
STRUCTURED FLOW AUTOENCODERS: LEARNING STRUCTURED PROBABILISTIC REPRESENTATIONS WITH FLOW MATCHING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Flow matching is a powerful approach for high-fidelity density estimation, but it
014 often fails to capture the latent structure of complex data. Probabilistic models
015 like variational autoencoders (VAEs), on the other hand, learn structured rep-
016 resentations but underperform in sample quality. We propose Structured Flow
017 Autoencoders (SFA), a family of probabilistic models that augments graphical
018 models with conditional continuous normalizing flow (CNF) likelihoods, enabling
019 flow-matching-based structured representation learning. At the core of SFA is a
020 novel flow matching objective that explicitly accounts for latent variables, allowing
021 joint learning of the CNF likelihood and posterior. SFA applies broadly to graphical
022 models with continuous and mixture latents, as well as latent dynamical systems.
023 Empirical studies across image, video, and RNA-seq data show that SFA consis-
024 tently outperforms VAEs and their structured extensions in both generation quality,
025 representation utility, and scalability to large datasets. Compared to generative
026 models like latent flow matching (LFM), SFA also produces more diverse samples,
027 suggesting better coverage of the data distribution.

1 INTRODUCTION

031 Generative modeling has become a foundational pillar of modern machine learning, offering powerful
032 tools for capturing complex data distributions and generating high-quality samples. Among recent
033 advances, diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020; 2021b;a;
034 Austin et al., 2021) and flow-based methods (Lipman et al., 2022; Liu et al., 2022; Gat et al., 2024;
035 Tong et al., 2024; Isobe et al., 2024) have shown remarkable performance as neural density estimators,
036 excelling at likelihood estimation and high-fidelity sample generation. In particular, flow matching
037 has emerged as a scalable and efficient approach, aligning vector fields of probability paths using
038 optimal transport principles, enabling efficient and scalable generative modeling with exact likelihood
039 evaluation (Lipman et al., 2022; Liu et al., 2022; Gat et al., 2024).

040 Despite their success in generation quality, neural density estimators like flow matching often fall
041 short in *structured representation learning*, failing to capture or expose the rich latent structures
042 underlying complex data. This limitation is especially salient in scientific and structured domains
043 such as computational biology, where interpretable low-dimensional representations are essential
044 for downstream tasks, analysis, and control. Recent work has revealed both empirical evidence of
045 implicit low-dimensional structures in pretrained diffusion models (Wang & Vastola, 2023; Chen
046 et al., 2024) and theoretical guarantees of their adaptivity to such structures (Wang et al., 2024; Li
047 & Yan, 2024). However, these models neither explicitly model latent structure during training nor
048 produce readily interpretable representations, limiting their utility beyond sample generation.

049 In contrast, probabilistic latent-variable models such as variational autoencoders (VAEs) (Kingma
050 & Welling, 2013; Johnson et al., 2016) are explicitly designed to capture latent structure through
051 probabilistic encoder-decoder architectures. These models learn structured probabilistic represen-
052 tations that can be leveraged for conditional generation and downstream tasks. However, VAEs
053 typically underperform in data modeling and generation fidelity compared to modern flow-based
models, limiting their utility in high-resolution or diverse generative tasks. This gap in generative
fidelity also raises concerns about the reliability and expressiveness of their learned representations.

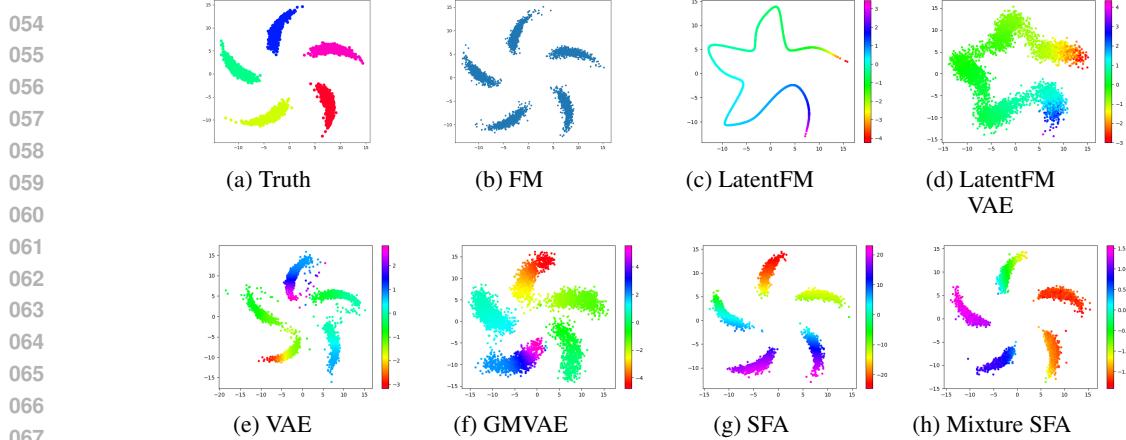


Figure 1: Generated samples on the Pinwheel dataset with 5 clusters. Color in (a) indicates class membership, which is not provided during training. Color in (c) indicates the latent distribution learned via deterministic autoencoder. Color in (d)-(h) indicates the generated posterior value $z_1 \sim q(z_1|x_1)$ given the generated sample x_1 . We use a continuous latent variable z in (c),(d),(e),(g); and a mixture latent variable in (f),(h).

This performance gap raises the question: *Can we build models that retain the structured latent representations of VAEs while achieving the high fidelity and scalability of flow matching?*

Main idea. We propose *structured flow autoencoders (SFA)*, a new family of probabilistic models that augments graphical models with conditional Continuous Normalizing Flow (CNF) likelihoods. This family aims to combine the strengths of both approaches: the high-fidelity data modeling of neural density estimators and the structured representation learning capabilities of graphical models.

We motivate with a simple latent variable model where continuous latents $z \in \mathbb{R}^p$ generate observations $x \in \mathbb{R}^d$, with $0 < p < d$:

$$z_i \stackrel{i.i.d.}{\sim} p(z), \quad x_i|z_i \stackrel{ind.}{\sim} p(x|z). \quad (1)$$

This standard latent variable framework enables structured representation learning through the posterior $p(z|x)$. To enable high-fidelity data modeling in SFA, we parametrize $p(x|z)$ using conditional CNFs, achieving the expressivity of modern neural density estimators while maintaining structured latents. However, both the likelihood and the posterior are no longer available in explicit forms. To address this challenge, we propose the *Structured Conditional Flow Matching (SCFM)* objective, a training objective that jointly learns both the conditional flow $p(x|z)$ and an approximate posterior $q(z|x)$. Unlike standard flow matching that only models $p(x)$, SCFM explicitly account for the conditional structure $p(x|z)$ and posterior $p(z|x)$. As illustrated in Fig. 1, this decomposition enables SFA to capture interpretable latent variables while maintaining high-fidelity generation, providing structured representation learning unavailable in standard flow matching.

Contributions. (1) We introduce Structured Flow Autoencoders (SFA), a family of generative models that augments graphical models with conditional Continuous Normalizing Flows (CNFs) likelihoods. SFA bridges the gap between high-fidelity neural density estimation and structured representation learning, improving upon both VAEs and latent flow-based models. (2) We propose Structured Conditional Flow Matching (SCFM), a novel training objective that extends flow matching to explicitly incorporate latent variables. SCFM explicitly learns the conditional probability flows in the graphical model while preserving the marginal density information. SCFM enables joint learning of the likelihood and posterior, supporting both generative modeling and structured representation learning within a unified framework. (3) We demonstrate the flexibility of SFA across diverse domains, including image, video, and RNA-seq data, and modeling scenarios with continuous, finite mixture, and dynamical latent variables. SFA achieves high-fidelity sample generation, increased sample diversity, and enhances structured representation learning, while remaining computationally efficient on high-dimensional datasets.

Related work. Simultaneous high-fidelity generation and structured representation learning has been an important task (Grathwohl et al., 2018; Mittal et al., 2023; Dao et al., 2023; Davtyan et al., 2023), drawing particular interest in scientific domains (Bashiri et al., 2021; Xu et al., 2023; Kapoor et al.,

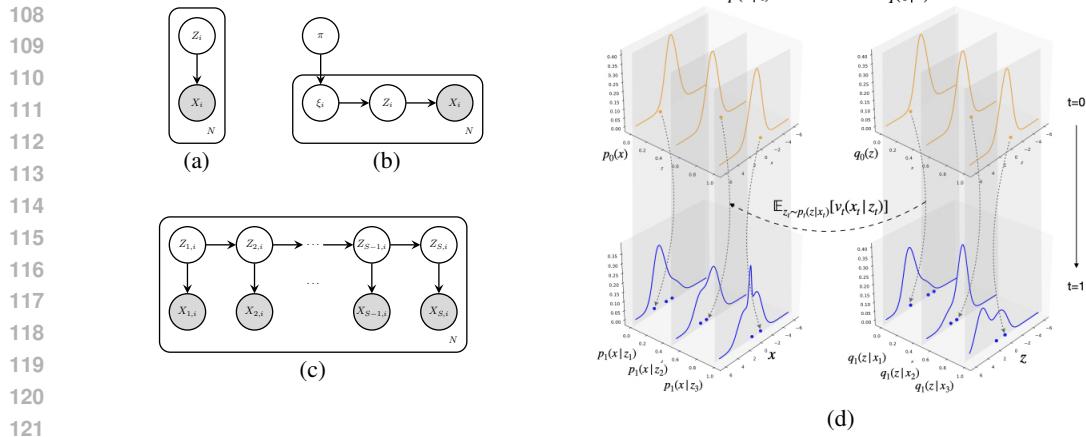


Figure 2: Overview of Structured Flow Autoencoders (SFAs). Examples of graphical models that can be incorporated into SFAs: (a) latent continuous variable model; (b) latent finite mixture model; (c) latent linear dynamical system; (d) SFA framework showing conditional probabilities for latent z and observed x with conditional CNFs. In the SCFM objective, we compute a convolution of conditional vector field v_t for $\mathbf{x}_t(\cdot, \mathbf{z}_t)$ with respect to $q_t(z_t|\mathbf{x}_t)$, when $\mathbf{x}_t = (1-t)\mathbf{x}_0 + t\mathbf{x}_1$. For conditional generation, with a particular prior $p_1(z_1)$, sampling follows from the graphical model $\mathbf{z}_1 \sim p_1(z_1)$, $\mathbf{x}_1 \sim p_1(\mathbf{x}_1|\mathbf{z}_1)$; deriving latent representation of \mathbf{x}_1 involves sampling from the posterior $\tilde{\mathbf{z}}_1 \sim q_1(z_1|\mathbf{x}_1)$.

2024). Variational autoencoders (VAE) (Kingma & Welling, 2013) is one such probabilistic model that learns both generative model $p(\mathbf{x}|z)$ and inference model $p(z|\mathbf{x})$ simultaneously, typically use neural networks to parameterize exponential families. Grathwohl et al. (2018); Chen et al. (2020) extended the VAE to families of normalizing flows, which improves the flexibility of density estimation together with latent space learning. While appealing, VAEs fall short of modern generative models in data modeling fidelity.

Recent work has explored combining neural density estimators with encoder-decoder frameworks (Mittal et al., 2023; Dao et al., 2023; Davtyan et al., 2023; Vahdat et al., 2021), typically mapping observations to low-dimensional latent spaces where the latent marginal distribution is learnt via flows or diffusion models before decoding back to observation space. While these neural prior methods excel at dimensionality reduction, they often constrain encoders and decoders to simple parametric families (e.g., Gaussians) that inadequately capture complex data distributions. Our approach differs by making the entire likelihood and posterior flexible through conditional flows while incorporating structured latent dependencies. Another line of work, including Wang et al. (2023); Preechakul et al. (2022), focuses on modeling the likelihood with flexible diffusion models while maintaining simple Gaussian posteriors. However, these approaches lack mechanisms for structured dependencies between latent variables, limiting interpretability in complex domains. Most closely related to our work, structured variational autoencoders (SVAEs) (Johnson et al., 2016; Lin et al., 2018) incorporate graphical model structure into VAEs to capture hierarchical dependencies. However, SVAEs are constrained by parametric assumptions that limit expressiveness. In addition, extending SVAEs to more expressive density models like CNFs faces significant challenges: direct extensions suffer from numerical instability and computational inefficiency due to the need of likelihood evaluation at every training step (Liu et al., 2022). Our flow matching approach circumvents these issues while enabling both structured representations and expressive data density modelling.

2 PRELIMINARIES: FLOW-BASED GENERATIVE MODELLING

We start by reviewing continuous normalizing flows and the flow matching learning objective, laying the groundwork before introducing structured flow autoencoders (SFAs).

Notations. We follow the notations in Lipman et al. (2022) and denote the time indexed vector field by $v(\cdot, \cdot) : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ and equivalently, $v_t(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ for $t \in [0, 1]$. The path of probability densities is denoted by $p_t(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^+$, and the flow $\phi_t(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ for $t \in [0, 1]$. In addition, $\mathbf{x}_1 \sim p_{data}$ represents an observed sample, and $\mathbf{x}_0 \sim p_0$ a sample from a chosen base distribution.

162 We further denote the conditional vector field as $u(\cdot, \cdot, \mathbf{z}) : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$, equivalently as
163 $u_t(\cdot, \mathbf{z}) : \mathbb{R}^d \rightarrow \mathbb{R}^d$ indexed by $t \in [0, 1]$. The path of conditional probability densities is denoted by
164 $p_t(\cdot | \mathbf{z}) : \mathbb{R}^d \rightarrow \mathbb{R}^+$; and the conditional flow by $\phi_t(\cdot | \mathbf{z}) : \mathbb{R}^d \rightarrow \mathbb{R}^d$, $t \in [0, 1]$.
165

166 2.1 CONTINUOUS NORMALIZING FLOW
167

168 Continuous normalizing flows (CNFs) describe probability distributions by the evolution of some
169 probability density path. Denote the observed data by $\mathbf{x} \in \mathbb{R}^d$. Further, assume there exists a
170 time-dependent vector field $v_t : \mathbb{R}^d \rightarrow \mathbb{R}^d$, $t \in [0, 1]$ that describes the evolution of a probability
171 density path $p_t : \mathbb{R}^d \rightarrow \mathbb{R}^+$ indexed by $t \in [0, 1]$; we will use v_t to describe the density of \mathbf{x} . The path
172 then solves the continuity equation $\partial_t p_t = -\nabla \cdot (v_t p_t)$, which is the Fokker-Plank equation with zero
173 diffusion. Due to the probabilistic representation theorem in Ambrosio et al. (2008, Theorem 8.2.1),
174 the continuity equation admits a representation formulated as a solution of the ODE,

175
$$\frac{d}{dt} \phi_t(\mathbf{x}) = v_t(\phi_t(\mathbf{x})), \quad \phi_0(\mathbf{x}) = \mathbf{x}_0, \quad (2)$$

176

177 where $\phi_t : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is a push-forward map sending μ_0 to $\mu_t = \phi_{t,\sharp} \mu_0$. This map is called
178 flow in the machine learning literature (Chen et al., 2018; Grathwohl et al., 2018; Lipman et al.,
179 2022). The log likelihood $f(t) = \log p_t(\phi_t(\mathbf{x}))$ at any point \mathbf{x} can be obtained by solving the
180 instantaneous change-of-variable formula forward in time, with initial conditions $c = \log p_0(\phi_0(\mathbf{x}))$,
181 $f(1) = \log p_1(\phi_1(\mathbf{x}))$:

182
$$\frac{d}{dt} \begin{pmatrix} \phi_t(\mathbf{x}) \\ f(t) \end{pmatrix} = \begin{pmatrix} v_t(\phi_t(\mathbf{x})) \\ -\nabla \cdot (v_t(\phi_t(\mathbf{x}))) \end{pmatrix}, \quad \begin{pmatrix} \phi_0(\mathbf{x}) \\ f(0) \end{pmatrix} = \begin{pmatrix} \mathbf{x}_0 \\ c \end{pmatrix}. \quad (3)$$

183
184

186 2.2 FLOW MATCHING
187

188 Liu et al. (2022) and Lipman et al. (2022) concurrently introduced a similar training objective for
189 learning flexible flow-based generative models, with NN parameterized vector field v_t ,

190
$$\inf_{\theta} \mathbb{E}_{t, p_{data}(\mathbf{x}_1), p_t(\mathbf{x}_t | \mathbf{x}_1)} \|v_t(\mathbf{x}_t; \theta) - u_t(\mathbf{x}_t | \mathbf{x}_1)\|^2, \quad (4)$$

191

192 where $t \sim \mathcal{U}[0, 1]$, $\mathbf{x}_1 \sim p_{data}(\mathbf{x}_1)$, and now $\mathbf{x} \sim p_t(\mathbf{x} | \mathbf{x}_1)$. We refer to this objective as Flow
193 Matching (FM). Flow matching resembles diffusion model with score matching except that the steps
194 of noising (with conditional vector field $u_t(\mathbf{x} | \mathbf{x}_1)$) and denoising (with marginal vector field v_t) are
195 deterministic. Solving Eq. 2 forward in time allows for generation from the learnt model.

196 The family of conditional vector field u_t that governs the conditional probability path $p_t(\mathbf{x}_t | \mathbf{x}_1)$ is a
197 design choice. Lipman et al. (2022) considered a particular example of the conditional probability
198 path, $p_t(\mathbf{x}_t | \mathbf{x}_1) = N(\mu_t(\mathbf{x}_1), \sigma_t(\mathbf{x}_1)^2 I)$, where μ_t and σ_t are time-dependent functions, with end
199 points $\mu_0(\mathbf{x}_1) = 0$ and $\sigma_0^2(\mathbf{x}_1) = 1$ such that $p_0(\mathbf{x}_0 | \mathbf{x}_1) = N(\mathbf{x}_0; 0, I_p)$. Therefore, the probability
200 path $p_t = \varphi_t \sharp p_0$ is induced by the map $\varphi_t(\mathbf{x}) = \mu_t(\mathbf{x}_1) + \sigma_t(\mathbf{x}_1) \mathbf{x}$, which is the solution of the
201 characteristic ODE $\frac{d}{dt} \varphi_t(\mathbf{x}) = u_t(\varphi_t(\mathbf{x}) | \mathbf{x}_1)$. A special example includes linear interpolation in the
202 Wasserstein space, $\varphi_t(\mathbf{x}) = (1-t)\mathbf{x} + t\mathbf{x}_1$. For this choice, the corresponding conditional vector
203 field is $u_t(\mathbf{x}_t | \mathbf{x}_1) = \frac{\mathbf{x}_1 - \mathbf{x}_t}{1-t}$ for $t \in [0, 1]$.
204

205 3 STRUCTURED FLOW AUTOENCODERS
206

208 In this section, we augment probabilistic graphical models with CNF likelihoods to design *structured*
209 *flow autoencoders* (SFAs), a family of structured flow-based probabilistic generative models.
210

211 **From marginal vector field to conditional vector field.** To enable probabilistic graphical modeling
212 using flow-based models, we rely on a key insight arising from Bayes formula: the marginal vector
213 field can be equivalently derived as the expectation of conditional vector field $v_t(\mathbf{x} | \mathbf{z})$ over an
214 unobserved latent variable \mathbf{z} ,

215
$$v_t(\mathbf{x}) = \int v_t(\mathbf{x} | \mathbf{z}) \frac{p_t(\mathbf{x} | \mathbf{z}) p_t(\mathbf{z})}{\int p_t(\mathbf{x} | \mathbf{z}) p_t(\mathbf{z}) d\mathbf{z}} d\mathbf{z} = \mathbb{E}_{p_t(\mathbf{z} | \mathbf{x})} [v_t(\mathbf{x} | \mathbf{z})], \quad (5)$$

216 which also resembles the posterior predictive distribution. We formally state this result below in
 217 Proposition 3.1, which shows that $\mathbb{E}_{p_t(\mathbf{z}|\mathbf{x})}[v_t(\mathbf{x}|\mathbf{z})]$ is indeed the vector field that generates the
 218 path of marginal probability distributions $p_t(\mathbf{x})$. The proof is in Appendix A.1, which proceeds by
 219 verifying that Eq. 5 satisfies the continuity equation (Lipman et al., 2022).

220 **Proposition 3.1.** *Given conditional vector field $v_t(\mathbf{x}|\mathbf{z})$ that generates the path $\{p_t(\mathbf{x}|\mathbf{z})\}$ of prob-
 221 ability kernel for $p(\mathbf{z})$ a.e. in \mathbf{z} , $v_t(\mathbf{x})$ is the marginal vector field that generates the marginal
 222 probability path $p_t(\mathbf{x})$ over $t \in [0, 1]$ under regularity conditions.*

223 Proposition 3.1 allows us to gain flexibility and interpretability in flow-based generative modeling by
 224 introducing latent structure to the otherwise marginal vector field of data distribution. This realization
 225 is the key to uncovering rich latent structure while ensuring marginal distribution is captured faithfully.

226 **Structured Flow Autoencoders (SFA).** Proposition 3.1 further motivates us to design SFAs, which
 227 consists of co-evolving probability paths $\{p_t(\cdot|\mathbf{z}_t)\}$ and $p_t(\cdot|\mathbf{x}_t)$ across time $t \in [0, 1]$; these paths
 228 are connected to the observed data distribution $p_t(\mathbf{x}_t)$ through $\mathbb{E}_{p_t(\mathbf{z}|\mathbf{x})}[v_t(\mathbf{x}|\mathbf{z})]$ (Fig. 2d). At $t = 1$,
 229 the probability $p_1(\cdot|\mathbf{x}_1)$ and $p_1(\cdot|\mathbf{z}_1)$ corresponds to the model likelihood and posterior for the
 230 observed data; at $t = 0$, the probabilities correspond to the marginal base distributions that are easy
 231 to sample and evaluate. In addition, Proposition 3.1 allows the specification of any posterior family,
 232 which could have inbuilt structure according to a graphical model. We defer three representative
 233 examples to the next subsections. To learn SFAs, we propose to match the marginal path $p_t(\mathbf{x}_t)$ to a
 234 preselected path as in FM objective.

235 **Structured Conditional Flow Matching (SCFM).** Although KL divergence and ELBO are standard
 236 objectives for unsupervised distribution learning, CNF likelihood evaluation incurs significant com-
 237 putational overhead. Recognizing that the FM objective is fast and easy to evaluate for flow based
 238 generative models, we propose an objective that accommodates latent structure while improving
 239 computational efficiency based on FM. Specifically, Proposition 3.1 shows the marginal vector field
 240 emerges from the conditional vector field, enabling us to replace $v_t(\mathbf{x})$ with $\mathbb{E}_{p_t(\mathbf{z}|\mathbf{x})}[v_t(\mathbf{x}|\mathbf{z})]$ in the
 241 FM loss (Eq. 4). We formalize this approach through the *Structured Conditional Flow Matching*
 242 (*SCFM*) objective:

$$243 \inf_{\theta} \mathbb{E}_{\mathbf{x}_t \sim p_t(\mathbf{x}|\mathbf{x}_1), t \sim \text{Unif}[0,1]} \left\| \mathbb{E}_{p_t(\mathbf{z}_t|\mathbf{x}_t)}[v_t(\mathbf{x}_t|\mathbf{z}_t; \theta)] - u_t(\mathbf{x}_t | \mathbf{x}_1) \right\|^2, \quad (6)$$

244 where the outer expectation is w.r.t. the flow trajectory on the marginal given observed samples \mathbf{x}_1 ;
 245 the inner expectation is w.r.t. the distribution trajectory of the corresponding posterior; the reference
 246 vector field u_t is chosen *a priori*, which defines the desired trajectory connecting observed data to the
 247 base distribution p_0 . Intuitively, SCFM is solving a “de-mixing” problem, decomposing the observed
 248 signal to (1) the data generation model and (2) the latent structure components.

249 For different graphical models (c.f. Fig. 2), SCFM objective can be adapted to accommodate their
 250 specific structures. We illustrate through three examples in the next subsection, spanning continuous,
 251 finite mixture and Markov dynamic latent structure. We chose these three examples because they
 252 are (1) widely applicable across different domains, (2) representative of different dependency types
 253 (continuous, finite mixture, temporal), and (3) sufficient to demonstrate the framework’s flexibility.

254 **Posterior approximation.** In practice, we approximate the expectation in Eq. 5 using samples
 255 from $p_t(\mathbf{z}_t|\mathbf{x}_t)$. As the posterior is generally intractable, we employ an approximating family
 256 $Q = \{(t, x) \mapsto q_t(\mathbf{z}|\mathbf{x}), (t, x) \in [0, 1] \times \mathcal{X}\}$ to enable sampling and evaluation at training and
 257 evaluation time. The choice of approximating family Q must be sufficiently expressive to capture
 258 the complexity of the true posterior, while not too complex that de-stabilize the training. We discuss
 259 specific choices for each latent structure in Fig. 2 in the following subsection. Now, with a learned
 260 posterior approximation, the corresponding marginal distribution (prior) in the latent space can
 261 be derived post-hoc. Motivated by empirical Bayes, this can be achieved via integration over the
 262 observation marginal: $q_t(\mathbf{z}_t) = \int q_t(\mathbf{z}_t|\mathbf{x}_t)p(\mathbf{x}_t)d\mathbf{x}_t$. In practice, a separate model can be used to
 263 learn the marginal after training (Wang et al., 2023; Preechakul et al., 2022).

264 3.1 EXAMPLES OF STRUCTURED FLOW AUTOENCODERS (SFAs)

265 In this section, we expand on examples of SFA with continuous, finite mixture and Markov dynamic
 266 latent structures in Fig. 2. We discuss the extensions of SCFM objective functions and choices of
 267 approximation families.

270 3.1.1 CONTINUOUS LATENT VARIABLE MODEL
 271

272 Consider the graphical model in Fig. 2a, where $\mathbf{z} \in \mathbb{R}^d$ and $\mathbf{x} \in \mathbb{R}^p$,

273 $\mathbf{z}_i \stackrel{iid}{\sim} p(\mathbf{z}), \quad \mathbf{x}_i | \mathbf{z}_i \stackrel{ind}{\sim} p(\mathbf{x} | \mathbf{z}),$

274 giving rise to the posterior $\mathbf{z}_i | \mathbf{x}_i \sim p(\mathbf{z} | \mathbf{x})$. We estimate both the unknown likelihood and posterior
 275 from observed data, $\mathbf{x}_{1,i} \sim p_{data}(\mathbf{x}) = \int p(\mathbf{x} | \mathbf{z})p(\mathbf{z})d\mathbf{z}$, under SCFM objective. Following from
 276 Proposition 3.1, the likelihood model is the conditional CNF generated by the conditional vector field
 277 $v_t(\mathbf{x}_t | \mathbf{z}_t, \theta)$, governed by the ODE:

278
$$\frac{d}{dt}\phi_t(\mathbf{x}) = v_t(\phi_t(\mathbf{x}) | \mathbf{z}; \theta), \quad \phi_0(\mathbf{x}) = \mathbf{x}_0, \quad \mathbf{x}_0 \sim p_0(\mathbf{x}). \quad (7)$$

280 In this example, the risk function follows directly from Eq. 6. For practical implementation, the
 281 inner expectation $\mathbb{E}_{q_t(\mathbf{z}_t | \mathbf{x}_t)}[v_t(\mathbf{x}_t | \mathbf{z}_t)]$ of the objective can be approximated with a single sample
 282 $\tilde{\mathbf{z}} \sim q_t(\mathbf{z} | \mathbf{x})$, as commonly used in VAE (Kingma & Welling, 2013).

283 There are different choices of approximation family of posterior Q and each with their own trade-offs.
 284 With conditional CNFs, it amounts to modelling the parameterized conditional vector field $r_t(\mathbf{z} | \mathbf{x}; \theta)$
 285 for \mathbf{x} a.e. During training, we evaluate the inner expectation in Eq. 6 with samples from q_t by solving
 286 the ODE system from $t = 0$ to $t = 1$. The gradient computation then follows from reparameterization
 287 trick of q_t . Specifically, the sample from conditional CNF family requires backpropagation through
 288 the adjoint ODE steps (Chen et al., 2018), which adds to instability and computational burden.

289
$$\frac{d}{ds}\psi_s(\mathbf{z}) = r_s(\psi_s(\mathbf{z}) | \mathbf{x}_t; \theta), \quad \psi_0(\mathbf{z}) = \mathbf{z}_0, \quad \mathbf{z}_0 \sim q_0(\mathbf{z}),$$

290 Alternatively, Q can be chosen as parametric families, with parameters indexed by t and \mathbf{x} . For
 291 continuous latent, a simple choice is Gaussian family, $Q = \{(t, \mathbf{x}) \mapsto N(\mu_\theta(t, \mathbf{x}), \sigma_\theta^2(t, \mathbf{x})I_d)\}$.
 292 As the gradient computation follows directly from the standard reparameterization trick, it offers
 293 computational efficiency and stability advantages. This approximation family evolving across
 294 $t \in [0, 1]$ also provides flexibility beyond fixed-time counterparts.

300 3.1.2 LATENT FINITE MIXTURE MODEL
 301

302 In this section, we consider the generative model in Fig. 2b, where the latent variable \mathbf{z} follows a
 303 finite mixture distribution with the number of classes K . This graphical model takes into account of
 304 latent class $\xi \in [K]$, where $p(\xi_i = k | \pi) = \pi_k$ for each sample \mathbf{x} . It gives rise to posteriors on the
 305 local class label ξ_i , the continuous latent \mathbf{z} , and the global class proportion π , as detailed under the
 306 inference model.

307 **Generative Model**

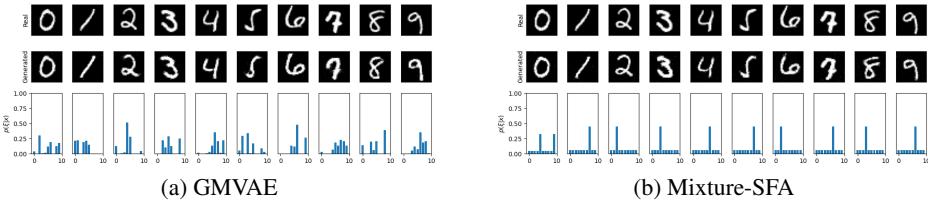
308
$$\begin{aligned} \pi &\sim p(\pi), \quad \xi_i | \pi \stackrel{iid}{\sim} \text{Cat}(\pi), & \xi_i | \mathbf{x}_i, \pi &\sim \text{Cat}(p(\xi_i | \mathbf{x}_i, \pi)), \\ 309 \quad \mathbf{z}_i | \xi_i &\sim p(\mathbf{z} | \xi_i), \quad \mathbf{x}_i | \mathbf{z}_i \stackrel{ind}{\sim} p(\mathbf{x} | \mathbf{z}_i), & \mathbf{z}_i | \mathbf{x}_i, \quad \xi_i &\sim p(\mathbf{z}_i | \mathbf{x}_i, \xi_i), \pi | \mathbf{z}_{[n]} \sim p(\pi | \mathbf{z}_{[n]}). \end{aligned}$$

310 **Inference Model**

311 When $\pi \sim Dir(\alpha)$, the posterior for overall proportions $p(\pi | \mathbf{z}_{[n]})$ has a closed form $Dir(\tilde{\alpha})$ with
 312 $\tilde{\alpha}_k = \alpha_k + \sum_{i=1}^n \mathbf{1}\{\xi_i = k\}$. The local label ξ, \mathbf{z} are of major interest for drawing inference on the
 313 latent class assignment and value. Next, we adapt SCFM for latent finite mixture model: both ξ and
 314 \mathbf{z} are now integrated out in the inner expectation. Applying Proposition 3.1 gives rise to Eq. 8.

315
$$\inf_{q \in Q, \theta \in \Theta} \mathbb{E}_{\substack{\mathbf{x}_1 \sim p_{data}(\mathbf{x}_1) \\ \mathbf{x} \sim p_t(\mathbf{x} | \mathbf{x}_1) \\ t \sim Unif[0,1]}} \left\| \mathbb{E}_{q_t(\xi_t | \mathbf{x}_t)q_t(\mathbf{z}_t | \mathbf{x}_t, \xi_t)} [v_t(\mathbf{x}_t | \mathbf{z}_t; \theta)] - u_t(\mathbf{x}_t | \mathbf{x}_1) \right\|^2. \quad (8)$$

316 The design of likelihood model follows similarly as in Eq. 7, which is a CNF conditioned on \mathbf{z} only.
 317 The approximation family for $p_t(\xi_i | \mathbf{x}_i)$ could be chosen as a Gumbel-Softmax distribution with
 318 time-dependent parameters, alternatively constant across t to reduce the complexity of the model. The
 319 approximation family for $p_t(\mathbf{z} | \mathbf{x}, \xi)$, should be chosen as conditional CNF or parametric distribution
 320 indexed by t, \mathbf{x}, ξ . As \mathbf{z} is unconstrained, a Gaussian approximation family can be posited similarly
 321 as in Section 3.1.1.



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188<br

378 Table 1: Comparing generated samples to data samples with W_1 metric (Earth Mover’s Distance). W_1
 379 metric is evaluated with samples from marginal data distribution $p(\mathbf{x}_1)$ and that generated from $\tilde{p}_1(\mathbf{x}_1) =$
 380 $\int p_1(\mathbf{x}_1|\mathbf{z}_1)q_1(\mathbf{z}_1)d\mathbf{z}_1$. SFA and FM achieves comparable performance on marginal density estimations.

	VAE	VampVAE	GMVAE	FM	LatentFM(w/VAE)	SFA	Mixture-SFA
$\hat{W}_1(p, \tilde{p}) \downarrow$	0.119	0.081	0.457	0.025	0.496(0.145)	0.024	0.046

385 Table 2: Subspace clustering on MNIST with latent mixtures models GMVAE and Mixture-SFA. Evaluated on
 386 a held-out set of size 1000.

	$\log p(x z) \uparrow$	$\log p(z x) \uparrow$	SSIM \uparrow	softNMI \uparrow	NMI \uparrow	ARI \uparrow
GMVAE	-1133	0.667	0.634	0.698	0.161	0.0716
Mixture-SFA	-905.803	725.232	0.779	0.728	0.489	0.332

388 For (2), we conduct posterior predictive check to evaluate the discrepancy of the samples from
 389 $p_{data}(\mathbf{x})$ and $p_{pred}(\tilde{\mathbf{x}}|\mathbf{x}) = \int p_1(\tilde{\mathbf{x}}|\mathbf{z})p(\mathbf{z}|\mathbf{x})d\mathbf{z}$. To sample from the latter, we follow

$$390 \mathbf{x} \sim p_{data}(\mathbf{x}), \quad \mathbf{z}|\mathbf{x} \sim q_1(\mathbf{z}|\mathbf{x}), \quad \tilde{\mathbf{x}}|\mathbf{z} \sim p_1(\mathbf{x}|\mathbf{z}).$$

391 We evaluate the diversity of the generated samples using Vendi score (Friedman & Dieng, 2022);
 392 quality of image generation with SSIM (Wang et al., 2004); quality of latent clustering with ARI
 393 (Hubert & Arabie, 1985), NMI (Strehl & Ghosh, 2002) and probabilistic version softNMI (Eq. 13).

400 **Summary of findings.** In conditional density modeling (Pinwheel), SFA consistently outperforms
 401 LatentFM and VAE-based models, showing better data density reconstruction and better latent space
 402 modelling. To assess scalability, we apply SFA to a single-cell RNA-seq dataset, where it effectively
 403 models high-dimensional gene expression data and outperforms VAEs in reconstruction quality. On
 404 image data (MNIST), both SFA and its mixture extension (Mixture-SFA) learn meaningful latent
 405 representations, generate high-fidelity samples, and perform well on latent-space clustering tasks.
 406 Finally, we highlight SFA’s versatility on sequential data using the pendulum video dataset, where it
 407 successfully captures the low-dimensional periodic structure of the underlying physical system.

408 **SVAE and SFA comparison.** The SVAE baseline uses β -VAE (Higgins et al., 2017) with a regular-
 409 ization parameter to balance likelihood and KL terms during training. This is crucial for balancing
 410 the likelihood and posterior components in training. SFA is much more stable in jointly learning
 411 the conditional probabilities, without the generation-latent learning trade-off often encountered in
 412 VAE training. [This is owing to the fact that SFA latent accounts for meaningful structure in the](#)
 413 [trajectory of \$p_t\(x_t|z_1\)\$, which stabilizes the path and provides accurate reconstruction to the marginal](#)
 414 [distribution. We refer to App. B.4 for more details.](#) When the latent is lower-dimensional, a smaller
 415 posterior model is sufficient relative to the model size needed for the likelihood. When learning
 416 multiple components jointly, simpler parametric approximation family are preferred over conditional
 417 CNFs for training stability. [Computation-wise, SFA \(2.4M parameters\) requires \$13.220 \pm 1.848\$](#)
 418 [seconds per epoch, comparable to VAE’s \$12.789 \pm 2.011\$ seconds. With CNF as the posterior of SFA,](#)
 419 [we observe a drastic increase in the runtime to \$167.460 \pm 176.817\$ seconds. This is owing to the](#)
 420 [extra time arised from sampling CNF during training, which requires solving a ODE at each gradient](#)
 421 [evaluation step.](#)

422 4.1 MIXTURE MODELING: PINWHEEL DATA

423 We first illustrate the ability of SFA in learning conditional distributions using the toy example of
 424 the pinwheel dataset, with five clusters each having the shape of a blade (Johnson et al., 2016). The
 425 class membership is not provided during training. the goal is to evaluate if the posterior is able to
 426 uncover the latent structure of the data, and whether the model is able to capture the observed data
 427 distribution. In Fig. 1, we visualize the generated data together with their representation coded in
 428 1D colorbar. SFA is able to reconstruct the support of the ground truth distribution, in addition to
 429 capturing a meaningful latent representation for the angular rotation. In contrast, both the Latent FM
 430 and VAE-estimated density does not have well-separated components. As shown in Table 1, SFA
 431 based methods achieve similar density estimation quality as FM and comparable to ground truth,
 432 while SVAE based methods fail to model the density accurately.

432
 433 Table 3: Comparison of metrics across different datasets and methods. (a) Kang HVG dataset evaluated on
 434 a held-out set of size 500. The observation has dimension 5000, due to the size, the log likelihood for CNF
 435 cannot be directly computed by solving adjoint-ODE, therefore left out of the comparison. (b) GLDS dataset
 over posterior samples of observed (RMSE_x), and latent (RMSE_z). Evaluated on a held-out set of size 300.

(a) HVG					(b) Pendulum		
	$\log p(z x) \uparrow$	Vendi (\mathbf{x}) \uparrow	NMI \uparrow	ARI \uparrow		$\text{RMSE}_x \downarrow$	$\text{RMSE}_z \downarrow$
VAE	-40.040	26.580	0.412	0.257			
LatentFM	-	5.801	0.617	0.457	GLDSVAE	4.574	8.090
SFA	384.137	737.728	0.633	0.460	LDS-SFA	3.233	1.526

442 4.2 IMAGE MODELING: MNIST DATA
 443

444 Next, we consider MNIST dataset LeCun et al. (2010), where we aim to recover the probabilistic
 445 assignment of each image to the 10 classes, and learn a low dimensional feature representation at
 446 the same time. We first consider the graphical model with continuous latent, and compare SFA to
 447 VAE and Latent FM on the latent space clustering task. In addition, to check if the learned latent
 448 space captures desirable structures in the data, such as stroke and abstract shape, we sample from
 449 the latent distribution encoding Out-of-Distribution (OOD) data in the EMNIST dataset Cohen et al.
 450 (2017). Result and comparisons are summarized in Table 2 and Fig. 6. Notably, VAE has a posterior
 451 collapse, resulting in unstructured latent space. On the other hand, both Latent FM and SFA learn
 452 meaningful representations that generalize to OOD samples, with SFA achieving better clustering
 453 performance and higher diversity (Vendi score). Performance using mixture graphical model are
 454 organized in Fig. 3 and Fig. 6. GMVAE improves generation quality and latent class separation over
 455 VAE. However, Mixture-SFA still achieves better clustering quality as shown in Table 2.
 456

457 4.3 GENE EXPRESSION MODELING: SINGLE-CELL RNA-SEQ DATA
 458

459 The dataset obtained from Lotfollahi et al. (2023) includes PBMCs from eight patients with Lupus.
 460 The data consists of 7 cell types, and treated and control with IFN- β (Kang et al., 2018). The observed
 461 count is normalized and $\log(x+1)$ transformed, then 5,000 HVGs are selected. We apply continuous
 462 latent to learn the low-dim representation of the high-dimensional differential expression data. Fig. 4
 463 indicates that both the SFA and Latent FM are able to produce meaningful clusters of the cell type in
 464 the latent space. While both methods has good accuracy in the downstream clustering task, SFA has
 465 a larger Vendi score in the generated samples (Table 3a), indicating better diversity.
 466

467 4.4 SEQUENTIAL MODELING: PENDULUM TRAJECTORY VIDEO DATA
 468

469 We choose a pendulum trajectory dataset for LDS example. The dynamics is driven by the pendulum
 470 physical system modeled as a damped harmonic oscillator. The latent trajectory is 2 dimensional,
 471 consisting of angle and angular velocity. The observation is a video with discrete time frames mapped
 472 from latent trajectory. Additional details on model implementations are in App. B.3. We compare
 473 SVAE with SFA in Table 3b, where we measure the discrepancy between the generated and ground
 474 truth of both observed and latent dynamics using RMSE. LDS-SFA outperforms in both aspects.
 475

476 5 DISCUSSION
 477

478 In this work, we introduced structured flow autoencoders (SFA), a framework that integrates con-
 479 tinuous normalizing flows (CNFs) with probabilistic graphical models (PGMs) to achieve both
 480 high-fidelity generation and structured latent representation learning. At the core of SFA is our
 481 proposed structured conditional flow matching (SCFM) objective, which extends flow matching
 482 by explicitly modeling latent variables, enabling the estimation of both the generative likelihood
 483 $p(\mathbf{x}|z)$ and the posterior $p(z|\mathbf{x})$. This approach improves upon existing methods like Variational
 484 Autoencoders (VAEs), which rely on restrictive parametric assumptions, and flow-based models,
 485 which often lack structured interpretability. By leveraging the flexibility of CNFs while maintaining
 486 the interpretability of PGMs, SFA provides a principled and expressive framework for learning
 487 complex data distributions. Empirical results demonstrate the effectiveness of SFA in capturing both
 488 marginal densities and structured latent dependencies, outperforming existing generative models in
 489

486 density estimation and representation learning. This work highlights the potential of bridging neural
487 density estimation with structured probabilistic modeling, paving the way for more interpretable and
488 scalable generative frameworks.
489

490 **REFERENCES**
491

492 Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient flows: in metric spaces and in the*
493 *space of probability measures*. Springer Science & Business Media, 2008.
494

495 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
496 denoising diffusion models in discrete state-spaces. *arXiv preprint arXiv:2107.03006*, 2021.
497

498 Mohammad Bashiri, Edgar Walker, Konstantin-Klemens Lurz, Akshay Jagadish, Taliah Muhammad,
499 Zhiwei Ding, Zhuokun Ding, Andreas Tolias, and Fabian Sinz. A flow-based latent state gener-
500 ative model of neural population responses to natural images. *Advances in Neural Information
Processing Systems*, 34:15801–15815, 2021.
501

502 Jianfei Chen, Cheng Lu, Biqi Chenli, Jun Zhu, and Tian Tian. Vflow: More expressive generative
503 flows with variational data augmentation. In *International Conference on Machine Learning*, pp.
504 1660–1669. PMLR, 2020.
505

506 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
507 differential equations. *Advances in neural information processing systems*, 31, 2018.
508

509 Siyi Chen, Huijie Zhang, Minzhe Guo, Yifu Lu, Peng Wang, and Qing Qu. Exploring low-dimensional
510 subspaces in diffusion models for controllable image editing. *arXiv preprint arXiv:2409.02374*,
2024.
511

512 Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. Emnist: an extension of
513 mnist to handwritten letters. *arXiv preprint arXiv:1702.05373*, 2017.
514

515 Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. *arXiv preprint
arXiv:2307.08698*, 2023.
516

517 Aram Davtyan, Sepehr Sameni, and Paolo Favaro. Efficient video prediction via sparsely conditioned
518 flow matching. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
23263–23274, 2023.
519

520 Dan Friedman and Adji Bousoo Dieng. The vendi score: A diversity evaluation metric for machine
521 learning. *arXiv preprint arXiv:2210.02410*, 2022.
522

523 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
524 Yaron Lipman. Discrete flow matching. *arXiv preprint arXiv:2407.15595*, 2024.
525

526 Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
527 Free-form continuous dynamics for scalable reversible generative models. *arXiv preprint
arXiv:1810.01367*, 2018.
528

529 Irina Higgins, Loic Matthey, Arka Pal, Christopher P Burgess, Xavier Glorot, Matthew M Botvinick,
530 Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
531 constrained variational framework. *ICLR (Poster)*, 3, 2017.
532

533 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
neural information processing systems*, 33:6840–6851, 2020.
534

535 Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of classification*, 2(1):193–218,
1985.
537

538 Noboru Isobe, Masanori Koyama, Kohei Hayashi, and Kenji Fukumizu. Extended flow match-
539 ing: a method of conditional generation with generalized continuity equation. *arXiv preprint
arXiv:2402.18839*, 2024.

540 Matthew J Johnson, David K Duvenaud, Alex Wiltschko, Ryan P Adams, and Sandeep R Datta.
541 Composing graphical models with neural networks for structured representations and fast inference.
542 *Advances in neural information processing systems*, 29, 2016.

543

544 Hyun Min Kang, Meena Subramaniam, Sasha Targ, Michelle Nguyen, Lenka Maliskova, Elizabeth
545 McCarthy, Eunice Wan, Simon Wong, Lauren Byrnes, Cristina M Lanata, et al. Multiplexed
546 droplet single-cell rna-sequencing using natural genetic variation. *Nature biotechnology*, 36(1):
547 89–94, 2018.

548 Jaivardhan Kapoor, Auguste Schulz, Julius Vetter, Felix Pei, Richard Gao, and Jakob H Macke.
549 Latent diffusion for neural spiking data. *arXiv preprint arXiv:2407.08751*, 2024.

550

551 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. *CoRR*, abs/1312.6114, 2013.
552 URL <https://api.semanticscholar.org/CorpusID:216078090>.

553

554 Yann LeCun, Corinna Cortes, and Christopher JC Burges. Mnist handwritten digit database. <http://yann.lecun.com/exdb/mnist/>, 2010.

555

556 Gen Li and Yuling Yan. Adapting to unknown low-dimensional structures in score-based diffusion
557 models. *arXiv preprint arXiv:2405.14861*, 2024.

558

559 Wu Lin, Nicolas Hubacher, and Mohammad Emtiyaz Khan. Variational message passing with
560 structured inference networks. *arXiv preprint arXiv:1803.05589*, 2018.

561

562 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
563 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

564

565 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
566 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

567

568 Mohammad Lotfollahi, Anna Klimovskaia Susmelj, Carlo De Donno, Leon Hetzel, Yuge Ji, Ig-
569 nacio L Ibarra, Sanjay R Srivatsan, Mohsen Naghipourfar, Riza M Daza, Beth Martin, Jay
570 Shendure, Jose L McFaline-Figueroa, Pierre Boyeau, F Alexander Wolf, Nafissa Yakubova,
571 Stephan Günemann, Cole Trapnell, David Lopez-Paz, and Fabian J Theis. Predicting cel-
572 lular responses to complex perturbations in high-throughput screens. *Molecular Systems Bi-
573 ology*, 19(6):e11517, 2023. doi: <https://doi.org/10.1525/msb.202211517>. URL <https://www.embopress.org/doi/abs/10.1525/msb.202211517>.

574

575 Sarthak Mittal, Korbinian Abstreiter, Stefan Bauer, Bernhard Schölkopf, and Arash Mehrjou. Dif-
576 fusion based representation learning. In *International Conference on Machine Learning*, pp.
577 24963–24982. PMLR, 2023.

578

579 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
580 *arXiv preprint arXiv:2102.09672*, 2021.

581

582 Konpat Preechakul, Nattanan Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Dif-
583 fusion autoencoders: Toward a meaningful and decodable representation. In *Proceedings of the
584 IEEE/CVF conference on computer vision and pattern recognition*, pp. 10619–10629, 2022.

585

586 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
587 preprint arXiv:2010.02502*, 2020.

588

589 Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
590 score-based diffusion models. *Advances in neural information processing systems*, 34:1415–1428,
591 2021a.

592

593 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
594 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
595 arXiv:2011.13456*, 2021b.

596

597 Alexander Strehl and Joydeep Ghosh. Cluster ensembles—a knowledge reuse framework for combin-
598 ing multiple partitions. *Journal of machine learning research*, 3(Dec):583–617, 2002.

594 Jakub Tomczak and Max Welling. Vae with a vampprior. In *International conference on artificial*
595 *intelligence and statistics*, pp. 1214–1223. PMLR, 2018.

596

597 Alexander Tong, Kilian FATRAS, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
598 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
599 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024. ISSN 2835-
600 8856. URL <https://openreview.net/forum?id=CD9Snc73AW>. Expert Certification.

601 Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
602 *Advances in neural information processing systems*, 34:11287–11302, 2021.

603

604 Bin Xu Wang and John J Vastola. Diffusion models generate images like painters: an analytical theory
605 of outline first, details later. *arXiv preprint arXiv:2303.02490*, 2023.

606

607 Peng Wang, Huijie Zhang, Zekai Zhang, Siyi Chen, Yi Ma, and Qing Qu. Diffusion models learn
608 low-dimensional distributions via subspace clustering. *arXiv preprint arXiv:2409.02426*, 2024.

609

610 Yingheng Wang, Yair Schiff, Aaron Gokaslan, Weishen Pan, Fei Wang, Christopher De Sa, and
611 Volodymyr Kuleshov. Infodiffusion: Representation learning using information maximizing
612 diffusion models. In *International conference on machine learning*, pp. 36336–36354. PMLR,
613 2023.

614 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from
615 error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612,
616 2004.

617

618 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
619 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
620 pp. 38592–38610. PMLR, 2023.

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A THEORETICAL DETAILS

650 We formally present the probabilistic representation of solutions to the continuity equation when
 651 the vector field fails to be Lipchitz w.r.t \mathbf{x} . In this case, the solution to the characteristic ODE (flow
 652 ODE) is not unique. When using neural nets to parameterize the vector field, we want to verify that
 653 the solution of the ODE indeed induces a solution to the continuity equation.

654 Firstly, we denote $\mu_t : [0, 1] \rightarrow \mathcal{P}(\mathbb{R}^d)$ as the path of probability indexed by t , $AC^p(0, 1; \mathbb{R}^d)$ as
 655 the space of absolutely continuous curves $\gamma : [0, 1] \rightarrow \mathbb{R}^d$ with finite p energy, i.e. $|\gamma'| \in L^p(0, 1)$.
 656 Denote Γ as the space of continuous map $\gamma : [0, 1] \rightarrow \mathbb{R}^d$. Let $e_t : (\mathbf{x}, \gamma) \mapsto \gamma(t)$ as the evaluation
 657 map. Then define the curve of probability measure induced by the evaluation map as

$$658 \quad \mu_t^\eta = e_t \sharp \eta, \quad t \in [0, 1]$$

660 where by definition,

$$661 \quad \int \psi(\mathbf{x}) d\mu_t^\eta(\mathbf{x}) = \int_{\mathbb{R}^d \times \Gamma} \psi(\gamma(t)) d\eta(\mathbf{x}, \gamma), \quad \forall \psi \in C_b^0(\mathbb{R}^d), \quad t \in [0, 1].$$

664 Then finally recall that the continuity equation

$$665 \quad \partial_t \mu_t + \nabla \cdot (v_t \mu_t) = 0 \quad \text{in } \mathbb{R}^d \times (0, 1).$$

666 **Theorem A.1** (Ambrosio et al. (2008) Theorem 8.2.1). *Let $\mu_t : [0, 1] \rightarrow \mathcal{P}(\mathbb{R}^d)$ be a narrowly
 667 continuous solution of the continuity equation for a suitable Borel vector field $v_t(\mathbf{x})$ such that for
 668 some $p > 1$,*

$$669 \quad \int_0^1 \int_{\mathbb{R}^d} |v_t(x)|^p d\mu_t(x) dt < +\infty.$$

672 *i Then (a) there exists a probability measure η in $\mathbb{R}^d \times \Gamma$ such that that concentrates on the
 673 set of pairs (\mathbf{x}, γ) such that $\gamma \in AC^p(0, 1; \mathbb{R}^d)$ is a solution of the ODE $\dot{\gamma}(t) = v_t(\gamma(t))$
 674 for L^1 -a.e. $t \in [0, 1]$ with $\gamma(0) = \mathbf{x}$.
 675 and (b) $\mu_t = \mu_t^\eta \forall t \in [0, 1]$.*

676 *ii Conversely, any η satisfies (a) and $\int_0^1 \int_{\mathbb{R}^d \times \Gamma} |v_t(\gamma(t))| d\eta(\mathbf{x}, \gamma) dt < +\infty$ induces a solution
 677 of the continuity equation via $\mu_t^\eta = e_t \sharp \eta$, with $\mu_0 = e_0 \sharp \eta$.*

679 The converse argument can be readily extended to the conditional vector field $v(\cdot, \cdot, \mathbf{z}) : [0, 1] \times \mathbb{R}^d \rightarrow$
 680 \mathbb{R}^d for any ν -a.e. \mathbf{z} . Then the solution curve to the characteristic ODE would be indexed by \mathbf{z} ,
 681 denoted as $\gamma_{\mathbf{z}}$.

683 A.1 PROOFS IN § 3

685 In the following, we use the same notation in the main paper for the proof details of Proposition 3.1
 686 in § 3. We restate the theorem in the following for completeness

687 **Proposition** (Proposition 3.1). *Given conditional vector field $v_t(\mathbf{x}|\mathbf{z})$ that generates the path
 688 $\{p_t(\mathbf{x}|\mathbf{z})\}$ of probability kernel for $p(\mathbf{z})$ a.e. \mathbf{z} . v_t is the marginal vector field that generates
 689 the marginal probability path $p_t(\mathbf{x})$ over $t \in [0, 1]$ under regularity conditions.*

691 *Proof.* If the vector field $v_t(\cdot|\mathbf{z})$ is measurable w.r.t \mathbf{z} , then the flow ψ_t solving the characteristic
 692 ODE is measurable w.r.t \mathbf{z} . Consequently, the probability $p_t(\cdot|\mathbf{z}) = \psi_t \sharp p_0(\cdot)$ is a regular conditional
 693 probability. If we further impose regularity on the conditional vector field $v_t(\mathbf{x}|\mathbf{z})$, then there exists a
 694 unique solution to the continuity equation (see Lemma 8.1.4 Ambrosio et al. (2008)).

695 Assume continuity and boundedness of $v_t(\mathbf{x}|\mathbf{z})p_t(\mathbf{x}|\mathbf{z})$ and its divergence; continuity of $p_t(\mathbf{x}|\mathbf{z})$
 696 and $\frac{d}{dt}p_t(\mathbf{x}|\mathbf{z})$ in both t and \mathbf{z} , as well as uniformly bounded $\frac{d}{dt}p_t(\mathbf{x}|\mathbf{z})$ for all $t \in [0, 1]$ and almost
 697 all \mathbf{z} . These regularity conditions ensures Leibniz integral rule is satisfied, so that the exchange of
 698 derivative and divergence with integral is valid.

699 It is sufficient to show that $\mathbb{E}_{p_t(\mathbf{z}|\mathbf{x})}[v_t(\mathbf{x}|\mathbf{z})]$ and $p_t(\mathbf{x})$ satisfies the continuity equation. Firstly, it is
 700 given that

$$701 \quad \frac{d}{dt}p_t(\mathbf{x}|\mathbf{z}) = -\nabla \cdot (v_t(\mathbf{x}|\mathbf{z})p_t(\mathbf{x}|\mathbf{z})).$$

702 for $p(z)$ a.e. z . Now, using Bayes rule
703

$$\begin{aligned}
704 \quad \frac{d}{dt} p_t(\mathbf{x}) &= \int \frac{d}{dt} p_t(\mathbf{x}|z) p(z) dz \\
705 \\
706 &= \int -\nabla \cdot (v_t(\mathbf{x}|z) p_t(\mathbf{x}|z)) p(z) dz \\
707 \\
708 &= -\nabla \cdot \int (v_t(\mathbf{x}|z) \frac{p_t(\mathbf{x}|z) p(z)}{p_t(\mathbf{x})} p_t(\mathbf{x}) dz) \\
709 \\
710 &= -\nabla \cdot (\mathbb{E}_{p_t(z|\mathbf{x})} [v_t(\mathbf{x}|z)] p_t(\mathbf{x}))
\end{aligned}$$

711 which concludes the proof. \square
712

713 A.2 PROOFS IN § 3.2

715 Recall the posterior arising from the latent dynamic model is

$$716 \quad z_i^{[S]} | \mathbf{x}_i^{[S]} \sim p(z^{[S]} | \mathbf{x}^{[S]}) = \prod_{s \in [S]} p(z^s | z^{[s-1]}, \mathbf{x}^{[S]}). \quad (10)$$

719 We present the extension of Proposition 3.1 to the latent dynamic model in the following theorem.
720 The proof idea relies on verifying the joint continuity equation over the trajectory is satisfied and the
721 corresponding structured conditional flow matching objective is well defined.

722 **Theorem A.2.** *With conditional flow defined by Eq. 7, and posterior defined by Eq. 10, the FM
723 objective is derived to be Eq. 9, which has the same gradient as the flow matching objective that
724 matches v_t to the marginal vector field u_t .*

$$725 \quad \mathcal{L}_{SCFM} = \mathbb{E}_{\mathbf{x}_1 \sim p_{data}, \mathbf{x}_t \sim p_t(\mathbf{x}_t | \mathbf{x}_1)} \left\| \sum_{t \sim \text{Unif}[0,1]} \mathbb{E}_{p_t(z_t^{[S]} | \mathbf{x}_t^{[S]})} [v_t(\mathbf{x}_t^s | z_t^s; \theta)] - u_t(\mathbf{x}_t^s | \mathbf{x}_1^s) \right\|^2,$$

730 *Proof.* Assume regularity conditions that guarantees the exchange of integration and divergence,
731 differentiation w.r.t. t .

732 We first show that $\int \sum_{s \in [S]} u_t(\mathbf{x}_s | \mathbf{x}_s^1) p_t(\mathbf{x}_{[S]}^1 | \mathbf{x}_{[S]}) d\mathbf{x}_s^1$ is the marginalized vector field that generates $\{p_t(\mathbf{x}_{[S]})\}$. In the following $p(\mathbf{x}_1^1 | \mathbf{x}_0) = p(\mathbf{x}_1^1)$ for simplicity of indexing,

$$\begin{aligned}
735 \quad \frac{d}{dt} p_t(\mathbf{x}_{[S]}) &= \int \frac{d}{dt} p_t(\mathbf{x}_{[S]} | \mathbf{x}_{[S]}^1) p(\mathbf{x}_{[S]}^1) d\mathbf{x}_{[S]} \\
736 \\
737 &= \int \sum_{s \in [S]} \frac{d}{dt} p_t(\mathbf{x}_s | \mathbf{x}_s^1) \cdot \prod_{j \neq s} p_t(\mathbf{x}_j | \mathbf{x}_j^1) p(\mathbf{x}_{[S]}^1) d\mathbf{x}_{[S]} \\
738 \\
739 &= \int \sum_{s \in [S]} -\nabla \cdot (p_t(\mathbf{x}_s | \mathbf{x}_s^1) u_t(\mathbf{x}_s | \mathbf{x}_s^1)) \prod_{j \neq s} p_t(\mathbf{x}_j | \mathbf{x}_j^1) p(\mathbf{x}_{[S]}^1) d\mathbf{x}_{[S]} \\
740 \\
741 &= -\nabla \cdot \left(\sum_{s \in [S]} \int u_t(\mathbf{x}_s | \mathbf{x}_s^1) p_t(\mathbf{x}_{[S]}^1 | \mathbf{x}_{[S]}) d\mathbf{x}_{[S]}^1 p_t(\mathbf{x}_{[S]}) \right) \\
742 \\
743 &= -\nabla \cdot \left(\mathbb{E}_{p_t(\mathbf{x}_s^1 | \mathbf{x}_{[S]})} \left[\sum_{s \in [S]} u_t(\mathbf{x}_s | \mathbf{x}_s^1) \right] p_t(\mathbf{x}_{[S]}) \right).
\end{aligned} \quad (11)$$

749 The second equality is by conditional independence of the transported samples for each $s \in [S]$ and
750 applying chain rule on the product $p_t(x_s | x_s^1) \prod_{s \in [S]} p_t(x_s | x_s^1)$. This shows the marginal vector field
751 is additive in the time index s following the marginal vector field defined for each $s \in [S]$.

752 Now, we'd like to derive the conditional flow matching objective from the marginal flow matching,
753 and show the two has the same gradient with respect to the NN parameterized marginal vector field
754 v_t . The marginal VF for LDS takes the form

$$755 \quad \mathbb{E}_{p_t(\mathbf{x}_{[S]})} \|v_t(\mathbf{x}_{[S]}) - u_t(\mathbf{x}_{[S]})\|^2. \quad (12)$$

756 It is then sufficient to look at the cross term and the squared term on v_t . Firstly,

$$\begin{aligned}
& \mathbb{E}_{p_t(\mathbf{x}_{[S]})} \langle v_t(\mathbf{x}), u_t(\mathbf{x}) \rangle \\
&= \int \left\langle v_t(\mathbf{x}), \sum_{s \in [S]} \int u_t(\mathbf{x}_s | \mathbf{x}_s^1) p_t(\mathbf{x}_s^1 | \mathbf{x}_{[S]}) d\mathbf{x}_s^1 \right\rangle p_t(\mathbf{x}_{[S]}) d\mathbf{x}_{[S]} \\
&= \int \sum_{s \in [S]} \int \langle v_t(\mathbf{x}), u_t(\mathbf{x}_s | \mathbf{x}_s^1) \rangle \int p_t(\mathbf{x}_{[S]}^1 | \mathbf{x}_{[S]}) d\mathbf{x}_{-s}^1 d\mathbf{x}_s^1 p_t(\mathbf{x}_{[S]}) d\mathbf{x}_{[S]} \\
&= \int \sum_{s \in [S]} \langle v_t(\mathbf{x}), u_t(\mathbf{x}_s | \mathbf{x}_s^1) \rangle p_t(\mathbf{x}_{[S]} | \mathbf{x}_{[S]}^1) p_t(\mathbf{x}_{[S]}^1) d\mathbf{x}_{[S]} \\
&= \mathbb{E}_{p_t(\mathbf{x}_{[S]} | \mathbf{x}_{[S]}^1) p(\mathbf{x}_{[S]}^1)} \left\langle v_t(\mathbf{x}), \sum_{s \in [S]} u_t(\mathbf{x}_s | \mathbf{x}_s^1) \right\rangle
\end{aligned}$$

771 for the quadratic term, it directly follows from iterated expectations

$$\mathbb{E}_{p_t(\mathbf{x}_{[S]})} \|v_t(\mathbf{x})\|^2 = \mathbb{E}_{p_t(\mathbf{x}_{[S]} | \mathbf{x}_{[S]}^1) p(\mathbf{x}_{[S]}^1)} \|v_t(\mathbf{x})\|^2.$$

774 Therefore optimizing v_t with Eq. 12 is equivalent to optimizing the marginal flow matching objective

$$\inf_{v_t} \mathbb{E}_{p_t(\mathbf{x}_{[S]} | \mathbf{x}_{[S]}^1) p(\mathbf{x}_{[S]}^1)} \left\| v_t(\mathbf{x}) - \sum_{s \in [S]} u_t(\mathbf{x}_s | \mathbf{x}_s^1) \right\|^2.$$

779 Finally, to introduce the structured FM objective with latent dynamical system, we verify the marginal
780 vector field v_t arisen from marginalizing $v_t(\mathbf{x}_s | \mathbf{z}_s)$ generates the probability path $\{p_t(\mathbf{x}_{[S]})\}$. The
781 proof is similar to the previous ones, where we verify that the continuity equation is satisfied.

$$\begin{aligned}
\frac{d}{dt} p_t(\mathbf{x}_{[S]}) &= \int \frac{d}{dt} p_t(\mathbf{x}_{[S]} | \mathbf{z}_{[S]}) p(\mathbf{z}_{[S]}) d\mathbf{z}_{[S]} \\
&= \int \sum_{s \in [S]} \frac{d}{dt} p_t(\mathbf{x}_s | \mathbf{z}_s) \prod_{j \neq s} p_t(\mathbf{x}_j | \mathbf{z}_j) p(\mathbf{z}_{[S]}) d\mathbf{z}_{[S]} \\
&= \int \sum_{s \in [S]} -\nabla \cdot (v_t(\mathbf{x}_s | \mathbf{z}_s) p_t(\mathbf{x}_s | \mathbf{z}_s)) \prod_{j \neq s} p_t(\mathbf{x}_j | \mathbf{z}_j) p(\mathbf{z}_{[S]}) d\mathbf{z}_{[S]} \\
&= -\nabla \cdot \sum_{s \in [S]} \int v_t(\mathbf{x}_s | \mathbf{z}_s) p_t(\mathbf{z}_{[S]} | \mathbf{x}_{[S]}) d\mathbf{z}_{[S]} \cdot p(\mathbf{x}_{[S]}) \\
&= -\nabla \cdot \left(\mathbb{E}_{p_t(\mathbf{z}_{[S]} | \mathbf{x}_{[S]})} \left[\sum_{s \in [S]} v_t(\mathbf{x}_s | \mathbf{z}_s) \right] p(\mathbf{x}_{[S]}) \right).
\end{aligned}$$

796 It is notable that the conditional independence and Markov assumption gives rise to the filtering
797 probability $p(\mathbf{z}_s | \mathbf{x}_{[S]})$ and $p(\mathbf{x}_s^1 | \mathbf{x}_{[S]})$.

799 In particular, the objective Eq. 9 depends on the entire sequence through the sum over $[S]$, due to
800 the conditional independence structure of the likelihood. As it requires access to the full observed
801 sequence at every step $s \in [S]$, the training procedure is entirely offline.

802 \square

804 B EXPERIMENT DETAILS

806 All experiments are conducted on a MacBook Pro equipped with an Apple M2 Pro chip and 16 GB
807 of memory.

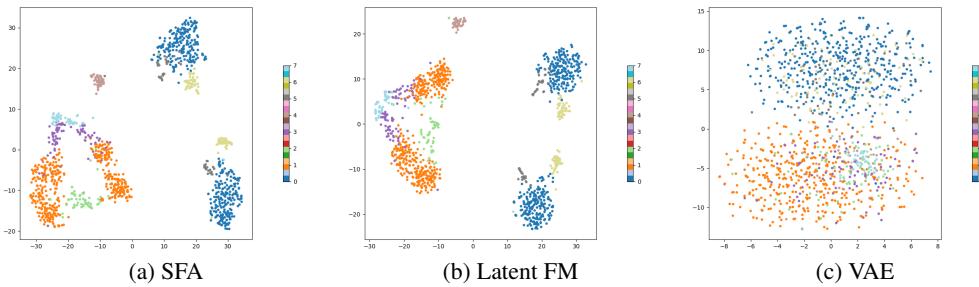
809 The Pinwheel dataset is a classic benchmark for density estimation task. SFA is demonstrated to be
able to meaningfully capture latent distribution as well as observed distribution.

810 For VAE, we use Gaussian distribution with diagonal covariance for posterior and likelihood family.
 811 The parameters of Gaussian are parameterized by Multilayer Perceptrons (MLPs) and mapped from
 812 context vector. For SFA, we use MLP to parameterize the conditional vector fields v_t , and use
 813 Gaussian parametric family indexed by t, \mathbf{x} for the posterior flow.

814 With latent mixture, we use constant time Gumbel-Softmax network to model the latent class
 815 probability for both GMVAE and Mixture-SFA. We use tanh activation function for all models
 816 applied to this dataset.

817 To compare, the samples and latent representations are generated based on the estimated conditional
 818 probabilities,

820 $\mathbf{z}_i \stackrel{i.i.d.}{\sim} p(\mathbf{z}), \mathbf{x}_i | \mathbf{z}_i \sim p_1(\mathbf{x} | \mathbf{z}_i), \tilde{\mathbf{z}}_i | \mathbf{x}_i \stackrel{i.i.d.}{\sim} q_1(\mathbf{z} | \mathbf{x}_i).$



821
 822 Figure 4: RNAseq dataset: Latent space visualization in 2D, projected with TSNE (perplexity=30).

834 B.1 SINGLE CELL RNA-SEQ

835 The Single Cell RNA-seq dataset Kang et al. (2018) consists of transformed count vector of size
 836 5000, therefore presents challenges in modelling with CNF and likelihood based optimization. SFA
 837 directly tackles this complexity by learning a meaningful latent representation while not requiring
 838 computation of log-likelihood during training.

839 We parameterize the CNF v_t with MLP, and uses a 32-dim Gaussian approximation family for the
 840 posterior that varies across time t and observation x . The VAE model uses Gaussian encoder and
 841 decoder with NN parameterized parameters that is time independent. For the latent FM, we use MLP
 842 encoder and decoder, 32 dim latent space and CNF to learn the latent distribution $p(\mathbf{z})$.

844 B.2 MNIST DATA

845 For GMVAE, we use Gaussian distribution with diagonal covariance for posterior and likelihood
 846 family. MLPs are used to map context vectors to the means and covariances of the Gaussians. The
 847 latent class probability is via a Gumbel-Softmax network, which uses MLP to map from context
 848 vector to logits, then apply Gumbel-Softmax trick for sampling.

849 For Mixture-SFA, we also use MLP to parameterize the conditional vector fields v_t and Gaussian
 850 posterior with parameter indexed by t, \mathbf{x} . It is notable that with larger differences in the dimensionality
 851 and scale, a linear map is used to firstly map the context vectors to vectors of the same size. Then
 852 apply concatenation and feed to the main network. We also use Gumbel-Softmax network to model
 853 the latent class probability. Alternatively, we can use a 10 dimensional vector field to model the
 854 distribution of logits.

855 For both model, we use softplus activation function and train until convergence. We observe that a
 856 smaller network is usually sufficed for modelling the latent, which also increases training speed.

857 We compare the performance of the two methods from 2 perspectives.

- 858 1. **Posterior Predictive:** for every test sample \mathbf{x}_i , we first sample from the posterior $\mathbf{z}_i | \mathbf{x}_i \sim q(\mathbf{z} | \mathbf{x})$, then sample from the likelihood $\mathbf{x}_{i,new} | \mathbf{z}_i \sim p(\mathbf{x} | \mathbf{z}_i)$.
- 859 2. **Latent Space Representation:** for every test sample \mathbf{x}_i , we sample from the posterior
 $\xi_i | \mathbf{x}_i \sim q(\xi | \mathbf{x}_i)$, then from $\mathbf{z}_i | \mathbf{x}_i \sim q(\mathbf{z} | \mathbf{x})$ to obtain a latent representation of the observed

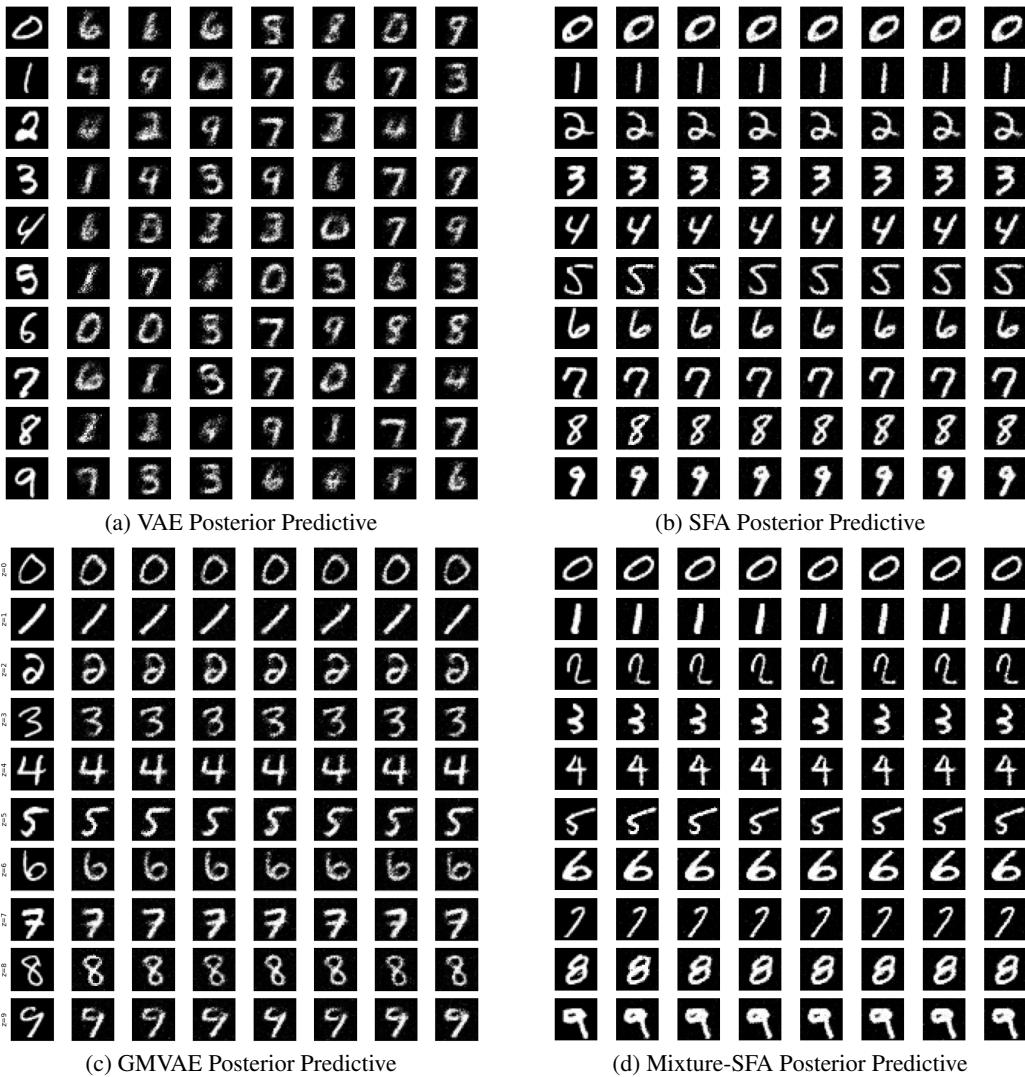


Figure 5: Comparison of Posterior Predictive Results: (a) GMVAE and (b) Mixture-SFA.

data point. We visualize the class probability samples $\{\xi_i\}$ with histogram, and the sample $\{z_i\}$ with TSNE (complexity = 30) projected from 64 dimensional space onto 3 dimensional space.

Table 4: Comparison of metrics for MNIST dataset between VAE, latent FM and SFA. Evaluated on a held-out set of size 1000. The OOD dataset consists of first 10 classes of letters and the first 10 classes of digits in EMNIST. The clustering is done in the latent space via k-means with k given.

	$\log p(x z) \uparrow$	$\log p(z x) \uparrow$	Vendi \uparrow	SSIM \uparrow	NMI (OOD) \uparrow	ARI(OOD) \uparrow
VAE	-453.648	-85.448	63.286	0.419	0.039(0.033)	0.017(0.012)
VampVAE	-584.845	155.820	1.140	0.866	0.006(0.006)	0.000(0.000)
Latent FM	-	-	8.380	0.980	0.488(0.392)	0.381 (0.194)
Latent FM (VAE)	-910925	-11.192	19.631	0.697	0.309(0.152)	0.205(0.073)
SFA	-916.901	793.262	25.589	0.716	0.490(0.394)	0.356(0.208)
w/Deterministic Latent	-858.385	-	10.189	0.679	0.501 (0.333)	0.379(0.155)
w/CNF Posterior	-907.998	356.141	23.166	0.654	0.485 (0.325)	0.355 (0.118)

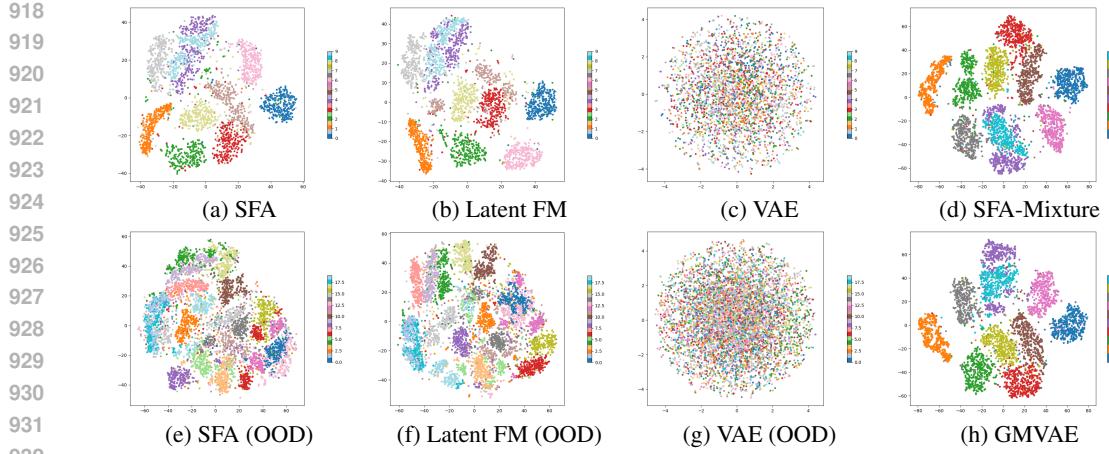
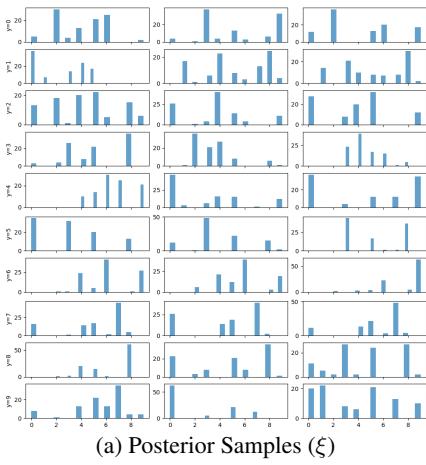
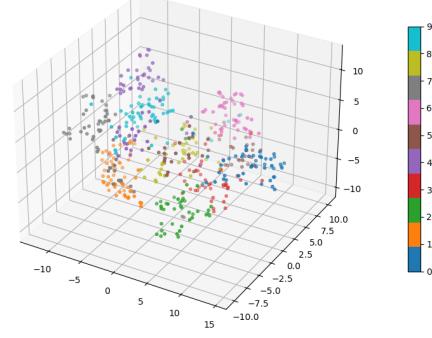


Figure 6: MNIST dataset: Latent space visualization in 2D projected with TSNE (perplexity=50). (a)-(c),(e)-(g) follows from the continuous latent graphical model, (d) and (b) employs latent mixture model. The OOD dataset consists of first 10 classes of letters and the first 10 classes of digits in EMNIST.



(a) Posterior Samples (ξ)



(b) Posterior Samples (z)

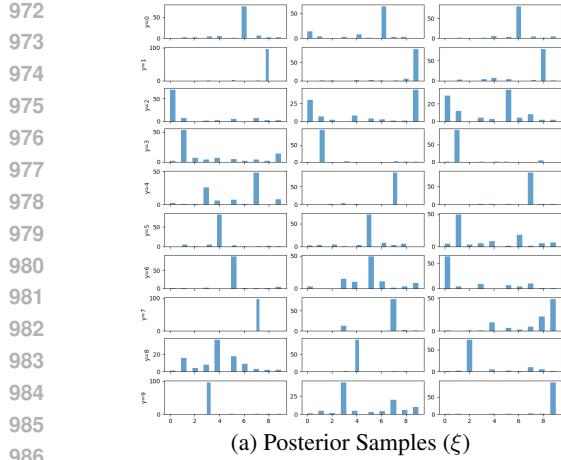
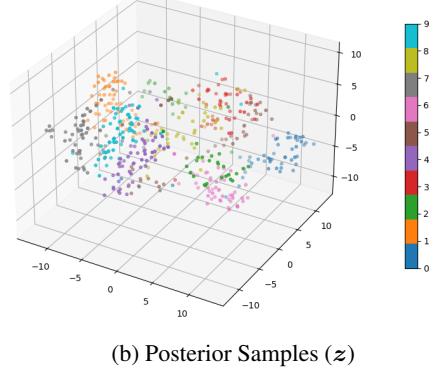
Figure 7: GMVAE Posterior Samples: (a) samples from latent variable ξ : each column corresponds to different images, each row corresponds to different class label; and (b) latent variable z , with TSNE projection from 64 dimensional to 3 dimensional space.

SoftNMI To assess the quality of latent probabilistic cluster assignment for Mixture-SFA and GMVAE, we use a soft Normalized Mutual Information (softNMI), which computes the discrepancy between a one-hot label vector and a probability vector based on entropy,

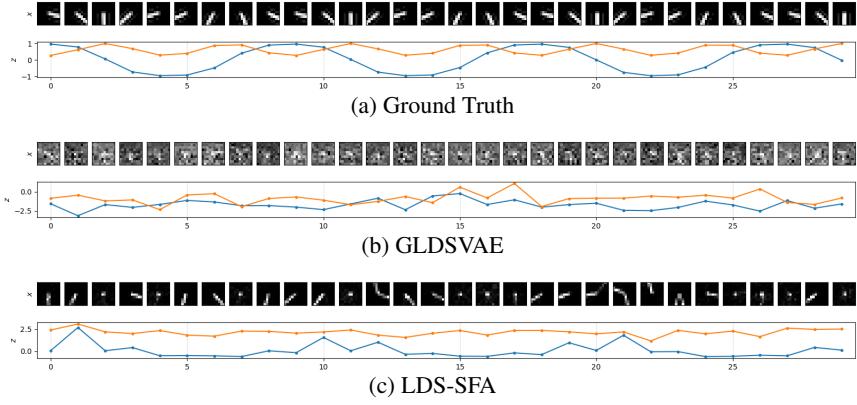
$$\text{softNMI}(p, q) = \frac{H(p) + H(q) - H(p, q)}{H(p) + H(q)} \in [0, 1], \quad (13)$$

where $H(p)$ is the entropy function on the marginal, $H(p, q)$ is the entropy on the joint. Higher score suggests higher correlation between the posterior class assignment probability and true class label.

From Table 4, we observe the stochastic latent helps to increase the diversity of the generation, while variants of VAE has poor generation quality, the FM based models have better performance in image generation quality. However, there's a notable trade-off in reconstruction quality and generation diversity, where stochastic latent have higher Vendi score while suffer a slight decrease in SSIM score, and vice versa for the deterministic latent. In addition, for downstream clustering task, SFA with deterministic latent has better NMI and ARI score for within distribution sample, yet SFA with stochastic latent has better NMI and ARI for out-of-distribution samples.



987 Figure 8: Mixture-SFA Results: (a) Posterior Samples (ξ) and (b) Posterior Samples (z).
988



1003 Figure 9: Comparison of Pendulum Dynamics: Ground Truth and GLDSVAE.
1004
1005

1006 B.3 LATENT DYNAMICAL SYSTEM

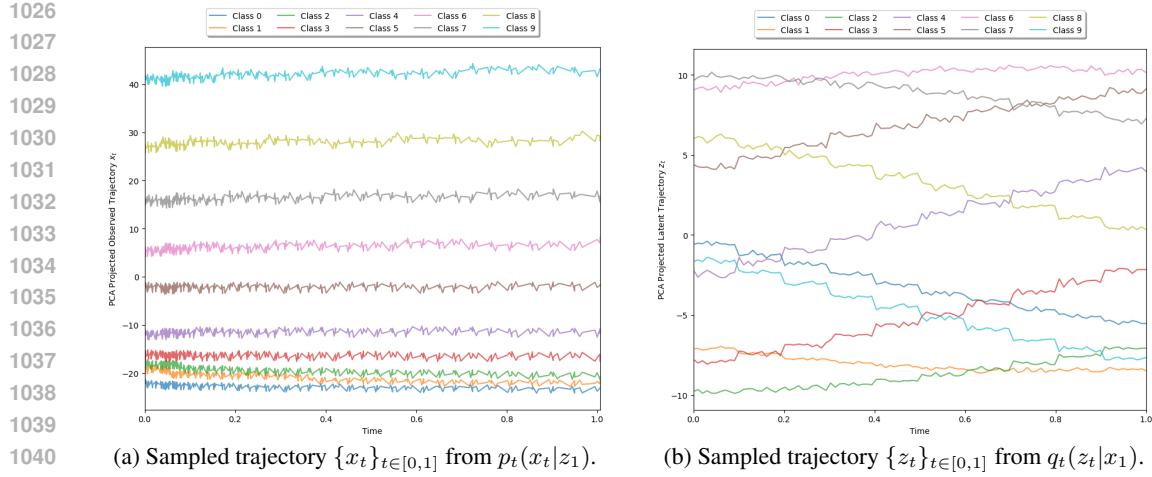
1007 To model the full conditional posterior $q(z_s | z^{[s-1]}, x^{[S]})$, we use sequence model to separately encode
1008 the observation sequence $x_{[S]}$ and full latent history $z^{[s-1]}$ to a context vector. For the input sequence,
1009 as it is fixed in length, we use an attention pooling to reduce it to a fixed length vector. For the latent,
1010 we use GRU to iteratively encode the historic latent sequence into fixed length latent embeddings. We
1011 apply this to both GLDSVAE and LDS-SFA. Therefore, the full posterior of GLDSVAE is modeled
1012 by

$$1014 z^s | z^{[s-1]}, x^{[S]} \sim \text{Gaussian} \left(\mu \left(h_z(z^{[s-1]}), h_x(x^{[S]}) \right), \Sigma \left(h_z(z^{[s-1]}), h_x(x^{[S]}) \right) \right).$$

1015 The likelihood, with conditional independence assumption is modeled by $\text{Gaussian}(\mu(z_s), \Sigma(z_s))$.

1016 The likelihood is modeled with CNF, where the vector field is indexed by MLP, the incorporation of
1017 time and latent representation z is done via concatenation.

1019
1020
1021
1022
1023
1024
1025



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040 (a) Sampled trajectory $\{x_t\}_{t \in [0, 1]}$ from $p_t(x_t | z_1)$.
1041
1042 (b) Sampled trajectory $\{z_t\}_{t \in [0, 1]}$ from $q_t(z_t | x_1)$.
1043
1044
1045
1046
1047

Figure 10: 1D PCA projected sampled trajectories in observation space and latent spaces.

B.4 TRAJECTORY IN TIME

We investigate the behavior of the conditional trajectory for both z_t and x_t with MNIST dataset. Fig. 10b visualizes the latent trajectory $\{z_t\}_{t \in [0, 1]}$, sampled from $q_t(z_t | x_1)$. The position at $t = 1$ deviates from the random sample from Gaussian at $t = 0$. Upon conditioning on z_1 , we sample the observed trajectory $\{x_t\}_{t \in [0, 1]}$ from $p_t(x_t | z_1)$. From Fig. 10a, we observe that the paths of different integers does not cross across $t \in [0, 1]$. This suggests that the latent $q_t(z_t | x_1)$ is learned meaningfully to accounts for the structure that generates the observed data x_1 . This observation is precisely why our proposed SFA does not suffer from posterior collapse.

1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

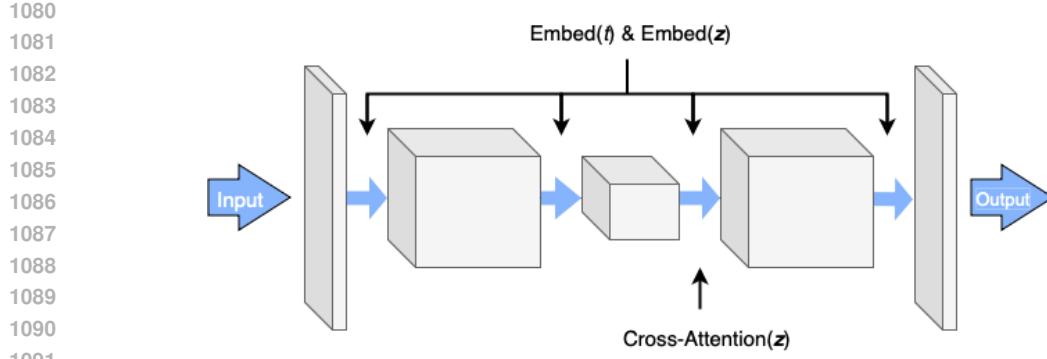


Figure 11: Simplified illustrative Diagram for UNet architecture: parameterizes likelihood conditional vector field, conditioning on time t , and latent variable z . The three blocks represents the encoder, bottleneck and decoder. The input and output are both tensors of the same shape as the observed image.

B.5 CIFAR10

For more realistic image dataset, we adapt UNet architecture to accommodate the incorporation of additional context of latent representation vector z . In particular, we modified the architecture so the information of z is used robustly even in the presence of strong UNet skip connections. We experimented with FiLM style conditioning (such as in (Wang et al., 2023)), which is not suitable for our paradigm and produce blurry images, which maybe owing to flexible stochastic latent distributions. Instead, we consider injecting latent information through (1) concatenation with time embedding, (2) cross-attention. (1) is applied across all blocks and layers replacing the original time embedding. (2) treats z as a set of tokens and lets each spatial location query the relevant part of z . We experimented with applying cross-attention at (a) the end of encoder, bottleneck and decoder, and (b) bottleneck block only. (b) appears to be more robust in incorporating the latent information, and is stable in training. The specific architecture implemented is illustrated in Fig. 11.

The likelihood model's vector field is chosen to be parameterized by the UNet, whereas the posterior model is chosen to be less flexible, as we notice the more powerful encoder model does not provide meaningful directions to the generation model. We also notice that the role of time embedding is different from the z embedding, where larger dimension for t embedding helps to refine the details of the image; whereas the z embedding directs the coarser structure of the image.

We include preliminary result on Cifar10. Fig. 12 includes the train and validation loss, and the posterior log likelihood for the latent during training. Fig. 13 includes the generated samples (columns starting from the 2nd position) given a reference image x_1 that is in the 1st column.

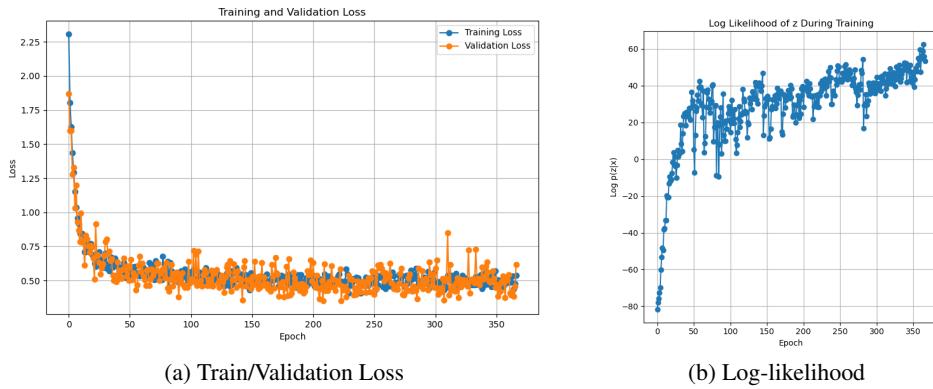


Figure 12: CIFAR-10: SFA metrics during training.

