
DiffuPac: Contextual Mimicry in Adversarial Packets
Generation via Diffusion Model

Abdullah Bin Jasni
Graduate School of Engineering

Nagaoka University of Technology
Nagaoka, Japan

s203108@stn.nagaokaut.ac.jp

Akiko Manada
Graduate School of Engineering

Nagaoka University of Technology
Nagaoka, Japan

amanada@vos.nagaokaut.ac.jp

Kohei Watabe
Graduate School of Science and Engineering

Saitama University
Saitama, Japan

kwatabe@mail.saitama-u.ac.jp

Abstract

In domains of cybersecurity, recent advancements in Machine Learning (ML) and
Deep Learning (DL) have significantly enhanced Network Intrusion Detection Sys-
tems (NIDS), improving the effectiveness of cybersecurity operations. However,
attackers have also leveraged ML/DL to develop sophisticated models that generate
adversarial packets capable of evading NIDS detection. Consequently, defenders
must study and analyze these models to prepare for the evasion attacks that exploit
NIDS detection mechanisms. Unfortunately, conventional generation models often
rely on unrealistic assumptions about attackers’ knowledge of NIDS components,
making them impractical for real-world scenarios. To address this issue, we present
DiffuPac, a first-of-its-kind generation model designed to generate adversarial pack-
ets that evade detection without relying on specific NIDS components. DiffuPac
integrates a pre-trained Bidirectional Encoder Representations from Transformers
(BERT) with diffusion model, which, through its capability for conditional denois-
ing and classifier-free guidance, effectively addresses the real-world constraint of
limited attacker knowledge. By concatenating malicious packets with contextually
relevant normal packets and applying targeted noising only to the malicious pack-
ets, DiffuPac seamlessly blends adversarial packets into genuine network traffic.
Through evaluations on real-world datasets, we demonstrate that DiffuPac achieves
strong evasion capabilities against sophisticated NIDS, outperforming conventional
methods by an average of 6.69 percentage points, while preserving the functionality
and practicality of the generated adversarial packets.

1 Introduction

Network Intrusion Detection Systems (NIDS) play a pivotal role in safeguarding the vast array of
digital devices and infrastructures that permeate our lives. As of 2023, the global count of active
IoT devices is expected to reach approximately 15.14 billion, with projections suggesting a rise to
30 billion by 2030 (Statista [2023]). This explosive growth, fueled by applications spanning from
consumer electronics to industrial automation and healthcare, presents formidable security challenges.
To meet these challenges, advancements in Machine Learning (ML) and Deep Learning (DL) have
significantly bolstered the efficacy of NIDS in monitoring IoT traffic and detecting malicious activities
(Talaei Khoei and Kaabouch [2023]; Talaei Khoei et al. [2023]).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

However, the rapid evolution of generative AI technologies has ushered in a new era of cyberse-
curity threats, notably through the creation of adversarial packets designed to evade detection by
even the most sophisticated NIDS. These AI-driven attacks can emulate and synthesize legitimate
network behaviors, presenting an unprecedented challenge to existing security paradigms. Generative
models, particularly those trained on extensive datasets of genuine network traffic, can generate
adversarial packets that blend malicious functionalities within seemingly normal packet sequences,
thus effectively camouflaging their malicious intents.

In response to these evolving threats, it is critical for cybersecurity defenders to deepen their un-
derstanding of these generative AI models. By scrutinizing the mechanisms through which these
models generate adversarial packets, defenders can better anticipate and counteract adversarial tactics
that compromise the detection capabilities of NIDS (Ibitoye et al. [2019]; Khazane et al. [2024]).
The urgency to develop innovative solutions that can adapt to and preempt these adversarial tactics
is paramount, ensuring the reliability and robustness of NIDS in an increasingly complex threat
landscape.

Table 1: Summary of recent literature on adversarial packets
generation.

Author Year Data Set Classifier-
Techniques Algorithm

Homoliak et al. [2018] 2018 ASNM-
NBPO

Surrogate
Classifier

NetEM,
Metasploit

Hashemi et al. [2019] 2019 CICIDS-
2018

Surrogate
Classifier

Trial and
error

Kuppa et al. [2019] 2019 CICIDS-
2018

Surrogate
Classifier

Manifold
Approx.

Han et al. [2021] 2021
Kitsune,
CICIDS-
2017

NIDS
feature
extractor

GAN and
PSO

Sharon et al. [2021] 2021
Kitsune,
CICIDS-
2017

NIDS
classifier LSTM

Hore et al. [2023] 2023

CICIDS-
2017,
CICIDS-
2018

Surrogate
Classifier RL

Traditional methods for generating ad-
versarial packets have primarily re-
lied on direct engagement with NIDS
or the use of surrogate classifiers,
often assuming unrealistic levels of
attacker access to NIDS configura-
tions. Table 1 summarizes recent
literature on adversarial packet gen-
eration, highlighting the limitations
of these approaches. Studies using
techniques such as Network Emula-
tor (NetEM) and Metasploit (Homo-
liak et al. [2018]), Generative Adver-
sarial Network (GAN) and Particle
Swarm Optimization (PSO) (Han et al.
[2021]), and Reinforcement Learning
(RL) (Hore et al. [2023]) demonstrate
that while these methods successfully
modified the packets behavior, their
efficacy in evading detection in real-world conditions remains suboptimal. The reliance on detailed
knowledge of NIDS models is flawed, as attackers typically operate with limited information about
the underlying security infrastructure. This gap underscores the necessity for more practical and
effective adversarial generation methods that align with the realistic constraints faced by attackers.

To address these challenges, we introduce DiffuPac: Contextual Mimicry in Adversarial Packet
Generation via Diffusion Model, a novel solution that leverages the combined strengths of Bidirec-
tional Encoder Representations from Transformers (BERT) and diffusion model. This innovative
fusion not only promises high accuracy in generating adversarial packets but also operates under
the realistic assumption that attackers lack direct access to NIDS models. DiffuPac leverages the
extensive contextual understanding provided by BERT, which has been trained on diverse datasets
representing a wide range of network behaviors, along with the generative capabilities of diffusion
models. This fusion results in a sophisticated adversarial tactics where the elements of the attack are
seamlessly integrated into the network traffic, making them indistinguishable from legitimate data.
This capability represents a significant leap forward, offering a stealthy approach that outmaneuvers
current NIDS through advanced mimicry rather than direct confrontation.

In summary, the principal contributions of this paper are as follows: (a) we have pioneered the
integration of BERT and diffusion models to create DiffuPac, marking a first in the cybersecurity
domain. This novel methodology sets a precedent in the field by blending the advanced contextual
comprehension of network traffic with sophisticated generative capabilities to produce adversarial
packets that are both stealthy and indistinguishable from genuine traffic; (b) we introduce a unique
concatenation strategy coupled with targeted noising techniques. These innovations ensure that the
adversarial packets not only blend seamlessly into the network environment but also dynamically adapt
to evade modern detection systems; (c) DiffuPac advances a classifier-free approach to adversarial
packet generation. This approach challenges traditional dependency on surrogate classifiers, offering

2

a new paradigm that more accurately reflects the constraints and capabilities of real-world attackers;
(d) Lastly, our extensive experimental evaluations, conducted on real-world datasets, demonstrate that
DiffuPac significantly outperforms existing methods in terms of evasion effectiveness, establishing
new benchmarks for the generation of adversarial packets. These contributions collectively push the
boundaries of what is possible in the realm of network security, paving the way for more resilient
cybersecurity defenses and a deeper understanding of adversarial tactics in network environments.

2 Related Works

Adversarial Attacks on ML/DL-based NIDS. NIDS are crucial for protecting digital infrastructures
by monitoring network traffic and identifying potential threats through signature-based and anomaly-
based detection paradigms. Signature-based NIDS use pattern matching against predefined threat
databases, while anomaly-based NIDS employ machine learning models to detect deviations from
benign traffic patterns, providing an advantage in detecting sophisticated threats. The transition to
DL in anomaly-based NIDS, as highlighted by Ahmad et al. [2021], has enhanced threat detection
due to the capability to learn abstract patterns, though this shift has introduced a vulnerability to
adversarial attacks. These attacks modify network data subtly to evade NIDS, a phenomenon first
noted in computer vision (Szegedy et al. [2014]) and now challenging DL-based NIDS. Adversarial
attack tactics vary based on attacker knowledge, ranging from white-box attacks with full system
knowledge to black-box attacks with no classifier knowledge, as outlined by McCarthy et al. [2022].
Black-box scenarios are common in real-world threats since attackers generally lack direct NIDS
access, necessitating sophisticated modifications of data to exploit DL model vulnerabilities and blur
the distinction between normal and malicious traffic.

Adversarial Attacks Evading NIDS. In the study of NIDS, researchers explore feature-level and
packet-level attacks to enhance robustness. Feature-level attacks modify input network features using
methods like GANs to mislead classifiers without direct knowledge of their mechanisms. For instance,
Yang et al. [2018] used transfer-based and score-based attacks to deceive a Deep Neural Network
(DNN) model on the NSL-KDD dataset, while Sheatsley et al. [2022] developed an Augmented JSMA
(AJSMA) to ensure realistic feature modifications. However, these still fail to generate executable
malicious packets since they do not provide a method for converting modified features into packet
sequences. Conversely, packet-level attacks, which modify network packets directly to maintain their
malicious intent while evading detection, are particularly effective. As detailed in Table 1, studies
such as Hashemi et al. [2019] show successful modifications using non-payload based and mimicking
operations. In the survey He et al. [2023], authors emphasized that the practicality and replayability
of packet-level attacks make them more dominant, ensuring adversarial packets evade detection while
remaining executable. Given this efficacy, our research model, DiffuPac, is designed to excel in
this domain, outperforming previous models in robustness and detection evasion, and setting a new
standard for NIDS efficacy in adversarial cybersecurity.

Diffusion Models. Represent a breakthrough in generative modeling, offering a novel framework
for understanding data as a dynamic and stochastic process. Based on the works of Sohl-Dickstein
et al. [2015] and Ho et al. [2020], these models conceptualize data points z0 ∈ Rd (where d is
a positive integer) as the end result of a reverse Markov chain. In the forward diffusion process,
data points z0 are gradually transformed into a noise distribution . This transformation is modeled
by a Markov chain starting from the data distribution q(z0) and ending in a Gaussian distribution
zT ∼ N (0, I), where T represents the total number of timesteps in the forward diffusion process.
The transitions are defined q(zt|zt−1) = N (zt;

√
1− βtzt−1, βtI) for 1 ≤ t ≤ T , where βt as the

variance scale. In the reverse process, the model fθ (usually a U-Net or a Transformer) learns to
reconstruct the original data z0 from the noised data zT . It does so by iteratively estimating the
parameters pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σ

2
t I), where µθ and σ2

t predict the mean and variance
of the distribution.

BERT and Diffusion Models Approaches in Cybersecurity and Other Fields. The application
of pre-trained models, such as ET-BERT (Lin et al. [2022]) and NetGPT (Meng et al. [2023]), has
revolutionized understanding of network traffic by capturing the intricacies of language and interpret-
ing complex network patterns. Meanwhile, diffusion models have emerged as powerful generative
tools capable of producing high-fidelity data for applications like image generation and notably,
synthetic network traffic generation. These models leverage a unique denoising training objective to
closely mimic the original data distribution, making them promising for generating realistic network

3

Pcap Preprocessing Pre-training Fine-tuning with Diffusion Model

IP 192.168.1.1.52255
> 40.103.10.38.443:
Flags [.], seq
2667572664:2667574
014, ack 3107627624,
win 4096, length 1350

Pcap files

Src-to-dst &
Dst-to-src
splitting

Session

IPsrc
192.168.1.1,

IPdst
40.103.10.38,

TCPsrcPort
52255,

TCPdstPort
443 ….

IPsrc
40.103.10.38,

IPdst
192.168.1.1,
TCPsrcPort

443,
TCPdstPort
52255 ….

Bidirectional
Flow-based

splitting

5056C05A75085….
A81406C0A900….

Hex number
representation

5056 C05A 7508 ….
A814 06C0 A900 ….

Tokenization

Token
Embedding

Position
Embedding

Src-to-dst

…

…

…

…

…

…𝐸! 𝐸! 𝐸" 𝐸" 𝐸"Segment
Embedding

Dst-to-src

𝐸# 𝐸$ 𝐸%&' 𝐸% 𝐸%(' 𝐸)

𝐸*+*, 𝐸-+*. 𝐸[!01] 𝐸[%.!3] 𝐸*+*, 𝐸 1."

ℎ["#$]

𝐸[-4!]

𝐸'

𝐸!

ℎ["#$] ℎ&'&(

ℎ&'&(ℎ"'&)

ℎ"'&)

ℎ[$*+]

ℎ[$*+]

ℎ[,)$-] ℎ&'&(

ℎ&'&(ℎ[,)$-]

ℎ[+).]

ℎ[+).]

…

…

…

…

ℎ[-4!] ℎ*+*, ℎ-+*. ℎ[!01] ℎ*+*,ℎ[%.!3] ℎ[1."]… …

BERT

ℎ[-4!] ℎ*+*, ℎ-+*. ℎ[!01] ℎ*+*,ℎ[%.!3] ℎ[1."]… …

Masked Unidirectional
Flow Model

Same Sequence-
origin Prediction

Normal
packet

sequences
…

Malicious
packet

sequences

Packet Seq.
Concatenation

Contextually
relevant pairing

𝑧!

𝑧"

𝑧#$%

𝑧#

…
…

𝑝& (𝑧#$%|𝑧#)𝑞(𝑧#|𝑧#$%)

Forward
Process

Reverse
Process

𝑆'()
Normal (benign)

Packet Seq.

Gaussian Noise

𝑆*+,
Malicious

Packet Seq.

Targeted Noising

𝐸"

Figure 1: Proposed arhitecture is divided into three phases: pcap pre-processing, pre-training and
fine-tuning with diffusion models.

traffic for testing and analysis. Despite these advancements, combining the contextual understanding
of pre-trained models with the generative prowess of diffusion models remains underexplored in
adversarial packet generation. This integration offers a synergistic approach, merging the nuanced
comprehension of network behaviors by pre-trained models with the high-quality data generation of
diffusion models. By leveraging these technologies together, cybersecurity researchers can enhance
the realism of simulated network environments and develop more advanced evasion tactics.

3 DiffuPac

In this section, we introduce DiffuPac, a first-of-its kind adversarial packet generation model. Figure 1
illustrates the overall framework of the proposed model, consisting of three main phases: pcap
pre-processing, pre-training and fine-tuning with diffusion model.

3.1 Data pre-processing

In real network environments, traffic contains diverse flows from various applications, protocols,
and services, complicating the learning of stable representations. Therefore, we first split pcap
(packet capture) files into sessions (bidirectional flows) based on IP addresses, port addresses, and
protocols. To refine the training of the BERT model, we further split sessions into unidirectional
flows, categorizing them as either source-to-destination (src-to-dst) packet sequence or destination-to-
source (dst-to-src) packet sequence. This categorization is crucial for the BERT model’s pre-training.
Network traffic varies due to diverse protocols and network services, resulting in different formats
and patterns. To handle these variations and encoding requirements, we convert each byte to its
corresponding hex number and tokenize using WordPiece (Wu et al. [2016]). Each token ranges
from 0 to 65535, with a dictionary size of 65536. We also incorporate special tokens [CLS], [SEP],
[PAD], and [MASK] for training tasks. [CLS] is used at the beginning of each sequence and helps in
classification tasks. [SEP] separates different sequences or segments within the same input. [PAD]
ensures sequences are of uniform length and satisfy the minimum length requirement. [MASK] is
used in pre-training task, where it temporarily substitutes tokens to be predicted.

3.2 Pre-training

As shown in Figure 1, the input tokens are processed using an embedding strategy that involves
the sum of three types of embeddings: token embeddings, positional embeddings, and segment
embeddings. Each embedding has a dimension of 768. Token Embeddings are high-dimensional

4

vectors that uniquely represent each token, acting as their exclusive identifiers. Positional Embeddings
are used to capture the temporal relationships of tokens, ensuring that the model learns to focus on the
order of data transmission. Segment Embeddings differentiate packets within a single flow, as packets
may not inherently share semantic associations, and preserving the order of packets to maintain the
temporal sequence of events in a session flow.

We design our pre-training tasks based on the approach described in Devlin et al. [2019]. Our two
proposed pre-training tasks aim to capture the contextual relationships between traffic bytes. The first
task involves predicting masked tokens to learn the underlying patterns and dependencies within the
traffic data. The second task predicts the transmission order by determining whether packets belong
to src-to-dst or dst-to-src sequences, thereby capturing the directional flow of the network traffic.

Masked Unidirectional Flow Model. Inspired by BERT’s Masked Language Model (MLM) in
natural language processing, we adapt this approach for network traffic analysis through our Masked
Unidirectional Flow Model. This model is designed to understand and predict the semantic patterns
within bidirectional network flows; that are src-to-dst sequence and dst-to-src sequence. During
pre-training, each token in the input sequence is masked with a probability of 15%. Amongst these
masked tokens 80% are replaced with a [MASK] token, 10% are replaced with a random token from
the vocabulary, and 10% are left unchanged. This introduces variability that mimics real-world
data inconsistencies. The training objective is to minimize the negative log-likelihood of correctly
predicting the original tokens at the masked positions. Formally, the loss function LMUM for this task
is defined as:

LMUM = −
n∑

i=1

1(mi) logP (vi | Vmasked; θ), (1)

where n is the total number of tokens in the sequence, 1(mi) is an indicator function that is 1 if the
token vi was masked (0 otherwise). mi indicates the masking status of the i-th token and Vmasked is
the masked sequence. vi is the actual token at position i and P (vi | Vmasked; θ) is the probability of
predicting the original token vi for given masked sequence and model parameters θ. The transformer
encoder, characteristic of BERT, processes Vmasked to predict each masked token. This architecture
leverages self-attention mechanisms to capture dependencies and context effectively, which is crucial
for understanding complex patterns in network traffic.

Same Sequence-origin Prediction. Inspired by Lin et al. [2022], this task employs a dedicated
binary classifier to determine the directional origin of network traffic, specifically whether packets
in a sequence originate from src-to-dst or dst-to-src. This classification enhances the model’s
understanding of network flows and the contextual relationships between packets, which is crucial for
recognizing communication patterns and dependencies in network traffic. For this task, each packet ar
is paired with another packet as. 50% of the time, as is the next logical packet in the flow (src-to-dst
or dst-to-src); the other 50% of the time, it is a randomly chosen packet from the opposite flow. The
classifier then predicts whether as follows ar in the correct directional sequence. This pairing strategy
improves the model’s capability to discern patterns in packet flows. Let A = {(ar, as)} be the set of
packet pairs, where each pair is labeled with bw ∈ {0, 1} (1 if as follows ar in the correct flow, 0
otherwise). The loss function LSSP for this task can be formulated as:

LSSP = −
K∑

w=1

bw logP (bw = 1 | ar, as; θ) + (1− bw) log(1− P (bw = 1 | ar, as; θ)), (2)

where K is the total number of packet pairs and θ represents the trainable parameters of the classifier.
P (bw = 1 | ar, as; θ) is the probability predicted by the classifier that as correctly follows ar in the
given network flow direction.

In summary, the final pre-training objective is the sum of the above two losses, which can defined as:

L = LSSP + LMUM. (3)

Fu et al. [2021] mentioned that the number of packets within each flow can vary significantly. Given
the constraints imposed by packet size and the potential volume of network traffic, computational
efficiency is a paramount concern. In addressing this problems, as demonstrated in Dai et al. [2023]
that the initial packets in a flow contain the most significant information, we limit our analysis to
the first three packets of each heavy flow. This means that for each session, we analyze a total of six
packets—three from the src-to-dst flow and three from the dst-to-src flow. This strategy ensures a
comprehensive view of the session while maintaining efficiency.

5

3.3 Fine-tuning with Diffusion Models

Forward Process with Packet Sequences Concatenation Strategy. In the fine-tuning phase, the
goal is to train the model so that malicious packets can mimic normal packets to bypass NIDS. This
involves using packet sequences that are only from the src-to-dst, reflecting the adversary’s control
over the packets being sent (Hore et al. [2023]). The forward process of our diffusion model begins
by embedding both normal (benign) packet sequences Sben and malicious packet sequences Smal.
This transformation of discrete packet data into a continuous feature spaces uses an embedding
function adapted from Li et al. [2022]. Building upon the groundwork of DiffuSeq (Gong et al.
[2023]) approach, which typically involves random merging, our model innovates by leveraging the
deep contextual insights provided by the pre-trained BERT model (Details in A.2). This allows us
to strategically pair normal and malicious sequences with strong contextual alignments that show
similarity in network behavior patterns. These contextually aligned pairs are crucial for mimicking
normal traffic and increasing the chances of bypassing NIDS. By integrating these contextually
aligned pairs into our diffusion process, the model extends the original forward chain to a new Markov
transition qϕ(z0 | Sben⊕mal) = N (EMB(Sben⊕mal), β0I), where EMB(Sben⊕mal) symbolizes the
embedding transformation and concatenation of normal and malicious packet sequences. While
Sben⊕mal denotes the initial concatenated sequence, the forward process gradually perturbs this
initial state z0 through a series of transitions, producing latent variables z1, z2, . . . , zt.

Targeted Noising. To enhance our diffusion model’s capability for adversarial packet generation,
we simplify the model’s state transitions by defining zt = xt ⊕ yt, where xt and yt correspond to
the portions of zt that belong to Sben and Smal, respectively. This setup allows us to strategically
inject noise into only the malicious packet sequences (represented by yt), rather than the entire state
zt, during each forward step q(zt | zt−1). This targeted noising, inspired by DiffuSeq, is pivotal for
adapting conventional diffusion models for targeted modification.

Reverse Process With Normal Packet Guidance. Building upon the foundational principles of
DiffuSeq, our model introduces an innovative reverse process tailored for more nuanced handling
of network traffic data. This process distinctively utilizes normal packet sequences as a guiding
framework, enabling a sophisticated denoising technique that treats the concatenated sequences of
normal and noise-added malicious packets as a unified unit. This approach effectively “teaches” the
model to perceive these malicious elements as integral parts of the normal traffic pattern. A key
aspect of this reverse process is the use of the pre-trained BERT model as the denoising engine during
packet reconstruction. In this phase, the BERT model undergoes fine-tuning within the diffusion
framework, ensuring that it is specifically adapted for reconstructing packets. As a result, the BERT
model is not only responsible for contextual understanding but also plays a central role in recovering
malicious packets that have been integrated into normal traffic patterns. The conditional denoising
process effectively employs Bayesian inference to parameterize the transition probabilities between
states, ensuring precise control over each step in the reverse process. These parameterizations
are mathematically articulated through the equations: pθ(z0:T) := p(zT)

∏T
t=1 pθ(zt−1|zt) and

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σθ(zt, t), where µθ(·) and σθ(·) model the mean and variance
necessary for the stochastic reverse transition from zt to zt−1, respectively. To rigorously ensure
that the malicious packets are not only recovered but also convincingly mimic normal packets, our
model optimizes a specially formulated variational lower bound LV LB . This objective underscores
the model’s effectiveness in blending malicious packets within normal packets:

min
θ

LV LB = min
θ

[
T∑

t=2

∥z0 − fθ(zt, t)∥2 + ∥EMB(Sben⊕mal)− fθ(z1, 1)∥2 − log pθ(S
ben⊕mal | z0)

]
(4)

This objective is particularly focused on accurately reconstructing the initial state z0 from the noised
states, with a distinct emphasis on ensuring that the malicious components are seamlessly integrated
into the normal packets pattern.

Preserving Packets’ Integrity. We propose an innovative approach that utilizes a parallel data
structure called “model dictionary” that clearly distinguishes between mutable and immutable fields
within each packet. By categorizing fields into mutable (e.g. TCP flags, TTL, and window size) and
immutable (including the critical 5-tuple information and payload), we ensure that modifications
during training do not compromise the packet’s integrity. The model dictionary serves a dual purpose:
it retains the original values of immutable fields and establishes a link to their mutable counterparts.
This approach allows for dynamic modification of mutable fields during training without affecting

6

the core attributes of the packet. After training, any changes made to mutable fields are seamlessly
integrated with the preserved immutable fields. This recombination ensures that the modified packets
maintain their operational integrity and are indistinguishable from genuine traffic in real-world
scenarios. By bypassing traditional domain constraints—which typically complicate training and
pose convergence challenges—our method simplifies the training process and obviates the need
for additional compensatory loss functions (Letcher [2021]). The outcome is a highly effective
generation of adversarial packets that are capable of evading detection without compromising the
essential characteristics of the original packets.

4 Experiments

We conduct experiments to validate the performance of DiffuPac on 6 types of attacks, against 6
classifiers.

4.1 Experimental Setup

Dataset. The datasets used for this model are Kitsune Dataset (Mirsky et al. [2018]) and CICIDS-
2017 Dataset (Sharafaldin et al. [2018]). Initially, pre-training of the BERT model utilizes a large
subset of unlabeled network traffic to leverage the model’s capability to capture diverse traffic patterns,
accounting for 60% of the total data. Fine-tuning phase, the focus shifts to a smaller, labeled dataset,
which constitutes 20% of the total data. This dataset is distinctly partitioned into malicious and normal
packets, which is crucial for training the model to mimic malicious packets as normal. Training
the classifier and NIDS then utilizes another 10% of the total data consisting of labeled portion.
Testing phase is conducted with the remaining 10% of the data, reserved exclusively for evaluating
the model’s efficacy. This phase includes testing both original and mimicked malicious packets to
rigorously assess the model’s real-world applicability and its capability to generalize across unseen
data.

Baseline Models. We evaluate two baseline models—Traffic Manipulator (Han et al. [2021]) and
TANTRA (Sharon et al. [2021])—both of which represent current strategies for evading NIDS but
share a significant limitation in their reliance on specific operational assumptions. Traffic Manipulator
formulates the evasions as a bi-level optimization problem, where the first level uses GAN to identify
adversarial features closely mimicking the original network features, and the second level utilizes PSO
to modify packet characteristics to exploit vulnerabilities in NIDS. TANTRA employs a three-step
process involving an LSTM trained to model benign traffic by predicting inter-packet delays. This
LSTM then adjusts malicious traffic to mimic these benign patterns before deployment. Both models,
however, assume a degree of accessibility to NIDS configurations or feature extractors that is often
unrealistic in practical scenarios. This reliance on specific knowledge about NIDS configurations
creates a critical dependency that can limit the deployment and scalability of these evasion techniques
in diverse operational environments. Conversely, DiffuPac operates under the assumption of zero
prior knowledge about NIDS configurations or feature extractors.

Implementation Details. DiffuPac leverages a BERT model with 12 transformer blocks, each
featuring 12 attention heads and an embedding dimension of 768, to capture nuanced relationships
in network traffic. This setup supports the maximum sequence length of 512. The diffusion model
incorporates time step embedding to provide temporal context, enhancing the model’s understanding
of the reverse process. To manage the computational demands, particularly during the sampling
phase, a projection layer reduces the embedding dimension to 128. Additionally, DiffuPac utilizes
the FAISS library (Douze et al. [2024]), renowned for its capability to handle large-scale similarity
search and clustering of dense vectors.

Experimental Details. Our experimental framework integrates advanced feature extraction tools
and a diverse set of machine learning classifiers, building on methodologies established in the Traffic
Manipulator research. We employ 2 feature extractors: AfterImage (Mirsky et al. [2018]), which
provides detailed packet statistics, and CICFlowMeter (Draper-Gil et al. [2016]), which assesses
connection-level metrics. Recognizing the documented shortcomings of the original CICFlowMeter,
our research employs a revised version that integrates enhancements and corrections proposed in
recent studies (Engelen et al. [2021], Liu et al. [2022]). These modifications are crucial in ensuring
more accurate and reliable feature extraction for our analysis. AfterImage and CICFlowMeter offer
a comprehensive view of network traffic, capturing both packet-level and flow-level data essential

7

Table 2: Comparative analysis of attack detection and evasion rates.
(a) Botnet

Feature
Extractor Classifier

Detection Evasion Rate (MER)

P R F1
GAN

&
PSO

LSTM Ours

CIC
FLowMeter

KitNET 0.84 0.94 0.92 37.24% 50.69% 46.48%

DT 0.79 0.91 0.82 35.88% 49.62% 60.98%
IF 0.99 0.90 0.95 39.78% 42.93% 49.71%
MLP 0.92 0.84 0.86 41.05% 53.87% 63.05%
SVM 0.99 0.92 0.95 88.79% 91.95% 64.49%

LR 0.84 0.91 0.89 24.72% 30.52% 42.08%

AfterImage

KitNET 0.96 0.90 0.94 99.18% 99.79% 74.46%

DT 0.79 0.90 0.84 63.42% 67.30% 72.13%
IF 0.99 0.90 0.94 31.48% 61.08% 52.79%

MLP 0.96 0.97 0.97 48.60% 60.97% 64.92%
SVM 0.99 0.90 0.94 40.31% 51.24% 69.19%
LR 0.96 0.90 0.93 53.28% 50.70% 58.98%

(b) MITM
Feature

Extractor Classifier
Detection Evasion Rate (MER)

P R F1
GAN

&
PSO

LSTM Ours

CIC
FLowMeter

KitNET 0.92 0.94 0.91 38.22% 44.39% 53.87%
DT 0.74 0.79 0.76 49.98% 57.77% 64.12%
IF 0.99 0.92 0.94 26.74% 38.64% 52.99%
MLP 0.77 0.72 0.74 52.07% 43.19% 73.21%
SVM 0.74 0.79 0.78 42.11% 45.54% 60.46%
LR 0.73 0.78 0.72 35.87% 50.04% 47.48%

AfterImage

KitNET 0.94 0.96 0.93 68.79% 79.29% 58.48%

DT 0.75 0.89 0.84 53.18% 58.15% 70.04%
IF 0.81 0.83 0.86 26.53% 31.27% 45.71%
MLP 0.92 0.90 0.93 50.65% 59.30% 71.45%
SVM 0.99 0.90 0.94 63.51% 57.51% 66.53%
LR 0.91 0.94 0.90 44.68% 46.39% 52.38%

for nuanced analysis. These feature extractors are integral to NIDS detection as they preprocess
network data into structured features that are then analyzed by ML classifiers. This preprocessing
step is crucial for transforming raw network traffic into a format that classifiers can effectively
interpret, thereby enhancing the accuracy of the anomaly detection. We utilize a variety of machine
learning classifiers for anomaly detection, including KitNET (Mirsky et al. [2018]), an ensemble of
autoencoders; Multi-Layer Perceptron (MLP) for deep learning; Logistics Regression (LR), Decision
Tree (DT), and Support Vector Machine (SVM) for traditional approaches; and Isolation Forest (IF)
for outlier detection. Our experiments cover 6 types of attacks—Man-in-the-Middle (MITM), Botnet,
Brute Force, DDoS, Port Scan, and Infiltration—utilizing data from Kitsune and the CICIDS-2017
dataset.

Evaluation. To assess the effectiveness of the mimicked packets in evading the 6 classifiers, we
employed a singular, highly illustrative metric from the Traffic Manipulator: the Malicious traffic
Evasion Rate (MER). This metric is calculated using the formula: MER = 1 −

(
Nadv/Nmal

)
,

where Nadv and Nmal represent the number of detected adversarial and detected malicious packet
sequences, respectively. This equation captures the percentage of adversarial packet sequences that
goes undetected as compared to the original malicious packet sequences that was detected, effectively
measuring the evasion capability of the adversarial packet sequences.

We employed the two-sample Kolmogorov-Smirnov (K-S) test, a powerful non-parametric method
used to determine the probabilistic differences between two data samples. Specifically, we compare
the empirical cumulative distribution functions (eCDFs) of both the original malicious packets and
the adversarial packets generated by our model. The K-S test calculates the maximum distance (K-S
statistic, D) between these two eCDFs. This statistic measures the greatest deviation between the
distribution of our adversarially modified packets and the original malicious packets (Hore et al.
[2023]; Gretton et al. [2012]). A D value exceeding the critical threshold at a chosen significance
level suggests a rejection of the null hypothesis—that is, the two samples are not derive from the
same distribution. We demonstrated adversarial packets that were found to be out-of-distribution
(OOD) at 95% significance level.

Additionally, we used Wireshark, a widely recognized network protocol analyzer to ensure that during
the modifications were made, the immutable fields crucial for the packet’s attack functionality were
preserved. This visual verification via Wireshark confirms that our adversarial packets maintain their
structural integrity and functionality, successfully mimicking genuine network traffic while evading
detection (Due to limited space, results and analysis are in Appendix B.1).

We also evaluated DiffuPac’s efficacy in generating adversarial packets that maintain their malicious
functionality in a controlled test environment using UTM hypervisor technology. This setup included
two virtual machines: one running Kali Linux (attacker) and another running Ubuntu 24.04 (victim).
The isolation ensured a realistic yet controlled network environment. We conducted the evaluation on
two type of attacks: Port Scan and Brute Force. (Due to space constraints, results and analysis of the
two attacks are in Appendix B.3.1 and B.3.2).

8

4.2 Results and Analysis

Evasion Rate. We evaluated the evasion rates of the 6 attacks using DiffuPac and two baseline
models, and compared the results in Table 2 (Due to space constraints, the other 4 attacks are
demonstrated in Appendix B.2). As shown in Table 2, we conclude that DiffuPac is capable of
generating adversarial packets that achieves comparable or even higher in evasion rate compared
with both Traffic Manipulator (GAN & PSO) and TANTRA (LSTM). Importantly, DiffuPac achieves
this high performance without relying on NIDS components, surrogate classifiers or specific insights
into the NIDS’s feature extraction methods, highlighting its effectiveness in realistic settings where
attackers lack access to such insider information. The evasion performance varied significantly across
different classifiers, reflecting the inherent variability in their robustness and detection capabilities.

Table 3 : Percentage of successful ad-
versarial samples found to be OOD.

Attack Type Percentage of
OOD Samples (%)

Botnet 48.72
MITM 29.34
Port Scan 55.23
DDoS 78.14
Infiltration 58.06
Brute Force 69.67

Flow-based NIDS exhibited greater resilience against our
attacks compared to packet-based NIDS, likely due to Diffu-
Pac’s focus on packet-level modifications. Interestingly, the
Traffic Manipulator model performed well with KitNet’s
AfterImage feature extractor, likely because it was trained
directly on these features, enhancing its capability to mod-
ify them to evade detection. This specific alignment with
NIDS features, while effective, does not typically reflect
real-world attacker capabilities or constraints.

TANTRA also demonstrated high evasion rates, particularly
with AfterImage, thanks to its use of LSTM models trained
on benign traffic from the targeted network. This training
allows TANTRA to reshape the timing between packets.
This specific adjustment of interpacket delays directly impacts the time-based features extracted by
AfterImage, making it more difficult for the classifiers to distinguish between normal and malicious
packets.

Quantitatively, DiffuPac outperformed Traffic Manipulator by an average of 9.12 percentage points
and TANTRA by an average of 4.26 percentage points across all attack types. The overall average
improvement of DiffuPac over both baselines is 6.69 percentage points, demonstrating its superior
capability to generate adversarial packets that effectively evade detection.

Based on the results of all the attacks, we can conclude that ML classifier are more robust than DNNs
to adversarial attacks. Traditional ML models, like DT and IF, have simpler and more interpretable
decision boundaries, making them less susceptible to subtle adversarial modifications (Sauka et al.
[2022]). In contrast, DNNs with their complex and high-dimensional decision boundaries are more
easily misled by the nuanced modifications introduced by DiffuPac.

Statistical Difference (K-S test). The percentage of successful adversarial packets that were found
to be OOD are demonstrated in Table 3. From the result, we can obeserve that Brute Force and DDoS
attacks show the highest percentage of OOD samples. The grounded reasons for these kind of attacks
are due to the inherent nature of their traffic patterns. The nature of Brute Force attacks involves
numerous failed login attempts, leading to highly irregular sequence numbers (Javed and Paxson
[2013]). Even after modifications by DiffuPac, these attempts will stand out due to their frequency
and pattern, resulting in significant deviations in the eCDFs. The sheer volume and repetitive nature
of DDoS traffic (Haseeb-ur rehman et al. [2023]) make it difficult to disguise effectively. Despite
efforts of intelligent mutation process, the high volume and distinctive traffic patterns will cause
substantial deviations in the eCDFs as well. On the other hand, the MITM show the lowest percentage
of OOD samples. Adjusting TTL values is straightforward as they can be set to typical ranges seen in
normal packets without significantly altering packet behavior, resulting in minimal deviation in the
eCDFs.

5 Limitations

Our evaluations demonstrated DiffuPac’s strong evasion capabilities, enabling the generation of
adversarial packets that convincingly mimic legitimate network traffic, particularly in packet header
fields. While these results highlight DiffuPac’s ability to evade detection by NIDS, there remain areas
for further study.

9

In particular, while we assessed the malicious functionality of generated adversarial packets in a
controlled environment using UTM hypervisor technology, this evaluation was limited to Port Scan
and Brute Force attacks. Although DiffuPac successfully retained the malicious intent of these
attacks, further evaluations are required to determine its effectiveness across a broader range of
attacks, especially those with more complex behaviors such as DDoS or Botnet attacks.

We also noted that DiffuPac’s evasion performance is not uniform across all scenarios, notably DDoS
and Brute Force. This variability is due to the distinct nature of each attack’s traffic patterns, which
may not be fully captured by the model, especially in highly repetitive or anomalous behaviors. To
enhance the model’s adaptability and generalizability, we plan to enrich the training dataset with a
broader spectrum of real-world attack scenarios.

Moreover, the dual-use nature of adversarial generation models like DiffuPac presents significant
ethical and legal challenges. While designed to improve security defenses, these technologies could
be misused for malicious activities, such as facilitating cyber-attacks or disrupting services. To
mitigate these risks, we have opted not to publicly release saved model checkpoints, aiming to prevent
exploitation by malicious entities and ensure that our advancements in adversarial packet generation
are used responsibly and within ethical bounds.

6 Conclusion and Future Directions

In this study, we introduced DiffuPac, an intelligent generative model that successfully generates
adversarial packets capable of evading advanced NIDS while maintaining attack functionality. Unlike
previous research, which often assumes attacker access to NIDS, DiffuPac operates under constraints
of limited attacker knowledge, reflecting more realistic scenarios. Here, we present the in-depths
insights obtained from this study: (a) DiffuPac uniquely combines normal and malicious packet
sequences using contextual alignments, ensuring seamless integration into genuine traffic while
employing these normal packet sequences to guide the denoising process. Through the performance
evaluations with various NIDS, our model achieved an average improvement of approximately
6.69 percentage points in evasion rate compared to the two baselines across all attack types. (b)
Evasion rates varied notably across attack types, with DDoS and Brute Force attacks showing higher
probabilistic differences due to their complex, repetitive nature. This highlights potential areas for
further refinement in DiffuPac’s approach to handling voluminous attacks. (c) Simpler ML models like
DT and IF displayed surprising resilience due to their less complex decision boundaries, limiting the
effectiveness of DiffuPac’s modifications. In contrast, DNNs, with their intricate decision boundaries,
were more vulnerable, underscoring the complexities inherent in designing robust adversarial tactics.
(d) DiffuPac’s capability to balance sophisticated attacks with operational stealth makes it especially
suitable for environments where attackers lack comprehensive NIDS configurations, enhancing its
utility in realistic defense testing.

As future studies, we will compare DiffuPac against a broader generative adversarial packets model
and extend testing across more diverse NIDS to better understand its relative strengths and limitations.
Next, we will further expand the range of attack types included in the malicious functionality
evaluation. Moreover, adversarial defenses are a key focus of our ongoing research, particularly
in relation to DiffuPac’s capabilities. One promising direction is the development of adversarial
purification using diffusion models, a technique successfully applied in image processing. This
approach treats adversarial perturbations as noise, utilizing the diffusion model’s reverse process to
restore network packets to their original state before analysis by NIDS. We believe this method has
significant potential for enhancing network security and aim to further develop and test it as a novel
defense strategy.

Acknowledgements

This work has been partially supported by KAKENHI Grant Number JP23H03379.

10

References
Statista. Number of Internet of Things (IoT) connected devices worldwide from 2019 to 2023,

with forecasts from 2022 to 2030. https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/, 2023. Accessed: 2024-4-20.

Tala Talaei Khoei and Naima Kaabouch. Machine learning: Models, challenges, and research
directions. Future Internet, 15(10):332, 2023. doi: 10.3390/fi15100332.

Tala Talaei Khoei, Hadjar Ould Slimane, and Naima Kaabouch. Deep learning: Systematic review,
models, challenges, and research directions. Neural Computing and Applications, 35(31):23103–
23124, 2023. doi: 10.1007/s00521-023-08957-4.

Olakunle Ibitoye, Rana Abou Khamis, Ashraf Matrawy, and M. Omair Shafiq. The threat of
adversarial attacks on machine learning in network security – A survey. arXiv, 2019. URL
http://arxiv.org/abs/1911.02621.

Hassan Khazane, Mohammed Ridouani, Fatima Salahdine, and Naima Kaabouch. A holistic review
of machine learning adversarial attacks in IoT networks. Future Internet, 16(1):32, 2024. doi:
10.3390/fi16010032.

Ivan Homoliak, Martin Teknøs, Martîn Ochoa, Dominik Breitenbacher, Saeid Hosseini, and Petr
Hanacek. Improving network intrusion detection classifiers by non-payload-based exploit-
independent obfuscations: An adversarial approach. EAI Endorsed Transactions on Security
and Safety, 5(17), 12 2018. doi: 10.4108/eai.10-1-2019.156245.

Mohammad J. Hashemi, Greg Cusack, and Eric Keller. Towards evaluation of nidss in adversarial
setting. In Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine Learning and
Artificial Intelligence for Data Communication Networks, 2019.

Aditya Kuppa, Slawomir Grzonkowski, Muhammad Rizwan Asghar, and Nhien-An Le-Khac. Black
box attacks on deep anomaly detectors. In Proceedings of the 14th International Conference on
Availability, Reliability and Security (ARES 2019), 2019.

Dongqi Han, Zhiliang Wang, Ying Zhong, Wenqi Chen, Jiahai Yang, Shuqiang Lu, Xingang Shi,
and Xia Yin. Evaluating and improving adversarial robustness of machine learning-based network
intrusion detectors. IEEE Journal on Selected Areas in Communications, 39(8):2632–2647, 2021.
doi: 10.1109/JSAC.2021.3087242.

Yam Sharon, David Berend, Yang Liu, Asaf Shabtai, and Yuval Elovici. TANTRA: Timing-based
adversarial network traffic reshaping attack. IEEE Transactions on Information Forensics and
Security, 17:3225–3237, 2021. doi: 10.1109/TIFS.2022.3201377.

Soumyadeep Hore, Jalal Ghadermazi, Diwas Paudel, Ankit Shah, Tapas K. Das, and Nathaniel D.
Bastian. Deep PackGen: A deep reinforcement learning framework for adversarial network packet
generation. arXiv, 2023. URL https://arxiv.org/abs/2305.11039.

Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang, Johari Abdullah, and Farhan Ahmad.
Network intrusion detection system: A systematic study of machine learning and deep learning
approaches. Transactions on Emerging Telecommunications Technologies, 32(1):e4150, 2021. doi:
https://doi.org/10.1002/ett.4150.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Yoshua Bengio and Yann LeCun,
editors, Proceedings of the 2nd International Conference on Learning Representations (ICLR
2014), 2014.

Andrew McCarthy, Essam Ghadafi, Panagiotis Andriotis, and Phil Legg. Functionality-preserving
adversarial machine learning for robust classification in cybersecurity and intrusion detection
domains: A survey. Journal of Cybersecurity and Privacy, 2(1):154–190, 2022. doi: 10.3390/
jcp2010010.

11

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
http://arxiv.org/abs/1911.02621
https://arxiv.org/abs/2305.11039

Kaichen Yang, Jianqing Liu, Chi Zhang, and Yuguang Fang. Adversarial examples against the
deep learning based network intrusion detection systems. In Proceedings of 2018 IEEE Military
Communications Conference (MILCOM 2018), pages 559–564, 2018. doi: 10.1109/MILCOM.
2018.8599759.

Ryan Sheatsley, Nicolas Papernot, Michael J. Weisman, Gunjan Verma, and Patrick McDaniel.
Adversarial examples for network intrusion detection systems. Journal of Computer Security, 30
(5):727–752, 2022. doi: 10.3233/JCS-210094.

Ke He, Dan Dongseong Kim, and Muhammad Rizwan Asghar. Adversarial machine learning for
network intrusion detection systems: A comprehensive survey. IEEE Communications Surveys &
Tutorials, 25(1):538–566, 2023. doi: 10.1109/COMST.2022.3233793.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei, editors, Proceed-
ings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of
Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.

Jonathan Ho, Ajay Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proceedings of
Advances in Neural Information Processing Systems 33 (NeurIPS 2020), pages 6840–6851, 2020.

Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. Et-bert: A contextualized
datagram representation with pre-training transformers for encrypted traffic classification. In
Proceedings of the ACM Web Conference 2022 (WWW 2022). ACM, 2022. doi: 10.1145/3485447.
3512217.

Xuying Meng, Chungang Lin, Yequan Wang, and Yujun Zhang. Netgpt: Generative pretrained
transformer for network traffic. arXiv, 2023. URL https://arxiv.org/abs/2304.09513.

Yonghui Wu, Mike Schuster, Z. Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson,
Xiaobing Liu, Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason R. Smith, Jason Riesa, Alex
Rudnick, Oriol Vinyals, Gregory S. Corrado, Macduff Hughes, and Jeffrey Dean. Google’s neural
machine translation system: Bridging the gap between human and machine translation. arXiv,
2016. URL https://arxiv.org/abs/1609.08144.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 17th Annual
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL-HLT 2019), pages 4171–4186. ACL, 2019. doi: 10.
18653/v1/N19-1423.

Chuanpu Fu, Qi Li, Meng Shen, and Ke Xu. Realtime robust malicious traffic detection via frequency
domain analysis. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS 2021), pages 3431–3446. ACM, 2021. doi: 10.1145/3460120.3484585.

Jianbang Dai, Xiaolong Xu, and Fu Xiao. Glads: A global-local attention data selection model for
multimodal multitask encrypted traffic classification of IoT. Computer Networks, 225:109652,
2023. doi: https://doi.org/10.1016/j.comnet.2023.109652.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-
LM improves controllable text generation. In Proceedings of Advances in Neural Information
Processing Systems 35 (NeurIPS 2022), pages 4328–4343, 2022.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and Lingpeng Kong. DiffuSeq: Sequence
to sequence text generation with diffusion models. In Proceedings of the 11th International
Conference on Learning Representations (ICLR 2023), 2023.

Alistair Letcher. On the impossibility of global convergence in multi-loss optimization. arXiv, 2021.
URL https://arxiv.org/abs/2005.12649.

12

https://arxiv.org/abs/2304.09513
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/2005.12649

Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: An ensemble of
autoencoders for online network intrusion detection. In Proceedings 2018 Network and Distributed
System Security Symposium (NDSS 2018), 2018.

Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward generating a new intrusion
detection dataset and intrusion traffic characterization. In Proceedings of the 4th International
Conference on Information Systems Security and Privacy (ICISSP 2018), pages 108–116. INSTICC,
SciTePress, 2018. doi: 10.5220/0006639801080116.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv, 2024. URL
https://arxiv.org/abs/2401.08281.

Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun, and Ali A. Ghor-
bani. Characterization of encrypted and vpn traffic using time-related features. In Interna-
tional Conference on Information Systems Security and Privacy (ICISSP 2016), 2016. doi:
10.5220/0005740704070414.

Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an intrusion detection dataset: the
cicids2017 case study. In 2021 IEEE Security and Privacy Workshops (SPW), pages 7–12, 2021.
doi: 10.1109/SPW53761.2021.00009.

Lisa Liu, Gints Engelen, Timothy Lynar, Daryl Essam, and Wouter Joosen. Error prevalence in
nids datasets: A case study on cic-ids-2017 and cse-cic-ids-2018. In 2022 IEEE Conference on
Communications and Network Security (CNS), pages 254–262, 2022. doi: 10.1109/CNS56114.
2022.9947235.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola.
A kernel two-sample test. Journal of Machine Learning Research, 13:723–773, 2012.

Kudzai Sauka, Gun-Yoo Shin, Dong-Wook Kim, and Myung-Mook Han. Adversarial robust and
explainable network intrusion detection systems based on deep learning. Applied Sciences, 12(13),
2022. doi: 10.3390/app12136451.

Mobin Javed and Vern Paxson. Detecting stealthy, distributed SSH brute-forcing. In Proceedings
of the 2013 ACM SIGSAC Conference on Computer and Communications Security (CCS 2013),
pages 85–96, New York, NY, USA, 2013. ACM. doi: 10.1145/2508859.2516719.

Rana M. Abdul Haseeb-ur rehman, Azana Hafizah Mohd Aman, Mohammad Kamrul Hasan, Khairul
Akram Zainol Ariffin, Abdallah Namoun, Ali Tufail, and Ki-Hyung Kim. High-speed network
ddos attack detection: A survey. Sensors, 23(15), 2023. doi: 10.3390/s23156850.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of Advances in Neural
Information Processing Systems 30 (NIPS 2017), pages 6000–6010, 2017.

Zhe Zhao, Hui Chen, Jinbin Zhang, Xin Zhao, Tao Liu, Wei Lu, Xi Chen, Haotang Deng, Qi Ju, and
Xiaoyong Du. Uer: An open-source toolkit for pre-training models. EMNLP-IJCNLP 2019, page
241, 2019.

13

https://arxiv.org/abs/2401.08281

A Model Architecture

A.1 BERT

The core of DiffuPac is the BERT model, specifically adapted to serve as the denoising component
in the diffusion process. The architecture consists of 12 bidirectional Transformer blocks and each
block incorporates 12 attention heads within its self-attention layers (Vaswani et al. [2017]). These
layers are crucial for capturing the intricate and implicit relationships between traffic bytes. Each
input token has a dimension of 768, and the model can process sequences with up to 512 tokens. This
setup allows the BERT model to effectively handle extensive sequences of traffic data, making it
well-suited for the task of denoising during the diffusion process.

To implement of our pre-trained BERT model, we utilized the codebase from the UER (Universal
Encoder Representations)-py project (Zhao et al. [2019]). UER-py is a versatile toolkit designed for
pre-training and fine-tuning various NLP models, including BERT. In UER-py, the MLM is designed
to predict masked words within a sentence. We adapted this approach to our masked unidirectional
flow model, which focuses on predicting masked tokens within network traffic sequences. Instead
of textual tokens, our model deals with traffic units from src-to-dst and dst-to-src sequences. We
modified the MLM implementation to handle these traffic tokens, ensuring that each token is masked
with a probability of 15%. Our model then predicts the original token from the masked sequence,
capturing semantic patterns within bidirectional network flows.

The Next Sentence Prediction (NSP) task in UER-py involves prediction step to determine whether
one sentence follows another. We transformed this concept into the same sequence-origin prediction
task to determine the origin of directional network traffic. We adapted the binary classifier used in
NSP to classify whether packets are originated from src-to-dst or dst-to-src. By pairing packets and
predicting the directional flow, our model learns the contextual relationships and patterns in network
traffic, similar to how NSP learns sentence relationships.

Table 4 lists the parameters are set to run our pre-trained BERT model. The remaining parameters
were set to their default values.

We also conducted a comprehensive evaluation of different BERT model configurations to identify the
most efficient option that still maintains high performance. We tested four BERT model variants: Tiny,
Small, Medium, and Large, comparing their specifications, training time, loss, and accuracy. The
results are summarized in Table 5. The Medium BERT model was chosen as the optimal configuration
for DiffuPac because it offers a balanced trade-off between accuracy and loss metrics.

Table 4: Parameters used for pre-training the BERT model.

Parameter Value
Embedding Size 768
Feedforward Size 3072
Hidden Size 768
Hidden Activation Function GELU
Number of Attention Heads 12
Number of Transformer Layers 12
Max Sequence Length 512
Dropout Rate 0.1
Batch Size 64
Total Steps 500000
Learning Rate 1e-4

A.2 Fine-tuning with Diffusion Model

For the fine-tuning phase of our model, we leveraged the DiffuSeq codebase (DiffuSeq’s code). The
DiffuSeq framework, originally designed for text data, required several significant adaptations to
handle network traffic data and to meet the objectives of our diffusion model for adversarial packet
generation. The primary adaptation to the DiffuSeq codebase involves the data preparation phase,

14

https://github.com/dbiir/UER-py
https://github.com/Shark-NLP/DiffuSeq

Table 5: Comparison of BERT Models.

Parameters / Metrics Tiny BERT Small BERT Medium BERT Large BERT
Model Specifications

Embedding Size 128 512 768 1024
Feedforward Size 512 2048 3072 4096
Hidden Size 128 512 768 1024
Activation Function GELU GELU GELU GELU
Number of Heads 2 8 12 16
Number of Layers 2 4 12 24

Training
Training Time (hours) 13.5 18 23 30.5

Performance
MUM Loss 1.028 0.822 0.667 0.610
SSP Loss 0.295 0.204 0.099 0.061
MUM Accuracy 0.844 0.887 0.905 0.914
SSP Accuracy 0.846 0.902 0.972 0.982

specifically the concatenation strategy used to blend normal and malicious packet sequences. This
adaptation is crucial for the model to learn how to generate adversarial packets that can mimic normal
packets and evade detection by NIDS.

In our concatenation strategy, we identified pairs of normal and malicious packet sequences that
exhibit strong contextual alignments unlike DiffuSeq, which, randomly merge the text sequences.
This means that the patterns and behaviors within these sequences are similar, ensuring that the
concatenated sequences are blended seamlessly. We concatenated these contextually aligned normal
and malicious packet sequences to form a new sequence, Sben⊕mal. The strategy leverages the
inherent patterns and behaviors within normal packet sequences, which is crucial for the mimicking
process of malicious packet sequences.

We utilized the pre-trained BERT embeddings in our concatenation strategy. BERT is designed to
capture deep semantic relationships within sequences. This design makes BERT making it highly
effective for analyzing complex patterns in network traffic. By employing the pre-trained embeddings,
DiffuPac can accurately transform discrete packet data into continuous feature spaces, capturing the
intricate dependencies between packets. This transformation is critical for the subsequent similarity
analysis and pairing process. The pre-trained embeddings offer a rich representation of the packet
sequences, so that the model can discern subtle contextual similarities between normal and malicious
packet sequences. The detailed of the concatenation strategy is demonstrated in Algorithm 1.

Here, we set the similarity threshold, ϵ to 0.9. This is a strategic decision aimed at balancing the need
for high contextual alignment with the practicalities of ensuring a sufficient number of matched pairs.
Setting ϵ to 0.9 indicates that we are looking for pairs of packet sequences that are highly similar,
capturing nearly all the essential contextual information shared between normal and malicious packet
sequences. This high threshold ensures that the concatenated sequences are blended seamlessly,
maintaining the realistic traffic patterns and behaviors required to evade detection by NIDS. From
a practical standpoint, a threshold of 0.9 is chosen because it strikes an optimal balance between
precision and recall. A higher threshold (closer to 1.0) would result in fewer matched pairs, as only the
most similar sequences would be selected. This could limit the model’s ability to generate a diverse
set of adversarial packets. Conversely, a lower threshold would increase the number of matched pairs
but might include sequences that are not contextually well-aligned, reducing the effectiveness of the
adversarial packets in mimicking normal traffic.

During the reverse process, we introduced a guidance mechanism using normal packet sequences.
This mechanism treats the concatenated sequences of normal and noise-added malicious packets as
a unified entities, allowing the model to denoise the malicious packets in the context of the normal
packet sequences. We recalibrated the variational lower bound LV LB to emphasize the integration of
normal sequence guidance. The objective focuses on accurately reconstructing the initial state, z0
from the noised states, so that the malicious components are seamlessly integrated into the normal
packet sequences pattern.

15

Table 6 lists the parameters used to run our diffusion model. The other parameters are set according
to the default values of DiffuSeq. All training, experimentation, and sampling processes are executed
on a single NVIDIA AD102 (GeForce RTX 4090) GPU. The training process for BERT required
approximately 23 hours, while fine-tuning with the diffusion model took roughly 10 hours.

Table 6: Parameters used for the diffusion model.

Parameter Value
Diffusion Steps 2000
Learning Rate 1e-4
Learning Steps 50000
Seed 102
Noise Schedule sqrt
Batch Size 64
Microbatch 64
Sequence Length 128
Hidden Time Dimension 128
Hidden Dimension 128
Schedule Sampler uniform

Algorithm 1 Finding contextually relevant packet sequences.

Require: Normal packet sequences Sben, Malicious packet sequences Smal, Model parameters θ,
Similarity threshold ϵ

Ensure: Matched pairs of normal and malicious packet sequences (Sben
i ,Smal

j)
1: Initialize: Load pre-trained BERT model with parameters θ
2: Embed Normal Sequences:
3: for each sequence Sben

i in Sben do
4: Compute embedding Eben

i ← EMB(Sben
i ; θ)

5: end for
6: Embed Malicious Sequences:
7: for each sequence Smal

j in Smal do
8: Compute embedding Emal

j ← EMB(Smal
j ; θ)

9: end for
10: Find Contextually Aligned Pairs:
11: for each embedding Emal

j in Emal do
12: Initialize best match bj ← None
13: Initialize highest similarity σmax ← −1
14: for each embedding Eben

i in Eben do
15: Compute similarity σij ← cosine_similarity(Emal

j ,Eben
i)

16: if σij > σmax then
17: Update best match bj ← Sben

i
18: Update highest similarity σmax ← σij

19: end if
20: end for
21: if σmax > ϵ then
22: Add pair (bj ,Smal

j) to matched pairs
23: end if
24: end for
25: Return Matched Pairs: Return all matched pairs (Sben

i ,Smal
j)

16

B Experimental Results

B.1 Wireshark Results

(a) Botnet attack before in Wireshark. (b) Botnet attack after in Wireshark.

Figure 2: Comparison of Botnet attack before and after in Wireshark.

To demonstrate that our model intelligently alters specific fields to seamlessly blend malicious packets
into normal traffic, we analyzed the packets using Wireshark. Our analysis covered 6 attack types:
MITM, Botnet, Brute Force, DDoS, Port Scan, and Infiltration. The results showed that different
specific fields were modified in the packets corresponding to each type of attack. This variation in
field alteration confirms that our model adapts its modifications according to the nature of the attack,
enhancing the stealthiness of the malicious packets. In Figure 2, we can see that there is a change in
the window size of a Botnet packet. Botnet attack can be described as a network of infected devices
(bots) controlled by an attacker to perform various malicious activities. Botnet traffic often shows
abnormal patterns in window size due to automated control and data bursts. Here, we can conclude
that DiffuPac made the intelligent decision by itself in modifying the window size to fall within
typical user traffic patterns. This helps to camouflage the botnet activity.

MITM, on the other hand, demonstrated attacks whereby an attacker intercepts communication
between two parties without their knowledge, often to eavesdrop or alter the data being sent. Abnormal
TTL values (time-to-live field) can reveal this kind of interception and redirection. Here, once again,
our model intelligently adjusts TTL value to match the expected values in aiding the masking of
MITM presence. As shown in Figure 3, DiffuPac adjusts the TTL values to effectively conceal
signs of interception. This ensures that the adversarial packets blend seamlessly with normal data
exchanges, mimicking legitimate communication between parties.

DDoS attacks involve a large number of packets with similar characteristics, often reusing or
predictably incrementing the IP Identification (ID) field. In Figure 4, it can be shown that DiffuPac
addresses this by randomizing the IP IDs to prevent detection. When we analyzed the traffic using
Wireshark, we observed varied and less predictable IP IDs in the modified packets, aligning with
normal traffic patterns. This randomness helps avoid forming detectable patterns and evades detection
systems that rely on identifying repetitive IP ID sequences. Thus, DiffuPac successfully masks the
attack’s presence while preserving the attack functionality.

Port Scan often involve specific flags, such as SYN, to probe for open ports. This behavior is distinct
from normal traffic, which uses a variety of flags. In Figure 5, we found that DiffuPac diversifies the
use of flags to include SYN, ACK, and FIN, similar to normal connections. By normalizing the traffic
in this way, DiffuPac helps disguise scanning activity. For example, instead of sending many SYN

17

(a) MITM attack before in Wireshark. (b) MITM attack after in Wireshark.

Figure 3: Comparison of MITM attack before and after in Wireshark.

(a) DDoS attack before in Wireshark. (b) DDoS attack after in Wireshark.

Figure 4: Comparison of DDoS attack before and after in Wireshark.

packets, it includes a mix of SYN, ACK, and FIN packets, which helps blend the scan into typical
network behavior and evade detection.

Brute force attacks generate numerous login attempts, leading to irregular sequence numbers due
to the repeated connections. By analyzing the traffic with Wireshark, we observed that DiffuPac
intelligently normalizes sequence numbers to mimic regular user connections. Normal user login
attempts typically show sequentially increasing sequence numbers. In Figure 6, it shows that DiffuPac
adjusts these numbers to follow a similar pattern, thereby camouflaging the brute force activity. This
adjustment helps blend the attack packets seamlessly into benign traffic, making it harder for NIDS
to spot the abnormality.

Infiltration attacks involve moving laterally within a network, often generating unusual acknowledg-
ment numbers as the attacker accesses various systems. In Figure 7, it demonstrated that DiffuPac

18

(a) Port Scan attack before in Wireshark. (b) Port Scan attack after in Wireshark.

Figure 5: Comparison of Port Scan attack before and after in Wireshark.

(a) BruteForce attack before in Wireshark. (b) BruteForce attack after in Wireshark.

Figure 6: Comparison of bruteForce attack before and after in Wireshark.

intelligently modifies acknowledgment numbers to follow expected sequences. In normal communi-
cation, acknowledgment numbers increment predictably based on the received data. DiffuPac ensures
that infiltration attempts have acknowledgment numbers that follow these normal patterns, effectively
masking the lateral movement within the network and blending the attack traffic with normal traffic,
making it difficult for detection systems to identify the anomaly.

DiffuPac demonstrates its ability to modify specific fields intelligently in the packet headers of
different attack types, such as the window size for botnet traffic and TTL for MITM, to blend
malicious packets into normal packets. This capability is consistently proven through detailed packet
analysis with Wireshark. Indeed, the detailed packets analysis shows that critical fields defining packet
identity and practicality (e.g., IP addresses, ports, payload) remain intact after modification, ensuring
the functionality of the attack while evading detection by sophisticated NIDS. The comparisons

19

(a) Infiltration attack before in Wireshark. (b) Infiltration attack after in Wireshark.

Figure 7: Comparison of infiltration attack before and after in Wireshark.

for each attack type before and after the modificatinos further highlight DiffuPac’s effectiveness in
maintaining attack practicality while enhancing stealth.

20

B.2 Evasion Rate

We evaluated the evasion rates of the other 4 attacks—DDoS, Port Scan, Brute Force, and Infil-
tration—using DiffuPac and the baseline models, with the detailed results summarized in Table 7.
According to the results, we can observed that the trends in the 4 attacks are consistent with the 2
attacks shown in Table 2 in the main paper.

Table 7: Comparative analysis of attack detection and evasion rates of the other 4 attacks.

(c) DDoS
Feature

Extractor Classifier
Detection Evasion (MER)

P R F1
GAN

&
PSO

LSTM Ours

CIC
FLowMeter

KitNET 0.94 0.90 0.92 33.19% 41.69% 52.06%
DT 0.73 0.81 0.72 39.92% 40.80% 46.81%
IF 0.99 0.91 0.93 26.74% 39.49% 51.45%
MLP 0.72 0.71 0.74 52.03% 48.17% 69.87%
SVM 0.73 0.77 0.78 42.87% 58.47% 54.57%

LR 0.75 0.79 0.76 48.79% 51.08% 58.95%

AfterImage

KitNET 0.97 0.95 0.96 59.84% 74.06% 62.31%

DT 0.78 0.92 0.85 72.88% 63.27% 59.47%

IF 0.86 0.84 0.88 22.63% 36.33% 48.91%
MLP 0.91 0.94 0.92 55.45% 57.77% 63.25%
SVM 0.99 0.90 0.94 78.51% 79.97% 68.93%

LR 0.94 0.97 0.91 71.68% 69.95% 56.66%

(d) Port Scan
Feature

Extractor Classifier
Detection Evasive (MER)

P R F1
GAN

&
PSO

LSTM Ours

CIC
FLowMeter

KitNET 0.96 0.91 0.94 33.46% 40.04% 55.03%
DT 0.78 0.72 0.73 34.01% 61.23% 59.25%

IF 0.99 0.90 0.94 22.73% 29.49% 45.26%
MLP 0.76 0.71 0.74 59.72% 57.56% 67.92%
SVM 0.73 0.77 0.78 68.91% 58.37% 60.95%

LR 0.78 0.83 0.79 42.04% 49.78% 54.21%

AfterImage

KitNET 0.94 0.96 0.93 69.26% 64.97% 55.87%

DT 0.77 0.91 0.82 69.78% 62.01% 70.47%
IF 0.84 0.91 0.89 18.38% 22.15% 48.30%
MLP 0.96 0.94 0.97 49.73% 56.62% 64.02%
SVM 0.97 0.96 0.95 76.40% 78.96% 75.81%

LR 0.95 0.92 0.90 67.29% 70.07% 73.94%

(e) BruteForce
Feature

Extractor Classifier
Detection Evasive (MER)

P R F1
GAN

&
PSO

LSTM Ours

CIC
FLowMeter

KitNET 0.97 0.94 0.97 36.94% 43.13% 50.32%
DT 0.75 0.77 0.72 40.56% 44.87% 42.79%

IF 0.91 0.90 0.94 27.01% 39.14% 41.64%
MLP 0.88 0.85 0.83 52.32% 64.58% 67.18%
SVM 0.80 0.81 0.72 47.31% 51.54% 56.74%
LR 0.79 0.75 0.78 49.05% 58.77% 61.89%

AfterImage

KitNET 0.96 0.93 0.95 81.84% 86.39% 69.31%

DT 0.82 0.79 0.78 41.07% 43.56% 55.07%
IF 0.88 0.98 0.92 24.43% 22.99% 39.71%
MLP 0.91 0.94 0.92 59.69% 63.09% 68.25%
SVM 0.94 0.92 0.96 68.51% 61.79% 58.93%

LR 0.97 0.93 0.94 61.68% 57.25% 64.06%

(f) Infiltration
Feature

Extractor Classifier
Detection Evasive (MER)

P R F1
GAN

&
PSO

LSTM Ours

CIC
FLowMeter

KitNET 0.91 0.90 0.96 41.71% 40.68% 45.04%
DT 0.72 0.78 0.79 32.47% 48.81% 62.67%
IF 0.99 0.91 0.94 28.10% 42.19% 45.88%
MLP 0.77 0.71 0.74 50.09% 53.68% 63.14%
SVM 0.74 0.76 0.79 62.29% 64.51% 56.11%

LR 0.71 0.80 0.76 43.05% 50.67% 61.94%

AfterImage

KitNET 0.92 0.98 0.97 73.44% 70.58% 51.26%

DT 0.77 0.91 0.82 69.23% 72.32% 62.54%

IF 0.84 0.91 0.89 23.61% 27.51% 42.59%
MLP 0.96 0.94 0.97 50.65% 48.73% 72.25%
SVM 0.94 0.96 0.98 72.48% 68.95% 64.73%

LR 0.93 0.92 0.95 66.04% 65.93% 68.37%

21

B.3 Malicious Functionality Evaluation

Experimental Setup. We conducted a robust evaluation of both Port Scan and Brute Force attacks
to assess their malicious functionality in controlled, isolated network environments. The primary
goal of this evaluation was to determine whether adversarially modified packets retain their ability
to perform malicious actions. Throughout the evaluation, we focused on analyzing the response of
both the original and adversarial packets using Wireshark, carefully observing how the target system
reacted to each type of attack.

B.3.1 Port Scan

Before proceeding to evaluate the generated adversarial packets of DiffuPac, we first demonstrated a
a successful Port Scan attack within our controlled environment. This initial step is a fundamental
step to ensure the validity and reliability of subsequent tests with both original and adversarial
packets. The network configurations depicted in Figure 8(a) and Figure 8(b) confirm that both virtual
machines were correctly placed within the same subnet. As demonstrated in Figure 8(c), the Port
Scan successfully identified open ports on the Ubuntu, highlighting port 22 as vulnerable.

We initiated a Port Scan attack from the Kali Linux machine targeting the Ubuntu server. During
the execution of this attack, we captured all packets sent from the attacker to the victim, saving
them as a pcap file. This capture was timed precisely to begin as the Nmap tool launched the Port
Scan, ensuring that only the relevant src-to-dst packets were recorded. This focus aligns with the
operational framework of DiffuPac, which concentrates on modifying packets sent from the source.

Using the captured src-to-dst packets, we employed DiffuPac to generate adversarial Port Scan
packets, which were then saved in a separate pcap file. These adversarial packets were subsequently
replayed using the Tcpreplay tool, directing them towards the Ubuntu server. Concurrently, we used
Wireshark on the Ubuntu machine to capture the incoming responses, allowing us to analyze the
effectiveness of the adversarial packets in real-time.

To ensure a balanced evaluation, we also replayed the original Port Scan pcap file using Tcpreplay,
capturing the responses in Wireshark on the Ubuntu side. This dual replay enabled a direct comparison
between the packets’ responses generated by the original and adversarial Port Scan packets.

As depicted in Figure 9, the response to the adversarial Port Scan packets closely mirrors that of the
original Port Scan. A detailed inspection of the TCP flags reveals that packets with SYN and ACK
flags targeted port 22, corroborating the initial vulnerability identified in Figure 8(c). This consistent
response across both original and adversarial packets provides compelling evidence that DiffuPac
successfully generates adversarial packets that retain their intended malicious functionality.

22

a) Kali Linux network configurations b) Ubuntu network configurations

c) Successfully executed Port Scan using Nmap tool

Figure 8: Port scan attack demonstration on isolated environment

a) Original Port Scan Response b) Adversarial Port Scan Response

Figure 9: Comparison of Victim Response demonstrated in wireshark

23

B.3.2 Brute Force

For the Brute Force attack evaluation, the experimental setup followed a similar approach to that of
the Port Scan, focusing on capturing and analyzing both original and adversarial packets. However,
in this case, we leveraged Metasploit’s ssh_login module to perform the attack. After demonstrating a
successful Brute Force attack using Metasploit, we captured the relevant packets and utilized DiffuPac
to generate adversarial versions of those packets. The evaluation focused on comparing the response
of original and adversarial packets, observing how successful logins were achieved in both cases.

As shown in Figure 10, we utilized the Metasploit Framework to perform a Brute Force attack
targeting the SSH service on the Ubuntu server. After setting the RHOSTS to the Ubuntu machine,
we provided both a user file and a password file containing potential login credentials. The ssh_login
module systematically attempted each combination of usernames and passwords, ultimately leading
to a successful login.

The success of the Brute Force attack is demonstrated in Figure 10, where Metasploit successfully
opened an SSH session on the target machine. This provided the necessary confirmation that the
attack could be executed under normal conditions, laying the foundation for the subsequent evaluation
of adversarial packets.

Following the successful attack, similar to the Port Scan setup, we captured the src-to-dst packets
exchanged during the Brute Force attack. These packets were saved as a pcap file, which was
subsequently used as input for DiffuPac to generate adversarial Brute Force packets.

Using Tcpreplay, both the original and adversarial Brute Force packets were replayed towards the
Ubuntu server. As shown in Figure 11, the response to the adversarial Brute Force packets closely
mirrored that of the original Brute Force packets. The packet exchange between the attacker and the
target server increased significantly as the correct login credentials were identified, culminating in a
successful SSH session for both the original and adversarial attacks.

To further analyze and validate the outcomes of both the original and adversarial Brute Force attacks,
we utilized pam_unix(sshd) on the Ubuntu server to log and compare successful login attempts. As
depicted in Figure 12, the log entries confirmed that the SSH service recorded successful logins for
both the original Brute Force attack and the adversarial Brute Force attack.

Figure 10: Brute Force Attack Successfully conducted using metasploit

24

a) Original Brute Force b) Adversarial Brute Force

Figure 11: Response Comparison of Original Brute Force and Adversarial Brute Force in Wireshark

a) Original Brute Force b) Adversarial Brute Force

Figure 12: Response Comparison of Original Brute Force and Adversarial Brute Force in ssh login

C Ablution Study

This ablation study assesses the impact of substituting the pre-trained BERT model with a standard
transformer architecture in the denoising process of DiffuPac. The focus is on assessing each model’s
ability to accurately reconstruct and generate adversarial packets that can effectively evade detection.

Non-BERT-based. This variant of DiffuPac employs a standard transformer architecture for the
denoising process, as outlined in the DiffuSeq methodology (Gong et al. [2023]). Notably, this
model is trained from scratch without leveraging any pre-trained weights, thus relying solely on the
information provided during the training phase.

BERT-based. The existing DiffuPac configuration, which incorporates a pre-trained BERT model
for the denoising process, was utilized. This setup takes advantage of BERT’s pre-trained weights,
enabling enhanced semantic understanding and contextual relevance during packet reconstruction.

Both models were trained under identical conditions and evaluated based on their success in generating
adversarial packets that evade detection. The results, as depicted in Table 8 , highlight the comparative
effectiveness of each model.

As shown in Table 8, the BERT-based DiffuPac significantly outperforms the non-BERT variant,
demonstrating superior ability to reconstruct packets that blend seamlessly into normal traffic. The
BERT-based model excels in pairing malicious packets with normal packets that exhibit high contex-
tual relevance. This strategic pairing allows the generated adversarial packets to blend seamlessly
into normal traffic, thereby increasing their likelihood of evading detection. In contrast, the non-
BERT-based model, which lacks this pre-trained knowledge, resorts to random matching of malicious
and normal packets, leading to a noticeable reduction in the effectiveness of the generated adversarial
traffic.

An intriguing aspect of DiffuPac is its dual utilization of the pre-trained BERT model: first, as
the denoising engine during the packet reconstruction process, and second, as a critical tool for
identifying contextually relevant packet pairs. To the best of our knowledge, this dual application of a

25

Table 8: Comparative analysis of attack detection and evasion rates.
(a) Botnet

Feature
Extractor Classifier Detection Evasive (MER)

P R F1
Non-
BERT-
based

BERT-
Based

CIC
FLowMeter

KitNET 0.84 0.94 0.92 38.93% 46.48%
DT 0.79 0.91 0.82 50.24% 60.98%
IF 0.99 0.90 0.95 39.18% 49.71%
MLP 0.92 0.84 0.86 53.85% 63.05%
SVM 0.99 0.92 0.95 52.31% 64.49%
LR 0.84 0.91 0.89 35.02% 42.08%

AfterImage

KitNET 0.96 0.90 0.94 69.15% 74.46%
DT 0.80 0.90 0.82 65.77% 72.13%
IF 0.99 0.92 0.94 46.83% 52.79%
MLP 0.96 0.96 0.95 52.04% 64.92%
SVM 0.99 0.90 0.94 60.19% 69.19%
LR 0.97 0.90 0.93 53.98% 58.98%

(b) MITM
Feature

Extractor Classifier Detection Evasive (MER)

P R F1
Non-
BERT-
based

BERT-
Based

CIC
FLowMeter

KitNET 0.92 0.94 0.91 45.24% 55.87%
DT 0.74 0.79 0.76 47.83% 64.12%
IF 0.99 0.92 0.94 36.91% 52.99%
MLP 0.77 0.72 0.74 54.98% 73.21%
SVM 0.74 0.79 0.78 56.10% 60.46%
LR 0.73 0.78 0.72 35.27% 47.48%

AfterImage

KitNET 0.94 0.96 0.93 52.55% 58.48%
DT 0.75 0.89 0.84 61.47% 70.04%
IF 0.81 0.83 0.86 31.33% 45.71%
MLP 0.92 0.90 0.93 64.17% 71.45%
SVM 0.99 0.90 0.94 56.44% 66.53%
LR 0.91 0.94 0.90 44.83% 52.38 %

pre-trained model within a diffusion framework is unprecedented, further highlighting the innovation
and effectiveness of our approach.

26

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the key contributions of our paper,
including the development of DiffuPac, the integration of a pre-trained BERT model with
diffusion model, and the novel approach to generating adversarial packets. These claims are
substantiated by both theoretical analysis and experimental results presented in the paper.
The scope of our research, including the focus on real-world constraints and the effectiveness
of the proposed model against advanced NIDS, is accurately reflected in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have included the limitations in the main paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

27

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The proofs for all theorems and formulas are clearly provided both in the main
paper and supplemental material.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed explanation of the model architecture and the
experimental setups. This includes a thorough description of the pre-trained BERT model
integration, the diffusion model, and the specific configurations used in the experiments.
Additionally, all hyperparameters, dataset details, and evaluation metrics are disclosed to
enable replication of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

28

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Due to ethical concerns, we have decided not to publicly share the data and
code. Additionally, much of the code is based on existing codebases from other sources.
However, we have provided a full and detailed explanation of the model architecture and
its implementation in the paper and supplemental material. This includes comprehensive
descriptions of the experimental setups, hyperparameters, and step-by-step instructions to
facilitate reproducibility.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the full detailed explanation regarding the training process
and the experimental details both in the main paper and supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [No]

Justification: The experiments conducted in this paper primarily focus on evaluating the
success of generating adversarial packets. Metrics such as evasion rate, packet field analysis,
and probabilistic differences between original and adversarial packets are used to assess the
effectiveness of the proposed method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have detailed the types of computational resources used and the time of
execution for BERT and diffusion model in the supplemental materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the Code Of Ethics and strictly follow it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

30

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed the positive societal impacts and negative societal impacts
in the main paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: Due to ethical concerns of our paper, we have implemented stringent measures.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

31

Justification: All existing assets used in this paper, including code, data, and models, have
been properly credited to their original creators. We have cited the original papers that
produced these assets and included URLs where applicable.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces a new model, DiffuPac, which integrates a pre-trained
BERT with a diffusion model to generate adversarial packets. Detailed documentation for
DiffuPac is provided, including descriptions of the model architecture, training process,
implementation details, and usage guidelines. This documentation is included in the main
paper and supplemental materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

32

paperswithcode.com/datasets

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Related Works
	DiffuPac
	Data pre-processing
	Pre-training
	Fine-tuning with Diffusion Models

	Experiments
	Experimental Setup
	Results and Analysis

	Limitations
	Conclusion and Future Directions
	Model Architecture
	BERT
	Fine-tuning with Diffusion Model

	Experimental Results
	Wireshark Results
	Evasion Rate
	Malicious Functionality Evaluation
	Port Scan
	Brute Force

	Ablution Study

