
Towards Fully FP8 GEMM LLM Training at Scale

Alejandro Hernández-Cano∗
EPFL

alejandro.hernandezcano@epfl.ch

Dhia Garbaya∗

EPFL
dhia.garbaya@epfl.ch

Imanol Schlag
ETHZ

ischlag@ethz.ch

Martin Jaggi
EPFL

martin.jaggi@epfl.ch

Abstract

Despite the significant potential of FP8 data formats for large language model
(LLM) pre-training, their adoption has been limited due to challenges in maintain-
ing stability at scale. Existing approaches often rely on suboptimal fine-grained
FP8 kernels or fall back to higher-precision matrix multiplications (GEMMs)
in sensitive components, such as attention projections, compromising potential
throughput gains. We introduce a new class of LLM architectures that, for the first
time, support FP8 computation for all GEMMs within transformer blocks during
both forward and backward passes. This enables unprecedented throughput gains,
particularly at scale, while matching the downstream performance of standard
BF16 training. Our architecture design reduces large outlier activations, promoting
stable long-term FP8 training. In addition, we identify key metrics to monitor
low-precision training and predict potential future divergences.

1 Introduction

Recent progress in the training of transformer-based Large Language Models (LLMs) has significantly
advanced the field of language modelling. Scaling up both model size and training data remains
a reliable strategy to enhance their performance [15]. Consequently, state-of-the-art models are
typically trained at scale using extensive datasets [1, 7, 25], requiring substantial computational
resources—often in the order of millions of GPU hours.

Thus, the development of efficient training techniques has become increasingly essential. One of
the main research avenues for efficiency is the use of lower-precision number formats to accelerate
training on appropriate hardware accelerators. Recently, the use of 8-bit floating-point (FP8) formats
has shown promising results [3, 6, 24]. However, the widespread adoption of current approaches
is still limited due to suboptimal throughput benefits. One cause of slowdowns is the use of higher
precision in those General Matrix Multiplications (GEMMs) which are most sensitive, such as
attention score computation, while another issue is the overhead caused by more granular FP8
scaling strategies. One of the key challenges in 8-bit LLM training originates from the relatively
narrow dynamic range offered by FP8 formats and thus higher risk of underflows and overflows,
especially with the prevalence of large outlier features observed in the LLM’s neural activations
during training [4, 30, 9]. We formalize the effect of outliers on quantization later in Appendix C.
To mitigate this issue, modern FP8 training recipes utilise various scaling techniques before casting
from higher-precision formats—typically BF16 [14] for activations—to FP8 formats used in matrix
multiplications. These scaling approaches help maximize the effective use of FP8’s limited dynamic
range, reducing the risk of underflows and overflows.

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Recent work has introduced promising FP8 training recipes by employing multiple scaling factors
per single tensor [3], allowing for a finer and more precise casting to lower precision. Yet, this comes
with an efficiency overhead, diminishing the large gains initially expected from using FP8. Another
strategy involves adjusting the standard SwiGLU-based transformer architecture [28] to prevent
emergent outliers from occurring [6]. This area of optimization remains underexplored, as most
works focus on FP8 GEMMs within the linear projections within the transformer, while maintaining
higher precision for other GEMMs, namely those involved in the dot product attention mechanism.
We refer to such training strategies simply as FP8 training. We label the approach of also including
FP8 attention computation as FP8DPA.

In this paper, we introduce FOG: the Fast and Outlier-Guarded set of LLM architectures specifically
designed to mitigate large activation outliers and enable efficient large-scale FP8 training with low-
overhead scaling strategies. For the first time to our knowledge, this approach enables FP8 GEMMs
not only in the linear projection, but also within the attention mechanism of each transformer block,
achieving unprecedented throughput improvements of up to 43% in the 8B parameter model scale,
while maintaining equivalent downstream performance compared to higher precision baselines. In
addition, we present a comprehensive recipe for monitoring, explaining, and predicting training
instabilities that might not surface in the early stages of training. This approach provides researchers
with greater confidence in the long-term stability of FP8 training recipes, reducing the need for costly,
full-scale experiments when using new architectures. Furthermore, we provide an interestingly useful
observation about larger models’ tendency to diverge later in training with FP8.

Our key contributions are the following:

• We introduce the FOG set of architectures, designed to minimise outlier features during
training. Our recipe allows stable training with FP8 computation of all GEMMs inside the
transformer blocks, surpassing the throughput of the standard BF16 approach by up to 43%.

• Our design achieves equivalent quality results to BF16 baselines, while providing a signifi-
cant speed-up. We empirically attest both performance and stability on various model sizes
(0.4B, 1.5B, 8B) and data regimes up to 15x the Chinchilla optimal data budget [12].

• We show the flexibility of FOG design as it can be adapted to several architectures including
various families of activation functions and even Mixture-of-Experts (MoE) settings.

• Using kurtosis, we provide a recipe to judge an architecture’s robustness to FP8 training
in long data regimes using diagnostics from shorter runs. We use this recipe to explain
previously observed divergence behaviour at scale, and offer a wide range of empirical
results to demonstrate its usefulness. We believe this contribution allows FP8 training
insights on future transformer variants developed by the community, without the need for
expensive full-scale experiments.

2 Background

Due to its limited dynamic range, FP8 tensors are particularly prone to overflows and underflows
when representing extreme values. The FP8 formats come in two standard forms [20]: E4M3 and
E5M2, each with different trade-offs. The first format, with four exponent bits and three mantissa bits,
offers higher precision. In contrast, the E5M2 format, with five exponent bits and two mantissa bits,
provides a broader dynamic range at the cost of reduced precision. Existing large-scale distributed
training frameworks such as DeepSpeed or Megatron [29] leverage this distinction by employing
E4M3 for tensors in the forward pass to maintain precision and E5M2 for the backward pass to handle
the broader dynamic range of gradients effectively. Nonetheless, both formats have much lower
representation capacity than half- or single-precision formats. Therefore, various scaling strategies
are applied when casting tensors down to FP8 in order to make more efficient use of this restricted
range. These strategies are mainly tensorwise and fall into two main categories: delayed scaling
and just-in-time scaling (JIT). Delayed scaling uses information from previous training iterations to
determine the scaling factor of the tensor for the ongoing iteration, requiring a single pass on the data
along with storing a short history of useful metrics observed across an interval of past iterations. JIT
scaling, on the other hand, can hinder the gains from using FP8 because it uses the distribution of
the tensor being produced—in higher precision—to compute the scalar, before casting the input and
performing the GEMM in FP8, requiring at least two passes through data. A more recent approach
aims to make scaling more robust by using multiple scaling factors per tensor, allowing different

2

tensor blocks to have different scaling factors [27, 3]. This leads to a more precise FP8 casting within
each block. Naturally, this finer scaling strategy induces a larger overhead on such GEMM kernels
relative to the tensorwise delayed scaling recipe.

Ensuring stable FP8 training remains challenging. It becomes problematic when certain activations
produce large outliers during training, making such a low-precision representation unfeasible and
leading to rapid divergence. Prior work introduced the term massive activations, a phenomenon
similar to outlier features, and showed their crucial role in LLMs’ capabilities [30]. Understanding
the dynamics of these outliers is crucial for explaining FP8 divergence and identifying the network
components responsible for them. One notable source of such outliers’ amplification has been
identified to be the widely adopted SwiGLU (Swish Gated-Linear-Unit) activation function [28].
Replacing it with a scaled variant, SmoothSwiGLU regulates large outliers and was shown to stabilize
previously diverging FP8 training runs and ensure their convergence [6].

Further examination has shown that not only is SwiGLU an outlier amplifier, but Gated Linear Units
(GLUs) in general, as well as pre-normalization layers, suggesting that improper signal propagation
is the root cause of outliers [9]. Removing these components and equipping transformers with QK
entropy regularization mechanisms such as QK RMS Normalization [10], producing the Outlier
Protected (OP) architectures [9], has been shown to diminish late-stage outliers observed by orders of
magnitude, while providing equivalent prediction quality. While OP architectures were shown to be
beneficial for post-training quantization, its use for FP8 pre-training remains unexplored. Finally, an
alternative to pre-normalization layers are post-normalization layers [18]. Long data regime trainings
have confirmed their superiority in terms of training stability with the standard BF16 mixed precision
training [21].

3 FOG: Fast and Outlier-Guarded FP8-suited architectures

FOG

Entropy Reg.

Core attention

Q K V

Projection

Normalization

Act.

Normalization

Linear

Linear

Figure 1: FOG transformer.

Our architecture base, as illustrated in Figure 1, makes key changes
to widely-used transformer networks [32]. The pre-normalization
block before the attention mechanism and FFN is removed. In addi-
tion, a normalization mechanism in the attention is added to prevent
entropy collapse, a key training instability in transformers [34], from
occurring. This mechanism can take the form of a QK RMSNorm
block [10]:

Nγ(x) :=
1

rms(x)
γ ⊙ x, rms(x) :=

∥x∥2√
D

,

where x ∈ RD, γ ∈ RN is the learnable gains vector, ⊙ is the
Hadamard product and ∥ · ∥2 is the ℓ2-norm. Alternatively, the
tanhα(x) := tanh(αx) element-wise activation function, where
α ∈ R is trainable, can be applied to query and key tensors. This
activation has been shown to have regularization effects akin to
RMS normalization blocks [35], while being computationally more
efficient.

Further, the input of the first transformer block is scaled by σ−1

to maintain unit variance activations at initialization, where σ is
the chosen standard deviation of the network’s random initializa-
tion. Finally, to enhance performance, a learnable normalization
block is applied before the residual connections. This takes the form of a LayerScale [31] block,
LayerScaleγ(x) := γ ⊙ x, where γ ∈ RD is a learnable gain vector, or an RMSNorm block, result-
ing in a post-normalized architecture [18]. In both cases, the learnable gains vector is initialized to
1/
√
num_layers and keeps the residual branch unnormalized, allowing proper signal propagation [9].

Our architecture suite is specified in Table 1, and further details are available in Appendix B.

While the OP architecture already offers several guards to prevent large outliers from occurring, we
observed that it remains an impractical choice for FP8DPA training. In Section 5.1 we show that, like
all other architectures tested, it suffers a fatal loss divergence early during training. We isolate the two
components responsible for OP’s incompatibility with FP8DPA training: the trainable QK RMSNorm
gains vector γ, and the lack of any normalization. We identify the use of post-normalization as not
prone to the outlier tendency pre-normalization networks have.

3

Model QK-Regularization Activation Normalization

FOG-max RMSNorm* xIELU [13] Post-RMSNorm
FOG-opt RMSNorm* GeLU Post-RMSNorm
FOG-flash Tanh* GeLU Post-RMSNorm
OP [9] RMSNorm GeLU LayerScale

Table 1: FOG architecture suite compared with OP. Regularizations marked with * indicate that
gains are not trainable. Each variant offers different trade-offs, with FOG-flash having the higher
throughput and FOG-max observed to have better downstream quality.

0 10 20 30 40 50

Consumed Tokens ×109

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

L
os

s

0 10 20 30 40 50

Consumed Tokens ×109

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

G
ra

d
ie

n
t

N
or

m

FOG-opt OP OP+frozenQK

Figure 2: From OP to FOG-opt step by step. Comparison of 390M models under FP8DPA training.
The first architecture to diverge is OP, while OP with frozen QK RMSNorm gains survives the stable
phase of training. It still, however, experiences a significant divergence during the learning rate
cooldown, which starts around 42B tokens in. The architecture that converges, FOG-opt, is the
result of adding post-normalization to the previous recipe. Gradient norm reported is the 200-rolling-
window mean and 5%-95% quantile bands.

Figure 2 ablates the components transitioning from OP to FOG-opt. We can see that freezing
the trainable QK RMSNorm gains results in a significantly more stable training. We attribute the
early divergence of OP to the fact that uncontrolled QK normalization leads to an explosion of its
gains when training in low precision. Note that these gains are generally not weight-decayed. We
experimentally observe this explosion, confirm that using L2 regularization helps delay the divergence.
We finally opted for freezing the gains to a constant value as it is simpler and sufficient, doesn’t
compromise performance, and offers a small speedup. Our ablations highlight that a constant value
for the gains slightly greater than 1 improves loss. Therefore, to retain its benefit after removing the
γ gains vector, we increase the standard s = 1/

√
Dqk attention softmax scale–a tiny optimization

trick offering equivalent attention score matrix S:

S =
1√
Dqk

Nγ0
(Q)Nγ0

(K)⊤ =
1√
Dqk

(
γ0Q

rms(Q)

)(
γ0K

rms(K)

)⊤

=
γ2
0√
Dqk

N1(Q)N1(K)⊤,

Finally, we empirically show that the addition of post-normalization is important to ensure conver-
gence with FP8DPA during the learning rate decay phase.

Prior works also favored post-normalization over pre-normalization [21], providing evidence of their
better stability in BF16 training. We extend this observation to our FP8 setting and we confirm that
learnable LayerScale blocks alone, even with controlled QK regularization, cannot ensure convergence
during this last phase. We attribute this late divergence of OP to the fact that LayerScale blocks
without normalizations are not enough to handle FP8 outliers, potentially due to the considerable
changes in model statistics following the learning rate decay, that are summed up in the residual
connections resulting in huge activation outliers for last layers, as highlighted by the increasing
pattern of outliers on each transformer block’s output in Figure 3. We note that we initially tested
the idea of cooling down the previously constant weight decay during the learning cooldown phase,
aiming to conserve model weights’ norm [16]. The Appendix G shows that such intervention has no
noticeable effect on stability neither performance. We chose to conserve this decision for all FOG
runs for consistency and fair comparison across ablations.

4

42 44 46 48 50 52

Consumed Tokens ×109

101

102

103

104

105

Q
K

V
K

u
rt

os
is

Layer

1

10

13

14

15

16

Figure 3: Kurtosis of QKV tensors during FP8DPA learning rate cooldown with OP+frozenQK
architecture. Later layers exhibit significantly larger activation outliers.

4 Long-term outlier dynamics

To analyse the outliers present in neural network activations, we use kurtosis as a metric of the
extremity of deviations of activation values (such as by outliers). We define the kurtosis kurt(x) of a
vector x ∈ RD as the scalar

kurt(x) :=
µ[x4]

σ2[x2]
,

where µ and σ2 are the sample mean and variance, respectively, and exponentiation is taken element-
wise. Given an activation tensor X ∈ RN×C×D, where N , C, and D are the batch size, se-
quence length, and hidden size respectively, we define its kurtosis as the average kurt(X) :=
1

NC

∑N
n=1

∑C
c=1 kurt(xnc).

Under this definition, kurt(x) is maximized when few elements of x reach extremely large values,
relative to the variance across the entire vector, i.e., when large outlier features are present. This
definition has been used to analyse outliers in BF16 training in previous work [9] and, unlike the
standard definition of kurtosis [22] in the probability theory literature, this definition does not center
x to have zero-mean. For our use, this is consistent with the fact that FP8 kernels do not shift their
inputs before scaling and casting down. We track the dynamics of kurtosis in key activations. Namely,
the inputs of the second projection in FFNs, the QKV matrix, and the output of each transformer
block. Unless explicitly stated, we report the average activation kurtosis across all layers.

Using these activations, we can analyse the emergence of large outlier features at different stages
during training. Figure 4 demonstrates an equivalent loss progression to the baseline while offering up
to orders of magnitude lower kurtosis in some activations. Note that, unlike previous FP8 approaches,
FOG architectures are trained with FP8 attention computations, introducing more quantization errors.
As a result, the kurtosis of key, query, and value projections becomes particularly relevant.

Activation Functions Baseline Llama exhibits late divergence during FP8 training (with attention
in BF16), which has been attributed solely to the quadratic behavior of its gated activation func-
tion—emerging when weights become sufficiently aligned late in training [6]. In our extended 450B
token run using the FOG-max architecture, we employ the inherently quadratic xIELU activation
function, see Equation (2), and observe stable training with kurtosis levels orders of magnitude lower
than those of baseline Llama. In fact, modifying the FOG-max architecture to use the SwiGLU
activation function resulted in stable FP8DPA training behaviour, as disscussed in Appendix D. These
results strongly suggests that architectures biased towards low kurtosis activations during training
enable the stable use of quadratic activations, and challenges the completeness of prior explanations.
This is particularly interesting given that such activations are known to produce linear gradients,
which benefit the backward pass—likely contributing to FOG-max’s superior performance over
GeLU-based variants as seen in Section 5.3.

Long-term outlier growth These architectures exhibit a sub-linear to logarithmic trend in the
long-term growth of QKV outliers, as consistently shown by kurtosis in Figure 4. This behavior

5

2.4

2.6

2.8

3.0

L
os

s

4

6

8

10

12

14

Q
K

V
K

u
rt

os
is

0 20 40 60 80 100

Consumed Tokens ×109

101

102

103

104

105

106

F
F

N
K

u
rt

os
is

0 20 40 60 80 100

Consumed Tokens ×109

101

102

103

104

105

T
ra

n
sf

or
m

er
K

u
rt

os
is

FOG-max Llama3

Figure 4: Loss and kurtosis training dynamics of 1.5B FOG-max and Llama3 models trained for
over 100B tokens with BF16 precision. Loss reported is the 200-rolling-window mean and 5%-95%
quantile bands.

supports their robustness to FP8DPA, as it suggests that prohibitively longer training would be
required to see a substantial increase in kurtosis. Our extended run is consistent with the hypothesis
as it does not exhibit any sign of divergence.

Kurtosis early signal Figure 5 shows an example of a diverging FP8DPA run, comparing it with the
successful FOG-max training. This emphasises the importance of tracking tensor-level metrics such
as kurtosis to potentially predict later divergences, before common global metrics like the loss and
gradient norms show any symptoms of divergence. In this example, while loss irrefutably diverged
around the 15B token mark and the gradient norm consistently spiked no earlier than 12B tokens, the
QKV kurtosis was already diverging from the expected sub-linear growth consistently seen across
different architectures as early as the 3B mark, giving a potential early divergence sign.

0 5 10 15 20 25

Consumed Tokens ×109

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

L
os

s

0 5 10 15 20 25

Consumed Tokens ×109

0.0

0.5

1.0

1.5

2.0

G
ra

d
ie

n
t

N
or

m

0 5 10 15 20 25

Consumed Tokens ×109

101

102

Q
K

V
K

u
rt

os
is

FOG-max OLMo2

Figure 5: Training dynamics of a failed and a successful FP8DPA run. Kurtosis exhibits atypical
behaviour much earlier than when the loss diverged. Gradient norm reported is the 200-rolling-
window mean and 5%-95% quantile bands.

5 Experimental Results

We perform extensive experiments to verify our architecture across several scales. We use the
FineWeb-Edu [23] text corpus, filtering out any web opt-out domains with robots.txt, resulting
in a rigorous data-compliant corpus [5]. The data is tokenised using a 131K vocabulary BPE

6

tokenizer. We keep a consistent context length of 4096 during all main experiments. In terms of
the optimisation algorithm, we use AdamW [19] with default hyperparameters. Our learning rate
schedule is comprised of three phases: Warm-up, Steady, and Decay phases (WSD), as it has been
shown to provide equivalent performance to the cosine schedule [8], while allowing to train beyond
fixed training durations. For the models, we train 390M, 1.5B and 8B parameter models for different
token counts, specified at each experiment. Our baseline architecture follows the Llama3 8B model
design [7], with the 390M and 1.5B being adapted to their respective sizes. Since Llama3 uses a
gated linear unit, unlike the OP and FOG variants, we increase the FFN sizes of OP and FOG to
maintain an equal parameter count. Further details regarding architectures and hyperparameters are
available in Appendices A and B.

Our hardware infrastructure consists of nodes with 4 Nvidia Grace Hopper GPUs each. Our dis-
tributed training framework is adapted from Megatron-LM [29], which uses Transformer Engine [2]
FP8 recipes. With 390M parameters, our experiments reach 50B tokens. We scaled 1.5B experiments
to 125B tokens to obtain more meaningful evaluations. In addition to the absence of late-in-training
outlier amplification from FOG’s non-gated activation functions and our kurtosis progression guar-
antees, we further validate our method’s stability on long data regimes by continuing pretraining
FOG-max up to 450B tokens. Finally, we scale the model size to 8B and train for 20B tokens. We
show the divergence of other architectures with FP8DPA while FOG variants converge and match
the baseline Llama3 BF16 loss, while being 35-43% faster. During all experiments, we use the FP8
delayed scaling strategy, with a margin of zero and a history length of 1024 steps.

We make our implementation, along with detailed steps for our experiments, public under the
repository https://github.com/anonymous4375934/FOG.

5.1 FP8 stability

We compare our approach with different architectures proposed in the literature. Namely, the
OP architecture, OLMo2, Llama3, and Llama3 with the SmoothSwiGLU activation following the
previous work [6], adapting each network to 390M and 1.5B parameter count. In the case of the
Llama3 baseline, we also provide results on the 8B scale. Results are shown in Figure 6. This
experiment displays the unsuitability of existing architectures for FP8DPA training, as all of them
diverge. For the case of the OP and OLMo2 architecture, despite having an attention outlier-mitigation
strategy—the QK RMSNorm—divergence is still observed, as discussed in Section 3.

0.1 1 10 100

Consumed Tokens ×109

2

4

6

8

10

L
os

s

390M Scale

0.1 1 10 100

Consumed Tokens ×109

1.5B Scale

0.1 1 10 100

Consumed Tokens ×109

8B Scale

FOG-max Llama3 Llama3+SmoothSwiGLU OP OLMo2

Figure 6: Cross-entropy loss plots of different architectures with FP8DPA training. No other
tested architecture was able to surpass the 20B token mark without diverging at any scale.

Another interesting observation from these experiments is the tendency of larger models to diverge in
later stages of training compared with similar but smaller models. We validate its consistency across
architectures, as presented in Table 2. This observation has not been raised before, possibly due to the
longer time needed for FP8 settings (with BF16 attention) to diverge, in contrast to FP8DPA training.
While this trend could have many practical implications, exploring it fully falls outside the scope of
this work, and we encourage future research in this direction.

7

https://github.com/anonymous4375934/FOG

Architecture Model Size Divergence Mark
(in billions of tokens)

Llama3 390M 0.7
Llama3 1.5B 1.1
Llama3 8B 6.6

OLMo2 390M 3.3
OLMo2 1.5B 15.9

Table 2: Token mark when loss was observed to diverge.

5.2 Efficiency

Standard context length Table 3 explores the efficiency of FOG at 1.5B and 8B model scales
under FP8DPA training, using a standard context length of 4096. We compare our set-up with the
BF16 baseline and the stable Llama FP8 training with SmoothSwiGLU, which is, to the best of our
knowledge, the only dense architecture proposal demonstrated to work at scale with FP8. Note that
the SmoothSwiGLU cannot benefit from enabling FP8 GEMMs in the attention mechanism, as it was
shown to suffer a big loss divergence in Figure 6. Note the increase in throughput gains as the model
size increases. The GEMM input tensors increase in size and consume significantly more time during
the overall forward-backward pass, compared with other operators.

Size Model Precision Throughput
(tokens/second/GPU)

8B

Llama BF16 9105
Llama+SmoothSwiGLU FP8 12228 (+34.3%)
FOG-max FP8DPA 12344 (+35.5%)
FOG-opt FP8DPA 12414 (+36.3%)
FOG-flash FP8DPA 12764 (+40.2%)

1.5B

Llama BF16 46470
FOG-max FP8DPA 53551 (+15.2%)
FOG-opt FP8DPA 53877 (+15.9%)
FOG-flash FP8DPA 54848 (+18.0%)
Llama+SmoothSwiGLU FP8 54903 (+18.1%)

Table 3: Training throughput measures with FOG versus other baselines. Using eight GH200
nodes with Zero-1 sharding [26] for 8B models and a single GH200 node for 1.5B models. Notably,
in the 8B scale, all FOG variants outperform other architectures.

Long-context scenario Enabling stable training under FP8DPA regime leads to great benefits in
long context scenarios, because the throughput becomes bottlenecked by the dot product attention
computation with quadratic complexity. As a result, we observe larger speed-up gaps between FOG
and prior FP8 approaches as sequence length increases, as demonstrated in Table 4.

Context FOG-flash Llama+SmoothSwiGLU Speed-up Gap
4096 (TP=1) +42.6% +38.5% +4.1%
8192 (TP=1) +43.5% Out Of Memory –
8192 (TP=2) +39.1% +34.2% +4.9%
16384 (TP=2) +38.8% +31.1% +7.7%

Table 4: Training throughput gains under varying sequence lengths (relative to Llama BF16),
performed at 8B scale using 8 GH200 nodes with a global batch size of 1024. Increasing to longer
contexts required enabling Tensor Parallelism (TP). Raw throughput values reported in Table 11.

8

5.3 Downstream performance

We compare our proposals with the higher-precision Llama3 baseline across a wide range of standard
benchmarks to measure their downstream performance. Inference during down-stream evaluation
uses BF16 precision. In Table 5, we report some of the most relevant scores along with an average
across a larger set of tasks, detailed in the Appendix G. All FOG variants offer comparable down-
stream performance with the higher precision Llama3 baseline with FOG-max architecture, even
outperforming it. The 1.5B models are trained on 125B tokens, whereas smaller models are trained
on 50B tokens.

Model Hellaswag ARC PIQA Average*

Llama 390M 33.5 | - 47.9 | - 65.0 | - 39.8 | -
FOG-max 36.5 | 36.3 62.9 | 62.5 68.0 | 68.2 41.2 | 40.8
FOG-opt 36.1 | 35.6 61.5 | 61.3 68.0 | 67.8 40.9 | 40.4
FOG-flash 35.9 | 35.2 61.5 | 60.4 68.1 | 68.2 40.5 | 40.3

Llama 1.5B 43.7 | - 71.8 | - 72.5 | - 46.1 | -
FOG-max 43.3 | 43.4 71.6 | 73.0 72.6 | 73.3 46.0 | 47.1
FOG-opt 43.3 | 42.7 71.3 | 70.8 72.6 | 72.0 45.7 | 46.0
FOG-flash 42.8 | 41.9 70.9 | 69.4 72.2 | 72.0 45.7 | 44.9

Table 5: Performance across various tasks. For each task and model size, the first score results
from the BF16 ablation and the second from the FP8DPA one. The average* is across a larger set of
tasks, show in Appendix G.

5.4 Long-data regimes

To further justify the viability of FP8DPA long training with FOG, we train a 1.5B FOG-max on 450B
tokens, way beyond the previously identified 200B tokens divergence mark of Llama2-7B [6]. Note
that our observation of smaller models’ tendancy to diverge earlier with FP8DPA, and the long-term
outlier analysis in Section 4 further underline the sufficiency of such a training duration.

We also switch to use FP16 optimizer states and BF16 gradients after 130B tokens, saving up memory
previously used by full precision states, gradients, and model parameters master copy. We display the
learning dynamics of our approach in Figure 7. The language modeling loss exhibits equivalent to
better smoothness compared to the corresponding Llama baseline.

0 100 200 300 400

Consumed Tokens ×109

2.2

2.3

2.4

2.5

2.6

2.7

2.8

L
os

s

FOG-max (FP8DPA) Llama3 (BF16)

Figure 7: Long-data training regimes. FOG-max 1.5B FP8DPA is trained on 450B tokens. The
higher precision Llama3 experiment is included as reference. Note that a learning rate cooldown
is performed during the last 25B tokens of each experiment, following the WSD schedule. Loss
reported is the 200-rolling-window mean and 5%-95% quantile bands.

9

5.5 Additional results

SwiGLU This work mainly studies three architectural variants, sharing in common the use of
point-wise activation functions. As mentioned in Section 4, we extended FOG to gated activation
functions by showing its stability when using a gated MLP (SwiGLU). Details in Appendix D.

FP8 optimizer moments We ran an additional FP8DPA experiment using FOG-flash following the
same 390M scale setup but with 8 bit optimizer moments. The loss converged smoothly to a value of
2.645, nearly identical to the value 2.649 obtained with higher-precision moments. More details are
available in Appendix E.

MoE We tested FOG under a Mixture-of-Experts (MoE) setting and the training was consistently
stable. This experiment further supports the robustness of FOG. More details can be found in
Appendix D.

6 Limitations

Despite its robustness, record throughput boosts, and flexibility, the FOG set of architectures remains
bounded by the following limitation. The final projection (LM head) is still performed in BF16.
This operator is known to be very sensitive to outliers and has been used with half-precision in
forward-backward FP8 training approaches, including ours. Due to computational constraints, we
decided to keep the study of this limitation for future work.

7 Conclusion

In this paper we demonstrate, for the first time, stable LLM training with fully FP8 matrix mul-
tiplications within the transformer blocks–including the attention mechanism–without sacrificing
performance. We tested FP8DPA training across a wide set of previously proposed architectures
and show that they consistently diverge early during training, highlighting the difficulty of FP8DPA
training and novelty in our results. Moreover, in contrast with other granular scaling recipes, we use
the low-overhead delayed scaling FP8 strategy. Our design provides on-par downstream quality with
the higher precision baseline, while offering up to 43% faster training at 8B scale. We scale our
1.5B model to 450B tokens, 15x the Chinchilla-optimal data budget for its size. Our work brings the
community one step closer to fully FP8 GEMM training at scale i.e including the language modeling
head. We further justify the long-term stability of our architecture by observing the outlier training
dynamics across key activations by using kurtosis. The use of kurtosis to track outliers present during
training was shown to provide meaningful insights to favour certain architectural components or to
predict future instabilities, as it is a quantitative metric that measures outliers.

10

Acknowledgement

This work was initiated during the master’s thesis of Alejandro Hernández Cano at EPFL. It was
supported as part of the Swiss AI Initiative by a grant from the Swiss National Supercomputing
Centre (CSCS) under project ID a06 on Alps.

References
[1] Tom Brown, et al. Language Models Are Few-Shot Learners. In Advances in Neural Information

Processing Systems, volume 34, pages 1877–1901, 2020.

[2] NVIDIA Corporation. NVIDIA/TransformerEngine. URL https://github.com/NVIDIA/
TransformerEngine.

[3] DeepSeek-AI, et al. DeepSeek-V3 Technical Report. arXiv preprint, 2025. doi:
10.48550/arXiv.2412.19437.

[4] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. GPT3.Int8(): 8-Bit
Matrix Multiplication for Transformers at Scale. In Advances in Neural Information Processing
Systems, volume 36, pages 30318–30332, 2022.

[5] Dongyang Fan, et al. Can Performant LLMs Be Ethical? Quantifying the Impact of Web
Crawling Opt-Outs. In Second Conference on Language Modeling, 2025.

[6] Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling FP8 Training to
Trillion-Token LLMs. In International Conference on Learning Representations, volume 2025,
pages 98631–98644, 2025.

[7] Aaron Grattafiori, et al. The Llama 3 Herd of Models. arXiv preprint, 2024. doi:
10.48550/arXiv.2407.21783.

[8] Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna B. Allal, Leandro Von Werra, and Martin
Jaggi. Scaling Laws and Compute-Optimal Training Beyond Fixed Training Durations. In
Advances in Neural Information Processing Systems, volume 38, pages 76232–76264, 2024.

[9] Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Under-
standing and Minimising Outlier Features in Transformer Training. In Advances in Neural
Information Processing Systems, volume 38, pages 83786–83846, 2024.

[10] Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-Key
Normalization for Transformers. In Findings of the Association for Computational Linguistics:
EMNLP, volume 2020, pages 4246–4253, 2020. doi: 10.18653/v1/2020.findings-emnlp.379.

[11] Alejandro Hernández-Cano, et al. Apertus: Democratizing Open and Compliant LLMs for
Global Language Environments. arXiv preprint, 2025. doi: 10.48550/arXiv.2509.14233.

[12] Jordan Hoffmann, et al. Training Compute-Optimal Large Language Models. In Advances
in Neural Information Processing Systems, volume 36, pages 30016–30030, 2022. ISBN
978-1-7138-7108-8.

[13] Allen Hao Huang and Imanol Schlag. Deriving Activation Functions Using Integration. arXiv
preprint, 2025. doi: 10.48550/arXiv.2411.13010.

[14] Dhiraj Kalamkar, et al. A Study of BFLOAT16 for Deep Learning Training. arXiv preprint,
2019. doi: 10.48550/arXiv.1905.12322.

[15] Jared Kaplan, et al. Scaling Laws for Neural Language Models. arXiv preprint, 2020. doi:
10.48550/arXiv.2001.08361.

[16] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational Equilibrium: How Weight Decay
Balances Learning Across Neural Networks. In International Conference on Machine Learning,
volume 41, pages 25333–25369, 2024.

11

https://github.com/NVIDIA/TransformerEngine
https://github.com/NVIDIA/TransformerEngine
http://dx.doi.org/10.48550/arXiv.2412.19437
http://dx.doi.org/10.48550/arXiv.2412.19437
http://dx.doi.org/10.48550/arXiv.2407.21783
http://dx.doi.org/10.48550/arXiv.2407.21783
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.379
http://dx.doi.org/10.48550/arXiv.2509.14233
http://dx.doi.org/10.48550/arXiv.2411.13010
http://dx.doi.org/10.48550/arXiv.1905.12322
http://dx.doi.org/10.48550/arXiv.2001.08361
http://dx.doi.org/10.48550/arXiv.2001.08361

[17] Dmitry Lepikhin, et al. GShard: Scaling Giant Models with Conditional Computation and
Automatic Sharding. In International Conference on Learning Representations, volume 2021.
doi: 10.1145/3583780.3615068.

[18] Ze Liu, et al. Swin Transformer V2: Scaling Up Capacity and Resolution. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, volume 2022, pages 12009–12019,
2022.

[19] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International
Conference on Learning Representations, volume 2019, 2019.

[20] Paulius Micikevicius, et al. FP8 Formats for Deep Learning. arXiv preprint, 2022. doi:
10.48550/arXiv.2209.05433.

[21] Team OLMo, et al. 2 OLMo 2 Furious. arXiv preprint, 2025. doi: 10.48550/arXiv.2501.00656.

[22] Karl Pearson. "Das Fehlergesetz Und Seine Verallgemeiner-Ungen Durch Fechner Und
Pearson." a Rejoinder. Biometrika, 4(1-2):169–212, 1905. ISSN 0006-3444. doi:
10.1093/biomet/4.1-2.169.

[23] Guilherme Penedo, et al. The FineWeb Datasets: Decanting the Web for the Finest Text Data at
Scale. In Advances in Neural Information Processing Systems, volume 38, pages 30811–30849,
2024.

[24] Houwen Peng, et al. FP8-LM: Training FP8 Large Language Models. arXiv preprint, 2023.
doi: 10.48550/arXiv.2310.18313.

[25] Qwen, et al. Qwen2.5 Technical Report. arXiv preprint, 2025. doi: 10.48550/arXiv.2412.15115.

[26] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory Opti-
mizations Toward Training Trillion Parameter Models. In SC20: International Conference for
High Performance Computing, Networking, Storage and Analysis, volume 2020, pages 1–16,
2020. doi: 10.1109/SC41405.2020.00024.

[27] Bita Darvish Rouhani, et al. Microscaling Data Formats for Deep Learning. arXiv preprint,
2023. doi: 10.48550/arXiv.2310.10537.

[28] Noam Shazeer. GLU Variants Improve Transformer. arXiv preprint, 2020. doi:
10.48550/arXiv.2002.05202.

[29] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism. arXiv preprint, 2020. doi: 10.48550/arXiv.1909.08053.

[30] Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive Activations in Large
Language Models. In First Conference on Language Modeling, 2024.

[31] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou.
Going Deeper with Image Transformers. In IEEE/CVF International Conference on Computer
Vision, volume 2021, pages 32–42, 2021. doi: 10.1109/ICCV48922.2021.00010.

[32] Ashish Vaswani, et al. Attention Is All You Need. In Advances in Neural Information Processing
Systems, volume 31, 2017.

[33] Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-Loss-Free Load
Balancing Strategy for Mixture-of-Experts. arXiv preprint. doi: 10.48550/arXiv.2408.15664.

[34] Shuangfei Zhai, et al. Stabilizing Transformer Training by Preventing Attention Entropy
Collapse. In International Conference on Machine Learning, volume 40, pages 40770–40803,
2023.

[35] Jiachen Zhu, Xinlei Chen, Kaiming He, Yann LeCun, and Zhuang Liu. Transformers without
Normalization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, volume
2025, pages 14901–14911, 2025.

12

http://dx.doi.org/10.1145/3583780.3615068
http://dx.doi.org/10.48550/arXiv.2209.05433
http://dx.doi.org/10.48550/arXiv.2209.05433
http://dx.doi.org/10.48550/arXiv.2501.00656
http://dx.doi.org/10.1093/biomet/4.1-2.169
http://dx.doi.org/10.1093/biomet/4.1-2.169
http://dx.doi.org/10.48550/arXiv.2310.18313
http://dx.doi.org/10.48550/arXiv.2412.15115
http://dx.doi.org/10.1109/SC41405.2020.00024
http://dx.doi.org/10.48550/arXiv.2310.10537
http://dx.doi.org/10.48550/arXiv.2002.05202
http://dx.doi.org/10.48550/arXiv.2002.05202
http://dx.doi.org/10.48550/arXiv.1909.08053
http://dx.doi.org/10.1109/ICCV48922.2021.00010
http://dx.doi.org/10.48550/arXiv.2408.15664

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide in-depth empirical evaluations that support the claims made in the
abstract in Section 5. Section 4 discusses the utility of kurtosis to monitor FP8 training.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 discusses the limitations of the work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

13

Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all of the details from our experimental setup needed to reproduce
the main results. We also provide the implementation under an anonymized repository.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]
Justification: We provide the code needed to reproduce the main experimental results. The
dataset corpus used is publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the most important experimental details, including choice of
hyperparameters and infrastructure, in the experimental section. Further details are provided
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Training LLMs requires extensive computational resources, making it unfeasi-
ble to perform repeated experiments under equivalent settings to obtain accurate statistical
significance results. Nonetheless, our observations generalize across different scales and
architectures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We detail our compute infrastructure in the experimental section. We further
detail the different computational resources needed for each of the main experiments in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have read and our experiments conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper addresses a topic on fundational machine learning research. While
we provide a methodology to accelerate language modeling learning and this brings many
potential societal impacts, we feel they should not be specifically mentioned in the context
of this project.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

16

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide proper citation of the code and data used in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

17

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

18

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in any meaningful way during the development of this
project.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Hyperparameters

We detail the selection of hyperparameters used in Table 6. For the case of FOG-flash, the α0

initialization value of tanhα entropy-regularization is 0.5 for all model sizes. All models use a
linear warmup schedule, and 1-sqrt cooldown schedule. The long-data 1.5B FOG-max experiment
was trained for a total of 430,000 steps, consuming approximately 450.9B tokens, using the same
hyperparameters as the shorter run, including warmup steps.

Hyperparameter 390M 1.5B 8B

Layers (L) 16 16 32
Hidden size (D) 1024 2048 4096
FFN hidden size 4096 8192 14336
Attention heads 8 16 32
QK groups 4 8 8
Softmax scale* (s) 0.17678 0.125
Tied embeddings Yes No

Weight decay (λ) 0.1
AdamW β1 0.9
AdamW β2 0.95
Gradient clip value 1.0

Context length T 4096
Global batch size 128 256 512
Total training steps 100,000 125,000 10,000
Peak learning rate (η) 10−3 2.5× 10−4 1.5× 10−4

Warmup η steps 5,000 2,500 1,250
Cooldown η steps 20,000 25,000 N/A
Minimum η 10−8

Table 6: Hyperparameters used in experiments. Note that FFN hidden size indicates the dimen-
sionality of each linear projection in gated activation functions; networks without GLUs use 1.5×
this value to match the parameter count. Softmax scale specified only applies to FOG models, all
other models follow the standard s = 1/

√
DQK .

B Architectures

We provide detailed formulations for all architectures presented in this paper. Our transformer
architecture consists of the following components in sequence:

1. Input token embeddings

2. An input scaling factor u ∈ (0,∞), which may equal 1

3. A series of L transformer blocks as described below

4. A final normalization function N (final), which may be the identity

5. A linear output layer

The transformer block is defined as

block(X) := X̂+
(
N

(post)
2 ◦ FFN ◦N (pre)

2

)
(X̂), X̂ := X+

(
N

(post)
1 ◦GQA ◦N (pre)

1

)
(X).

The N
(∗)
i are normalization layers that may be the identity, and FFN(X) is a two-layer FFN with

a nonlinear activation function φ and no bias. The GQA follows the standard grouped-query self-
attention definition with softmax scaling factor s and Rotary Position Embeddings. Each attention
head uses the definition

attnhead(X) := selfattn
(
N

(QK)
Q (XW(Q)), N

(QK)
K (XW(K)),XW(V)

)
,

20

where N (QK) is the entropy-regularization mechanism, and selfattn = PV. The P matrix is the
attention probabilities matrix

P := Softmax
(
sQK⊤ +M

)
(1)

With this notation, Table 7 details the architecture families used in the project.

Parameter u N (final) N (pre) N (post) N (QK) φ

Llama3 1 Nγ Nγ id id SwiGLU
Llama3+SmoothSwiGLU 1 Nγ Nγ id id SmoothSwiGLU
OLMo2 1 Nγ id Nγ Nγ SwiGLU
OP(a) σ−1

0 id id LayerScaleγ Nγ GeLU

FOG-max(a,b) σ−1
0 id id Nγ N xIELU

FOG-opt(a,b) σ−1
0 id id Nγ N GeLU

FOG-flash(a,b) σ−1
0 id id Nγ tanhα GeLU

Table 7: Architecture details for the used models. Models with (a) initialize the post-normalization
gains with γ0 = 1/

√
L. Models with (b) have frozen gains in the QK entropy regularization N (QK).

The id is the identity function, σ0 is the chosen initialization standard deviation, N is the RMS
normalization. The u input scaling is not trainable.

xIELU activation function Introduced in [13], the xIELU activation function is defined element-
wise as:

xIELU(x) :=

{
αpx

2 + 0.5x if x > 0,
αn(e

x − 1)− αnx+ 0.5x if x ≤ 0.
(2)

where αp and αn are trainable scalars per layer. xIELU is an extension of Squared ReLU and has
been adopted and validated at scale [11].

C Outliers impact quantization

Let’s start with a useful definition.
τ -outlier: Given x ∈ Rd and σ = rms(x), the element x of x is a τ -outlier if |x| ≥ τσ.

As τ increases, x becomes a larger outlier (σ represents the natural magnitude of x). In practice,
τ ≫ 1. Before FP8 quantization, each tensor is scaled with s(x) := MaxFP8Value/absmax(x) to
better utilize limited FP8 dynamic range.

Theorem 1. Let x ∈ Rd have τ -outlier xj , and x′ ∈ Rd have a τ ′-outlier x′
j with τ ′ > τ .

Then for any subset T ⊆ {1 . . . d} \ j, vector x′
T will be quantized less accurately than xT .

In other words, larger outlier values lead to less precise FP8-quantized results.

C.1 Proof

Let r = FP8MaxValue, s = r/absmax(x), and s′ = s(x′).

Since absmax(x) ≥ |xj | ≥ τσ, then s ≤ r
τσ (similarly, s′ ≤ r

τ ′σ). Let m = absmax(xT) and
m′ = absmax(x′

T).

Elements of xT lie in [−m,m]. After scaling, the range becomes [−rm/(τσ), rm/(τσ)]
in sxT , and [−rm/(τ ′σ), rm/(τ ′σ)] in s′x′

T . Since τ ′ > τ , [−rm/(τ ′σ), rm/(τ ′σ)] ⊂
[−rm/(τσ), rm/(τσ)], so x′

T has smaller range.
This narrowed range contains fewer n-bit representable numbers, proving the theorem.

The proof applies to any subset T , including the set of “typical” values (e.g., 90%-quantile).
Theorem 1 guarantees large outliers worsen quantization on 90% of tensor elements.

21

C.2 Empirical confirmation

We measured activation values of Llama and FOG-max 1.5B during mid-training on a micro batch of
data (precisely the second FFN layer’s input, before quantization).

Observation: Llama presents a 688-outlier while FOG-max shows only a 183-outlier. Using 90%-
quantile, we get that 90% of Llama’s activation coefficients scale to [−0.289, 0.289] range, while
FOG-max allows a much broader range of [−2.084, 2.984].

D FOG extensions

FOG-SwiGLU In addition to our main experiments, we trained a 1.5B FOG model using the
SwiGLU activation function, which we label FOG-SwiGLU. This architecture was adapted from
FOG-max, changing the activation function to SwiGLU and adjusting FFN hidden size to match
the parameter count. Figure 8 shows the loss progression of this model under FP8DPA training.
This experiment resulted in a completely stable training, and further demonstrates the flexibility of
activation functions suitable in our design.

0 20 40 60 80 100 120

Consumed Tokens ×109

2.3

2.4

2.5

2.6

2.7

2.8

2.9

L
os

s

FOG-max FOG-SwiGLU

Figure 8: FOG-SwiGLU 1.5B FP8DPA run. FOG-max included as reference. We observe stable
training dynamics for both approaches. The reported loss is the 200-rolling-window mean and
5%-95% quantile bands.

MoE extension We adapted FOG-flash architecture to follow an MoE design, keeping the backbone
configuration of the 390M model (hidden size, number of layers, etc), but upscaling with 8 FFN
experts (2 active) following [17], resulting in a 1.8B model, trained from scratch under the same
configuration as all 390M models. Additionally, we employ the z-loss [17] with coefficient of 0.01,
and no explicit loss-balancing loss, but rather an expert bias [33] with update rate of 0.01. We
trained this model under BF16 and FP8DPA training, resulting on a final converged loss of 2.477 and
2.483, respectively, as shown in Figure 9. This stable training result suggests good generalization
capabilities for FOG to other MoE designs under FP8DPA training. We further adapted our 1.5B
models and similarly scale up to 8 experts (2 active) to measure throughput gains at a larger scale.
Table 8 summarizes our results, where FOG still provides the most throughput gains.

Model Precision Throughput
(tokens/second/GPU)

Llama3 BF16 3336
Llama+SmoothSwiGLU FP8 4202 (+24.8%)
FOG-flash FP8DPA 4351 (+29.2%)

Table 8: MoE training throughput. Measurements of 41B-8E MoEs taken using 4xGH200 nodes
with expert parallel and pipeline parallel size of 4 using a batch size of 512. As with dense models,
FOG-flash outperform all other architectures.

22

0 10 20 30 40 50

Consumed Tokens ×109

2.4

2.6

2.8

3.0

3.2

3.4

L
os

s

BF16 FP8DPA

Figure 9: FOG-flash-MoE 1.8B-8E FP8DPA loss progress. Both BF16 and FP8DPA trainings
are shown. The FP8DPA training remains stable for the entire duration of training, and the final
loss converged to in both precisions remains within ±0.005, suggesting comparable downstream
capabilities. Loss reported is the 200-rolling-window mean and 5%-95% quantile bands.

E FP8 training

In all our experiments, we used Transformer Engine’s delayed scaling implementation with history
length ℓ = 1024 and margin m = 0. Mathematically, given a history of abs-max values, denoted
H = {ht}ℓt=1 ⊆ [0,∞), of a tensor X, we define its scaling factor as:

ρ(X) :=
FP8MaxValue

2m maxH

where FP8MaxValue ∈ (0,∞) is the maximum value representable with the FP8 format used. We
update the history using H ← {maxx∈X |x|} ∪ {ht}ℓt=2 to use for this activation in the next iteration.
The end-to-end FP8 matrix multiplication is

GEMM(X,Y) :=
1

ρ(X)ρ(Y)
FP8GEMM(FP8cast(ρ(X)X),FP8cast(ρ(Y)Y)),

where FP8GEMM receives FP8 tensors and returns the BF16 result. We further detail the precision
used for every matrix multiplication during our FP8 and FP8DPA experiments in Table 9.

Method Linear
operators

Attention scores
QK⊤

Attention-value
GEMM PV

Output
layer

FP8 FP8 BF16 BF16 BF16
FP8DPA FP8 FP8 FP8 BF16

Table 9: Comparison between FP8 methods. The FP8DPA method allows for all GEMM
computations—excluding the output head— to be done with FP8 precision. In contrast, FP8 training
uses higher precision for the core attention computation. The linear operators are linear layers of the
form LinearW(X) = XW: namely the FFN linear layers, QKV projections and attention output
projection. See Equation (1) for the definition of the attention probability matrix P.

FP8 optimizer moments To further reduce memory usage, we tested FOG-flash under the usual
FP8DPA setting, with an additional constraint: FP8 optimizer moments. This extends the typical
setting of half-precision gradients and moments used in most of our experiments. Figure 10 shows
the training loss across three different settings for comparison.

Fine-grained scaling recipes Recent FP8 training achievements, such as DeepSeek’s DeemGEMM
kernels, involve the use of fine-grained FP8 scaling recipes to provide a more robust training regime.
While these options could potentially enable FP8 training when tensor-wise scaling alternatives
diverge, it comes with a significant overhead. We validate this claim using TransformerEngine’s

23

0 10 20 30 40 50

Consumed Tokens ×109

2.6

2.8

3.0

3.2

3.4

L
os

s

BF16 FP8DPA FP8DPA+FP8Optim

Figure 10: FOG-flash 390M loss curve comparing training precision. Our design reaches similar
loss when trained with either precision. Loss reported is the 200-rolling-window mean.

Blockwise scaling at the 8B scale. Training throughput is reported in Table 10. Using FP8DPA
training with delayed scaling recipe provides the highest boost across all tested methods.

Model Precision FP8 Recipe Throughput
(tokens/second/GPU)

Llama3 BF16 N/A 9.48k
Llama3 FP8 Blockwise 11.18k (+17.9%)
OP FP8 Delayed 12.14k (+28.1%)
Llama+SmoothSwiGLU FP8 Delayed 13.1k (+38.2%)
FOG-flash FP8DPA Delayed 13.52k (+42.6%)

Table 10: Training throughput. Measurements taken using eight 4xGH200 nodes with Zero-1
sharding [26], without model parallelism using a batch size of 1024. Notably FOG-flash outperform
all other architectures.

F Long context

Note that when global batch size (GBS) increases –micro batch size fixed–, computation time
takes over communication time. Therefore, the larger the GBS, the higher the throughput gains
for all approaches: FOG-flash reaches +42.6% with GBS=1k compared to +40.2% with GBS=512.
Moreover, enabling FP8 computations in the attention bring unique throughput benefits under long-
context training. Hence the large efficiency gap achieved by FOG-flash FP8DPA compared to
Llama3+SmoothSwiGLU in Table 11.

Context Length TP Llama3 (BF16) FOG-flash (FP8DPA) Llama3+SmoothSwiGLU (FP8)

4096 1 9.48K 13.52K 13.13K
8192 1 9.08K 13.03K Out Of Memory
8192 2 7.49K 10.42K 10.05K
16384 2 6.81K 9.45K 8.93K

Table 11: Training throughput under varying sequence lengths, performed at 8B scale using eight
4xGH200 nodes with a global batch size of 1024. TP refers to Tensor Parallelism.

G Evaluations

We selected the following set of benchmarks: ARC-Easy, CommonsenseQA, HellaSwag,
LAMBADA-OpenAI, LAMBADA-standard, OpenBookQA, PIQA, SocialIQA, and WinoGrande. We

24

used a standard open-source LLM evaluation package for conducting these evaluations, as cited in
the code repository https://github.com/anonymous4375934/FOG.

In Table 5, we report raw accuracy scores as percentages on three key benchmarks as well as the
average over the full set of tasks mentioned above. In Table 12, we provide all scores along with their
estimation errors for the 1.5B model size, demonstrating that the slight differences observed across
many values are statistically insignificant.

Architecture Llama3 FOG-max FOG-opt FOG-flash

Hellaswag 43.7 | − 43.3 | 43.4 43.3 | 42.7 42.8 | 41.9 ±0.5
ARC-easy 71.8 | − 71.6 | 73.0 71.3 | 70.8 70.9 | 69.4 ±0.9
PIQA 72.5 | − 72.6 | 73.3 72.5 | 72.0 72.2 | 72.0 ±1.0
Commonsense-qa 19.6 | − 20.2 | 22.2 19.3 | 21.2 21.1 | 20.8 ±1.2
Lambada-openai 44.5 | − 43.7 | 44.6 44.3 | 44.5 42.4 | 41.2 ±0.7
Lambada-standard 38.9 | − 37.0 | 39.5 37.7 | 37.9 35.9 | 33.8 ±0.7
Openbook-qa 26.2 | − 28.0 | 27.0 26.8 | 27.0 28.4 | 27.6 ±2.0
Social-iqa 41.3 | − 41.8 | 42.0 41.7 | 40.8 41.0 | 40.8 ±1.1
Winogrande 56.5 | − 55.6 | 58.7 54.6 | 57.4 56.9 | 56.8 ±1.4
Average 46.1 | − 46.0 | 47.1 45.7 | 46.0 45.7 | 44.9 ±0.3

Table 12: More detailed results at 1.5B scale. For each model and each task, the first score results
from BF16 training and the second from FP8DPA training.

Weight decay cooldown As mentioned in Section 3, we experimented with cooling down the weight
decay, often used as a constant value equal to 0.1 that is coupled with the learning rate, to see if it
solves the OP+frozenQK architecture’s consistent divergence during the learning rate decay phase.
We also tested it on other architectures and, to optimize the use of resources, we had to keep it later
for the final experiments. This trick helped stabilize the weights’ norm indeed, but couldn’t solve the
divergence issue. Moreover, it had no effect on final performance nor on stability. Table 13 highlights
this no-effect claim at 1.5B scale.

Setting WD Loss Average score

OP+FrozenQK cooldown diverges -
OP+FrozenQK constant diverges -
FOG-opt cooldown converges 46.0 ±0.3
FOG-opt constant converges 46.3 ±0.3

Table 13: Weight Decay (WD) during the LR decay phase. If constant, it equals 0.1. Else, it starts
from 0.1 and is proportional to LR.

25

https://github.com/anonymous4375934/FOG

H Computational Resources

Our experiments were conducted on nodes equipped with 4 Grace Hopper (GH200) GPUs each. We
typically used 4, 8, and 16 nodes for our 390M, 1.5B, and 8B parameter experiments, respectively,
with minor variations across different runs. Importantly, all throughput measurements were taken
under identical hardware configurations. Table 14 details the computational resources in GPU hours
(GPUh) required for our main experimental results. This includes the computational cost of training
all architectures that diverged during FP8DPA training, the FP8DPA and BF16 stable training runs for
our three main architectures, and the BF16 Llama3 baseline. The aggregation includes node start-up
times, computation lost due to node failures, and overhead from calculating and logging kurtosis
metrics. The complete research project required additional computational resources beyond those
specified in the table, as we conducted numerous preliminary experiments and explored ideas that did
not appear in the final paper.

Group GPUh

Divergent runs (FP8DPA) 886
Llama3 baselines (BF16) 1,395
FOG experiments 11,162

Table 14: GPU hours used for the main experiments.

26

	Introduction
	Background
	FOG: Fast and Outlier-Guarded FP8-suited architectures
	Long-term outlier dynamics
	Experimental Results
	FP8 stability
	Efficiency
	Downstream performance
	Long-data regimes
	Additional results

	Limitations
	Conclusion
	Hyperparameters
	Architectures
	Outliers impact quantization
	Proof
	Empirical confirmation

	FOG extensions
	FP8 training
	Long context
	Evaluations
	Computational Resources

