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Abstract

We introduce RandomMix, an inexpensive yet effective method for data augmentation that
combines interpolation-based training and negative weights sampling scheme. Rather than
training with a unifying mixup policy for combinations of pairs of examples and their labels,
we design a separate mixup rule for pairs of data points. This method naturally combines the
previous advantages of previous mixup methods, including Mixup Zhang et al. (2017), CutMix
Yun et al. (2019), but it has its own advantages, including a relatively fast training efficiency
without introducing any extra components or parameter, strong robustness performance
withstands unseen data distributions. We provide empirical results to demonstrate this
method. Our experiments on a range of computer vision benchmark datasets show that
RandomMix stays comparable to other popular mixup methods on accuracy and outperforms
other methods on robustness while showing advantages in efficiency.

1 Introduction

Robust machine learning has gained significant attention in recent years due to the challenges posed by
distribution shifts and corruptions of data in real-world applications Zhang et al. (2019a); Yang et al. (2022);
Vaishnavi et al. (2022); Sriramanan et al. (2022); Chhabra et al. (2022); Dhouib et al. (2020); Wang et al.
(2022b). These issues arise when the training and testing data follow different distributions, leading to models
that fail to generalize well to new data. Several approaches have been proposed to address this problem,
including adversarial training Goodfellow et al. (2015); Madry et al. (2017); Salman et al. (2017); Li et al.
(2022); Jia et al. (2022); Herrmann et al. (2022), domain adaptation Ben-David et al. (2007; 2010); Lu
et al. (2020); Zheng et al. (2016); Wang et al. (2019a;b) and data augmentation Huang et al. (2020; 2022);
Hendryck et al. (2020); Na et al. (2021). Further along the line with data augmentation techniques, numerous
works provide theoretical justifications for observed robustness and demonstrate how data augmentation can
improve it Hein & Andriushchenko (2017); Gong et al. (2020); Zhang et al. (2020b); Wu et al. (2020); Pinot
et al. (2021); Kimura (2020); Couellan (2021).

Data augmentation is a subset of regularization approaches Pham & V.Le (2021); Li et al. (2021); Zhou &
Konukoglu (2023), which can be either data-agnostic or data-dependent. Data augmentation entails training
a model not only with the original data, but also with additional data that has been properly modified, and
this technique has led to state-of-the-art results in various machine learning tasks such as text classification,
image recognition, etc Suzuki (2022); Papakipos & Bitton (2022); Chun et al. (2022). Among these data
augmentation methods, Mixup Zhang et al. (2017; 2021), has been shown as a data-agnostic method to
improve the robustness of deep-learning models by creating new training examples through interpolating pairs
of existing examples. However, existing Mixup variants, such as AugMix, FixBi Hendryck et al. (2020); Na
et al. (2021), often require significant computational resources, making them impractical for use in large-scale
applications.

To address this issue, we propose a new variant of Mixup called RandomMix that effectively enhances the
performance of deep-learning models against distribution shifts and corruptions of data while being highly
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efficient. Our approach fully exploits the stochastic nature of mixup to create new training examples from
various types of corrupted data, allowing models to learn robust representations that generalize well to new
situations.

We conduct extensive experiments on standard benchmark datasets (CIFAR10/100, ImageNet) and corrupted
datasets (ImageNet-C, ImageNet-P, etc.), demonstrating that RandomMix outperforms state-of-the-art mixup
methods in robustness metrics while maintaining high training efficiency.

In summary, we believe our work has made the following contributions

• We introduce a RandomMix idea that can fully exploit the stochastic nature of Mixup, allowing various
types of corrupted data to be sampled during training, thus promising better generalization and
strong robustness.

• With the help of the ablation study, we analyze why RandomMix helps with robustness and general-
ization.

• With sufficient experiments, we demonstrate the effectiveness of RandomMix in multiple benchmarks
while outperforming others in efficiency.

2 Related Works

2.1 Data Augmentation and Robustness

Data Augmentation has helped machine learning models achieve high prediction accuracy over various
benchmarks Lim et al. (2019); Ho et al. (2019); Zhong et al. (2020); Buslaev et al. (2020); Ghiasi et al. (2020);
Kostrikov et al. (2020). For example, it can be applied to images for classification solutions. It is often
necessary when confronted with a massive domain of use like an open world as it improves the robustness of
a neural network. Many recent works such as Rebuffi et al. (2021) demonstrate that when combined with
model weight averaging, data augmentation can significantly boost robust accuracy. More importantly, data
augmentation has helped the model learn robust representations that can be generalized across multiple
distributions Zheng et al. (2016); Sun et al. (2018); Huang et al. (2020); Min et al. (2020); Wang et al. (2022a)

Most commonly used data augmentation techniques include random cropping, horizontal flipping Krizhevsky
et al. (2017), noise injection Moreno-Barea et al. (2018), rotation, contrast, or texture perturbation of the
images Wang et al. (2022a). Recently, a data augmentation method called AugMix has been proposed to
improve the adversarial robustness of deep networks by regularizing frequency biasHendryck et al. (2020).
AugMix is characterized by its utilization of simple augmentation operations in concert with a consistency loss
which improves model robustness and uncertainty estimates to a certain degree. Our method is complementary
to these techniques and can be used in conjunction to further improve robustness performance.

It is also worth mentioning that series literature argues the effectiveness of using data augmentation together
with certain regularizations Liang et al. (2018); Kannan et al. (2018); Wu et al. (2019); Guo et al. (2019);
Zhang et al. (2019b); Shah et al. (2019). A recent piece of evidence validating an efficient regularization to
be squared ℓ2 norm Wang et al. (2022a).

2.2 Mixup

In this paper, we focus more on the the more lightweight augmentation methods from the mixup family. The
mixup family originates from the invention of the original Mixup Zhang et al. (2017), which constructs virtual
training examples by linearly integrating different samples and their labels during training. Verma et al.
(2019) proposed Manifold Mixup which extends raw input data mixing to immediately hidden layer output
mixing, and CutMix Yun et al. (2019) spatially crops a random rectangular area on one image to another to
generate a new image. Puzzle Mix Kim et al. (2020) suggests a Mixup method that adds saliency and local
statistics of the input data based on CutMix. CoMix Kim et al. (2021) introduces a submodel minimization
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algorithm that continues to improve on the basis of clipping and saliency. i-Mix Lee et al. (2021) has shown
to be a simple yet effective domain-agnostic regularization strategy for improving contrastive representation
learning. AlignMix Venkataramanan et al. (2022) geometrically align two images in the feature space to
retain mostly the geometry or pose of one image and the texture of the other, thereby connecting it to
style transfer. SmoothMix Jeong et al. (2021) trains on convex combinations of samples along the direction
of adversarial perturbation for each input and aims to make a tradeoff between robustness and accuracy.
SaliencyMix Uddin et al. (2021) uses a saliency map to pick a representative image patch and mixes this
indicative patch with the target image which allows the model to learn more appropriate representations to
make better performance. TransMix Chen et al. (2022) mixes labels based on the attention maps of Vision
Transformers to bridge the gap between the input and label spaces. However, these methods introduce extra
components or parameters, creating a lot of training overheads.

Method Mixup function
Input Mixup (1− λ)x1 + λx2
Manifold mixup (1− λ)h (x1) + λh (x2)
CutMix (1− 1B)⊙ x1 + 1B ⊙ x2

Puzzle Mix (1− z)⊙Π⊤
1 x1 + z ⊙Π⊤

2 x2
CoMix (g(Z1 ⊙ xB), ....g(Zm′ ⊙ xB))
i-MIX AUG(X1) + (1− λ)AUG(X2)
AlignMix f2(Mixλf1(x1), f1(x2)
SaliencyMix 1−M ⊙ x1 + M ⊙ x2

SmoothMix (1− λ)x1 + λ · x(T )
2

TransMix A(M)x1 + (1−A(M))x2
MatrixMix λ⊙ x1 + (1− λ)⊙ x2

Table 1: Summary of various mixup functions. λ with bolded
format denotes a matrix λ denotes a scalar.

Contrary to previous works, we do not intend to com-
pare test performance with the SOTA models. What
we hope instead is to use RandomMix to improve the
robustness of the model, while having the training
efficiency comparable with the original mixup Zhang
et al. (2017). It is also worth mentioning that this
method requires only minor code modifications. Since
model robustness is an increasingly important issue in
modern machine learning, such a lightweight method
can be easily applied to other types of learning includ-
ing semi-supervised learning Berthelot et al. (2019);
Sohn et al. (2020), contrastive learning Verma et al.
(2021); Lee et al. (2020), privacy-preserving learning
Huang et al. (2021) and learning with fairness con-
straints Chuang & Mroueh (2021) to enhance model
robustness.

3 Methods

In this section, we will introduce our method. We begin by defining the necessary notations and providing
a concise summary of the baseline mixup methods and then introduce a new method by leveraging the
stochastic nature of mixup. We name this method MatrixMix. Further, we continue to extend the current
mixup approaches to an extreme level to create a more effective and efficient method for robust machine
learning, which is the main method we propose in this paper, namely RandomMix. In addition to describing
our proposed method, we also briefly touch an overview of why mixup methods can improve the robustness
of models, drawing on existing theoretical results. This complements the current theoretical understanding of
mixup and highlights the additional properties that our method can introduce.

3.1 Preliminary

We first introduce our notations. We define x ∈ X to be input data and y ∈ Y be its output label. Let D
be the distribution over X × Y. We use (x, y) to denote samples, θ to denote the trained model, and l(·, ·)
to denote a generic loss function. The vanilla Mixup training process simply trains the model by linearly
interpolating two samples (x1, y1) and (x2, y2). Namely, the new output labels are λy1 + (1 − λ)y2 while the
corresponding input are λx1 + (1 − λ)x2. The goal of the model is then to satisfy the following optimization
problem:

θ = arg min
θ

l (θ (λx1 + (1 − λ)x2) , λy1 + (1 − λ)y2) (1)

where λ is a sampled scalar parameter (usually from Beta distributions) with constraints such as λ ∈ (0, 1).
We now briefly describe other variants of this method. Manifold Mixup Verma et al. (2019) employs
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λh (x1) + (1 − λ)h (x2) for some hidden representation h. CutMix Kim et al. (2021) mixes data as (1 − 1B) ⊙
x1 + 1B ⊙ x2 for a binary rectangular mask 1B , where B = [rx, rx + rw] × [ry, ry + rh] with λ = rwrh/WH
and ⊙ represents the element-wise product. In other words, B is a randomly chosen rectangle covering λ
proportion of the input. Puzzle Mix Kim et al. (2020) is formulated as (1 − z) ⊙ Π⊤

1 x2 + z ⊙ Π⊤
1 x2 , where

zi represents a mask in [0, 1] with mixing ratio λ = 1
n

∑
i zi.Π1 and Π2 represent n × n transportation plans

of the corresponding data with n dimensions. Πij encodes how much mass moves from location i to j after
the transport. CoMix Kim et al. (2021) performs mixup on a collection of input data and returns a mixed
data set of the form (g(Z1 ⊙ xB), ...., g(Zm′ ⊙ xB)) where xB ∈ Rm×n denote the batch of input data in
matrix form. The aforementioned methods are summarized in Table 1.

3.2 MatrixMix method

The original Mixup method Zhang et al. (2017) improves the training of classification models by generating
synthetic samples through linear interpolation of a pair of training samples and their labels using scalar
multiplication. Our proposed method, MatrixMix, is similar to the original Mixup in that it also uses
interpolation to mix sample entries. However, MatrixMix employs a distinct mixing policy for each pixel of
the input image, in contrast to the original Mixup, where all inputs share the same mixing policy λ. More
specifically, for an input data x ∈ Rm×n, the mixing policy for our MatrixMix method is a matrix λ ∈ Rm×n,
where each element of λ is independently sampled from a Gaussian distribution with mean 0.5 and variance
1.0. The mixing inputs and outputs of MatrixMix are computed as follows:

x̃ = λ ⊙ x1 + (1 − λ) ⊙ x2, ỹ = avg(λ)y1 + avg(1 − λ)y2 (2)

where ⊙ denotes the Hadamard product and avg(λ) takes the average of all the elements of λ. The
corresponding loss is then

ℓ (θ (λ ⊙ x1 + (1 − λ) ⊙ x2) , avg(λ)y1 + avg(1 − λ)y2) (3)

Algorithm 1 MatrixMix algorithm
Input:
Batch image inputs: I;
Batch image labels: y;
Batch size: N ;
Neural Network model: θ;
Output:

1: function Getloss(ŷ, pred, y, λ)
2: loss← λ1L(pred, y) + (1− λ1)L(pred; ŷ)
3: return loss
4: for t = 1, 2, ..., M do Compute shuffled image Is and

label yS by reordering the indexes
5: ∀(i, j) : λi,j ∼ N(0.5, 1)
6: I2

M ← λ · I + (1− λ) · Is

7: ŷ← g(λ)y + g(1− λ)ys

8: pred← f(I2
M ; θ)

9: loss← GET LOSS(ŷ, pred, y, λ)
10: Update parameters of θ according to loss

A concrete description of the algorithm for
MatrixMix is given in Algorithm 1. Intuitively speak-
ing, MatrixMix simply extends the Vanilla Mixup to
the pixel level. Every pixel is linearly interpolated
with a different sampled parameter stored in λ, in
contrast to the original Mixup which uses the same
λ for all the pixels of an image. This provides better
regularization for the training and thus makes our
MatrixMix method more robust to various noises.

3.3 Parameter Distribution

We explain our decision to sample the components of
λ from a normal distribution rather than the more
popular choice of a Beta distribution, as used in the
vanilla Mixup. Our inspiration for this choice comes
from recent works that allow for negative weights on
samples through interpolation Krueger et al. (2021),
since negative coefficients allow us to extrapolate to
more extreme variations, which provide deep model robustness and hence out-of-distribution generalization
in the challenging case.

More importantly, our comparison experiments suggest that gaussian distribution leads to better performance
while using our proposed RandomMix, as shown in Appendix A.5.
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3.4 Robustness of Mixup

Previous studies Zhang et al. (2021) show that the reason why mixup can improve the robustness of the model
is that minimizing mixup loss is equivalent to approximately minimizing the upper bound of adversarial loss,
so it is robust to adversarial attacks. Here in our work, as a side result, we aim to give some insights as
to why Mixup works in our experiments, especially in the robustness settings from a feature perspective in
parallel with existing theoretical understandings such as Carratino et al. (2020); Chidambaram et al. (2020).

To offer the context of our analytical results, we use θ to denote the model that is being trained on a dataset
(X, Y) where X ∼ P for some distribution P . For a fixed loss function ℓ, the trained model θ on the original
data set as well as the model θmix on the mixed data set are defined as follows:

θ = arg min
θ∈Θ

∑
(x,y)∈(X,Y)P

ℓ(θ(x), y), θmix = arg min
θ∈Θ

∑
(x̃i,j ,ỹi,j)

ℓ(θ(x̃), ỹ) (4)

Let ϵP (θ) be the risk associated with θ, the classifier when we do not mix the features.
Proposition 1. Let c(θmix) and c(θ) be defined as in Theorem 3.1 of Wang et al. (2022b). Then c(θmix) ≤ c(θ)
with the assumption that for any sample xi if

1
n

∑
j

I[θmix(x̃i,j) = ỹi,j ] ≥ I[θ(xi) = yi] (5)then

max
xA(f,x̃i,j )

|θmix(x̃i,j) − yi| < max
xA(f,xi)

|θ(xi) − yi| (6)

Proof. See Appendix
These results may appear trivial at first glance, however, the interesting part lies in the fact that the
construction of Mixup naturally helps the model counter the tendency to learn the non-semantic features
under multiple different definitions. For example, Input Mixup interpolates at the pixel level and thus
naturally encourage the learning of the pixel-wise features such as texture; cut-mix exchanges certain areas of
the input image and thus naturally counter the learning of the salient but spurious features (such as the
background) and naturally, improve the models’ robustness against perturbation such as randomly erasing a
certain area.

While these results are for a binary classification problem, we show in the Appendix how they can be easily
generalized to multiclass problems. Thus, we can show that c(θmix) ≤ c(θ) to conclude that θmix has better
theoretical guarantees than θ.

3.5 From MatrixMix to RandomMix: Mixup to Its Random Extreme

Since different mixup methods might have different advantages for various types of corrupted data, we
continue to bring the mixup to its extremity of being random to incorporate all these advantages. This will
let our model learn more corrupted samples during the training phase and thus have a better generalization
performance on the test dataset.

More specifically, we use four mixup methods to concatenate a whole batch dataset, then, as a result, for
four evenly sized batches of data, we randomly choose which mixup algorithm from the set of (Vanilla
images, Input Mixup, CutMix, and RandomMix) with a further modification of CutMix to push it further to
the random polarity: we extend CutMix from a fixed number of patches to exchange between the two images
to multiple patches of the images. We will call this the extreme RandomMix in the remainder of this paper.

4 Experiments

We conducted experiments to evaluate the effectiveness of our proposed RandomMix method. We use ResNet-18
He et al. (2015) for the CIFAR10 dataset Krizhevsky (2009) as the base experiment. We run our experiment
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for 200 epochs with stochastic gradient descent with a learning rate set to be 0.1 at an initial stage and then
decrease through the CosineAnnealingLR technique Loshchilov & Hutter (2017). The batch size is set to 64,
and pixels are all normalized to be [0, 1]. All these above experiments are repeated in CIFAR-100 Krizhevsky
(2009), a subset of ImageNet Hendrycks et al. (2019) with various models such as WRN28-10 Zagoruyko
& Komodakis (2016), ResNest50 Zhang et al. (2020a), and Vision Transformer Alexey et al. (2020) (Tiny
Vision Transformer(TinyViT) Wu et al. (2022) for simplicity of training). We first compare our method in
robustness metrics with different datasets across different types of corruption in Section 3.5. Then, we briefly
touch on the discussion on the performance of accuracy and efficiency that our method can help achieve in
Section 3.5 and Section 3.5 respectively. Finally, we perform an ablation study in Section 3.5 to explain why
RandomMix can achieve a well-balanced between robustness and generalization performance.

Model Type / Corruption Type Vanilla Input CutMix Puzzle Mix CoMix AugMix RandomMix
WRN-28 / Gaussian Noise 74.64% 87.99% 74.88% 63.99% 63.84% 88.39% 90.18%
TinyViT / Gaussian Noise 70.90% 83.86% 75.81% 84.09% 44.90% 80.52% 84.14%
ResNet18 / Random Erase 61.14% 69.53% 61.09% 59.05% 69.52% 62.36% 71.98%
TinyViT / Random Erase 77.76% 86.43% 80.14% 89.17% 54.29% 82.48% 86.90%
WRN-28 / Transfer Attack 26.85% 35.22% 24.76% 22.62% 35.22% 36.20% 40.80%

ResNest50 / Transfer Attack 56.33% 67.19% 63.14% 49.43% 46.29% 60.71% 73.57%

Table 2: Accuracy rates of various Mixup methods for background corrupted on CIFAR-10(WRN-28), CIFAR-100(ResNet18),
ImageNet-A(ResNesy50 and TinyViT) dataset

4.1 Robustness Against Corruption

In order to justify the robustness of RandomMix to common data corruption, we first consider adding Gaussian
Noise, Random Erasing Zhong et al. (2020), and Transfer Attack Cheng et al. (2017) for verification. Then, we
test with two established benchmarks ImageNet-C Hendricks & Dietterich (2019) and ImageNet-P Hendricks
& Dietterich (2019).

Gaussian Noise In our work, we simply add Gaussian Noise (with mean 0.0, variance 8.0, and amplitude 1.0
as this setting is close to human recognition) on test samples. Table 2 shows comparison results for the test
accuracy after the data is perturbed by Gaussian Noise. We perform our experiments on CIFAR-10(WRN-28)
and ImageNet-A(TinyViT). From Table 2, we found that test accuracy with RandomMix under Gaussian
Noise outperforms its counterparts: On CIFAR-10, RandomMix decreases only 6.59% after adding Gaussian
Noise while others such as CoMix decrease by 22.25%. On ImageNet-A, our RandomMix decreases by only
2.57% whereas the second best Puzzle Mix decreases by 7.1%. All the results mentioned above demonstrate
that our method outperforms all the baselines in both generalization performance and corruption accuracy.

Random Erase Zhong et al. (2020) selects a rectangle region in an image and erases its pixels with random
values. We follow the same setting as Zhong et al. (2020) to use Random Erasing with a probability of 0.5.
We set the minimum erasing area at 0.02, the maximum erasing area at 0.4, and min aspect ratio at 0.3. Due
to the page limit, we only report the results on CIFAR100 and ImageNet-A dataset for corruption robustness
evaluation. Table 2 demonstrates that our method using RandomMix improves both the generalization
performance and the corruption accuracy by decreasing 7.25% and 4.81% under Random Erase corruption
with ResNet18 and TinyViT respectively.

Transfer Attack Huang et al. (2019) tests the ability of an attack against a machine-learning model to be
effective against a different, potentially unknown, model. It can also be used to disrupt images. Specifically,
we first generate attacked images from the source model and transfer them to our trained (target) model.
Both the source model and attack model are models from the ResNet series. From Table 2, we observe
RandomMix also shows the most satisfactory results.

ImageNet-C Hendricks & Dietterich (2019) proposed ImageNet-C, which is made by a total of 15 different
corruption data of ImageNet test sets. The corruptions are drawn from four main categories including noise,
blur, weather, and digital. Each corruption type has five levels of severity or intensity. It is worth noting that
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Network ImageNet (↑%) ImageNet-C (↓%) ImageNet-P (↓%)
Vanilla 88.62% 41.45% 42.59%
Input 89.28% 32.11% 45.56%

AugMix 88.19% 37.13% 60.21%
CutMix 86.53% 45.74% 49.33%

Puzzle Mix 92.47% 34.43% 49.33%
CoMix 64.90% 70.71% 114.07%

RandomMix 89.43% 30.37% 42.34%

Table 3: Clean test accuracy of ResNest50 models on ImageNet, average Corruption Error values on ImageNet-C (lower values
are better) and mean flip probability for ImageNet-P excluding noise perturbations (lower values are better )

Network ImageNet (↑%) ImageNet-C (↓%) ImageNet-P (↓%)
Vanilla 83.23% 51.02% 73.87%
Input 89.33% 40.48% 58.77%

AugMix 89.28% 39.28% 79.54%
CutMix 85.14% 45.43% 57.05%

Puzzle Mix 91.19% 42.37% 58.17%
CoMix 43.95% 75.69% 137.29%

RandomMix 86.71% 35.43% 55.81%

Table 4: Clean test accuracy of TinyVisionTransformer models on ImageNet, average Corruption Error values on ImageNet-C
(lower values are better) and mean flip probability for ImageNet-P excluding noise

our models are trained only on clean ImageNet images. The ImageNet-C is only used for robustness testing.
Table 6 and Table 7 contain standard test metrics which contain average Corruption Error (mCE) values. In
our experiment, corrupted test data manifest at five different severity levels as s, from range 1 to 5, for a
specific corruption c, the error rate at severity s is Ec,s. Compute mean corruption error (mCE) involves first
computing the unnormalized corruption of a given corruption type (c) by averaging across the 5 severity levels
represented as uCEc = Σ5

s=1Ec,s. Then, we average uCEc for all 15 corruption types to compute mCE. For
ImageNet-C, mCE values is computed by averaging across all 15 CE values(CEGaussianNoise, CEShotNoise, .
. . , CEP ixelate, CEJP EG). We consistently observe a better performance on both of our models. Specifically,
our method achieves 30.37% mCE on ResNest-50 and 35.43% mCE on TinyViT as shown in Table 3 and
Table 4, down from all of the other state of the art methods.

ImageNet-P ImageNet-P Hendricks & Dietterich (2019) contains 10 types of common perturbations. Unlike
common corruptions, the perturbations are subtly nuanced, spanning fewer pixels within images. Like
ImageNet-C, ImageNet-P also contains noise, blur, weather, and digital distortions, but ImageNet-P differs
from ImageNet-C in that perturbation sequences are generated from each ImageNet validation image; each
sequence contains more than 30 frames, so dataset size and evaluation time are reduced by using only 10
common perturbations. According to Hendricks & Dietterich (2019), the standard metrics for evaluating a
model’s robustness under these perturbations are mean flip rate (mFR) and mean top-5 distance (mT5D).
We report our results in Table 3 and Table 4. Because perturbation robustness is not measured by accuracy
but by whether video frame predictions match, we compute Flipping Probability, definitively, we calculate
the likelihood that two adjacent frames or two frames with slightly different brightness levels have "flipped"
or mismatched predictions for videos with steadily increasing brightness. There are ten different types of
perturbations, and the average of these is the mean Flip Probability (mFP). We can normalize by AlexNet’s
flip probabilities, as we did with ImageNet-C, to obtain the mean Flip Rate (mFR). Since the formulation of
mFR is more involved than mCE, we refer the reader to Hendricks & Dietterich (2019) for more information
on this metric. Based on our experiment, we demonstrate that RandomMix performs consistently well from
ResNest50 to TinyViT, also leading to state-of-the-art results in robustness and uncertainty estimation. Table
8 and 9 in the Appendix provide results for each perturbation type.
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4.2 Generalization Performance and Training Efficiency

CIFAR10 and CIFAR100 We use three network architectures to compare the performance of various
mixup methods and train with residual network He et al. (2015): WRN28-10 Zagoruyko & Komodakis
(2016) and ResNet18He et al. (2015). We set the same training protocol among all mixup methods, which
trains both WRN28-10 and ResNet18 for 200 epochs respectively. Hyperparameter settings are available
in Appendix A.1. We reproduce popular mixup baselines and compare baselines with our method under
the same experimental settings described above. We denote each mixup method as Vanilla (No mixup),
Input Mixup(Original Mixup) Zhang et al. (2017), CutMix Yun et al. (2019), Puzzle Mix Kim et al. (2020),
CoMix Kim et al. (2021), AugMix Hendryck et al. (2020), and RandomMix in all experiment tables. All models
are trained on a single NVIDIA GTX 2080Ti GPU using Pytorch for 200 epochs on the training set and
evaluated on the test set.

In both CIFAR10 and CIFAR100 classification problems, the models trained using RandomMix has a compar-
atively high pure test accuracy than most of their analogues trained with other mixup methods. We trained
both ResNet18 and WRN28-10 on CIFAR10 dataset. RandomMix outperforms most of the other mixup
baselines in terms of pure test accuracy with 96.77% in the WRN28-10 experiment. We further test Vanilla,
Input Mixup, CutMix, Puzzle Mix, CoMix, AugMix, and RandomMix on the CIFAR-100 dataset with both
ResNet18 Huang et al. (2017) and DenseNet121 for 200 epochs. We observe that RandomMix still achieves the
best performance in terms of pure test accuracy among baseline mixup methods with 79.32% on ResNet18
and 82.07% on DenseNet121.

ImageNet-A ImageNet-A Hendrycks et al. (2019) contains the failure cases of ImageNet-trained ResNet50
among web images. We performed a performance comparison of several mixup methods on the ImageNet-A
dataset. For a detailed implementation, we follow Bahng et al. (2020) to construct a subset of ImageNet
Russakovsky et al. (2014) containing 9 super-classes. To concentrate on the impact of textural bias, we
also balance the ratios of sub-class photos for each super-class. In the ImageNet-A experiment, we use
ResNest-50 and TinyViT to compare the performance. We follow the training protocol in Hendrycks et al.
(2019) with some minor modifications. Hyperparameter settings are in the Appendix A.1. We observe that
the performance of RandomMix is higher than most of the other mixup training methods, which is consistent
with the results from previous experiments on CIFAR10 and CIFAR100. Meanwhile, we further testify our
method on TinyViT and get a relatively higher test accuracy among all these baseline methods. What worth
to be mentioned is that RandomMix takes two times less time than some of the other methods like AugMix,
Puzzle Mix, etc. for a single epoch training.

4.3 Training Efficiency

While RandomMixup may not always achieve the highest training accuracy compared to other mixup methods,
it is relatively efficient. This advantage is particularly noticeable on large datasets like ImageNet. To compare
the test accuracy and training time cost of all the mixup methods, we trained models for 200 epochs on
CIFAR10. Our results show that, while CoMix achieves higher accuracy than RandomMix, it takes significantly
longer to train. Specifically, CoMix requires almost three times the training time per epoch compared to
RandomMix.

We report the time cost for training on ImageNet-A. As shown in Figure 1 (see Appendix A.4), we recorded
the time usage for every one-fourth of 200 epochs. From the figure, we observe that some mixup methods,
like CoMix, have a higher test accuracy in the initial epochs, but it overfits after 1250 minutes of training. On
the other hand, RandomMix achieves the highest accuracy performance in the first 600 minutes, which is the
same as InputMix. We also calculate the polygon area formed by the accuracy and time consumption of all
mixup methods, as shown in Figure 1. Our RandomMix achieves the highest accuracy within the first 140
minutes. It is worth noting that we utilized a single NVIDIA RTX 2080Ti for all mixup methods, except for
CoMix, which was trained using 16 Intel I9-9980XE CPU cores and 4 NVIDIA RTX 2080Ti GPUs.
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4.4 Ablation Study

The robustness and efficiency of RandomMix stem from the great use of the stochastic nature of mixup and its
concatenation. In this section, we verified the combination of MatrixMix with one-fourth concatenation(also
named as RandomMix) is significantly better in its balance between accuracy performance and robustness
than the other combinations on CIFAR-100 with ResNet-18.

Table 5 shows that using only MatrixMix results in a 14.07% lower test accuracy than one-fourth concatenation,
but it demonstrates strong robustness against corruptions. After being corrupted by Gaussian noise, the
accuracy decreases by only 5.39%, which is lower than the decrease observed with one-fourth concatenation
(28.37%). This suggests that MatrixMix has a strong robust performance and good generalization capabilities
but at the cost of pure test accuracy. To test this hypothesis further, we concatenate the InputMix with
MatrixMix (one-second concatenation) and obtain a pure accuracy of 75.96%, which is 3.36% lower than
one-fourth concatenation. The corruption accuracy against Gaussian noise and random erase attacks is 54.49%
and 64.46%, respectively. Going one step further, we perform a one-third concatenation (with InputMix,
MatrixMix, and original images, each consisting of one-third of the batch size) and achieve a pure accuracy
of only 1.47% lower than that of one-fourth concatenation. At the bottom of Table 5, we show a MatrixMix
of one-fourth concatenation with all other mixups, which finalizes our RandomMix, strikes a good balance
between test accuracy and robustness.

Methods Test Accuracy Gaussian Noise Random Erase
MatrixMix 65.25% 59.86% 54.01%
MatrixMix(1/2) + Input Mix(1/2) 75.96% 54.49% 64.46%
MatrixMix(1/3) + Input Mix(1/3) + Images(1/3) 77.85% 50.70% 65.43%
MatrixMix(1/4) + Input Mix(1/4) + CutMix(1/4) + Images(1/4)(RandomMix) 79.23% 51.85% 71.98%

Table 5: Pure accuracy and Corruption Accuracy on CIFAR100 dataset with ResNet18 for 200 epochs training

4 Discussion

RandomMix is a general framework that can be applied to any CNN model in a plug-and-play manner with
minimal computational overhead. Through extensive evaluation, we have demonstrated that RandomMix
can significantly reduce the generalization error of state-of-the-art models on computer vision benchmark
datasets. In addition, RandomMix can mitigate the tendency to memorize corrupt labels and reduce sensitivity
to adversarial examples, resulting in improved training stability. Most importantly, RandomMix achieves these
benefits while maintaining high training efficiency.

RandomMix also opens several possibilities for further exploration. First, is it possible to use a purely
MatrixMix without one-fourth concatenation with other variants of mixups? From a previous ablation study,
we know while current RandomMix has comparably high training effectiveness and accuracy, it has a much
lower corrupt accuracy when compared with a pure MatrixMix. Second, can we introduce some structural
prior to λ? For example, we can define some rules such as pixels in proximity should have similar weights,
pixels of the same property (e.g., color) should have similar weights, pixels of the same block or patch should
have similar weights, etc. Third, can we design a mathematical formulation to fully prove what is the best
design of g? Currently, we only take the average of all the elements of λ, this is fairly straightforward yet
without a robust mathematical guarantee.

Also, it is worth mentioning that if one only concerned with robustness performances but not clean accuracy,
one can choose to use only the new component introduced in Section 3.2 instead of the full method.

5 Conclusion

In this paper, we first introduced MatrixMix to get a more generic form of mixup in previous mixup methods
for robust image classification problems. The MatrixMix extends the stochastic nature of Mixup to an
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extremity to perform vanilla Mixup on every pixel level, and we further add more randomness to this method
by applying different mixup methods randomly over samples in the same batch, resultant in our proposed
method RandomMix. As a side note, we also offer a lightweight theoretical discussion built upon existing
theory to explain where the robustness is gained through our method.

We conducted experiments on several benchmark datasets including CIFAR-10, CIFAR-100, and ImageNet-A,
showing that our method has a strong performance over multiple robustness metrics. Meanwhile, we also
demonstrated that RandomMix has a comparatively higher training efficiency among the mixup family, and a
comparable accuracy among the family.
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A Appendix

A.1 Hyperparameter Settings

The RandomMix training procedure is outlined in Algorithm 1. For fair comparisons, we set different hyper-
parameters for each dataset,

CIFAR-10 & CIFAR-100 We trained models via stochastic gradient descent (SGD) with an initial learning
rate of 0.1 then decayed using Cosine Annealing LR by which the graph of learning rate change with epoch
be similar to cos. We set the momentum as 0.9 and add a weight decay of 0.0001. RandomMix is concatenated
with four components(With original images, original Mixup, RandomMix, and Revised CutMix, each part
consists of one-fourth of a whole batch). We set the number of image slices in the revised CutMix as 3 whereas
the original CutMix is composed of only two slices. The mixing distribution parameter for RandomMix λ is a
matrix with the same size as input data sampled from Gaussian Normal distribution with Norm(µ = 0.5, σ2

= 1.0), Mixing weight parameter for the target label is to take an average of all values in λ, named g(λ),
while Original Mixup, Puzzle Mix and CoMix all follow the same setting as in original paper. For CutMix
on CIFAR-10, we set CutMix Probability as zero, while on CIFAR-100, the CutMix Probability is set as 0.5,
which is a combination of half of the Mixup with half the original images.

ImageNet-A We modify the training protocol in Hyojin et al.(2020) for a training model with 200 epochs.
The learning rate starts from 0.025, then decayed using Cosine Annealing LR. We set the momentum as 0.9
and add a weight decay of 0.0001. In addition, our image size is set as 224x224, and the Mixing distribution
parameter α is 1.0 each for Input Mixup, CutMix, Puzzle Mix, and CoMix, which follows the settings of the
original papers. For CoMix, we only train with 100 epochs. For the experiment following the experimental
setting of CutMix Yun et al. (2019), we use the same hyperparameter without the clean input regularization.

A.2 Additional Test results

A.2.1 Test results on ImageNet-C and ImageNet-P

Noise Blur Weather Digital
Network mCE Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
AugMix 37.13 57.90 57.05 61.75 55.80 51.29 36.33 48.51 40.01 41.64 15.94 11.04 19.88 16.54 23.35 23.13
CoMix 70.71 77.06 78.11 81.56 84.76 79.12 75.86 76.28 73.78 70.30 82.93 32.43 84.78 51.78 67.24 66.45
Cutmix 45.74 62.39 61.06 66.24 59.92 46.91 49.04 44.59 48.10 55.70 58.59 17.95 73.08 16.66 22.18 21.68
Input 32.11 40.31 40.22 40.91 44.20 36.04 37.31 36.42 33.13 32.61 32.83 10.61 57.51 13.56 18.60 20.86

Puzzle Mix 34.43 48.66 49.72 51.85 46.69 38.96 38.36 35.02 35.24 32.46 27.51 9.49 54.70 11.32 28.37 26.14
Vanilla 41.45 55.22 54.50 59.21 58.24 43.42 44.45 39.90 43.57 52.97 52.39 15.50 68.96 14.02 15.91 19.92

RandomMix 30.37 26.10 24.61 24.84 48.51 34.54 37.81 37.81 35.73 38.59 35.69 16.25 52.58 15.55 15.69 19.49

Table 6: ImageNet-C results on ResNest-50. Corruption Error(CE) and mCE values for various methods on ImageNet-C. The
mCE value is computed by averaging across 15 CE values, which stands for an overall classification error on corrupted test data.

Noise Blur Weather Digital
Network mCE Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixel JPEG
AugMix 39.28 58.54 56.66 59.69 51.49 45.40 43.44 54.89 46.43 40.10 20.64 14.06 27.18 18.67 26.44 30.64
CoMix 75.69 79.30 80.33 81.78 85.87 80.64 79.09 80.99 74.37 76.85 86.42 54.77 86.40 63.79 67.06 65.61
Cutmix 45.43 63.65 63.78 68.28 51.58 38.27 38.13 40.69 48.12 55.35 61.43 21.55 74.90 18.87 20.06 23.82
Input 40.48 62.03 63.27 65.04 53.98 40.04 41.41 41.74 33.77 35.07 39.28 15.01 61.36 14.67 22.55 26.77

Puzzle Mix 42.37 60.59 60.59 65.88 56.97 46.43 45.55 44.85 36.59 37.04 42.90 14.51 63.35 15.24 29.00 30.99
Vanilla 51.02 69.18 69.26 72.90 61.25 49.00 51.24 43.88 53.30 58.39 70.09 27.70 78.00 22.10 21.98 28.35

RandomMix 35.43 29.50 26.21 28.41 57.80 43.74 45.70 47.99 42.65 40.97 41.00 18.04 60.66 16.50 16.33 23.95

Table 7: ImageNet-C results on TinyViT. Corruption Error(CE) and mCE values for various methods on ImageNet-C. The
mCE value is computed by averaging across 15 CE values, which stands for an overall classification error on corrupted test data.
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Noise Blur Weather Digital
Network mFR Gaussian Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale
Vanilla 73.87 96.87 121.77 47.83 32.37 52.17 45.14 69.15 70.87 30.70 127.93
Input 58.77 72.93 97.43 53.57 40.4 47.53 25.47 50.47 59.7 27.6 112.63

AugMix 79.54 104.77 119.1 75.63 65.07 69.57 32.33 68.68 79.4 35.97 144.9
CutMix 57.05 64 79.33 37.6 27.4 47.6 35.33 42.03 55.97 29.63 151.63

Puzzle Mix 58.17 78.23 109.77 55.77 38.43 52.3 24.33 40.2 52.67 27.63 102.33
CoMix 137.29 132.43 178.8 94.2 58.67 94.8 59.7 139.05 176.93 93.07 345.33

RandomMix 55.81 60.93 78.67 45.73 36.97 45.33 31.3 48.27 58.8 26.07 126.07

Table 8: ImageNet-P results on TinyViT. The mean flipping rate (mFR) is the average of the flipping rates across all 10
perturbation types. (lower is better)

Noise Blur Weather Digital
Network mFR Gaussian Shot Motion Zoom Snow Bright Translate Rotate Tilt Scale
Vanilla 42.59 49.47 63.7 41.27 24.43 43.23 25.2 35.8 35.9 17.93 89.63
Input 45.56 60.1 63.63 53.37 38.23 37.93 21.87 32.6 43.6 21.87 82.4

AugMix 60.21 72.23 78.93 55.00 59.8 61.5 23.73 47.25 52.1 29.83 121.67
CutMix 49.33 59.07 67 55 31.5 64.05 29.33 32.43 40.13 21.03 91.03

Puzzle Mix 49.33 59.07 67 55 31.5 64.05 29.33 32.43 40.13 21.03 91.03
CoMix 114.07 138.3 161.13 135.47 65.76 111.9 53.53 92.53 121.67 69.53 190.93

RandomMix 42.34 53.6 59.07 37.2 28.43 39.63 26.33 32.47 35.2 19.7 91.03

Table 9: ImageNet-P results on ResNest-50. The mean flipping rate(mFR) is the average of the flipping rates across all 10
perturbation types. (lower is better)

A.2.2 Test Results with HFC

High-frequency Component In order to further validate our RandomMix method, we add the HFC test
as an extra one. Wang et al. (2019c) proposed a model generalization observation work. The author has
pointed out that compared with the shuffled label samples, those natural samples tend to learn more about
low-frequency information, and their generalization power on HFC is much lower than on LFC which means
that there is a strong connection between marked labels and low-frequency information, thus it’s easy for the
model to memorize the potential associations. The generalization performance in the shuffled label case is
much better on its HFC than LFC, it turns out that the model tends to learn both HFC and LFC information
of the given samples. Considering that our methods mix both data and its target labels, we try to use HFC
and LFC to prove our assumption that, our model intends to learn both HFC and LFC information. Note
that we use identical hyperparameters for both low-frequency and high-frequency radius r for all mixup
methods which are provided in Appendix, We take r equals 4, 8, 12,16, 20 on CIFAR10(ResNet18) as the
threshold set to align with the HFC paper’s settings, RandomMix behaves as expected in LFC: it reports
a consistently higher prediction accuracy when the radius sustain grow from r = 4 to r = 20.It suggests
that our method can pick more information in LFC compared with other Mixup baselines. It also reports a
relatively lower prediction accuracy in HFC mode. However, RandomMix seems to be more sensitive when
r = 20 which indicates that due to the trade-off between robustness and accuracy, the model tends to first
choose to learn much information while later it turns to choose a generalization pattern from r = 16 to r = 20.
We can conclude that: (1) RandomMix can both capture LFC and HFC images during training; (2) when it
turns to HFC, RandomMix encourages choosing robustness due to the trade-off between test accuracy and
generalization performance.

A.3 Proof of Proposition 1

Proof. From Theorem 3.1 of wang2022toward, we have c(θ) = 1
n

∑
(x,y)∈(X,Y )Ps

I[θ(x) = y]r(θ, A(fm, x)),
where r(θ, A(f, θ)) = maxxA(f,xi) |θ(xi) − yj |, and c(θmix) = 1

n2

∑
(x̃i,j ,ỹi,j) I[θmix(x) = y]r(θmix, A(fm, x)).

In this paper, they consider the binary classification problem, but we can easily generalize this to our setting
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Datasets(CIFAR10)Models(ResNet18)
HFC(Low Frequency Data) Vanilla Input CutMix Puzzle Mix CoMix RandomMix AugMix

frequency=4 16.14% 14.45% 18.05% 16.59% 13.36% 13.57% 27.94%

frequency=8 37.07% 39.46% 33.34% 31.70% 24.11% 41.35% 79.20%

frequency=12 76.99% 80.84% 76.93% 75.84% 79.55% 86.93% 89.26%

frequency=16 88.26% 90.36% 88.10% 88.20% 91.39% 93.77% 92.29%

frequency=20 94.31% 95.31% 94.41% 94.93% 96.02% 95.26% 93.73%

HFC(High Frequency Data)

frequency=4 19.69% 10.26% 17.39% 17.06% 10.50% 24.72% 30.62%

frequency=8 15.84% 10.63% 10.85% 13.39% 12.32% 21.60% 18.31%

frequency=12 11.72% 10.90% 10.00% 14.08% 14.12% 11.24% 12.35%

frequency=16 10.83% 9.82% 10.37% 11.34% 10.87% 9.17% 9.95%

frequency=20 10.45% 10.17% 10.63% 11.10% 8.14% 10.49% 9.01%

Table 10: Accuracy rates of various mixup methods for LFC and HFC on CIFAR-10(ResNet18) dataset.

by defining |θ(x) − y| = 0 if θ(x) and y as the same class, and 1 if they are in different classes. We write c(θ)
as

c(θ) = 1
n2

n∑
i,j=1

1
2(I[θ(xi) = yi]r(θ, A(f, xi)) + I[θ(xj) = yj ]r(θ, A(f, xj))) (7)

Now we can compare this to the corresponding summation for θmix (which also has n2 terms). In particular,
we pay attention to the summand r(θmix, A(fm, θmix) of this term.

r(θmix, A(f, θmix)) (8)
= max

xA(f,x̃i,j )
|θ(x̃i,j) − ỹi,j | (9)

= max
xA(f,x̃i,j )

|θmix(x̃i,j) − (λyi + (1 − λ)yj)| (10)

≤ max
xA(f,x̃i,j )

|λ(θmix(x̃i,j) − yi) + (1 − λ)(θmix(x̃i,j) − yj)| (11)

≤ max
xA(f,x̃i,j )

λ|θmix(x̃i,j) − yi| + (1 − λ)|θmix(x̃i,j) − yj | (12)

≤ λ max
xA(f,x̃i,j )

|θmix(x̃i,j) − yi| + (1 − λ) max
xA(f,x̃i,j )

|θmix(x̃i,j) − yj | (13)

= max
xA(f,x̃i,j )

|θmix(x̃i,j) − yi| (14)

The last 2 inequalities follow from the triangle inequality and property of maximums respectively. Thus, we
are left to show:

1
n

∑
j

I[θmix(x̃i,j) = ỹi,j ] max
xA(f,x̃i,j )

|θmix(x̃i,j) − yi| ≤ I[θ(xi) = yi] max
xA(f,xi)

|θ(xi) − yi|, (15)

which follows straightforwardly based on the assumption.
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A.4 Training Efficiency validation

(a) (b)

Figure 1: (a) Performance of training efficiency of various methods on ImageNet-A(ResNet50). We log the time range for every
one-fourth of the total 200 epochs;(b) Area under the curve in figure (a) for the same time periods of various methods on
ImageNet-A(ResNet50). It is not a surprise that RandomMix decreases in between 80-100mins because there is a relatively slow
rise and then after the period, the model breaks through the bottleneck, and there is a rapid rise

Model\Matrix Mix CIFAR10/ResNet18 CIFAR100/ResNet18 CIFAR10/WRN-28
Beta Distribution 92.51% 71.54% 96.08%
Gaussian(loc=0.5,std=1.0) 88.57% 64.18% 90.70%
Model\Random Mix CIFAR10/ResNet18 CIFAR100/ResNet18 CIFAR10/WRN-28
Beta Distribution 94.82% 79.67% 96.77%
Gaussian(loc=0.5, std=1.0) 95.38% 79.56% 97.07%

Table 11: Comparison results for pure accuracy of different models under two distributions with two mixup policies. One is 2,
and another is RandomMix.

A.5 Why choose Gaussian Distribution?

In this work, we use a Gaussian distribution(with the mean set as 0.5, and variance set as 1.0) to replace
the original Beta distribution (with both alpha and beta set as 1.0) in Zhang2017Mixup. We do several
comparative experiments and report the result in table 11. From the table, the first message we get is that
in terms of the RandomMix method, pure accuracy is higher with Gaussian Distribution than the one with
beta distribution while the situation is reversed in terms of MatrixMix. This is probably due to the fact
that the central limit theorem states that the sum of many independent random variables is approximately
normally distributed, which means that in practice, many complex systems can be successfully modeled as
normally distributed noise. Thus, when lacking prior knowledge about the distribution of real numbers under
real-world datasets, gaussian distribution is a better choice.
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