters through
selective functions based on the input sequence x;:

Ay =sa(xe), By =sp(x), Cp=sc(x),

and the input-dependent discrete parameters A, and B, can be calculated accordingly. The discrete
state transition and observation equations are as follows:

hi = Athy—1 + Bz,  yr = Cihy.

The dynamic parameterization of the Mamba model not only improves sequence modeling perfor-
mance but also demonstrates strong competitiveness in language modeling and vision tasks. For
instance: Vim [70] combines bidirectional Mamba blocks to replace traditional Transformer blocks
for visual modeling. VMamba [35]] constructs a hierarchical structure by introducing 2D selective
scanning, akin to the design of the Swin Transformer [36]. These advancements expand the ap-
plication potential of SSMs in foundational vision tasks, further driving the development of SSM
models.

3.2 Dynamic Adaptive Scan

As shown in Figure [2] we propose Dynamic Adaptive Scan (DAS), which effectively models the
relationships between image patches under the guidance of important regions in the feature map.
These focused regions are determined by multiple sets of learnable sampling points, which are
learned by an offset prediction network (OPN) from the input image feature map. After obtaining the
two-dimensional coordinates predicted by the OPN, we use bilinear interpolation to sample features
from the feature map, and then input the sampled features into the SSM for feature aggregation.
Furthermore, the positions of DAS provide stronger relative positional biases to facilitate the learning
of the SSM.

Specifically, we first input the feature map into an OPN to predict the two-dimensional coordinate
offsets Ap € R *WX2 of the interested patches relative to the original patches:

Ap:OPN([$1,$27"' 7',17N])7 (1)

Then, these offsets are added to the positions of the original patches to determine the sampling
locations of the interested patches:

p'[h,w,:] = plh,w,:] + Aplh,w, ], (2)

where p’ and p represent the sets of two-dimensional coordinates of the original patch and the
interested patch on the feature map, respectively. p’ and p take values between -1 and 1, (-1,-1)
denotes the upper left corner, and (1,1) denotes the lower right corner. h and w denote the coordinates
of the image patch in the height and width directions.

Next, we leverage position p’ for feature sampling, which is performed through a bilinear interpolation
function. By establishing a relationship between the image patch features and the offsets, the proposed
OPN can adaptively learn.

X'[h, w] = ¢(p'[h, w], X), (©)
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where g(c,d, e, f) represents the bi-linear sampling weight function, a, = p'[h,w,0], a, =

p'[h,w, 1], and (r;,r,) indexes all locations on X € RTXWXC g takes a nonzero value only
at the four lattice points closest to the input location.

After obtaining the sampled feature vectors of interest, X', we arrange them in the order of their
original patches from top to bottom and left to right, and then input them into SSM for feature
extraction.

3.3 Architecture Design of DAMamba

Table 1: Configurations for different DAMamba variants.

Models | Channels | Blocks

DAMamba-F |  [48,96,192,256] | [2,2,10,2]
DAMamba-T |  [80, 160,320,512] | [3,4,12,5]
DAMamba-S ‘ [96, 192, 384, 512] ‘ [4, 8, 20, 6]
DAMamba-B ‘ [112, 224, 448, 640] ‘ [4, 8, 25, 8]

As shown in Figure[3] we propose a novel vision backbone named DAMamba base on DAS, and
develop model variants at four scales: DAMamba-F, DAMamba-T, DAMamba-S and DAMamba-B.
First, the input image « € R¥*W 3 is processed throu%h a stem module, consisting of 4 overlapping
3 x 3 convolutions, to generate a 2D feature map of size £ x . x C. These features are then processed
through four sta Iges of contmuous operations, forming a mu1t1 scale hierarchical representation with
resolutions of 5 x g, E X 1g» and 5 X %, respectively. Each stage is composed of multiple
stacked DAMamba blocks, with resolutlon progressively downsampled by a factor of 2 and the
feature dimension increased. Additionally, the DAMamba architecture integrates convolutional
positional encoding [4, 126l 31]] and convolutional FFN (ConvFFN) [S5]], further enhancing the ability
to extract local features. Throughout the architecture, DAMamba blocks are flexibly stacked across
different stages to adapt to various downstream tasks. Finally, the model’s output undergoes batch
normalization, global average pooling, and a linear classification head to produce the final image
classification task feature representation. The configurations for different model scales are provided
in Table 1

4 Experiments

4.1 Image Classification on ImageNet-1K

Experimental settings: We conducted image classification experiments based on the ImageNet-1K
dataset [43]], which consists of 1,281,167 training images and 50,000 validation images spanning
1,000 categories. The implementation of our experimental methods relied on the PyTorch [40]] and
Timm [56] libraries. To ensure a fair comparison, we adopted the commonly used experimental
settings from DeiT [49]]. The optimizer used was AdamW [38]], with a cosine decay learning rate
schedule and linear warm-up over the first 20 epochs. The models were trained for 300 epochs on
images with a resolution of 2242, For data augmentation and regularization, we employed techniques
such as RandAugmentation [6], Repeated Augmentation [21]], Mixup [65], CutMix [64], Random
Erasing [68], weight decay, label smoothing [47], and stochastic depth [24]]. For the small and base
versions of the model, we also used layerscale [S0] and mesa [[L1] to help train better. During testing,
center cropping was applied to the validation images to generate input images with a resolution of
2242, The experiments were conducted on 16 RTX 3090 GPUs. Notably, exponential moving average
(EMA) [42] did not significantly improve the final model performance and was therefore not used in
the experiments.

Results: As shown in Table 2] we compare the proposed DAMamba with several state-of-the-art
models. The proposed DAMamba consistently outperforms ViT, CNN, and SSM models. Specifically,



Table 2: Results of DAMamba and the current state-of-the-art backbones on ImageNet-1K. All the
models are trained and tested at 224 x 224 resolution.

Model | Type | Params(M) | FLOPs(G) | Top-1(%)
ConvNeXt V2-F [57 CNNs 5 0.8 78.0
Vim-Ti [70 SSMs 7 1.5 76.1
LocalVim-Ti [70 SSMs 8 1.5 76.2
EffcientVMamba-T [41 SSMs 6 0.8 76.5
DAMamba-F (ours) SSMs 6 13 79.1
SLaK-T [34] CNNs 30 5.0 825
ConvNeXt V2-T [57] CNNs 29 45 825
InceptionNeXt-T [63] CNNs 28 4.2 82.3
MambaOut-Tiny [62] CNNs 27 45 82.7
UniRepLKNet-T [8] CNNs 31 49 832
InternImage-T [53] CNNs 30 5.0 83.5
Swin-T [36] ViTs 29 45 81.3
CSwin-T [9 ViTs 23 43 82.7
Agent-Swin-T [15 ViTs 29 45 82.6
DAT-T [58 ViTs 29 4.6 82.0
PVTv2-B2 55 ViTs 26 4.0 82.0
ClusterFormer-Tiny [32 ViTs 28 - 81.5
Slide-PVT-S [39 ViTs 23 4.0 81.7
NAT-T [16. ViTs 28 43 83.2
QFormery,-T [67 ViTs 29 4.6 82.5
PartialFormer-B3 [52 ViTs 36 34 83.0
StructViT-S-8-1 [28] ViTs 24 54 833
Vim-S [70] SSMs 26 5.1 80.5
VMamba-T [35] SSMs 30 49 82.6
PlainMamba-L2 [61] SSMs 25 8.1 81.6
LocalVMamba-T [25] SSMs 26 5.7 82.7
EffcientVMamba-T [41] SSMs 33 4.0 81.8
FractalMamba-T [59 SSMs 31 4.8 83.0
DAMamba-T (ours) SSMs 26 4.8 83.8
SLaK-S 34 CNNs 55 9.8 83.8
InceptionNeXt-S [63 CNNs 49 8.4 83.5
MambaOut-Small [62 CNNs 48 9.0 84.1
UniRepLKNet-S [8 CNNs 56 9.1 83.9
InternImage-S [53 CNNs 50 8.0 84.2
Swin-S [36 ViTs 50 8.7 83.0
Agent-Swin-S [15] ViTs 50 8.7 83.7
NAT-S [16] ViTs 51 7.8 83.7
PVTv2-B4 [55] ViTs 63 10.1 83.6
DAT-S [58] ViTs 50 9.0 83.7
ClusterFormer-Small [32] ViTs 49 - 834
QFormer,-S [67] ViTs 51 8.9 84.0
BiFormer-B [69 ViTs 57 9.8 843
PartialFormer-B4 [52 ViTs 64 6.8 83.9
StructViT-B-8-1 [28 ViTs 52 12.0 84.3
TransNeXt-Small [44] ViTs 50 10.3 84.7
VMamba-S [35 SSMs 50 8.7 83.6
PlainMamba-L3 [61 SSMs 50 14.4 823
LocalVMamba-S [25 SSMs 50 114 83.7
DAMamba-S (ours) SSMs 45 10.3 84.8
ConvNeXt V2-B [57 CNNs 89 15.4 84.3
SLaK-B [34] CNNs 95 17.1 84.0
InceptionNeXt-B [63] CNNs 87 14.9 84.0
MambaOut-Base [62] CNNs 85 15.8 84.2
InternImage-B [53] CNNs 97 16.0 84.9
Swin-B [36] ViTs 88 15.4 835
CSwin-B [9 ViTs 78 15.0 84.2
Agent-Swin-B [15] ViTs 88 154 84.0
NAT-B [16 ViTs 90 13.7 84.3
PVTv2-B5 55 ViTs 82 11.8 83.8
FLatten-Swin-B [14] ViTs 89 15.4 83.8
DAT-B [58 ViTs 88 15.8 84.0
QFormery,-B [67 ViTs 90 15.7 84.1
TransNeXt-Base [44 ViTs 90 18.4 84.8
VMamba-B [35 SSMs 89 154 83.9
DAMamba-B (ours) SSMs 86 16.3 85.2

DAMamba-B achieves an accuracy of 85.2%, which is 1.3% higher than the current state-of-the-
art SSM model (VMamba-B). Compared to the state-of-the-art CNN (ConvNeXt V2) and ViT
(TransNext), the proposed DAMamba-T shows a significant improvement in accuracy. Even when
the model is scaled to approximately S0M, 30M and 6M parameters, DAMamba achieves top-1
accuracies of 84.8%, 83.8% and 79.1%, maintaining its excellent performance.

4.2 Object Detection and Instance Segmentation on COCO02017

Experimental settings: We conducted object detection and instance segmentation experiments on
the COCO 2017 dataset. The COCO 2017 dataset [33]] consists of approximately 118K training
images and 5K validation images and serves as a commonly used benchmark for object detection



Table 3: Comparison of object detection and instance segmentation performance on COCO with
Mask R-CNN detector. FLOPs are calculated with input resolution of 1280 x 800.

Mask R-CNN 1x schedule
Backbone | AP® APY; AP | AP™ APH, APY | #Param. FLOPs

Swin-T 4277 652 468 | 393 622 422 48M 267G
DAT-T 444 676 48.5 | 424 66.1 455 48M 272G
CSWin-T 467 68.6 513|422 656 454 42M 279G
ConvNeXt-T 442 66.6 48.3 | 40.1 633 4238 48M 262G
PVTv2-B2 453 66.1 49.6 | 412 642 444 45M 309G
QFormery,-T 459 685 503 | 415 652 446 49M -
PartialFormer-B3 | 45.0 - - 40.9 - - 54M 248G
BiFormer-S 478 69.8 523|432 668 465 - -
MambaOut-T 45.1 673 49.6 | 41.0 64.1 44.1 43M 262G
VMamba-T 473 693 52.0 | 4277 664 459 50M 271G
LocalVMamba-T | 46.7 68.7 50.8 | 42.2 65.7 45.5 45M 291G
FractalMamba-T | 46.8 68.7 50.8 | 424 659 458 41M 266G
DAMamba-T 48,5 703 533 | 434 672 46.7 45M 284G

Swin-S 448 68.6 494 | 409 653 442 69M 354G
Agent-Swin-S | 47.2 69.6 523 | 42.7 66.6 45.8 - 364G
DAT-S 47.1 699 515 425 667 454 6OM 378G

CSWin-S 479 70.1 52,6 | 432 671 462 54M 342G
ConvNeXt-S 454 679 50.0 | 41.8 652 451 70M 348G
PVTv2-B3 470 68.1 51.7 | 425 652 457 63M 397G
BiFormer-B 48,6 705 53.8 |43.7 67.6 47.1 - -
MambaOut-S 474 69.1 524 | 427 66.1 462 65M 354G
VMamba-S 48.7 700 534 437 673 470 70M 349G
LocalVMamba-S | 48.4 69.9 52.7 | 43.2 66.7 46.5 69M 414G
DAMamba-S 498 712 547 | 445 684 482 65M 395G

Swin-B 469 692 516 | 423 66.0 455 88M 496G
CSwin-B 48.7 704 539 | 439 678 473 88M 496G
ConvNeXt-B 470 694 51.7 | 427 663 460 | 107M 486G
PVTv2-B5 474 68.6 519 | 425 657 460 | 102M 557G
ViT-Adapter-B | 47.0 682 514 | 418 651 449 | 102M 557G
MambaOut-B | 47.4 693 522 | 43.0 664 463 | 100M 495G
VMamba-B 492 714 540 | 441 683 477 | 108M 485G
DAMamba-B | 50.6 719 555 | 449 689 48.7 | 105SM 520G

and instance segmentation tasks. To evaluate the performance of the proposed model on downstream
vision tasks, we selected DAMamba as the backbone network and embedded it into a detector to
extract object and instance features from images.DAMamba was integrated into the classic Mask
R-CNN [17] detector and initialized with weights pre-trained on the ImageNet-1K dataset for 300
epochs. For the object detection and instance segmentation tasks, we trained the model for 12 epochs
(1x) and 36 epochs (3x). All experiments were conducted using the MMDetection [2] framework.

Results: The object detection and instance segmentation results of DAMamba on the COCO2017
dataset are shown in Table @ In terms of bounding box and mask average precision (AP and
AP™), DAMamba demonstrates outstanding performance. Using a (1x) fine-tuning schedule,
DAMamba-T/S/B achieves object detection mAPs of 48.5/49.8/50.6, outperforming VMamba-T/S/B
by 1.2/1.1/1.4 mAP, Swin-T/S/B by 5.8/5.0/3.7 mAP, and ConvNeXt-T/S/B by 4.3/4.4/3.6 mAP.
Under the same configuration, the instance segmentation mAP of DAMamba-T/S/B also significant
outperform VMamba-T/S/B, Swin-T/S/B and ConvNeXt-T/S/B.

4.3 Semantic Segmentation on ADE20K

Experimental settings: We conducted semantic segmentation experiments using the ADE20K dataset
and performed a comparative analysis of DAMamba and other models within the UperNet [60]
framework. In the UperNet framework, the backbone network was initialized with weights pre-
trained on the ImageNet-1K dataset, while the remaining parts were randomly initialized. The model
optimization employed the AdamW optimizer with a batch size of 16. To ensure a fair comparison,
all models were trained for 160k iterations within the UperNet framework. All experiments were
conducted using the MMSegmentation [5] framework.

Results: Table ] presents the semantic segmentation results of DAMamba under the UperNet [60]
framework. The experiments show that DAMamba-T/S/B achieves mloU scores of 50.3%, 51.2%,



Table 4: Comparison of semantic segmentation on ADE20K with UPerNet segmentor. FLOPs are
calculated with input resolution of 512 x 2048. ‘SS’ and ‘MS’ represent single-scale and multi-scale
testing, respectively.

Method | mloU (SS) mloU (MS) | #Param. FLOPs
UniRepLKNet-T 48.6 49.1 61M 946G
ConvNeXt-T 46.0 46.7 60M 939G
Swin-T 44.4 45.8 60M 945G
Agent-Swin-T 46.7 - 61M 954G
NAT-T 47.1 48.4 58M 934G
QFormery,-T 46.9 48.1 61M -
PartialFormer-B3 47.0 - 65M 923G
BiFormer-S 49.8 50.8 - -
MambaOut-T 474 48.6 54M 938G
VMamba-T 48.0 48.8 62M 949G
LocalVMamba-T 479 49.1 5TM 970G
FractalMamba-T 48.0 48.9 53M 942G
DAMamba-T 50.3 51.2 55M 937G
UniRepLKNet-S 50.5 51.0 36M 1036G
Swin-S 47.6 49.5 81M 1039G
Agent-Swin-S 48.1 - 81M 1043G
ConvNeXt-S 48.7 49.6 82M 1027G
NAT-S 48.0 49.5 82M 1010G
QFormery,-S 48.9 50.3 82M -
PartialFormer-B3 48.3 - 95M 1005G
BiFormer-B 51.0 51.7 - -
MambaOut-S 49.5 50.6 76M 1032G
VMamba-S 50.6 51.2 82M 1028G
LocalVMamba-S 50.0 51.0 81M 1095G
DAMamba-S 51.2 52.0 75M 1050G
Swin-B 48.1 49.7 12IM  1188G
Agent-Swin-B 48.7 - 12IM  1196G
ConvNeXt-B 49.1 49.9 122M  1170G
NAT-B 48.5 49.7 123M  1137G
QFormer,-B 49.5 50.6 123M -
MambaOut-B 49.6 51.0 112M  1178G
VMamba-B 51.0 51.6 122M  1170G
DAMamba-B 51.9 52.3 117M  1178G

Table 5: Ablation studies on DAMamba-F for module designs.

Module design\#Param. (M) FLOPs (G) Top-1 acc (%).

Baseline 5.31M 1.20G 77.7
+ DAScan 541IM 1.23G 78.3
+ Convpos 5.43M 1.24G 78.6
+ ConvFFN 5.52M 1.26G 79.1

and 51.9%, respectively, significantly outperforming other types of models. The performance
improvement of our DAMamaba is also evident when using multi-scale tests. These results further
validate the exceptional generalization capability of DAMamba in downstream tasks.

4.4 Ablation Study

To validate the effectiveness of our method, we conducted image classification ablation experiments
on ImageNet-1k using DAMamba-F in Table [5] Compared to the baseline model with Sweeping
Scan, our proposed Dynamic Adaptive Scan (DAS) improves the top-1 accuracy by 0.6% while
consuming only a small amount of additional FLOPs and parameter overhead. Furthermore, for
the vision SSMs, which excels at global modeling, we observe that using convolutional positional
encoding (Convpos) [4, 126, 31] and ConvFFN [55]] for local modeling can improve accuracy by 0.3%
and 0.5%, respectively.



5 Conclusion

In this paper, we have proposed a novel vision state space model, termed DAMamba. DAMamba
significantly enhances the flexibility of modeling in vision SSMs and improves the ability to capture
complex image structures, while maintaining both local and global contextual understanding. Specifi-
cally, a Dynamic Adaptive Scan mechanism is proposed to adaptively allocate scanning order and
regions based on the input image. Extensive experiments on various datasets and popular vision tasks
demonstrate that the proposed DAMamba significantly and consistently outperforms the state-of-
the-art vision SSMs as well as popular ViT and CNN architectures, establishing new benchmarks
for image classification, object detection, instance segmentation, and semantic segmentation. Our
findings underscore the importance of the scanning mechanism in vision SSMs and highlight the
tremendous potential of SSMs as vision backbone.
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the paper has limitations, but those are not discussed in the paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please see methodology and experiments.
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Please refer to the supplementary material.
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» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please see section 4.1, 4.2 and 4.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We use the common result report on ImageNet, COCO datasets and ADE20K
datasets, which does not include error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please see experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our paper did not deviate from the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Please see experiments.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM has little to do with our research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material
A.1 Model Efficiency Comparison

As shown in Figure 4] it can be seen that under the same inference throughput or accuracy, the
accuracy or inference throughput of the proposed DAMamba significantly outperforms the SSMs,
ViTs and CNNs, indicating that the proposed DAMamba achieves state-of-the-art performance
and efficiency.
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Figure 4: The trade-off between ImageNet-1K top-1 accuracy and inference throughput. All the

models are trained under the DeiT training hyperparameters. The inference throughput is measured
on an NVIDIA RTX 3090 GPU with a batch size 128.

A.2 Visualization

As shown in Figure[5] we visualize the scanning results of DAMamba on ImageNet-1K images to
verify the effectiveness of the proposed dynamic adaptive scanning method. For ease of visualization,
we selected the final stage with fewer patches and removed prediction points outside the region of
interest. For 2D positions of floating-point type, we visualize them by mapping each position to
the nearest patch. We present three examples from the ImageNet-1K dataset. We observe that the
proposed dynamic adaptive scanning primarily focuses on target objects, adapting to the input image
by dynamically focusing on the foreground regions of interest. Additionally, the scanning areas can
be adaptively adjusted.
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(a) Input image. (b) Scan Path.
Figure 5: Visualization of the Dynamic Adaptive Scan, where the blue pentagram represents the start
of the scan and the blue circle represents the end of the scan.

A.3 Object Detection and Instance Segmentatio with 3 x schedule
As shown in Table [6] when using a 3x training configuration, DAMamba still maintains large

performance improvements. These results indicate that DAMamba has the potential to achieve
state-of-the-art performance in dense prediction downstream tasks.
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Table 6: Comparison of object detection and instance segmentation performance on COCO with
Mask R-CNN detector. FLOPs are calculated with input resolution of 1280 x 800.

Mask R-CNN 3x MS schedule
Backbone | AP® APY, AP | AP™ APZ) APY | #Param. FLOPs

Swin-T 46.0 68.1 503 | 41.6 651 449 48M 267G
PVTv2-B2 478 69.7 526 | 43.1 668 46.7 45M 309G
ConvNeXt-T 46.2 679 508 | 41.7 650 449 48M 262G
NAT-T 477 69.0 526 | 42,6 66.1 459 48M 258G
QFormery,-T 475 69.6 521 | 427 664 46.1 49M -
VMamba-T 48.8 704 535 | 437 674 470 50M 271G
LocalVMamba-T | 48.7 70.1 53.0 | 434 67.0 464 45M 291G
DAMamba-T | 504 714 555 | 448 68.6 48.6 45M 284G

Swin-S 482 69.8 528 | 432 67.0 46.1 6OM 354G
PVTv2-B3 484 69.8 533 | 432 669 46.7 65M 397G
ConvNeXt-S 479 70.0 527 | 429 669 46.2 70M 348G
NAT-S 484 69.8 532 | 432 669 465 70M 330G
QFormery,-S 495 712 542 | 442 683 47.6 70M -G
VMamba-S 499 709 547 | 442 682 477 70M 349G
LocalVMamba-S | 49.9 70.5 544 | 44.1 678 474 6OM 414G
DAMamba-S 51.2 721 561 | 451 69.2 49.1 65M 395G

ConvNeXt-B 485 70.1 533 | 435 67.1 467 | 108M 486G
Swin-B 48.6 70.0 534 |433 67.1 46.7 | 107TM 496G
PVTv2-B5 484 692 529 | 429 66.6 462 | 102M 557G
DAMamba-B | 514 723 564 | 453 69.5 489 | 105M 520G
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