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Abstract
Although proper handling of discourse phe-001
nomena significantly contributes to the qual-002
ity of machine translation (MT), improve-003
ments on these phenomena are not adequately004
measured in common translation quality met-005
rics. Recent works in context-aware MT at-006
tempt to target a small set of these phenom-007
ena during evaluation. In this paper, we pro-008
pose a methodology to identify translations009
that require context systematically, and use010
this methodology to both confirm the diffi-011
culty of previously studied phenomena as well012
as uncover new ones that have not been ad-013
dressed in previous work. We then develop014
the Multilingual Discourse-Aware (MuDA)015
benchmark, a series of taggers for these phe-016
nomena in 14 different language pairs, which017
we use to evaluate context-aware MT. We018
find that commonly studied context-aware MT019
models make marginal improvements over020
context-agnostic models, which suggests these021
models do not handle these ambiguities effec-022
tively. We will release code and data to in-023
vite the MT research community to increase024
efforts on translation on discourse phenomena025
and languages that are currently overlooked.026

1 Introduction027

In machine translation (MT), information from pre-028

vious utterances has been found crucial to ade-029

quately translate a number of discourse phenomena030

including anaphoric pronouns, lexical cohesion,031

and discourse markers (Guillou et al., 2018; Läubli032

et al., 2018; Toral et al., 2018). However, while033

generating proper translations of these phenomena034

is important, they represent only a small portion of035

the words in natural language data. Because of this,036

common metrics such as BLEU (Papineni et al.,037

2002) do not provide a clear picture of whether038

they are appropriately captured or not.039

Recent work on neural machine translation040

(NMT) models that attempt to incorporate extra-041

sentential context (Tiedemann and Scherrer, 2017;042

Dataset Lang. Phenomena
Müller et al. (2018) EN→ DE Pronouns

Bawden et al. (2018) EN→ FR Pronouns, Coherence
Lexical Consistency

Voita et al. (2018)
Voita et al. (2019b) EN→ RU

Pronouns
Deixis, Ellipsis

Lexical Consistency

Jwalapuram et al. (2020)
DE→ EN
FR→ EN
RU→ EN

Pronouns, Coherence
Lexical Consistency

Discourse Connectives

Our Work 14 Pairs (§5)

Pronouns, Ellipsis
Formality

Lexical Consistency
Verb Forms

Table 1: Some representative works on contextual ma-
chine translation that perform evaluation on discourse
phenomena, contrasted to our work. For a more com-
plete review see Maruf et al. (2021).

Miculicich et al., 2018; Maruf and Haffari, 2018, 043

inter alia) often perform targeted evaluation of cer- 044

tain discourse phenomena, mostly focusing on el- 045

lipsis, formality (Voita et al., 2019b,a), and pro- 046

noun translation (Müller et al., 2018; Bawden et al., 047

2018; Lopes et al., 2020). However, only a lim- 048

ited set of discourse phenomena for a few language 049

pairs have been studied (see summary in Table 1). 050

The difficulty of broadening these studies stems 051

from the reliance of previous work on introspec- 052

tion and domain knowledge to identify the relevant 053

discourse phenomena, frequently involving expert 054

speakers, which then requires engineering complex 055

language-specific methods to create test suites or 056

manually designing data for evaluation. 057

In this paper, we fill this gap by proposing a 058

data-driven, semi-automatic methodology for iden- 059

tifying salient phenomena that require context for 060

translation, and we apply this method to create 061

a multilingual benchmark testing these discourse 062

phenomena. This is done through several steps. 063

First, we develop P-CXMI (§2) as a metric to iden- 064

tify when context is helpful in MT, or more broadly 065

text generation in general. Then, we perform a 066

systematic analysis of words with high P-CXMI to 067

find categories of translations where context is use- 068

ful (§3). This allows us to identify novel discourse 069
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phenomena that to our knowledge have not been ad-070

dressed previously (e.g. consistency of verb forms),071

without requiring a-priori language-specific knowl-072

edge. Finally, we design a series of methods to073

automatically tag words belonging to the identified074

classes of ambiguities (§4) and we evaluate exist-075

ing translation models for different categories of076

ambiguous translations (§5).077

We perform our study on a parallel corpus span-078

ning 14 language pairs, measuring translation am-079

biguity and model performance. We find that the080

context-aware methods, while improving on stan-081

dard evaluation metrics, only perform better than082

the context-agnostic baselines for certain discourse083

phenomena in our benchmark, while on other phe-084

nomena, context-aware models do not observe sig-085

nificant improvements. Our benchmark therefore086

provides a more fine-grained evaluation of transla-087

tion models and reveals the weaknesses of context-088

aware models, such as verb form cohesion. We089

also find that DeepL, a commercial document-level090

translation system, does better in our benchmark091

than its sentence-level ablation and Google Trans-092

late. We hope that the released benchmark and093

code, as well as our findings, will spur targeted094

evaluation of discourse phenomena in MT to cover095

more languages and more phenomena in the future.096

2 Measuring Context Usage097

2.1 Cross-Mutual Information098

While document-level MT models can be compared099

using standard translation metrics such as BLEU100

(Papineni et al., 2002), they do not provide a clear101

picture of whether models are performing better102

due to improvements in processing context or other103

improvements (Kim et al., 2019). Another com-104

mon evaluation paradigm is contrastive evaluation,105

which evaluates contextual models’ ability to dis-106

tinguish between correct and incorrect translations107

of specific discourse phenomena, such as anaphora108

resolution (Müller et al., 2018) and lexical cohesion109

(Bawden et al., 2018). However, this provides only110

a limited measure of context usage on a limited set111

of ambiguous phenomena defined by the creators of112

the dataset, not capturing other unanticipated ways113

in which the model might need context (Vamvas114

and Sennrich, 2021). We are therefore interested in115

devising a metric that is able to capture all context116

usage by a model, beyond a predefined set.117

Conditional Cross-Mutual Information (CXMI)
(Bugliarello et al., 2020; Fernandes et al., 2021)

measures the influence of context on model predic-
tions. CXMI is defined as:

CXMI(C → Y |X) =

HqMTA
(Y |X)− HqMTC

(Y |X,C),

where X and Y are a source and target sentence,
respectively, C is the context, HqMTA

is the entropy
of a context-agnostic MT model, and HqMTC

refers
to a context-aware MT model. This quantity can
be estimated over a held-out set with N sentence
pairs and the respective context as:

CXMI(C → Y |X) ≈

− 1

N

N∑
i=1

log
qMTA

(y(i)|x(i))
qMTC

(y(i)|x(i), C(i))

Importantly, the authors find that training a sin- 118

gle model qMT as both the context-agnostic and 119

context-aware model ensures that non-zero CXMI 120

values are due to context and not other factors (see 121

Fernandes et al. (2021) and §3.1 for details). 122

2.2 Context Usage Per Sentence and Word 123

CXMI measures the context usage by a model 124

by comparing the log-likelihood ratio of samples 125

across the whole corpus. However, for our pur- 126

poses, we are interested in measuring how much 127

the context is helpful for single sentences or even 128

just particular words in a sentence. 129

Pointwise Mutual Information (P-MI) (Church
and Hanks, 1990) measures the association be-
tween two random variables for specific outcomes.
Mutual information can be seen as the expected
value of P-MI over all possible outcomes of the vari-
ables. Taking inspiration from this, we define the
Pointwise Cross-Mutual Information (P-CXMI)
for a source, target, context triplet (x, y, C) as:

P-CXMI(y, x, C) = − log
qMTA

(y|x)
qMTC

(y|x,C)

Intuitively, P-CXMI measures how much more 130

(or less) likely a target sentence y is when it is 131

given context C, compared to not being given that 132

context. Note that this is estimated according to 133

the models qMTA
and qMTC

since, just like CXMI, 134

this measure depends on their learned distributions. 135

We can also apply P-CXMI at the word level
(as opposed to the sentence level) to measure how
much more likely a particular word in a sentence is
when it is given the context, by leveraging the auto-
regressive property of the neural decoder. Given
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Avelile’s mother had HIV virus. Avelile had the virus, she was born with the virus.
Lexical Cohesion

阿维利尔的母亲是携有艾滋病病毒。阿维利尔也有艾滋病病毒。她一生下来就有。

Your daughter? Your niece? Formality
Votre fille ? Votre nièce ? (T-V)

Roger. I got’em. Two-Six, this is Two-Six , we’re mobile. Formality
了解捕捉した。 2-6こちら移動中だ。 (Honorifics)

Our tools today don’t look like shovels and picks. They look like the stuff we walk around with.
Pronouns

As ferramentas de hoje não se parecem com pás e picaretas. Elas se parecem com as coisas que usamos.

Louis XIV had a lot of people working for him. They made his silly outfits, like this.
Verb Form

Luis XIV tenía un montón de gente trabajando para él. Ellos hacían sus trajes tontos, como éste.

They’re the ones who know what society is going to be like in another generation. I don’t.
Ellipsis

Ancak onlar başka bir nesilde toplumun nasıl olacağını biliyorlar. Ben bilmiyorum.

Table 2: Examples of high P-CXMI tokens and corresponding linguistic phenomena. Contextual sentences are
italicized. The high P-CXMI target token is highlighted in pink, source and contextual target tokens related to the
high P-CXMI token are highlighted in blue and green respectively.

the triplet (x, y, C) and the word index i, we can
measure the P-CXMI for that particular word as:

P-CXMI(i, y, x, C) = − log
qMTA

(yi|yt<i, x)

qMTC
(yi|yt<i, x, C)

Note that nothing constrains the form of C or even136

x and P-CXMI can, in principle, be applied to any137

conditional language modelling problem.138

Using this metric, we now ask: what kind of139

words tend to see their likelihood increase when140

given the context? Such words should have a high141

P-CXMI, which we examine in the following §3.142

3 Which Translation Phenomena Benefit143

from Context?144

To identify salient translation phenomena that re-145

quire context, we perform a thematic analysis146

(Braun and Clarke, 2006), examining words with147

high P-CXMI across different language pairs and148

manually identifying patterns and categorizing149

them into phenomena where context is useful for150

translation. To do so, we systematically examined151

(1) the mean P-CXMI per POS tag, (2) the vocab-152

ulary items with the highest P-CXMI, and (3) the153

individual tokens with the highest P-CXMI.154

3.1 Data & Model155

To compare linguistic phenomena that arise during156

document-level translation across various language157

pairs, we need a dataset that is document-level,158

rich in context-dependent discourse phenomena,159

and parallel in multiple languages. We, therefore,160

perform our study on transcripts of TED talks and161

their translations (Qi et al., 2018). We choose to162

study translation between English and Arabic, Ger-163

man, Spanish, French, Hebrew, Italian, Japanese,164

Korean, Dutch, Portuguese, Romanian, Russian,165

Turkish and Mandarin Chinese. These 14 target 166

languages are chosen for their high availability of 167

TED talks and linguistic tools, as well as for the di- 168

versity of language types in our comparative study 169

(Table 8 in Appendix A). For each language pair, 170

our dataset contains 113,711 parallel training sen- 171

tences from 1,368 talks, 2,678 development sen- 172

tences from 41 talks, and 3,385 testing sentences 173

from 43 talks. 174

To obtain the P-CXMI for words in the data, we 175

train a small Transformer (Vaswani et al., 2017) 176

model for every target language and incorporate 177

the target context by concatenating it to the current 178

target sentence (Tiedemann and Scherrer, 2017). 179

We train the model with dynamic context size (Fer- 180

nandes et al., 2021), by sampling between 0 and 181

3 target context sentences and estimate P-CXMI 182

by using this model both qMTA
and qMTC

(more 183

training details in Appendix D). 184

3.2 Analysis Procedure 185

We adopt a top-down approach and start our analy- 186

sis by studying POS tags with high mean P-CXMI. 187

In Appendix B, we report the mean P-CXMI for 188

selected POS tags on our test data. Some types of 189

ambiguity, such as dual form pronouns (§3.3), can 190

be linked to a single POS tag and be identified at 191

this step, whereas others require finer inspection. 192

Next, we inspect the vocabulary items with high 193

mean P-CXMI. At this step, we can detect phenom- 194

ena that are reflected by certain lexical items that 195

consistently benefit from context for translation. 196

Finally, we examine individual tokens that ob- 197

tain the highest P-CXMI. In doing so, we iden- 198

tify patterns that do not depend on lexical features, 199

but rather on syntactic constructions for example. 200

In Table 2, we provide selected examples of to- 201

kens that have high P-CXMI and the discourse 202
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phenomenon we have identified from them.203

3.3 Identified Phenomena204

Through our thematic analysis of P-CXMI, we iden-205

tified various types of translation ambiguity. Unlike206

previous work, our method requires no prior knowl-207

edge of the languages to find relevant discourse phe-208

nomena and easily scales to new languages (§4.4).209

First, we find high P-CXMI for second-person210

pronouns (PRON.2) in languages with T-V distinc-211

tion (Appendix A, “Pronouns Politeness”). While212

English uses the same second-person pronouns for213

everyone, in these languages, certain pronouns de-214

pend on the level of formality and relationship215

between the speaker and addressee. Furthermore,216

languages such as Japanese and Korean use hon-217

orifics to indicate formality. In Japanese, vocabu-218

lary items such as “ござい” / “じゃ” that control219

formality have high mean P-CXMI (0.42 / 0.34).220

In English, only the 3rd person singular pronoun221

is gendered and gender is assigned based solely222

on semantic rules (Appendix A, “Gendered Pro-223

nouns”, “Gender Assignment”). We find several224

languages with high P-CXMI on pronouns (PRON),225

and these languages use gendered pronouns for pro-226

nouns other than the 3rd person singular or assign227

gender using formal rules (German, French, He-228

brew, Italian, Portuguese, Russian, and Chinese).229

When translating a gender-neutral English pronoun230

to a gendered target pronoun, context is therefore231

needed to determine the gender of the antecedent.232

We find high P-CXMI for certain verb forms,233

such as the imperfect form in Spanish Italian and234

Romanian (VERB.Imp). While English verbs may235

have five forms (e.g. write, writes, wrote, written,236

writing), other languages often have a more fine-237

grained verb morphology. For example, English238

has only a single form for the past tense, while the239

Spanish past tense consists of six verb forms. Verbs240

must be translated using the verb form that reflects241

the tone, mood and cohesion of the document.242

When we inspect vocabulary items with the high-243

est mean P-CXMI scores, we often find names of244

entities (e.g. the Japanese translation of Mandela “245

マンデラ ” has mean P-CXMI of 0.36). As in the246

first row of Table 2, proper nouns may have multi-247

ple possible translations, but the same entity should248

be referred to by the same word in a translated doc-249

ument for lexical cohesion (Carpuat, 2009).250

Finally, among the individual tokens with the251

highest P-CXMI, we find that many are due to252

pronouns formality verb form lexical ellipsis

ar 90 0 0 116 982
de 398 1000 0 19 1356
es 245 86 409 15 1496
fr 1591 839 1938 48 1586
he 0 0 468 122 1210
it 182 118 484 31 1320
ja 245 3328 0 94 990
ko 0 221 0 71 373
nl 0 783 1060 27 1590

pt_br 372 515 0 27 1677
ro 60 407 792 53 1002
ru 0 466 2091 41 668
tr 0 30 47 137 704

zh_cn 0 526 0 49 1092

Table 3: Number of MuDA tags on TED test data.

ellipsis in the English sentence that does not occur 253

on the target side. For example, in the last row of 254

Table 2, the English text does not repeat the verb 255

know in the second sentence as it can be understood 256

from the previous sentence. However, in Turkish, 257

there is no natural way to translate the verb-phrase 258

ellipsis and must infer that “don’t” refers to “don’t 259

know”, and translate the verb accordingly. 260

Although this procedure may tend to find phe- 261

nomena that are intuitive to the annotators, the data- 262

driven approach makes confirmation bias less se- 263

vere than prior works relying on introspection to 264

identify phenomena. Hence, our procedure can al- 265

low us to discover relevant phenomena that have 266

not been previously addressed, such as verb forms. 267

4 Cross-phenomenon MT Evaluation 268

After identifying a set of linguistic phenomena 269

where context is useful to resolve ambiguity dur- 270

ing translation, we develop a series of methods 271

to automatically tag tokens belonging to these 272

classes of ambiguous translations and propose 273

the Multilingual Discourse-Aware (MuDA) bench- 274

mark for context-aware MT models. 275

4.1 MT Evaluation Framework 276

Given a pair of parallel source and target docu- 277

ments (X,Y ), our MuDA tagger assigns a set of 278

discourse phenomena tags {t1i , · · · , tni } to each tar- 279

get token yi ∈ Y . Then, using the compare-mt 280

toolkit (Neubig et al., 2019), we compute the mean 281

word f-measure of system outputs compared to the 282

reference for each tag. This allows us to identify 283

which discourse phenomena models can translate 284

more or less accurately. 285

4.2 Automatic Tagging 286

In this section, we describe our taggers for each 287

discourse phenomenon we identified. In doing so, 288
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we create more reliable and informative taggers for289

each phenomenon, rather than using P-CXMI di-290

rectly to identify ambiguous words, as P-CXMI is291

fairly noisy and uninterpretable. For the formality,292

pronoun choice and verb forms tags, we created293

language-specific word lists that were verified by294

native speakers, and these tags are only applicable295

to certain target langauges that contain the associ-296

ated discourse phenomenon.297

Lexical Cohesion To tag words that re-298

quire lexical cohesion, we first extract299

word alignments from a parallel corpus300

D = {(X1, Y1), · · · , (X|D|, Y|D|)}, where301

(Xm, Ym) denote the source and target reference302

document pair. We use the AWESOME aligner303

(Dou and Neubig, 2021) to obtain:304

Am = {〈xi, yj〉 | xi ↔ yj , xi ∈ Xm, yj ∈ Ym},

where each xi and yj are the lemmatized content305

source and target words and↔ denotes a bidirec-306

tional word alignment. Then, for each target word307

yj that is aligned to source word xi, if the alignment308

pair 〈xi, yj〉 occurred at least 3 times already in the309

current document, excluding the current sentence,310

we tag yj for lexical cohesion.311

Formality For languages with T-V distinction, we312

tag the target pronouns containing formality distinc-313

tion in their various forms, if there has previously314

been a word pertaining to the same formality level315

in the same document. Some languages such as316

Spanish often drop the subject pronoun, and T-V317

distinction is instead reflected in the verb form. For318

these languages, we use spaCy (Honnibal and Mon-319

tani, 2017) and Stanza (Qi et al., 2020) to find POS320

tags and detect verbs with a second-person subject321

in the source, and conjugated in the second (T) or322

third (V) person in the target. For languages with a323

more complex honorifics system, such as Japanese,324

we construct a word list of common honorifics-325

related words to tag (details in Appendix C).326

Pronoun Choice To find pronouns in English that327

have multiple translations, we manually construct328

a list P` = {〈ps,pt〉} for each language (Appendix329

C), where each ps is an English pronoun and pt the330

list of possible translations of ps in the language `.331

Then, for each aligned token pair 〈xi, yj〉, if xi, yj332

are both pronouns with 〈xi,pt|yj ∈ pt〉 ∈ P`, and333

the antecedent of xi is not in current sentence, we334

tag yj as an ambiguous pronoun. To obtain antence-335

dents, we use AllenNLP (Gardner et al., 2017)’s336

coreference resolution module. This procedure is337

similar to Müller et al. (2018).338

Verb Form For each target language, we define a 339

list V` = {v1, · · · , vk} of verb forms (Appendix C) 340

where vi ∈ V` if there exists a verb form in English 341

uj and an alternate verb form vk 6= vi in the target 342

language such that an English verb with form uj 343

may be translated to a target verb with form vi 344

or vk depending on the context. Then, for each 345

target token yj , if yj is a verb of form vj ∈ V`, and 346

another verb with form vj has appeared previously 347

in the same document, we tag yj as ambiguous. 348

Ellipsis To detect translation ambiguity due to VP 349

and NP ellipsis, we look for instances where the 350

ellipsis occurs on the source side, but not on the 351

target side, which means that the ellipsis must be 352

resolved during translation. Since existing ellip- 353

sis models are limited to specific types ellipsis, we 354

first train an English (source-side) ellipsis detection 355

model. To do so, we extract an ellipsis dataset from 356

the English data in the Penn Treebank (Marcus 357

et al., 1993) and train a BERT text classification 358

model (Devlin et al., 2019), which achieves 0.77 359

precision and 0.73 recall (see Appendix C for train- 360

ing details). Then, for each sentence pair where the 361

source sentence is predicted to contain an ellipsis, 362

we tag the word yj in the target sentence Ym if: (1) 363

yj is a verb, noun, proper noun or pronoun; (2) yj 364

has occurred in the previous target sentences of the 365

same document; (3) yj is not aligned to any source 366

words, that is, 6 ∃xi ∈ Xm s.t. 〈xi, yj〉 ∈ Am. 367

4.3 Evaluation of Automatic Tags 368

We apply the MuDA tagger to the reference trans- 369

lations of our TED talk data. We thus obtain an 370

evaluation set of 3,385 parallel sentences for each 371

of the 14 language pairs. In Appendix B we report 372

the mean P-CXMI for each language and MuDA 373

tag. Overall, we find higher P-CXMI on tokens 374

with a tag compared to those without, which pro- 375

vides empirical evidence that models indeed rely 376

on context to predict words with MuDA tags. 377

Table 3 shows that the frequency of tags varies 378

significantly across languages. Overall, ellipses are 379

infrequent, as only 4.5% of the English sentences 380

have been marked for ellipsis which gives an upper 381

bound for the number of ellipsis tags. We suggest 382

our tagger to be applied on a large evaluation set to 383

contain enough examples of ellipsis. Further, lan- 384

guages from a different family than English have a 385

relatively high number of ellipsis tags. Korean and 386

especially Japanese have more formality tags than 387

languages with T-V distinction, which is aligned 388
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lexical formality pronouns verb form ellipsis

es 1.00 0.92 1.00 1.00 0.53
fr 1.00 1.00 1.00 0.94 0.43
ja 1.00 1.00 1.00 – 0.41
ko 1.00 0.94 – – 0.26
pt 0.99 0.88 1.00 – 0.31
ru 1.00 1.00 – 1.00 0.50
tr 1.00 1.00 – 1.00 0.57
zh 1.00 1.00 – – 0.78

Table 4: Precision of MuDA tags on 50 utterances.

with our intuition that register is more often impor-389

tant when translating to languages with honorifics.390

Manual Evaluation To evaluate our tagger, we391

asked native speakers with computational linguis-392

tics backgrounds to manually verify MuDA tags for393

8 languages on 50 randomly selected utterances as394

well as all words tagged with ellipsis in our corpus.395

We paid them 20$/hour. This allows us to measure396

how many automatic tags violate the given defini-397

tion of the linguistic tag. Table 4 reports the tags’398

precision.399

For all languages, we obtain high precision for400

all tags except ellipsis, confirming that the method-401

ology can scale to languages where no native speak-402

ers were involved in developing the tags. For ellip-403

sis, false positives often come from one-to-many or404

non-literal translations, where the aligner does not405

align all target words to the corresponding source406

word. We believe that the ellipsis tagger is still407

useful in selecting difficult examples that require408

context for translation; despite the low precision,409

we find a significantly higher P-CXMI on ellipsis410

words for many languages (Appendix B).1411

4.4 Extension to New Languages412

While MuDA currently supports 14 language pairs,413

our methodology can be easily extended to new lan-414

guages. The lexical and ellipsis tags can be directly415

applied to other languages provided a word aligner416

between English and the new target language. The417

formality tag can be extended by adding a list of418

pronouns or verb forms related to formality in the419

new language. Similarly, the pronouns and verb420

forms tag can also be extended by providing a list421

of ambiguous pronouns and verb forms.422

Exhaustively listing all relevant phenomena in423

document-level MT is extremely complex and be-424

yond the scope of our paper. To identify new dis-425

course phenomena on other languages, our the-426

matic analysis can be reused as follows: (1) Train a427

1Also note that wrongly assigned tags should also not
penalize a system greatly as it should give a low score only if
the translation does not match the falsely tagged word.

model with dynamic context size on translation be- 428

tween the new language pair; (2) Use the model to 429

compute P-CXMI for words in a parallel document- 430

level corpus of the language pair; (3) Manually 431

analyze the POS tags, vocabulary items and indi- 432

vidual tokens with high P-CXMI; (4) Link patterns 433

of tokens with high P-CXMI to particular discourse 434

phenomena by consulting linguistic resources. 435

5 Exploring Context-aware MT 436

Next, we use our MuDA benchmark to perform 437

an initial exploration of context usage across 14 438

languages pairs and 4 models, including those we 439

trained ourselves and commercial systems. 440

5.1 Trained Models 441

We train a sentence-level and document-level 442

concatenation-based small transformer (base) for 443

every target language. While conceptually sim- 444

ple, concatenation approaches have been shown to 445

outperform more complex models when properly 446

trained. For the context-aware model, the major 447

difference from §3.1 is that we use a static context 448

size of 3, since we are not using these models to 449

measure P-CXMI. (Lopes et al., 2020). 450

To evaluate stronger models, we additionally 451

train a large transformer model (large) that was 452

pretrained on a large, sentence-level corpora, for 453

German, French, Japanese and Chinese. Further 454

training details can be found in Appendix D. 455

5.2 Commercial Models 456

To assess if commercially available machine trans- 457

lation engines are able to leverage context and 458

therefore do well in the MuDA Benchmark, we 459

consider two engines:2 (1) the Google Cloud Trans- 460

lation v2 API. In early experiments, we assessed 461

that this model only does sentence-level transla- 462

tion, but included it due to its widespread usage 463

and recognition; (2) the DeepL v2 API. This model 464

advertises its usage of context as part of their trans- 465

lations and our experiments confirm this. Early 466

experimentation with other providers (Amazon and 467

Azure) indicated that these are not context-aware 468

so we refrained from evaluating them. 469

To obtain provider translations, we feed the docu- 470

ments into an API request. To re-segment the trans- 471

lation into sentences, we include special marker 472

tokens in the source that are preserved during trans- 473

lation and split the translation on those tokens. We 474

2translate.google.com, deepl.com

6

translate.google.com
deepl.com


ar de es fr he it ja ko nl pt ro ru tr zh

BLEU
no-context 17.25 28.02 35.72 37.74 32.70 32.30 7.10 6.80 32.22 39.03 25.36 17.00 12.32 15.96

context 16.92 28.24 36.00 37.23 32.92 32.11 4.48 3.77 32.67 39.10 25.37 17.14 11.97 15.01
context-gold 18.61 28.60 36.27 37.96 33.41 32.37 5.96 6.92 32.73 39.55 28.49 17.70 12.49 16.05

COMET
no-context 0.0002 0.1841 0.3809 0.3087 0.0948 0.2608 -0.5366 -0.0275 0.3105 0.4562 0.3826 0.0033 0.2113 -0.1419

context -0.0066 0.1846 0.3875 0.2811 0.0887 0.2496 -0.7728 -0.3339 0.3238 0.4444 0.3747 -0.0190 0.1831 -0.1917
context-gold 0.0025 0.1886 0.3879 0.2821 0.0922 0.2467 -0.6827 -0.1000 0.3218 0.4506 0.3805 -0.0173 0.1871 -0.1274

ellipsis
no-context 0.374 0.387 0.210 0.400 0.439 0.259 0.123 0.169 0.400 0.342 0.333 0.255 0.165 0.145

context 0.325 0.323 0.333 0.406 0.389 0.400 0.021 0.033 0.471 0.450 0.270 0.292 0.240 0.135
context-gold 0.388 0.296 0.300 0.435 0.371 0.381 0.025 0.150 0.444 0.450 0.306 0.226 0.187 0.154

formality
no-context – 0.607 0.370 0.792 – 0.429 0.443 0.399 0.682 0.599 0.434 0.464 0.097 0.691

context – 0.639 0.351 0.791 – 0.462 0.414 0.397 0.694 0.600 0.405 0.469 0.083 0.695
context-gold – 0.661 0.443 0.803 – 0.464 0.431 0.425 0.697 0.622 0.440 0.492 0.182 0.741

lexical
no-context 0.639 0.762 0.819 0.826 0.723 0.766 0.615 0.574 0.821 0.853 0.661 0.624 0.671 0.645

context 0.630 0.736 0.833 0.830 0.722 0.772 0.572 0.524 0.825 0.851 0.689 0.624 0.647 0.644
context-gold 0.675 0.737 0.832 0.832 0.727 0.773 0.614 0.593 0.828 0.857 0.713 0.625 0.647 0.676

pronouns
no-context 0.660 0.613 0.576 0.774 – 0.548 0.473 – – 0.452 0.356 – – –

context 0.691 0.614 0.538 0.771 – 0.549 0.377 – – 0.451 0.414 – – –
context-gold 0.700 0.624 0.550 0.788 – 0.530 0.428 – – 0.485 0.432 – – –

verb tense
no-context – – 0.263 0.435 0.227 0.308 – – 0.477 – 0.292 0.215 0.128 –

context – – 0.287 0.442 0.229 0.282 – – 0.479 – 0.292 0.215 0.094 –
context-gold – – 0.272 0.435 0.229 0.285 – – 0.487 – 0.328 0.238 0.120 –

Table 5: BLEU, COMET, and Word f-measure per tag for base context-aware models. BLEU, COMET and word
f-measures statistically significantly higher than no-context (p < 0.05) are underlined.

de fr ja zh

BLEU
no-context 36.09 45.64 15.55 22.15

context 35.86 45.40 12.68 22.68
context-gold 36.69 46.60 16.60 22.98

COMET
no-context 0.5256 0.6332 0.0602 0.1160

context 0.5337 0.6425 0.0753 0.2705
context-gold 0.5427 0.6529 0.1808 0.2809

ellipsis
no-context 0.429 0.462 0.126 0.254

context 0.518 0.393 0.068 0.230
context-gold 0.444 0.444 0.144 0.209

formality
no-context 0.642 0.824 0.510 0.747

context 0.640 0.810 0.513 0.739
context-gold 0.692 0.820 0.537 0.739

lexical
no-context 0.773 0.864 0.704 0.661

context 0.776 0.868 0.699 0.671
context-gold 0.796 0.875 0.740 0.696

pronouns
no-context 0.633 0.790 0.493 –

context 0.635 0.795 0.541 –
context-gold 0.665 0.801 0.536 –

verb tense
no-context – 0.526 – –

context – 0.532 – –
context-gold – 0.534 – –

Table 6: Word f-measure per tag for large models.
BLEU, COMET, word f-measures statistically signifi-
cantly higher than no-context (p < 0.05) are underlined.

also evaluate a sentence-level version of DeepL475

where we feed each sentence separately to compare476

with its document-level counterpart.477

5.3 Results and Discussion478

Table 5 shows the results for base models,479

trained either without context (no-context) or480

with context, and for the latter with either pre-481

dicted context (context) or reference context482

(context-gold) during decoding. Results are483

reported with respect to standard MT metrics such484

as BLEU (Papineni et al., 2002) and COMET (Rei485

et al., 2020), as well as the MuDA benchmark.486

First, we find that BLEU are highest for487

context-gold models for most language pairs, 488

but context-agnostic models have higher COMET 489

scores. Moreover, in terms of mean word f-measure 490

overall, we do not find significant differences be- 491

tween the three systems. It is therefore difficult to 492

see which system performs the best on document- 493

level ambiguities using only corpus-level metrics. 494

For words tagged by MuDA as requiring context 495

for translation, context-aware models often achieve 496

higher word f-measure than context-agnostic mod- 497

els on certain tags such as ellipsis and formality, but 498

on other tags such as lexical and verb form, they do 499

not significantly outperform the context-agnostic 500

models. This demonstrates how MuDA allows us 501

to identify what kind of inter-sentential ambiguities 502

context-aware models are able to resolve or not. 503

For the pretrained large models (Table 6), 504

context-aware models perform better than the 505

context-agnostic on corpus-level metrics, espe- 506

cially COMET. On words tagged with MuDA, 507

context-aware models generally obtain the high- 508

est f-measure as well, particularly when given ref- 509

erence context, especially on phenomena such as 510

lexical and pronouns, but the improvements are 511

less pronounced than on corpus-level evaluation. 512

Among commercial engines (Table 7), DeepL 513

seems to outperform Google on most metrics and 514

language pairs. Also, the sentence-level ablation of 515

DeepL performs worse than its document-level sys- 516

tem for most MuDA tags, which further suggests 517

DeepL is able to process context to some extent. 518

Overall, current context-aware MT systems seem 519

to translate some inter-sentential discourse phenom- 520

ena well, but they are still unable to consistently ob- 521
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ar de es fr he it ja ko nl pt ro ru tr zh

BLEU
Google 11.73 34.76 43.47 30.77 10.77 31.34 12.98 8.77 38.51 38.49 28.54 24.79 18.22 28.92

DeepL (sent) x 34.29 42.00 42.57 x 35.41 14.88 x 37.58 37.37 28.98 25.67 x 27.94
DeepL (doc) x 36.75 43.06 43.43 x 36.04 15.66 x 38.29 37.76 29.79 26.53 x 27.34

COMET
Google 0.3862 0.5480 0.7694 0.6655 0.3666 0.6707 0.2116 0.4721 0.6401 0.7925 0.7437 0.5121 0.7254 0.3697

DeepL (sent) x 0.5750 0.7680 0.7121 x 0.6951 0.2973 x 0.6321 0.7513 0.8026 0.5501 x 0.3739
DeepL (doc) x 0.5848 0.7882 0.7267 x 0.7049 0.2343 x 0.6357 0.7572 0.8121 0.5495 x 0.2453

ellipsis
Google 0.343 0.667 0.500 0.306 0.359 0.468 0.279 0.352 0.389 0.632 0.405 0.367 0.236 0.323

DeepL (sent) x 0.417 0.400 0.422 x 0.500 0.275 x 0.500 0.421 0.458 0.385 x 0.303
DeepL (doc) x 0.435 0.526 0.493 x 0.553 0.208 x 0.500 0.359 0.532 0.385 x 0.295

formality
Google – 0.621 0.404 0.738 – 0.458 0.489 0.300 0.638 0.633 0.479 0.512 0.367 0.599

DeepL (sent) – 0.641 0.419 0.733 – 0.455 0.487 x 0.610 0.625 0.533 0.533 x 0.729
DeepL (doc) – 0.670 0.446 0.785 – 0.503 0.520 x 0.641 0.614 0.526 0.534 x 0.664

lexical
Google 0.665 0.786 0.854 0.827 0.697 0.794 0.602 0.611 0.825 0.860 0.700 0.635 0.677 0.693

DeepL (sent) x 0.773 0.840 0.860 x 0.805 0.657 x 0.799 0.848 0.714 0.653 x 0.660
DeepL (doc) x 0.776 0.841 0.872 x 0.812 0.640 x 0.802 0.846 0.713 0.649 x 0.657

pronouns
Google 0.670 0.648 0.626 0.757 – 0.511 0.486 – – 0.488 0.326 – – –

DeepL (sent) x 0.608 0.538 0.737 – 0.543 0.526 – – 0.483 0.394 – – –
DeepL (doc) x 0.706 0.588 0.789 – 0.551 0.557 – – 0.513 0.472 – – –

verb tense
Google – – 0.415 0.529 0.311 0.450 – – 0.554 – 0.358 0.314 0.167 –

DeepL (sent) – – 0.390 0.553 x 0.478 – – 0.562 – 0.400 0.327 x –
DeepL (doc) – – 0.426 0.562 x 0.445 – – 0.567 – 0.411 0.349 x –

Table 7: Scores for commercial models. DeepL (doc) BLEU, COMET and word f-measures statistically signifi-
cantly higher than DeepL (sent) are underlined.

tain considerable improvements over their context-522

agnostic counterparts on challenging MuDA data.523

6 Related Work524

To target evaluation on discourse phenomena, sev-525

eral works resort to measuring the performance of526

context-aware models targeted to discourse phe-527

nomena that require context.528

The first example of discourse phenomena evalu-529

ations was done by Hardmeier et al. (2010), which530

evaluated automatically the precision and recall531

of pronoun translation in statistical MT systems.532

Jwalapuram et al. (2019) proposed evaluating mod-533

els on pronoun translation based on a pairwise com-534

parison between translations that were generated535

with and without context, and later Jwalapuram536

et al. (2020) extended this work to include more537

languages and phenomena in their automatic evalu-538

ation/test set creation. While these works rely on539

prior domain knowledge and intuitions to identify540

context-aware phenomena, we instead take a sys-541

tematic, data-driven approach and find additional542

phenomena in doing so.543

Most works have focused on evaluating perfor-544

mance in discourse phenomena through the use of545

contrastive datasets instead. Müller et al. (2018)546

automatically create a dataset for anaphoric pro-547

noun resolution to evaluate MT models in EN →548

DE. Bawden et al. (2018) manually creates a549

dataset for both pronoun resolution and lexical550

choice in EN → FR. Voita et al. (2018, 2019b)551

creates a dataset for anaphora resolution, deixis, el-552

lipsis and lexical cohesion in EN→ RU. However,553

Yin et al. (2021) suggest that the task of translat- 554

ing and disambiguating between two contrastive 555

choices are inherently different, which motivates 556

our approach in measuring direct translation per- 557

formance through evaluation of word f-measure. 558

7 Conclusions and Future Work 559

In this work, we investigate the types of ambiguous 560

translations where MT models benefit from con- 561

text using our proposed P-CXMI metric. Our data- 562

driven thematic analysis helps us identify context- 563

sensitive discourse phenomena, some of which 564

(such as verb forms) have not been addressed in 565

prior works on context-aware MT, for 14 language 566

pairs. The advantages of our approach is that it is 567

systematic and does not require a-priori language- 568

specific knowledge to identify these phenomena, 569

so we believe that our methodology can be easily 570

extended to other language pairs. P-CXMI can 571

also be used to identify types of context-dependent 572

words for tasks outside MT. Based on our findings, 573

we then construct the MuDA benchmark that tags 574

words in a given parallel corpus and evaluate mod- 575

els on 5 context-dependent discourse phenomena. 576

We find that ellipsis is the most challenging to tag 577

with high precision and we leave improvements to 578

model cross-lingual ellipsis for future work. 579

Our evaluation using MuDA reveals that both 580

context-aware and commercial translation systems 581

achieve small improvements over context-agnostic 582

models on many discourse-aware translations, and 583

we encourage using MuDA to benchmark the devel- 584

opment of models that address these ambiguities. 585
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Language Family Word Order Pronouns Politeness Gendered Pronouns Gender Assignment

Arabic Afro-Asiatic VSO None 1 and/or 2 and 3 Semantic-Formal
English Indo-European SVO None 3.Sing Semantic
German Indo-European SOV/SVO Binary 3.Sing Semantic-Formal
Spanish Indo-European SVO Binary 1 and/or 2 and 3 Semantic-Formal
French Indo-European SVO Binary 3.Sing Semantic-Formal
Hebrew Afro-Asiatic SVO None 1 and/or 2 and 3 Semantic-Formal
Italian Indo-European SVO Binary 3.Sing Semantic-Formal

Japanese Japonic SOV Avoided 3 None
Korean Koreanic SOV Avoided 3.Sing None
Dutch Indo-European SOV/SVO Binary 3.Sing Semantic-Formal

Portuguese Indo-European SVO Binary 3.Sing Semantic-Formal
Romanian Indo-European SVO Multiple 3.Sing Semantic-Formal
Russian Indo-European SVO Binary 3.Sing Semantic-Formal
Turkish Turkic SOV Binary None None

Mandarin Sino-Tibetan SVO Binary 3.Sing None

Table 8: Properties of the languages in our study.

A Language Properties850

Table 8 summarizes the properties of the languages analyzed in this work.851

B P-CXMI Results852

Table 9 presents the average P-CXMI value per POS tag and per MuDA tag.853

C Tagger Details854

C.1 Formality Words855

Table 10 gives the list of words related to formality for each target language.856

C.2 Ambiguous Pronouns857

Table 11 provides English pronouns and the list of possible target pronouns.858

C.3 Ambiguous Verbs859

Table 12 lists verb forms that may require disambiguation during translation.860

C.4 Ellipsis Classifier861

We train a BERT text classification model (Devlin et al., 2019) on data from the Penn Treebank, where we862

labeled each sentence containing the tag ‘*?*’ as containing ellipsis (Bies et al., 1995). We obtain 248,596863

sentences total, with 2,863 tagged as ellipsis. Then, our model using HuggingFace Transformers (Wolf864

et al., 2020). To address the imbalance in labels, we up-weight the loss for samples tagged as ellipsis by a865

factor of 100.866

D Training details867

The transformer-small model has hidden size of 512, feedforward size of 1024, 6 layersa and 8 attention868

heads. The transformer-large model has hidden size of 1024, feedforward size of 4096, 6 layers, 16869

attention heads.870

As in Vaswani et al. (2017), we train using the Adam optimizer with β1 = 0.9 and β2 = 0.98 and871

use an inverse square root learning rate scheduler, with an initial value of 10−4 for large model and872

5× 10−4 for the base and multi models, with a linear warm-up in the first 4000 steps.873

For the pretrained models we used Paracrawl (Esplà et al., 2019) for German and French, JParacrawl874

(Morishita et al., 2020) for Japanese and the Backtranslated News from WMT2021 for Chinese.875
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ar de es fr he it ja ko nl pt ro ru tr zh

CXMI 0.073 0.008 0.011 0.011 0.021 0.015 0.067 0.035 0.005 0.009 0.051 0.015 0.016 0.081
P-CXMI 0.075 0.005 0.011 0.021 0.023 0.016 0.059 0.038 0.002 0.013 0.049 0.015 0.014 0.057

ADJ 0.017 -0.014 -0.011 0.000 -0.037 -0.008 0.001 -0.002 -0.006 -0.005 0.020 0.015 -0.006 0.007
ADP 0.017 -0.001 -0.004 -0.004 -0.006 -0.005 0.005 0.014 -0.005 -0.001 0.011 -0.003 -0.005 -0.001
ADV 0.038 -0.011 0.008 0.002 0.007 0.005 0.005 -0.006 0.001 0.011 0.062 0.023 -0.013 0.009
AUX 0.053 0.010 0.002 0.010 0.008 0.036 0.012 0.032 0.010 0.010 0.048 0.045 0.055 0.007

CCONJ 0.044 0.025 0.024 0.005 0.012 0.043 0.034 -0.020 0.010 0.009 0.165 0.042 -0.007 -0.023
DET 0.006 0.004 0.006 0.002 -0.004 0.001 0.011 0.043 -0.007 0.002 0.046 0.018 0.011 0.008
INTJ -0.066 -0.024 0.013 0.010 -0.015 -0.087 0.004 0.037 -0.019 0.031 -0.041 -0.009

NOUN 0.012 -0.010 0.000 0.010 -0.001 0.000 -0.008 0.003 -0.011 -0.003 0.044 -0.010 -0.006 -0.002
NUM 0.011 -0.005 -0.005 -0.008 0.002 0.017 0.019 -0.046 -0.002 0.009 0.008 0.025 -0.000 0.004
PART 0.025 -0.007 0.029 0.063 -0.718 0.006 0.018 0.016 -0.006
PRON 0.019 0.014 -0.002 0.021 0.039 0.003 -0.009 0.047 0.006 0.013 0.029 0.023 0.000 0.023

PRON.1 0.015 0.011 0.009 0.015 0.043 0.021 0.008 0.015 0.046 0.015 -0.012 0.025
PRON.1.Plur 0.027 0.007 -0.002 0.008 0.082 0.004 0.045 0.012 0.013 -0.022 0.033
PRON.1.Sing -0.036 0.014 0.017 0.020 0.016 0.037 0.001 0.075 0.015 -0.006

PRON.2 0.040 0.222 -0.020 0.037 0.108 0.015 0.013 0.171 -0.017 0.103 -0.026 0.009
PRON.2.Plur 0.075 -0.055 -0.019 -0.008 0.088 0.011 -0.008 0.069 -0.024
PRON.2.Sing 0.009 0.226 -0.021 0.357 0.125 0.052 -0.033 0.412 -0.038

PRON.3 0.018 0.026 -0.009 0.024 0.031 -0.020 0.004 0.033 0.029 0.042 0.008 0.045
PRON.3.Dual 0.057
PRON.3.Plur 0.016 0.017 -0.021 0.037 0.050 0.024 0.058 0.062 0.038 0.047 0.038
PRON.3.Sing 0.017 0.032 0.000 0.030 0.026 0.009 0.014 0.046 0.044 -0.001
PRON.Plur 0.001 0.018 0.096 0.021 0.003 -0.027
PRON.Sing 0.002 -0.005 0.025 -0.004 0.005 0.002 0.007

PROPN 0.016 -0.014 -0.002 0.018 0.017 -0.016 -0.018 0.003 -0.005 -0.013 0.007 0.021 -0.014 0.005
PUNCT 0.129 0.007 0.012 0.001 0.019 0.019 0.353 0.017 0.018 0.021 0.005 0.017 0.022 0.106
SCONJ 0.137 -0.001 0.017 0.001 0.007 -0.000 0.004 0.005 0.005 0.003 0.044 -0.001
SYM 0.050 0.081 0.136 0.152 0.017 -0.034 -0.014 -0.010 -0.071 -0.040 0.015
VERB 0.042 0.006 0.004 0.003 0.007 0.004 0.008 0.036 0.002 0.005 0.047 0.015 0.014 0.015

VERB.Fut 0.043 0.004 0.019 0.008 -0.001 -0.018 0.007
VERB.Imp 0.039 0.010 0.057 0.029 0.069
VERB.Past 0.041 0.011 0.009 0.008 0.007 -0.001 0.005 -0.009 0.064 0.010
VERB.Pres 0.013 0.001 -0.001 -0.006 0.011 0.014 0.039 0.002 0.016

ellipsis 0.052 -0.053 -0.111 0.055 0.071 0.019 0.020 0.022 0.037 -0.070 0.111 -0.020 -0.041 0.082
formality 0.038 0.077 0.040 0.048 0.036 0.022 0.014 0.008 0.008 0.107 -0.073 0.012

lexical -0.006 0.003 0.011 -0.001 0.003 0.001 -0.007 -0.008 -0.004 0.002 0.034 -0.002 0.008 0.004
no tag 0.041 0.001 0.003 0.005 0.005 0.006 0.011 0.013 0.002 0.005 0.036 0.009 0.003 0.017

pronouns 0.028 0.068 -0.002 0.055 0.006 -0.027 0.055 0.008
verb form 0.042 0.009 0.009 0.041 -0.002 0.046 0.065 0.013
with tag -0.001 0.024 0.018 0.021 0.005 0.013 0.023 0.005 0.001 0.010 0.034 0.056 0.002 0.009

Table 9: P-CXMI for all POS tags and our ambiguity tags. In the top two rows, CXMI is the average of P-CXMI
for each sentence across the corpus, and P-CXMI is the average of P-CXMI over all tokens in the corpus. Per-tag
values are the average of P-CXMI for each token with the tag. The 3 highest P-CXMI scores are highlighted in
varying intensities of green.

Due to the sheer number of experiments, we use a single seed per experiment. 876

We base our experiments on the framework Fairseq (Ott et al., 2019). 877
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de
du
sie

es
tú, tu, tus, ti, contigo, tuyo, te, tuya

usted, vosotros, vuestro, vuestra, vuestras, os

fr
tu, ton,ta, tes, toi, te, tien, tiens, tienne, tiennes

vous, votre, vos

it
tu, tuo, tua, tuoi

lei, suo, sua, suoi

ja
だ,だっ,じゃ,だろう,だ,だけど,だっ

ござい,ます,いらっしゃれ,いらっしゃい,ご覧,伺い,伺っ,存知,です,まし

ko
제가,저희,나

댁에,성함,분,생신,식사,연세,병환,약주,자제분,뵙다,저

nl
jij, jouw, jou, jullie, je

u, men, uw

pt
tu, tua, teu, teus, tuas, te

você, sua, seu, seus, suas, lhe

ro
tu, el, ea, voi, ei, ele, tău, ta, tale, tine

dumneavoastră, dumneata, mata,matale,dânsul, dânsa dumnealui,dumneaei, dumnealor

ru
ты, тебя, тебе, тобой, твой, твоя, твои,тебе

вы, вас, вам, вами, ваш, ваши

tr
sen, senin
siz, sizin

zh
你
您

Table 10: Words related to formality for each target language.
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ar
you AÒ

�
J
	
K

@ , AÒ

�
J
	
K

@ ,ñ

�
J
	
K @ ,

	á�
�
	
K

@ , Õ

�
æ

	
K

@ , ú

�
æ

	
K @ ,

�
I
�

	
K @ ,

��
I

	
K@ ,

�
I

	
K@

it ù


ë ,ñë

they, them AÒë , 	áë , Ñë

de it er, sie, es

es

it él, ella
they, them ellos, ellas

this ésta, éste, esto
that esa, ese

these estos, estas
those aquellos, aquellas, ésos, ésas

fr

it il, elle, lui
they, them ils, elles

we nous, on
this celle, ceci
that celle, celui

these, those celles, ceux

it

it esso, essa
them ellos, ellas
this questa, questo
that quella, quello

these queste, questi
those quelle, quelli

ja I 私,僕,俺

pt

it ele, ela, o, a
them eles, elas, os, as
they eles, elas

this, that este, esta, esse, essa
these, those estes, estas, esses, essas

ro
it el, ea

they, them ei, ele

Table 11: Ambiguous pronouns w.r.t. English for each target language.
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es Imperfect, Pluperfect, Future

fr Imperfect, Past, Pluperfect

he Imperfect, Future, Pluperfect

it Imperfect, Pluperfect, Future

nl Past

pt Pluperfect

ro Imperfect, Past, Future

ru Past

tr Pluperfect

Table 12: Ambiguous verb forms w.r.t. English for each target language.
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