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Abstract
Advanced manufacturing research and develop-
ment is typically small-scale, owing to costly ex-
periments associated with these novel processes.
Deep learning techniques could help accelerate
this development cycle but frequently struggle in
small-data regimes like the advanced manufac-
turing space. While prior work has applied deep
learning to modeling visually plausible advanced
manufacturing microstructures, little work has
been done on data-driven modeling of how mi-
crostructures are affected by heat treatment, or as-
sessing the degree to which synthetic microstruc-
tures are able to support existing workflows. We
propose to address this gap by using invertible
neural networks (normalizing flows) to model the
effects of heat treatment, e.g., tempering. The
model is developed using scanning electron mi-
croscope imagery from samples produced using
shear-assisted processing and extrusion (ShAPE)
manufacturing. This approach not only produces
visually and topologically plausible samples, but
also captures information related to a sample’s
material properties or experimental process pa-
rameters. We also demonstrate that topological
data analysis, used in prior work to character-
ize microstructures, can also be used to stabilize
model training, preserve structure, and improve
downstream results. We assess directions for fu-
ture work and identify our approach as an impor-
tant step towards end-to-end deep learning system
for accelerating advanced manufacturing research
and development.
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1. Introduction and Motivation
Effective manufacturing processes underpin enormous
swathes of the contemporary economy and everyday life:
device miniaturization, scaling sustainable energy infras-
tructure, and the efficacy or longevity of endless varieties
of construction materials and other goods are just a few
foundational ways in which improved materials and manu-
facture impact the world at large. Cutting-edge advanced
manufacturing processes, by nature of their novelty and
presently small scale, do not have access to the same kinds
of established, reliable simulations used to probe hypotheses
available to more conventional processes. First-principle
simulation capabilities are under development for these ad-
vanced processes, but are time- and resource-intensive ap-
proaches. In the meantime practitioners frequently rely on
on small-scale datasets and their learning when undertaking
research and development. Introducing data driven tools
that help guide and accelerate the R&D cycle could go a
long way in mitigating research risk and cost.

Shear-Assisted Processing and Extrusion (ShAPE) (Whalen
et al., 2021) is an emerging advanced manufacturing technol-
ogy that has been shown to produce parts with state-of-the-
art material performance in forms ranging from rods, tubes,
and wires (Li et al., 2021; Reza-E-Rabby et al., 2022; Kalsar
et al., 2022; Li et al., 2022), from various forms of metallic
feedstock. Notably, ShAPE’s enhanced performance car-
ries over to bulk-scale components, giving the technology a
pathway to industrial-scale adoption and presenting a need
to accelerate research and development towards this end.

In the absence of complete first-principle, physics-based
models advanced manufacturing researchers heavily rely
on a scaffolding of process-structure-property relationships
when developing new materials or exploring advanced man-
ufacturing pathways such as ShAPE. Process corresponds
to the various manufacturing settings or choices that can
be parameterized. Structure corresponds to actual material
microstructures that can be inspected by a subject matter
expert and if frequently captures using sophisticated imag-
ing technologies. For ShAPE processing of aluminum alloy
7075 (considered in this work), microstructures are observed
through the use of Scanning Electron Microscopy (SEM).
Finally, the properties can be measured using a variety of
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Figure 1. Illustration of an AI-enabled pipeline to accelerate research and development in advanced manufacturing; specifically for Shear
Assisted Processing and Extrusion. “FR” stands for “feed rate” and represents the relevant processing parameter considered. “UTS” is
ultimate tensile strength and is the material property considered in this initial demonstration.

destructive and nondestructive means based on the objective
of manufacturing. Some technologies rely on a separate or
secondary heat treating process called tempering that can
strongly influence the resulting material properties as well
as the visual appearance of the associated microstructures.

During the development of novel manufacturing techniques,
subject matter experts develop an intuition for the relation-
ships between process parameters and resulting material
properties primarily through analysis of microstructure. Ide-
ally, a materials science would like to understand this rela-
tionships in two directions. The “forward” direction is the
ability to predict resulting material properties for a set of se-
lected processing parameters. Alternatively, the “backward”
direction indicates the ability to identify the set of process-
ing parameters that would give rise to a desired material
property.

Recently, machine learning, and more specifically deep
learning, has emerged as a potential accelerant of developing
process-structure-property relationships and is a framework
we believe could be useful in answering the above questions.
Deep learning techniques have found application in tasks
ranging from SEM image classification and segmentation
(Tsutsui et al., 2020; Azimi et al., 2018; Müller et al., 2020;
Durmaz et al., 2021) to generating synthetic microstruc-
tures (Iyer et al., 2019; Howland et al., 2023). While these
generative approaches aim to solve similar problems to our
“forward” and “backward” questions, none to our knowledge
address them while incorporating advanced manufacturing
and post-processing procedures into their modeling frame-
work.

There are numerous challenges associated with trying to
directly model the relationships between process parameters
and material properties. Among the challenges are that the

backward direction is a many-to-one map (e.g., multiple
processing parameter combinations can result in the same
resulting material property) and significant data limitations
due to the time and cost associated with experimentation.
In Figure 1 we provide an illustration for how a subject
matter expert could interact with a machine learning assisted
workflow for ShAPE. The upper and lower portions of the
diagram correspond to the forward and backward directions,
respectively, that were previously described.

Unlike prior work, we treat tempering as a secondary pro-
cess and recognize its importance in both the forward and
backward paths. This work demonstrates a first foray into
developing a single bi-directional temper model through
through the use of normalizing flows. Building on the prior
work in (Emerson et al., 2022), we further seek to leverage
techniques in topological data analysis that were shown to
preserve relevant structure and useful in capturing temper
dependent features. In this work, we seek to answer the
following research questions. First, can we train a deep
neural network to successfully perform both visually and
topologically plausible ShAPE microstructure generation
for different temper conditions? Second, can this temper
transfer model preserve microstructure label information or
equivalently, can we infer the original process parameter or
material property labels post-transfer?

2. Background and Related Work
2.1. Shear-Assisted Processing and Extrusion (ShAPE)

Manufacturing

Shear-Assisted Processing and Extrusion (Whalen et al.,
2021) is an advanced manufacturing process wherein a billet
is extruded from a container equipped with a coaxial man-
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Figure 2. A high-level overview of our data flow and model training for a given normalizing flow. Experimental samples are drawn from
our ShAPE SEM dataset (x ∈ X) to act as ground truth samples for adversarial discriminator networks. We sample standard Gaussian
noise as our models’ base distribution (z ∈ Z), which is transformed into an SEM microstructure sample by the normalizing flow.
Synthetic samples are used to train the flow using maximum likelihood estimation. We use a frozen persistence homology approximator,
PI-Net, to generate topological persistence imagery (PIs) for experimental and synthetic samples. Separate SEM and PI discriminators
provide adversarial feedback to the normalizing flow to encourage plausible generations.

drel when impinged upon by a spinning die. Friction heats
the billet, working in tandem with the attendant shearing
forces to plasticize it. ShAPE experiments are parameter-
ized by various input streams or process parameters, such as
temperature, torque, power, and the most important to our
work being the the traverse rate or “feed rate”.

This study uses process and property data derived from
ShAPE-manufactured AA7075 tubes previously explored
by (Howland et al., 2023) and (Emerson et al., 2022) but
originally developed by (Whalen et al., 2021). In the original
study by Whalen et al., they manufactured various tubes
using aluminum alloy (AA) 7075 feedstock via ShAPE, of
which some were subjected to different heat treatments. The
two heat treatments applied are identified as T5 and T6
heat treatments which correspond to subjecting the ShAPE
samples to different temperature profiles over time. Post
heat treatment, the tubes’ material property performance
was evaluated to determine their percent-elongation, yield
strength, and most importantly for our purposes, ultimate
tensile strength (UTS) in the tensile loading condition. The
SEM images of the heat treated AA7075 ShAPE tubes with
different heat treatments collected by the authors as a part
of the second study form the basis of the data analyzed
herein. In previous work, as in this study as well, entire
images were not used; rather image ’chips’ with specific
dimensions were used to train the models.

2.2. Normalizing Flows

Normalizing flows (Dinh et al., 2014; Rezende & Mohamed,
2015; Kobyzev et al., 2021) are a family of generative neural

networks which are able to perform efficient, exact sampling
and density evaluation. Normalizing flows, like generative
adversarial networks (GANs) (Goodfellow et al., 2014),
typically operate by transforming random samples from a
simple base distribution – such as a standard normal – into
a more complex target distribution of interest via a deep
neural generator network. Unlike GANs, however, normal-
izing flow networks are built using components which are
differentiable as well as invertible and possessing easily-
computed Jacobian determinants. Their “forward” direction,
from base to target distribution, allows for efficient sampling
while the “backward” direction, due to the flow’s exact in-
vertibility and accessible Jacobian determinants, allows for
precise and tractable likelihood evaluation. Flows tend to
have lower sample quality than GANs, but train more stably
and consistently. For our purposes, where invertibility is
desirable and structural plausibility is more important than
impeccable visual quality, normalizing flows are a natural
fit.

The normalizing flow models used in this study are adapted
from Alignflow (Grover et al., 2020), which incorporates
a GAN-esque adversarial loss and multi-network configu-
ration to extend flows to unsupervised domain adaptation
and image-to-image translation problems. Alignflow uses a
shared base distribution (latent space) between per-domain
flows. Due to the invertibility of these sub-flows, they can
be composed in arbitrary order to consistently translate a
sample from any one domain into all other domains. These
attributes are a natural fit for our temper transfer problem.
Alignflow has a limitation shared with other normalizing
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Figure 3. An overview of our temper transfer problem setup. We
consider three domains: one for the untempered condition (as
extruded, or ae) as well as one each for the T5 and T6 temper con-
ditions. We train one invertible deep neural network per domain,
sharing a latent base distribution Z. This allows us to sample syn-
thetic mirostructures in any of our domains, as well as (de)temper
synthetic and experimental microstructures.

flows: its source and target distributions must have the same
dimensionality to maintain invertibility. Since Alignflow is
built for image-to-image problems, the high dimensionality
of each data sample can quickly pose a prohibitive cost. For-
tunately, our image data (chips from the SEM images) are
on the scale of 128x128 pixels – small enough to sidestep
this limitation even using three normalizing flows instead
of the original authors’ two. An illustration of this set up is
provided in Figure 3.

2.3. Topological Analysis of Material Microstructures

Topological data analysis possesses myriad tools useful for
studying the shape of data, including SEM microstructures
corresponding to specific ShAPE process parameters or with
specific material properties. Persistent homology (Edels-
brunner et al., 2000) is one such family of tools. While
there are many different techniques for capturing the no-
tion of topology in data, for analysis of the grayscale SEM
images the authors utilize sublevel set persistent homol-
ogy. Sublevel set filtration on grayscale images captures
topological structure using pixel intensity relationships. Pre-
cipitates manifest as higher contrast, bright regions in the
SEM imagery creating a natural connection to the filtration
mechanism used in sublevel set filtration. By treating the
image as a 2-dimensional function, we are able to capture
both 0- and 1-dimensional topological features based on
a nested sequence of cubical complexes. The topological
features are first captured in a persistence diagram and then
converted to persistence images.

Persistence images have been shown to be useful as both
SEM microstructure feature descriptors (Emerson et al.,
2022) and as a useful diagnostic tool for synthetic SEM

evaluation (Howland et al., 2023), at least when applied to
images that can be described in terms of their precipitate,
pore, or second phase distribution. Both of these methods
examined ShAPE AA7075 tubes as well, though ours is the
first work in this area to move beyond persistence images as
descriptive or analytical tools and incorporate them as signal
into the model training process itself. For a more thorough
treatment of persistence images, we refer readers to their
introduction in (Adams et al., 2017). Persistence images
capturing the topological features derived from the sublevel
set filtration provide a global summary of the precipitate
distribution and intensities. The proposed approach provides
explainability without the need for image segmentation as a
preprocessing step for subsequent statistical summaries.

All persistence homology calculations and associated persis-
tence images are computed using the Ripser (Bauer, 2021)
package with 10x10 pixel persistence images.

3. Experimental Design
In our experimental setup we hope to evaluate two related
questions. The first focuses on the visual plausibility of
synthesizing the effects of heat treatment with and without
structure preserving loss which is grounded in a more quali-
tative discussion. Secondly, we seek to quantify the benefit
of our novel combination of techniques for topologically pe-
nalized, joint latent-space learning. We describe the dataset
used for analysis, our label preserving experimental design,
our normalizing flow model, and finally how we implement
our topological regularization.

3.1. SEM Microstructure Dataset

We train and evaluate all of our models using the ShAPE
AA7075 process-structure-property dataset used by (How-
land et al., 2023). The dataset consists of roughly 437,000,
partially overlapping, 128x128 pixel image chips derived
from 32 distinct experimental samples. Each experimental
run results in a single SEM image corresponding to a sin-
gle ShAPE AA7075 sample produced by recorded process
parameters. We associate each chip with its experiment’s
corresponding feed rate (process parameter). For the sam-
ples that undergo tempering to T5 or T6 the resulting ulti-
mate tensile strength (material property) is also recorded.
Inspired by ML literature on utilizing continuous labels in
low-data regimes (Truong et al., 2021; Ahmad et al., 2018;
Workman et al., 2016; Ammar Abbas & Zisserman, 2019),
these labels are evenly discretized into “low”, “mid”, and
“high” bins to create a surrogate classification problem in
place of regression given the sparsity of samples.
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3.2. Label Preservation Experimental Setup

To assess the utility of normalizing flows for modeling heat
treatment on this data set, we measure the performance of
models trained on features derived from real data represen-
tations to generalize to features extracted from SEM images
resulting from synthetic (de)tempering.

More concretely for the quantitative analysis, for the for-
ward model we train a simple support vector machine clas-
sifier on real SEM images (or persistence images derived
from real SEM images) to assign a material property class
label per temper type. This results in two classifiers for the
forward direction; one for T5 and one for T6. The 3-class
classification accuracy for predicting material property from
real T5 and T6 imagery is shown in Figure 5. For the back-
ward direction, we train a classifier on features from real, As
Extruded, SEM images to predict process parameter class
label also discretized into a surrogate 3-class problem. The
baseline results for this direction are also shown in Figure 5.

After training these 3 classification models, we can assess
their performance on synthetic tempering of As Extruded to
T5 or T6 or (de)tempering real T5 or T6 imaged to simulated
As Extruded images. We perform 3 different runs for each
classifier trained on real data and report the 95% confidence
intervals with errorbars in Figure 5.

3.3. Alignflow

Our normalizing flows are adapted from Alignflow (Grover
et al., 2020) and its official Pytorch (Paszke et al., 2019) im-
plementation. Our models, both the generative flow compo-
nents and their associated discriminators, are trained using
the default hyperparameters from the official implementa-
tion except as follows. Since our dataset has three domains
(As Extruded samples as well as T5 and T6 treatment con-
ditions), we modify the repository’s “flow2flow” model to
create a “multiflow2flow” which generalizes the architecture
to handle an arbitrary number of image domains. Due to
the increased memory costs associated with adding a third
domain, we found it necessary to halve the batch size from
16 to 8. Finally, we set the number of input channels to 1
since we are working with grayscale imagery and double
the number of mid-network flow channels from 32 to 64.

3.4. Topological Regularization Implementation

A well-known bottleneck for incorporating topological fea-
tures into machine learning is how topological feature ex-
traction methods scale. This has been a significant barrier to
incorporating persistence homology into training iterations.
In order to incorporate topological features into our model
training we supplement Alignflow’s GAN-esque visual ad-
versarial loss with a similar, topological adversarial loss
following the same structure. The associated discrimina-

tors, instead of making authenticity classifications based on
experimental or synthetic SEM images, do so using 10x10
persistence images derived from the SEM chips. This ap-
proach allows our models to receive more direct feedback on
their topological fidelity – a desirable property to optimize,
given the ability of persistence images to describe ShAPE
SEM microstructures (Emerson et al., 2022).

A well-known bottleneck for incorporating topological fea-
tures into machine learning is how topological feature ex-
traction methods scale. This has been a significant barrier to
incorporating persistence homology into training iterations.
For example, it would fail to scale if we sought to calculate
the sublevel set persistence homology on each synthetic
SEM image at every training iteration. To resolve this issue
we adapt PI-Net (Som et al., 2020), a convolutional network
(O’Shea & Nash, 2015) trained to efficiently approximate
persistence imagery given a source SEM image.

PI-Net is small due to the small dimensionality and visual
simplicity of both our SEM chips and persistence imagery.
We train our PI-Net to approximate persistence images of
the same SEM microstructures used in our Alignflow train-
ing set. Ground truth persistence images were computed
using the Ripser and Persim Python libraries (Bauer, 2021;
Saul & Tralie, 2019). The network is trained to convergence
with a batch size of 128, taking roughly an hour on a sin-
gle Nvidia Tesla P100 GPU. Our PI-Net consists of five
convolutional layers with 256, 256, 128, and 128 channels
respectively with a batch normalization layer and ReLU
nonlinearity between each layer. PI-Net then applies global
average pooling and instance normalization before a final
convolutional layer, which produces a single-channel per-
sistence image. Each convolutional layer uses a 3x3 kernel
and a stride length of one.

By leveraging PI-Net to approximate the topological sum-
maries of the synthetic images during training, we can suc-
cessfully mitigate the computational bottleneck. We ob-
served negligible L1 discrepancies between experimental
persistence images and PI-Net’s predictions on both our
training set and on held-out experimental chips. Finally,
we observed that PI-Net could approximate the persistence
images of our entire training set within several minutes
– roughly two orders of magnitude faster than the twelve
to fourteen hours needed to compute the original ground
truths. We use these same, frozen PI-Net weights in all of
our experiments.

3.5. Model Training and Selection

Figure 2 depicts our overall architecture and training loop.
We train normalizing flows with and without PI-Net loss.
To determine the effects of topological regularization on
model stability and consistency, we train three normalizing
flows for each variant for a total of six models. Each flow is
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trained for 30 epochs over our SEM image dataset. Training
takes roughly 12 hours on a single Nvidia A100 GPU. We
observe that our flows tend to slowly degrade in image
quality towards the end of their training time. We suspect
this may simply be due to the difficulty of balancing the
challenging tempering and detempering directions of our
task, but have as yet been unable to confirm this and leave
a more in-depth exploration for future work. Since our
flows are trained in an unsupervised fashion we needed to
find a metric to use for automatic model selection, avoiding
arbitrarily picking evaluation checkpoints whose outputs
simply “looked right” after limited manual inspection. Since
degradation of our flows manifested in increasing noise and
artifacting, we tested using the synthetic chips’ average
signal-to-noise ratio and found it to be a good proxy for
sample quality.

4. Results
In this work we aim to demonstrate that normalizing flows
can be used to plausibly model, and remove, the effects of
tempering heat treatments. As a second line of inquiry, we
explore our ability to correctly identify labels associated
with the forward (e.g., predicting resulting material proper-
ties) and backward (e.g., predicting the process parameter
that produced the associated real image). The qualitative
results of this first line of inquiry are presented in Section
4.1. Quantitative results are provided in Section 4.2.

4.1. Synthetic SEM Analysis

We first perform a qualitative visual comparison of SEM
chips to complement our persistence image analysis. Figure
4 shows examples of temper transfer in all directions and
with and without topological regularization. All models
perform transfer on the same source SEMs for the sake of
comparison. In the As Extruded to T5 direction, we see that
topological regularization has only modest impact: absent
any regularization we consistently observe faint, “ghostly”
gray-scale features unlike those seen in our experimental
data. Introducing topological regularization leads to shrink-
age or vanishing of small gray-scale features, with larger
ones undergoing only minor changes in shape, which may
be expected outcomes of T5 treatment applied to an As Ex-
truded sample. In the reverse T5 to As Extruded direction
we see substantial artifacting without topological regulariza-
tion.

Temper transfer to and from T6 has more mixed success.
Tempering from As Extruded to T6 without any topologi-
cal regularization produces sparser precipitate patterns than
when transferring to T5 but still maintains faint, unrealis-
tic, “phantom” gray-scale features we might interpret as
precipitates with similar structure to those in the As Ex-
truded sample. In experimental T6 data, on the other hand,

we know that large precipitates are quite rare (although not
non-existent as evident from the experimental SEM images).
Introducing topological regularization appears to resolve
this problem (as shown in Figure 4). However, in the ex-
ample imagery shown in Figure 4, the removal of large pre-
cipitates comes at the expense of producing any significant
precipitates, which is also inconsistent with experimental
T6 imagery.

Achieving a synthetic image by detempering in the T6 to
As Extruded direction appears exceptionally difficult. With-
out topological regularization we see the production of tiny,
scattered precipitates far more in line with other T6 samples
than with the As Extruded target condition. Topological
regularization gets closest to the mark by producing less
evenly distributed, larger precipitates, though still not as
large and irregularly sized as those seen in experimental
data. We suspect that because T6 images have very little
visible structure as a source domain in the SEM images at
the magnifications where data was collected in the second
study, models are especially prone to degenerated or mode
collapsed behavior. Ensuring that adversarial loss plays a
strong role during training, at least in transfer directions like
this with low signal-to-noise, is likely crucial. This combi-
nation of persistence image and SEM chip results affirm our
main hypotheses: augmenting our normalizing flows with
topological regularization seems to help produce more sta-
ble generated samples, and particularly in the T6 directions
to induce more topologically realistic samples. However,
topological regularization can lead to more artifacting in
transfer directions where the source domain has low sig-
nal overall. Investigating techniques to adaptively select or
learn the proper weighting of topological regularization for
different input domains would be a productive direction for
future work.

4.2. Label Preservation Analysis

In addition to the visual and topological properties of our
synthetic chips, we would also like to evaluate whether they
encode features that represent the process parameters and
material properties associated with those microstructures.
Figure 5 shows the accuracy of SVM classifiers fit on a
training set of experimental persistence images, then eval-
uated on both the held-out experimental samples and all
synthetic images from a given model. As Extruded classi-
fiers are fit using binned feed rate (i.e., process parameter)
labels, whereas T5 and T6 classifiers are fit using binned
UTS (i.e., material property) labels. We compare classifi-
cation performance using both SEM chips and persistence
images derived from the SEM imagery and find in nearly all
cases the persistence images achieve comparable or superior
performance.

We see that parameter and property classification is chal-
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Figure 4. Synthetic (de)tempered SEM imagery generated by our normalizing flows with various levels of topological regularization. All
synthetic images within a given direction are transferred from the same source. The labels “w/ TR” and “w/o TR” indicate with or without
topological regularization, respectively.

lenging even using experimental imagery, with classifiers
topping out at around 70% accuracy. Our synthetic mod-
els perform modestly but noticeably better in the “forward”
tempering task (e..g., As Extruded to T5 and T6 directions)
than the “backward” directions detempering to As Extruded.
However, a number of results call into question just how
useful this approach of classifying directly from microstruc-
tures or persistence images is. For example, topological
regularization performs competitively with other synthetic
models in the T6 to As Extruded direction despite produc-
ing heavily artifacted, implausible precipitates. In addition,
the artifacting and unrealistic precipitate coloration in the
baseline T5 to As Extruded direction does not stop those
samples from being classified better than PI-Net samples.

These classification results for generated images largely
mirror our other findings. Accuracy is highest in the As Ex-
truded to T5 direction, which also has the visually cleanest
synthetic images. Interestingly, it also achieves the highest
accuracy on As Extruded to T6 samples by a wide margin.
We suspect this may be due to the partial mode collapse in
the regularized models; since those models tend to produce
T6 images with either abnormally low or high gray-scale
precipitate-like features, links between T6 microstructure
and material property would necessarily be lost. The T5 and
T6 to As Extruded directions proved exceptionally difficult
to classify, with nearly all classifiers performing around
or below chance. Given the visual coherence and reason-
able persistence agreement for most models’ samples in
these directions, we suspect that feed rate alone (or at least
coarsely-binned feed rate) may be intrinsically difficult to
recover from tempered samples.

A particularly significant result emerges when comparing
our results to synthetic images generated by the conditional

GANs from (Howland et al., 2023), which achieve only
chance-level performance on our label preservation task de-
spite being visually and topologically plausible. Not only is
the performance improved under this work’s demonstrated
workflow, but this improvement comes despite the former
approach directly conditioning on the target attributes during
training. Incorporating conditioning information into our
normalizing flows and verifying whether this label preser-
vation result holds, particularly when performing sampling
rather than temper transfer, would be a compelling direction
for future work.

5. Conclusions and Future Work
This work introduced the use of normalizing flows for invert-
ible temper transfer of ShAPE AA7075 microstructures, im-
proving upon prior work in multiple ways. While previous
work could generate heat-tempered microstructures, either
by using per-temper generators or by incorporating it as con-
ditioning information to the network, our approach can con-
sistently transfer back and forth between them via a shared
latent space. We observe that microstructures (de)tempered
by our models preserve information about their experimental
process parameters and material properties. This is partic-
ularly notable because our models are not exposed to any
such information during training, and existing models which
do condition on this information fail to produce samples
that reflect it. We also find that optimizing our models to
generate visually as well as topologically realistic samples
helps to increase model consistency across multiple runs
and improve the overall plausibility of synthetic imagery.

There are a number of promising avenues for future work.
While our models already preserve some process parame-

7



Invertible Temper Modeling using Normalizing Flows and the Effects of Structure Preserving Loss

Figure 5. Label preservation accuracies for experimental and synthetic imagery without topological regularization either omitted (left) or
with topological regularization (right). The notation AE in the figure indicates “As Extruded.” Accuracies and standard deviations are
derived from three runs per model configuration. The blue, horizontal lines represent an at-chance performance of 33% accuracy.

ter and material property information when they perform
domain transfer, a logical next step would be to see how
sample quality and post-transfer information is preserved
if we train our flows with explicit conditioning on these
experimental attributes. An ideal solution would allow our
flows to condition on a possibly imputed combination of
process parameters and material properties; this would al-
low practitioners to explore potential microstructures based
on desired properties or proposed experiments as desired.
Incorporating less coarsely-binned conditioning labels, and
incorporating multiple conditioning labels at once, remain
open questions that could help produce more powerful gen-
erative models if solved but which are challenging due to
the data constraints. If these problems could be adequately
addressed, the field would be much closer to having a deep
learning system applicable to design of experiments in ad-
vanced manufacturing. This effort is a successful first step in
developing the framework for forward and invertible models
that aid in accelerating advanced manufacturing research.
While there are crucial additional steps essential for devel-
oping models that can be deployed in the research regime,
efforts like this demonstrate the viability of data driven ap-
proaches to assist the R&D cycle.
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