
Sparse Probabilistic Graph Circuits

Abstract

Deep generative models (DGMs) for graphs
achieve impressively high expressive power thanks
to very efficient and scalable neural networks.
However, these networks contain non-linearities
that prevent analytical computation of many stan-
dard probabilistic inference queries, i.e., these
DGMs are considered intractable. While recently
proposed Probabilistic Graph Circuits (PGCs) ad-
dress this issue by enabling tractable probabilistic
inference, they operate on dense graph represen-
tations with O(n2) complexity for graphs with
n nodes and m edges. To address this scalability
issue, we introduce Sparse PGCs, a new class of
tractable generative models that operate directly on
sparse graph representation, reducing the complex-
ity to O(n+m), which is particularly beneficial for
m ≪ n2. In the context of de novo drug design, we
empirically demonstrate that SPGCs retain exact
inference capabilities, improve memory efficiency
and inference speed, and match the performance
of intractable DGMs in key metrics.

1 INTRODUCTION

Deep generative models (DGMs) for graphs have gained
considerable attention due to their broad applicability in
various fields, including chemistry [De Cao and Kipf, 2018],
biomedicine [Ingraham et al., 2019], cybersecurity, and so-
cial network analysis [Wang et al., 2024]. DGMs represent
probability distributions, so it is natural to expect that they
should support basic probabilistic inference tasks. However,
this is typically not the case, because most DGMs [Vignac
et al., 2023, Jo et al., 2022, Shi et al., 2020, Liu et al., 2021]
are implemented using highly non-linear deep neural net-
works. The key reason is that standard inference queries
(such as marginalization, conditioning, and expectation)
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Figure 1: The inference time and peak memory consumption of
a single batch with 256 instances for Sparse PGCs (SPGCs) and
Dense PGC (DPGCs). The circle size corresponds to the maximum
number of nodes, nmax, of different datasets, ranging from the
smallest to the largest: QM9, Zinc250k, Guacamol, and Polymer.

require evaluating integrals over the model’s distribution.
The presence of non-linearities in neural networks prevents
us from finding efficient, closed-form solutions to most
integrals of interest. To overcome this issue, researchers
often rely on expensive numerical approximations or query-
specific, non-universal solutions. In contrast, tractable gen-
erative models offer exact and efficient computation for a
broad class of inference queries [Vergari et al., 2021]. These
capabilities have proven useful in other domains for tasks
like missing value imputation, explainability [Peharz et al.,
2020a, Choi et al., 2020], and uncertainty quantification, but
remain rather unexplored for graph-structured data.

To bridge this gap, recent work introduced Probabilistic
Graph Circuits (PGCs) [Papež et al., 2025], a class of
tractable deep generative models for graphs. PGCs extend
the framework of Probabilistic Circuits (PCs) [Choi et al.,
2020] for graph-structured data. However, the existing ver-
sion of PGCs relies on a dense graph representation. For
a graph with n nodes, this leads to modeling a full n × n
adjacency matrix, which results in an O(n2) complexity,
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(c) Sparse representation, G := (V,E), and an (n,m)-conditioned part of a Sparse PGC
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Figure 2: An example of a Sparse PGC for a simple graph. (a) A graph g with n = 4 and m = 3. Node types are encoded in shades of
green, and edge types in shades of blue. (b) A dense representation of the graph, using a node feature vector X and an adjacency matrix
A. (c) A sparse representation of the same graph, using node features V and edge features E. Each node vector includes an index (or
label), indicated in shades of red, and the type. Each edge vector includes indices of the source and the destination nodes (both in the
shades of red), and the edge type. Grey areas represent virtually padded areas that are marginalized out during the computation of the
model. Features V and E are, first, columnwise flattened, and then concatenated (denoted by the symbol ||).

even when the graph is sparse and contains much fewer than
n2 edges.

Indeed, many real-world graphs are sparse, and, there-
fore, we exploit this characteristic to propose Sparse PGCs
(SPGCs), a new class of tractable generative models that
operate directly on a sparse graph representation. A core
contribution of our work is the novel idea to model edges ex-
plicitly as pairs of node indices, i.e., assigning a probability
distribution to them. This representation enables SPGCs to
scale with the actual graph size by reducing the complexity
to O(n + m) for graphs with n nodes and m edges. This
leads to lower memory usage and faster inference (Figure 1)
without compromising exactness or generality. We deploy
SPGCs in the context of learning distributions of molecular
graphs, demonstrating that they deliver a competitive perfor-
mance to a wide range of intractable models while offering
the capability to perform conditional molecule generation
(among other inference queries).

2 GRAPH REPRESENTATIONS

Throughout this paper, we denote simple (univariate) ran-
dom variables by uppercase letters, e.g., X , and their real-
izations by corresponding lowercase letters, e.g., x. Sets of
random variables are denoted by bold uppercase letters, i.e.,
X := {X1, . . . , Xn}, with the corresponding realizations
denoted by bold lowercase letters, i.e., x := {x1, . . . , xn}.
We use [n] := {1, . . . , n}, where n ∈ N, to denote a set of
positive integers.

Definition 1 (Graph). We define a graph G := (V, E) as
a set of vertices, V := {v1, . . . , vn}, and a set of edges,
E := {(vi, vj) | vi, vj ∈ V}. We call N = |V| the number
of vertices of G and M = |E| the number of edges of G.

We are interested in graphs whose nodes and edges are
attributed with categorical random variables. We investi-
gate two possible ways of expressing such graphs: dense

representation (Definition 2) and sparse representation (Def-
inition 3).

Definition 2 (Dense representation). A dense represen-
tation, G := (X,A), is a graph (Definition 1) given by
the node feature vector, X ∈ dom(X), and the edge adja-
cency matrix, A ∈ dom(A), where dom(X) := dom(X)N

for dom(X) := [nX ], and dom(A) := dom(A)N×N for
dom(A) := [nA]. Here, nX and nA are the number of node
and edge categories, respectively.

Definition 3 (Sparse representation). A sparse represen-
tation, G := (V,E), is a graph (Definition 1) given
by the node feature matrix V ∈ dom(V) and the edge
feature matrix E ∈ dom(E). The node feature matrix
V = {V1,V2, . . . ,VN} is composed of node vectors,
Vi := (V idx

i , V type
i ), where V idx

i is the index (or label) of
i-th node and V type

i is its category, from which it follows
that dom(Vi) = [N ] × [nV ]. Similarly, the edge feature
matrix is defined as E = {E1,E2, . . . ,EM}, where each
edge vector is given by Ei := (Eidx

i,s , E
idx
i,d, E

type
i ). Here, Eidx

i,s

is the source node index, Eidx
i,d is the destination node index,

and Etype
i is the edge’s category. Consequently, we have

dom(Ei) = [N ]2 × [nE ]. nV and nE are the number of
node and edge categories, respectively.

Note that it always holds that nE = nA − 1, as the dense
representation has an additional category to encode the ab-
sence of an edge, which further increases its computational
complexity.

3 SPARSE PGCS

For a graph g (i.e., a realization of G) with n nodes and
m edges, Definition 2 implies that x contains n values and
a contains n2 values, which results in O(n2 + n) size of
g. This quadratic complexity is the key disadvantage of the
dense representation, as any algorithm relying on it scales
poorly to large graphs. In contrast, Definition 3 implies that
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v contains 2n values, this can be reduced to n when node
indices are implicit, and e containing only 3m values, yield-
ing O(2n+3m) size of g. Consequently, the key motivation
for our approach is that, for m ≪ n2, Definition 3 is partic-
ularly advantageous, as it avoids unnecessary overhead of
encoding nonexistent edges.

In this section, we define graph circuits for the abstract
definition of a graph (Definition 1). Note, however, that this
abstract G can be instantiated by G specified in Definition 2
and Definition 3.

Definition 4 (Graph Scope). Let G = (V, E) be a
graph (Definition 1). The scope of G is defined as any
subset Gu = (Vu, Eu), where Vu ⊆ V is an arbitrary
subset of nodes, and Eu ⊆ E is an arbitrary subset of
edges. For graph scopes Ga and Gb, their union is given
by Ga ∪ Gb := (Va ∪ Vb, Ea ∪ Eb).

Definition 5 (Graph Circuit). Let G be a graph (Defini-
tion 1). A graph circuit (GC) c over G is a parameterized
computational network composed of input, sum, and product
units. Each unit u computes cu(Gu) based on a graph scope
Gu. An input unit is defined as cu := fu(Gu), where fu is a
function over a graph scope Gu. Non-input units u receive
the outputs of their input units in(u) as input. A sum unit
is defined as cu(Gu) :=

∑
i∈in(u) wici(Gi), where wi ∈ R.

A product unit is defined as cu(Gu) :=
∏

i∈in(u) ci(Gi). For
sum and product units, u, the corresponding graph scope
is given by the union of the scopes of their inputs, i.e.,
Gu =

⋃
i∈in(u) Gi.

Definition 6 (Probabilistic Graph Circuit). A probabilis-
tic graph circuit (PGC) over a graph, G, (Definition 1)
is a GC (Definition 5) encoding a function, c(G), that is
non-negative for all assignments to G, i.e., ∀g ∈ dom(G) :
c(g) ≥ 0.

Definition 7 (Dense PGC). A dense PGC is a PGC (Defini-
tion 6), where a graph, G, is given in its dense representation,
G = (X,A) (Definition 2).

Definition 8 (Sparse PGC). A sparse PGC is a PGC (Defini-
tion 6), where a graph, G, is given in its sparse representation,
G = (V,E) (Definition 3).

We choose to instantiate Definition 8 by the following joint
probability distribution

p(G)=p(GN,M , N,M)=p(Gn,m|n,m) p(N,M), (1)

where p(Gn,m|n,m) is an (n,m)-conditioned part of a
Sparse PGC over an n-node and m-edge sparse graph rep-
resentation, Gn,m, and p(N,M) is a joint cardinality dis-
tribution characterizing randomness of G in the number of
nodes, N , and the number of edges, M .

Sparse PGCs for simple graphs. We consider SPGCs for
simple graphs, i.e., undirected graphs without self-loops.

Figure 3: Conditional generation on the Zinc250k dataset. The
yellow regions highlight the known molecular substructure, which
is fixed within each row. Each column displays a new molecule
generated conditionally on that substructure.

The topology of a graph g = (v, e) is determined by the
content of e. To reflect the assumption of an undirected
and acyclic structure, two structural constraints are imposed
on g: (i) we neglect the edge direction, i.e., for ei ∈ e,
(eidx

i,s, e
idx
i,d, e

type
i ) and (eidx

i,d, e
idx
i,s, e

type
i ) represent the same di-

rection; (ii) we remove all self-loops, i.e., edges of the form
ei = (eidx

i,s, e
idx
i,d, e

type
i ) for which eidx

i,s = eidx
i,d. Furthermore,

we instantiate the (n,m)-conditioned part of an SPGC as

p(Gn,m|n,m) := p(Vn,Em|n,m), (2)

where Vn models the n nodes through their indices and
types, and Em models the m edges using the indices of
the connected nodes and the edge types. To reflect the vari-
ability of the input size of Gn,m in our model, we use the
marginalization padding [Papež et al., 2025]. This mecha-
nism assumes that a graph can have at most nmax nodes and
mmax edges. The actual n nodes and m edges of a graph,
Gn,m, are then kept intact and the remaining nmax − n un-
used nodes and mmax −m unused edges are marginalized
out. It follows, that the support of the cardinality distribu-
tion p(N,M) is [nmax]× [mmax]. Lastly, by making the node
indices implicit, i.e., V idx

i = i, they become deterministic
variables and can be omitted from the model for simplifi-
cation. An illustrative example of this setup, including a
simple graph, with its dense and sparse representations, as
well as the corresponding (n,m)-conditioned part of an
SPGC, is presented in Figure 2.

Potential index collision. Let g = (v, e) be a sample drawn
from the Sparse PGC. With small but nonzero probability,
two forms of index collisions may occur: (i) for some edge
ei ∈ e, the source and destination indices may coincide, i.e.,
eidx
i,s = eidx

i,d, resulting in a self-loop; (ii) for edges ei, ej ∈ e
with i ̸= j, it may happen that they encode edge the be-
tween the same pair of nodes, i.e., (eidx

i,s, e
idx
i,d) = (eidx

j,s, e
idx
j,d),

or (eidx
i,s, e

idx
i,d) = (eidx

j,d, e
idx
j,s). We resolve the two types of

collision by sampling without replacement, i.e., we remem-
ber which edges have already been sampled, discard the
colliding ones, and then sample them again, conditioned on
the non-colliding ones.

For more details about the model, see Appendix A and
Appendix B, which discuss permutation invariance and
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QM9 Zinc250k

Model Valid↑ NSPDK↓ FCD↓ Unique↑ Novel↑ Valid↑ NSPDK↓ FCD↓ Unique↑ Novel↑

GraphAF 74.43±2.55 0.021±0.003 5.27±0.40 88.64±2.37 86.59±1.95 68.47±0.99 0.044±0.005 16.02±0.48 98.64±0.69 100.00±0.00
GraphDF 93.88±4.76 0.064±0.000 10.93±0.04 98.58±0.25 98.54±0.48 90.61±4.30 0.177±0.001 33.55±0.16 99.63±0.01 99.99±0.01
MoFlow 91.36±1.23 0.017±0.003 4.47±0.60 98.65±0.57 94.72±0.77 63.11±5.17 0.046±0.002 20.93±0.18 99.99±0.01 100.00±0.00
EDP-GNN 47.52±3.60 0.005±0.001 2.68±0.22 99.25±0.05 86.58±1.85 82.97±2.73 0.049±0.006 16.74±1.30 99.79±0.08 100.00±0.00
GraphEBM 8.22±2.24 0.030±0.004 6.14±0.41 97.90±0.14 97.01±0.17 5.29±3.83 0.212±0.005 35.47±5.33 98.79±0.15 100.00±0.00
SPECTRE 87.30±n/a 0.163±n/a 47.96±n/a 35.70±n/a 97.28±n/a 90.20±n/a 0.109±n/a 18.44±n/a 67.05±n/a 100.00±n/a
GDSS 95.72±1.94 0.003±0.000 2.90±0.28 98.46±0.61 86.27±2.29 97.01±0.77 0.019±0.001 14.66±0.68 99.64±0.13 100.00±0.00
DiGress 99.00±0.10 0.005±n/a 0.36±n/a 96.20±n/a 33.40±n/a 91.02±n/a 0.082±n/a 23.06±n/a 81.23±n/a 100.00±n/a
GRAPHARM 90.25±n/a 0.002±n/a 1.22±n/a 95.62±n/a 70.39±n/a 88.23±n/a 0.055±n/a 16.26±n/a 99.46±n/a 100.00±n/a

DPGC 88.83±0.75 0.002±0.000 1.11±0.01 99.38±0.06 88.49±0.45 14.66±0.66 0.043±0.002 8.78±0.34 100.00±0.00 100.00±0.00
SPGC (ours) 76.21±0.83 0.008±0.000 1.98±0.04 93.90±0.22 82.10±0.33 23.64±0.91 0.118±0.002 28.02±0.04 99.99±0.02 100.00±0.00

Table 1: Unconditional generation on the QM9 and Zinc250k datasets. We report the mean and standard deviation of molecular metrics
for baseline intractable DGMs (top) and tractable DGMs (bottom). The 1st, 2nd, and 3rd best results are highlighted accordingly.

tractability, respectively.

4 EXPERIMENTS

We evaluate our approach on the task of molecule generation,
where a molecule is represented as a graph, G, with node
and edge attributes. Node types correspond to atom types
(e.g., C, N, O, etc.), while edge types indicate bond types
(SINGLE, DOUBLE, TRIPLE) of a molecule. The main
objective is to learn a distribution p(G) over molecular
graphs from a dataset, {G1, . . . ,GS}, and subsequently
generate novel molecules by sampling from the learned
distribution.

We conduct three sets of experiments : (1) evaluation of the
quality of learned distribution on metrics between the gener-
ated samples and samples from the dataset; (2) a comparison
of dense (Definition 2) and sparse (Definition 3) graph rep-
resentations, analyzing memory usage and inference time,
with respect to the maximum number of nodes nmax; and (3)
a demonstration of tractability through conditional genera-
tion.

Datasets. We evaluate a proposed molecule generation task
on two benchmark datasets - QM9 [Ramakrishnan et al.,
2014] and Zinc250k [Irwin et al., 2012]. To asses computa-
tional complexity, we additionally use datasets containing
larger molecules, namely Guacamol [Brown et al., 2019]
and Polymer [St John et al., 2019]. Summary statistics for
all datasets are provided in Appendix C.

Metrics. To assess the quality of generated molecules, we
use standard molecular generation metrics such as validity,
novelty, and uniqueness [Polykovskiy et al., 2020, Brown
et al., 2019]. For more detailed comparison, we also deploy
a Fréchet ChemNet Distance (FCD) [Preuer et al., 2018]
and NSPDK [Costa and Grave, 2010].

Baselines. In terms of graph generation, we compare SPGCs
with the following intractable DGMs: flow-based models,
including GraphAF [Shi et al., 2020], GraphDF [Luo et al.,
2021], and MoFlow [Zang and Wang, 2020]; diffusion and
score-based models, such as GDSS [Jo et al., 2022], DiGress
[Vignac et al., 2023], and EDP-GNN [Niu et al., 2020];

an energy-based model, GraphEBM [Liu et al., 2021]; an
autoregressive model, GraphARM [Kong et al., 2023]; and a
GAN-based model, SPECTRE [Martinkus et al., 2022]. We
also include a tractable model DPGC [Papež et al., 2025] in
our comparison of graph generation quality. Additionally,
we compare SPGCs and DPGCs in terms of computational
complexity.

Results. Table 1 presents the performance of SPGCs on the
unconditional molecule generation task for the QM9 and
Zinc250k datasets. Compared to intractable DGMs, SPGC
RT achieves comparable performance in terms of FCD and
NSPDK, while also maintaining high validity, uniqueness,
and novelty. When compared to the tractable DPGC variants,
SPGC RT matches their performance on validity, unique-
ness, and novelty, but exhibits slightly weaker results on
FCD and NSPDK. In our scalability experiment shown in
Figure 1, SPGCs demonstrate superior efficiency: as the
maximum number of nodes increases, it consistently con-
sumes less memory and offers faster inference than DPGC.
Finally, Figure 3 highlights SPGCs’ ability to perform con-
ditional molecule generation, producing diverse and valid
samples conditioned on fixed molecular substructures.

5 CONCLUSION

We have proposed SPGCs, a tractable DGM for graphs that
leverages the sparse graph representation. It models edges
using distributions over node indices. This approach fun-
damentally differs from the previously proposed DPGCs,
addressing its scalability limitations while maintaining
tractability and having very competitive performance. Our
model also achieves highly competitive performance com-
pared to existing intractable DGMs in key metrics, demon-
strating its effectiveness in modeling complex distributions
over graphs. Additionally, we have provided an illustrative
example of superior scalability, highlighting that SPGCs
require significantly less memory and offer faster inference
times compared to DPGCs. In future work, we aim to further
close the performance gap between SPGCs and DPGCs in
the FCD and NSPDK metrics. One key limitation we plan
to address is the lower validity of tractable models.
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Sparse Probabilistic Graph Circuits
(Supplementary Material)

A PERMUTATION INVARIANCE

A permutation of a graph G with N nodes is a reindexing (or relabelling) of its vertices according to a bijective function
π : [N ] → [N ].1 Since graphs are a permutation invariant objects, we need to find a way to make p(G) permutation
invariant as well, i.e., ensure that ∀π ∈ Sn : p(πG) = p(G), where Sn is a set of all permutations of [n]. For a graph in the
sparse representation, G = (V,E), we define its permutation as πG := (πV, πE), where πV := {πVπ(1), . . . , πVπ(N)},
with πVi := (π(V idx

i ), V type
i ), and πE := {πEπE(1), . . . , πEπE(M)}, with πEi := (π(Eidx

i,s), π(E
idx
i,d), E

type
i ). Here, πE :

[M ] → [M ] is a pemutation of the edge indices, defined as πE := h(π,E), where h is a deterministic function. One possible
implementation of h proceeds as follows:

1. Construct the adjacency matrix A from E.

2. Apply the permutation π to A to obtain the permuted adjacency matrix πA, where (πA)ij := Aπ(i)π(j) for i, j ∈ [N ].

3. Extract non-zero entries of the lower triangle of πA in a given traversal order, e.g., the row-major order, to obtain the
permuted edge list πE.

4. Compute πE as the permutation that aligns the original edges E with the new edges πE.

An example of this implementation is shown in Figure 4. Note that the specific behavior of h in step 3 may vary depending
on the traversal strategy (e.g., the row-major order vs. the column-major order), which then influences the resulting πE .

To achieve permutation invariance in p(Gn,m|n,m), we sort each input graph G into its canonical order defined by the
permutation πc := πc(G), which is computed based on the graph G. Before computing p(·), the graph is always reorder by
πc. As shown in [Papež et al., 2025], this leads to a lower bound p(Gn,m|n,m) ≥ p(Gn,m|πc, n,m). In our experiments,
we use the canonicalization algorithm from RDKit [Landrum et al., 2006] and the associated definition of h it implicitly
induces.

B TRACTABILITY

As sorting introduces a lower bound on the log-likelihood, strict tractability, as defined in [Papež et al., 2025], is formally
out of reach. We trade this for computational feasibility, specifically, by evaluating just a single canonical order instead of
evaluating all n! orderings of an n-node graph. Nevertheless, the model preserves the tractability in an algebraic sense. We
adapt Proposition 1 from DPGCs [Papež et al., 2025] to the SPGC setting and adopt the definition of tractable Sn-invariance
from Definition 6 in the same work.

Proposition 1 (Tractability of Sparse PGCs). Let p be an SPGC such that p(Gn,m|n,m) is tractably Sn-invariant, and
p(N,M) has a finite support. Furthermore, consider that G can be decomposed into two subgraphs G = (Ga,Gb), where

1We use π in two different settings. The first one, denoted as π(·), where the input is from the domain [N ], uses parentheses around
the input. For the second one, π·, where the input is a complex object, e.g., a set or a vector, no parentheses are used. In the case we use
the second one, we further define its meaning in the text if necessary.
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Figure 4: An example of a permutation π applied to a graph G. In this example, we use the node permutation π(1) = 3, π(2) =
1, π(3) = 4, π(4) = 2, which induces the following edge permutation: πE(1) = 2, πE(2) = 3, πE(3) = 1, by traversing A and πA
row-wise.

Ga has a random size and Gb has exactly k nodes and l edges. Then p(G) is tractable if there exists d ∈ N such that∫
p(ga,Gb)dga =

∞∑
n=k

∞∑
m=l

∫
p(gn−k,m−l

a ,Gk,l
b )p(n,m)dgn−k,m−l

a (3)

can be computed exactly in O(|p|d) time.

Since p(N,M) has a finite support, the two infinite sums above reduce to finete ones. Computing this integral is crucial to a
broad range of probabilistic queries.

C EXPERIMENTAL DETAILS

All experiments were run on Nvidia Tesla V100 GPUs with a 4-hour time limit per job, managed via the SLURM job
scheduler. We used an 80/10/10 train/validation/test split ratio and evaluated each model over five runs with different random
initializations. Models were trained by maximizing log-likelihood using the Adam optimizer [Kingma and Ba, 2014] for 40
epochs with a learning rate of 0.05, decay rates (β1, β2) = (0.9, 0.82) and a batch size of 256. After training, we sampled
10, 000 molecular graphs to compute the molecular metrics. Finally, we report the mean and standard deviation of the
metrics across the runs for the model chosen by the highest validity.

Dataset |D| nmax mmax nV nE

QM9 133,885 9 12 4 3
Zinc250k 249,455 38 45 9 3
Guacamol 1,273,104 88 87 12 3
Polymer 76,353 122 145 7 3

Table 2: Summary statistics of the molecular datasets. |D| denotes the number of instances in each dataset, nmax the maximum number of
nodes, mmax the maximum number of edges, nV the number of node categories, and nE the number of edge categories.
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Dataset PC nL nS nI nR nc

QM9

BT
V type {2, 3} {16, 32} {16, 32} -

{256}Eidxs {3, 4} {16, 32} {16, 32} -
Etype {2, 3} {16, 32} {16, 32} -

RT
V type {2, 3} {16, 32} {16, 32} {8, 16}

{256}Eidxs {3, 4} {16, 32} {16, 32} {8, 16}
Etype {2, 3} {16, 32} {16, 32} {8, 16}

Zinc250k

BT
V type {4, 5} {16, 32} {16, 32} -

{256}Eidxs {5, 6} {16, 32} {16, 32} -
Etype {4, 5} {16, 32} {16, 32} -

RT
V type {4, 5} {16, 32} {16, 32} {8, 16}

{256}Eidxs {5, 6} {16, 32} {16, 32} {8, 16}
Etype {4, 5} {16, 32} {16, 32} {8, 16}

Table 3: Hyperparameters for different variants of SPGCs. PC denotes the type of region graph [Dennis and Ventura, 2012] used by the
probabilistic circuit: BT stands for binary tree, and RT for random binary tree [Peharz et al., 2020b]. nL is the number of PC layers,
nS is the number of children per sum node, nI is the number of input units per variable, nR is the number of repetitions for RT-based
PCs, and nC is the number of children of the top-level sum node. The model input layer is a categorical distribution; however, the V type,
E idxs, and E type parts of the input each have a different number of categories. Our implementation accounts for this by allowing distinct
hyperparameters for each part of the input.

D ADDITIONAL RESULTS

Figure 5: Conditional generation on the QM9 dataset. The yellow regions highlight the known molecular substructure, which is fixed
within each row. Each column displays a new molecule generated conditionally on that substructure.
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Figure 6: Unconditional generation on the QM9 dataset.
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Figure 7: Unconditional generation on the Zinc250k dataset.
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