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ABSTRACT

Flow matching is a powerful approach for high-fidelity density estimation, but it
often fails to capture the latent structure of complex data. Probabilistic models
like variational autoencoders (VAEs), on the other hand, learn structured rep-
resentations but underperform in sample quality. We propose Structured Flow
Autoencoders (SFA), a family of probabilistic models that augments graphical
models with conditional continuous normalizing flow (CNF) likelihoods, enabling
flow-matching-based structured representation learning. At the core of SFA is a
novel flow matching objective that explicitly accounts for latent variables, allowing
joint learning of the CNF likelihood and posterior. SFA applies broadly to graphical
models with continuous and mixture latents, as well as latent dynamical systems.
Empirical studies across image, video, and RNA-seq data show that SFA consis-
tently outperforms VAEs and their structured extensions in both generation quality,
representation utility, and scalability to large datasets. Compared to generative
models like latent flow matching (LFM), SFA also produces more diverse samples,
suggesting better coverage of the data distribution.

1 INTRODUCTION

Generative modeling has become a foundational pillar of modern machine learning, offering powerful
tools for capturing complex data distributions and generating high-quality samples. Among recent
advances, diffusion models (Ho et al., 2020; Nichol & Dhariwal, 2021; Song et al., 2020; 2021b;a;
Austin et al., 2021) and flow-based methods (Lipman et al., 2022; Liu et al., 2022; Gat et al., 2024;
Tong et al., 2024; Isobe et al., 2024) have shown remarkable performance as neural density estimators,
excelling at likelihood estimation and high-fidelity sample generation. In particular, flow matching
has emerged as a scalable and efficient approach, aligning vector fields of probability paths using
optimal transport principles, enabling efficient and scalable generative modeling with exact likelihood
evaluation (Lipman et al., 2022; Liu et al., 2022; Gat et al., 2024).

Despite their success in generation quality, neural density estimators like flow matching often fall
short in structured representation learning, failing to capture or expose the rich latent structures
underlying complex data. This limitation is especially salient in scientific and structured domains
such as computational biology, where interpretable low-dimensional representations are essential
for downstream tasks, analysis, and control. Recent work has revealed both empirical evidence of
implicit low-dimensional structures in pretrained diffusion models (Wang & Vastola, 2023; Chen
et al., 2024) and theoretical guarantees of their adaptivity to such structures (Wang et al., 2024; Li
& Yan, 2024). However, these models neither explicitly model latent structure during training nor
produce readily interpretable representations, limiting their utility beyond sample generation.

In contrast, probabilistic latent-variable models such as variational autoencoders (VAEs) (Kingma
& Welling, 2013; Johnson et al., 2016) are explicitly designed to capture latent structure through
probabilistic encoder-decoder architectures. These models learn structured probabilistic represen-
tations that can be leveraged for conditional generation and downstream tasks. However, VAEs
typically underperform in data modeling and generation fidelity compared to modern flow-based
models, limiting their utility in high-resolution or diverse generative tasks. This gap in generative
fidelity also raises concerns about the reliability and expressiveness of their learned representations.
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Figure 1: Generated samples on the Pinwheel dataset with 5 clusters. Color in (a) indicates class membership,
which is not provided during training. Color in (c) indicates the latent distribution learned via deterministic
autoencoder. Color in (d)-(h) indicates the generated posterior value z1 ~ ¢(z1|®1) given the generated sample
1. We use a continuous latent variable =z in (c),(d),(e),(g); and a mixture latent variable in (f),(h).

This performance gap raises the question: Can we build models that retain the structured latent
representations of VAEs while achieving the high fidelity and scalability of flow matching?

Main idea. We propose structured flow autoencoders (SFA), a new family of probabilistic models
that augments graphical models with conditional Continuous Normalizing Flow (CNF) likelihoods.
This family aims to combine the strengths of both approaches: the high-fidelity data modeling of
neural density estimators and the structured representation learning capabilities of graphical models.

We motivate with a simple latent variable model where continuous latents z € R? generate observa-
tions x € R?, with 0 < p < d:

7 "~ p(a), x|z % p(x]z). (1)
This standard latent variable framework enables structured representation learning through the
posterior p(z|x). To enable high-fidelity data modeling in SFA, we parametrize p(x|z) using
conditional CNFs, achieving the expressivity of modern neural density estimators while maintaining
structured latents. However, both the likelihood and the posterior are no longer available in explicit
forms. To address this challenge, we propose the Structured Conditional Flow Matching (SCFM)
objective, a training objective that jointly learns both the conditional flow p(x|z) and an approximate
posterior ¢(z|x). Unlike standard flow matching that only models p(x), SCFM explicitly account
for the conditional structure p(x|z) and posterior p(z|x). As illustrated in Fig. 1, this decomposition
enables SFA to capture interpretable latent variables while maintaining high-fidelity generation,
providing structured representation learning unavailable in standard flow matching.

Contributions. (1) We introduce Structured Flow Autoencoders (SFA), a family of generative
models that augments graphical models with conditional Continuous Normalizing Flows (CNFs)
likelihoods. SFA bridges the gap between high-fidelity neural density estimation and structured
representation learning, improving upon both VAEs and latent flow-based models. (2) We propose
Structured Conditional Flow Matching (SCFM), a novel training objective that extends flow matching
to explicitly incorporate latent variables. SCFM explicitly learns the conditional probability flows in
the graphical model while preserving the marginal density information. SCFM enables joint learning
of the likelihood and posterior, supporting both generative modeling and structured representation
learning within a unified framework. (3) We demonstrate the flexibility of SFA across diverse
domains, including image, video, and RNA-seq data, and modeling scenarios with continuous, finite
mixture, and dynamical latent variables. SFA achieves high-fidelity sample generation, increased
sample diversity, and enhances structured representation learning, while remaining computationally
efficient on high-dimensional datasets.

Related work. Simultaneous high-fidelity generation and structured representation learning has been
an important task (Grathwohl et al., 2018; Mittal et al., 2023; Dao et al., 2023; Davtyan et al., 2023),
drawing particular interest in scientific domains (Bashiri et al., 2021; Xu et al., 2023; Kapoor et al.,



pxl2) s glz]x)

N

t=0

@ ® W TG LR

SIS CICA L) I ;
e e @ ° |
ol ] al : ‘
» = ol i .
el s ; ‘ ) s ;
N ™ o = " /\./_\/‘
) s S N als) " <

© pilm) o aGlm

Pitelz) 4zlx)

(@)

Figure 2: Overview of Structured Flow Autoencoders (SFAs). Examples of graphical models that can be
incorporated into SFAs: (a) latent continuous variable model; (b) latent finite mixture model; (c) latent linear
dynamical system; (d) SFA framework showing conditional probabilities for latent z and observed a with
conditional CNFs. In the SCFM objective, we compute a convolution of conditional vector field v; for @ (-, z¢)
with respect to g¢ (z¢|@+), when &+ = (1 —t)axo+ta1. For conditional generation, with a particular prior p1(z1),
sampling follows from the graphical model z1 ~ p1(z1), @1 ~ p1(@1|21); deriving latent representation of @1
involves sampling from the posterior 21 ~ g1 (z1|z1).

2024). Variational autoencoders (VAE) (Kingma & Welling, 2013) is one such probabilistic model
that learns both generative model p(x|z) and inference model p(z|x) simultaneously, typically
use neural networks to parameterize exponential families. Grathwohl et al. (2018); Chen et al.
(2020) extended the VAE to families of normalizing flows, which improves the flexibility of density
estimation together with latent space learning. While appealing, VAEs fall short of modern generative
models in data modeling fidelity.

Recent work has explored combining neural density estimators with encoder-decoder frameworks
(Mittal et al., 2023; Dao et al., 2023; Davtyan et al., 2023; Vahdat et al., 2021), typically mapping
observations to low-dimensional latent spaces where the latent marginal distribution is learnt via flows
or diffusion models before decoding back to observation space. While these neural prior methods
excel at dimensionality reduction, they often constrain encoders and decoders to simple parametric
families (e.g., Gaussians) that inadequately capture complex data distributions. Our approach differs
by making the entire likelihood and posterior flexible through conditional flows while incorporating
structured latent dependencies. Another line of work, including Wang et al. (2023); Preechakul
et al. (2022), focuses on modeling the likelihood with flexible diffusion models while maintaining
simple Gaussian posteriors. However, these approaches lack mechanisms for structured dependencies
between latent variables, limiting interpretability in complex domains. Most closely related to our
work, structured variational autoencoders (SVAEs) (Johnson et al., 2016; Lin et al., 2018) incorporate
graphical model structure into VAESs to capture hierarchical dependencies. However, SVAEs are
constrained by parametric assumptions that limit expressiveness. In addition, extending SVAEs to
more expressive density models like CNFs faces significant challenges: direct extensions suffer from
numerical instability and computational inefficiency due to the need of likelihood evaluation at every
training step (Liu et al., 2022). Our flow matching approach circumvents these issues while enabling
both structured representations and expressive data density modelling.

2  PRELIMINARIES: FLOW-BASED GENERATIVE MODELLING

We start by reviewing continuous normalizing flows and the flow matching learning objective, laying
the groundwork before introducing structured flow autoencoders (SFAs).

Notations. We follow the notations in Lipman et al. (2022) and denote the time indexed vector field
by v(-,-) : [0,1] x R? — R? and equivalently, v;(-) : R? — R? for ¢ € [0, 1]. The path of probability
densities is denoted by p;(+) : RY — R*, and the flow ¢;(-) : R? — R for ¢ € [0, 1]. In addition,
T1 ~ Pdata TEPresents an observed sample, and xy ~ pg a sample from a chosen base distribution.



We further denote the conditional vector field as u(-,-, z) : [0,1] x R? — RY, equivalently as
ug(-, z) : R — R? indexed by ¢ € [0, 1]. The path of conditional probability densities is denoted by
pi(-|z) : R — RT; and the conditional flow by ¢;(+|z) : R — R4, ¢ € [0, 1].

2.1 CONTINUOUS NORMALIZING FLOW

Continuous normalizing flows (CNFs) describe probability distributions by the evolution of some
probability density path. Denote the observed data by € R<. Further, assume there exists a
time-dependent vector field v; : R? — R?, t € [0, 1] that describes the evolution of a probability
density path p; : R? — R indexed by ¢ € [0, 1]; we will use v; to describe the density of . The path
then solves the continuity equation 9;p; = —V - (vsp; ), which is the Fokker-Plank equation with zero
diffusion. Due to the probabilistic representation theorem in Ambrosio et al. (2008, Theorem 8.2.1),
the continuity equation admits a representation formulated as a solution of the ODE,

(@) = w62, 60(@) = w0, @

where ¢, : RY — R? is a push-forward map sending jig to ju; = @¢,400. This map is called
flow in the machine learning literature (Chen et al., 2018; Grathwohl et al., 2018; Lipman et al.,
2022). The log likelihood f(t) = logp:(¢:(x)) at any point & can be obtained by solving the
instantaneous change-of-variable formula forward in time, with initial conditions ¢ = log po(¢o()),

f(1) =logpi(¢1(x)):

i (5F) = (Heshn) - (56) = (%) G)

2.2 FLOW MATCHING

Liu et al. (2022) and Lipman et al. (2022) concurrently introduced a similar training objective for
learning flexible flow-based generative models, with NN parameterized vector field vy,

W Ey (). e ) 00 (@03 0) = e (e | @)% “)

where t ~ U[0,1], 1 ~ Ddata (1), and now  ~ p; (x | ©1). We refer to this objective as Flow
Matching (FM). Flow matching resembles diffusion model with score matching except that the steps
of noising (with conditional vector field u;(x|x1)) and denoising (with marginal vector field v;) are
deterministic. Solving Eq. 2 forward in time allows for generation from the learnt model.

The family of conditional vector field u; that governs the conditional probability path p;(x;|x) is a
design choice. Lipman et al. (2022) considered a particular example of the conditional probability
path, ps(x¢|z1) = N(us(x1), 0¢(x1)?I), where p; and o are time-dependent functions, with end

points z1o(@1) = 0 and 03 (1) = 1 such that py(zo|z1) < N(z0;0,I,). Therefore, the probability
path p; = @fipp is induced by the map p;(x) = u(x1) + o¢(x1)x, which is the solution of the
characteristic ODE %y () = uq(¢¢(x)|1) A special example includes linear interpolation in the
Wasserstein space, o (x) = (1 — t)x + tx;. For this choice, the corresponding conditional vector
field is u; (x4 |x1) = ¥=t fort € [0, 1).

3 STRUCTURED FLOW AUTOENCODERS

In this section, we augment probabilistic graphical models with CNF likelihoods to design structured
flow autoencoders (SFAs), a family of structured flow-based probabilistic generative models.

From marginal vector field to conditional vector field. To enable probabilistic graphical modeling
using flow-based models, we rely on a key insight arising from Bayes formula: the marginal vector
field can be equivalently derived as the expectation of conditional vector field v;(x|z) over an
unobserved latent variable z,

ve () :/Ut(iL'|Z

) pi(|2)pi(2)
fpt(:c|z)pt(z)d

zdz ZEpt(z‘w)[Ut(w‘Z)], (5)
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which also resembles the posterior predictive distribution. We formally state this result below in
Proposition 3.1, which shows that E,,, (. |)[v:(%|2)] is indeed the vector field that generates the
path of marginal probability distributions p;(«). The proof is in Appendix A.1, which proceeds by
verifying that Eq. 5 satisfies the continuity equation (Lipman et al., 2022).

Proposition 3.1. Given conditional vector field v, (x|z) that generates the path {p:(x|z)} of prob-
ability kernel for p(z) a.e. in z, vi(x) is the marginal vector field that generates the marginal
probability path pi(x) over t € [0, 1] under regularity conditions.

Proposition 3.1 allows us to gain flexibility and interpretability in flow-based generative modeling by
introducing latent structure to the otherwise marginal vector field of data distribution. This realization
is the key to uncovering rich latent structure while ensuring marginal distribution is captured faithfully.

Structured Flow Autoencoders (SFA). Proposition 3.1 further motivates us to design SFAs, which
consists of co-evolving probability paths {p;(-|z;)} and p;{-|z.} across time ¢ € [0, 1]; these paths
are connected to the observed data distribution p; () through E, (;|4)[v:(x|2)] (Fig. 2d). Att = 1,
the probability p;(-|z1) and p1(-|z1) corresponds to the model likelihood and posterior for the
observed data; at t = 0, the probabilities correspond to the marginal base distributions that are easy to
sample and evaluate. To learn SFAs, we propose to match the marginal path p,(x;) to a preselected
path as in FM objective.

Structured Conditional Flow Matching (SCFM). Although KL divergence and ELBO are standard
objectives for unsupervised distribution learning, CNF likelihood evaluation incurs significant com-
putational overhead. Recognizing that the FM objective is fast and easy to evaluate for flow based
generative models, we propose an objective that accommodates latent structure while improving
computational efficiency based on FM. Specifically, Proposition 3.1 shows the marginal vector field
emerges from the conditional vector field, enabling us to replace v;(x) with E,,, (2|2 [v:(2]2)] in the
FM loss (Eq. 4). We formalize this approach through the Structured Conditional Flow Matching
(SCFM) objective:

. 2
HGle T1~pdata (1) HEPt(Zt\wt)[vt(wt‘zt; 0)] — ur (@ | wl)“ ’ (©6)
xi~pi(x|er), t~Unif[0,1]

where the outer expectation is w.r.t. the flow trajectory on the marginal given observed samples x;
the inner expectation is w.r.t. the distribution trajectory of the corresponding posterior; the reference
vector field u; is chosen a priori, which defines the desired trajectory connecting observed data to the
base distribution pg. Intuitively, SCFM is solving a “de-mixing” problem, decomposing the observed
signal to (1) the data generation model and (2) the latent structure components.

For different graphical models (c.f. Fig. 2), SCFM objective should be adapted to accommodate their
specific structures. We illustrate through three examples in the next subsection, spanning continuous,
finite mixture and Markov dynamic latent structure.

Posterior approximation. In practice, we approximate the expectation in Eq. 5 using samples
from p;(z¢|x:). As the posterior is generally intractable, we employ an approximating family
Q = {(t,z) — q(z|x), (t,x) € [0,1] x X'} to enable sampling and evaluation at training and
evaluation time. The choice of approximating family ) must be sufficiently expressive to capture
the complexity of the true posterior, while not too complex that de-stabilize the training. We discuss
specific choices for each latent structure in Fig. 2 in the following subsection. Now, with a learned
posterior approximation, the corresponding marginal distribution (prior) in the latent space can
be derived post-hoc. Motivated by empirical Bayes, this can be achieved via integration over the
observation marginal: ¢;(z¢) = [ ¢:(z¢|@¢)p(x¢)dex,. In practice, a separate model can be used to
learn the marginal after training (Wang et al., 2023; Preechakul et al., 2022).

3.1 EXAMPLES OF STRUCTURED FLOW AUTOENCODERS (SFAS)

In this section, we expand on examples of SFA with continuous, finite mixture and Markov dynamic
latent structures in Fig. 2. We discuss the extensions of SCFM objective functions and choices of
approximation families.



3.1.1 CONTINUOUS LATENT VARIABLE MODEL

Consider the graphical model in Fig. 2a, where z € R% and = € R?,

iid ind
zi ~ p(2), mi|zi ~ p(xl|z),
giving rise to the posterior z;|x; ~ p(z|x). We estimate both the unknown likelihood and posterior
from observed data, €1; ~ Pdqte(T) = fp(m|z)p(z)dz, under SCFM objective. Following from
Proposition 3.1, the likelihood model is the conditional CNF generated by the conditional vector field
ve(xs|2¢, 0), governed by the ODE:

L ou@) = w(ou@)|z:6), do() =30, @0 ~ po(a). )

In this example, the risk function follows directly from Eq. 6. For practical implementation, the
inner expectation Eg, (2, |2,)[v:(¢]2¢)] of the objective can be approximated with a single sample
Z ~ q4(z|x), as commonly used in VAE (Kingma & Welling, 2013).

There are different choices of approximation family of posterior () and each with their own trade-offs.
With conditional CNFs, it amounts to modelling the parameterized conditional vector field r,(z|x; 0)
for x a.e. During training, we evaluate the inner expectation in Eq. 6 with samples from g; by solving
the ODE system from ¢ = 0 to ¢ = 1. The gradient computation then follows from reparameterization
trick of ¢;. Specifically, the sample from conditional CNF family requires backpropagation through
the adjoint ODE steps (Chen et al., 2018), which adds to instability and computational burden.

d
ds
Alternatively, () can be chosen as parametric families, with parameters indexed by ¢ and x. For
continuous latent, a simple choice is Gaussian family, Q = {(¢,z) — N(ug(t,x),05(t,x)14)}.
As the gradient computation follows directly from the standard reparameterization trick, it offers

computational efficiency and stability advantages. This approximation family evolving across
t € [0, 1] also provides flexibility beyond fixed-time counterparts.

¥s(2) = rs(s(2)|@150),  Yo(2) = 20, 20 ~ q0(2),

3.1.2 LATENT FINITE MIXTURE MODEL

In this section, we consider the generative model in Fig. 2b, where the latent variable z follows a
finite mixture distribution with the number of classes K. This graphical model takes into account of
latent class £ € [K], where p(§; = k|m) = 7, for each sample x. It gives rise to posteriors on the
local class label &;, the continuous latent z, and the global class proportion 7, as detailed under the
inference model.

Generative Model Inference Model
7~ p(r), &lm % Cat(r), Eilzi, m ~ Cat(p(&i|zi, 7)),

ind Zi| Xy Gi ~ P\Zi|XiyGi )y T 2] ™~ P\TT Z[n])-
zi|& ~ p(2|8), x|z ™ p(|z)), | & ~ p(zilzi, &), 7 [n] p(ml [ ])
When 7 ~ Dir(c), the posterior for overall proportions p(7|z,]) has a closed form Dir(a&) with
ap = oy + > 1{& = k}. The local label &, z are of major interest for drawing inference on the
latent class assignment and value. Next, we adapt SCFM for latent finite mixture model: both £ and
z are now integrated out in the inner expectation. Applying Proposition 3.1 gives rise to Eq. 8.

2
inf E:E ~ x E x zi|x ;9 - .
retea By [Baisn o colo@z 0] — e (@ =) @

t~Unif[0,1]

The design of likelihood model follows similarly as in Eq. 7, which is a CNF conditioned on z only.
The approximation family for p;(&;|x;) could be chosen as a Gumbel-Softmax distribution with
time-dependent parameters, alternatively constant across ¢ to reduce the complexity of the model. The
approximation family for p;(z|x, £), should be chosen as conditional CNF or parametric distribution
indexed by ¢, x, £. As z is unconstrained, a Gaussian approximation family can be posited similarly
as in Section 3.1.1.



NABNOMEAGERA NABNOMEAERA

100 100
ors ars
Zaso 2 oso
t‘azs ans
000 I
© w0 o 6 .6 o o O o .o 1. © %0 o WO O wo o WO o Lo 1.

(a) GMVAE (b) Mixture-SFA

Figure 3: Comparison of GMVAE and Mixture-SFA on MNIST dataset. The first row displays the posterior
predictive ; ~ [ p1(x|z)q1(z|®1,:)dz and latent class assignment probability & ~ g1 (€|@1,;) for a test data
x1,;. The second row shows the latent representation learned for digits, where each point is sampled from
z; ~ q1(z|x1,;) for a test data sample x1 ;.

3.2 LATENT DYNAMIC SYSTEM

We consider discrete-time sequential generation with continuous latent states following the graphical
model in Fig. 2¢. For index s € [S], the generative model is formalized as conditional independent
observation x°® given latent state z°; the inference model is focused on the full posterior of latent
trajectory 25! given the observation sequence !, which can be factorized into full conditionals at
each index s given all previous history.

Generative Model =z |z ! ~ p(z|2°7Y), @f|2] ~ p(x®|z5).

Inference Model zl[s]\;cgs] ~ p(z¥) 281y = H p(2°| 21 29,
s€[S]

Given observed sample sequences {LEES] }7_,, the SCFM objective can be shown to have the form
in Eq. 9. Accompanying theoretical results and numerical derivations are detailed in Theorem A.2,
which follows similar arguments for Proposition 3.1.

2

inf E N N E s s;e _ s s ) 9
seltfeaBmramapoion | 2 By gy (@il O —ue (e =) O

Here the sum over s € [S] captures the sequential dependencies inherent in the model structure.
Following the assumed conditional independence, we parameterize the likelihood using conditional
CNFs for each *, s € [S] according to Eq. 7. To approximate the posterior p, (z[|[%]), we employ
a parametric family with its parameters indexed by ¢ € [0, 1], previous states 2[5 and the full
observation sequence z[°!. Details of implementations can be found in App. B.3.

4 EMPIRICAL STUDIES

In this section, we evaluate the proposed SFA across a range of tasks and data modalities: (a)
conditional density estimation for Pinwheel dataset; (b) latent clustering on MNIST dataset; (c) gene
expression modelling on single-cell RNA-seq data; (d) sequence modelling with Pendulum trajectory
video dataset. We compare our method mainly to VAE counterparts, including SVAE (Johnson et al.,
2016), VampVAE(Tomczak & Welling, 2018), SVAE(Higgins et al., 2017), GMVAE (Lin et al.,
2018) and Latent Flow Matching with deterministic autoencoders (LatentFM) (Dao et al., 2023) and
probabilistic autoencoders (LatentFM w/VAE).

For a fair comparison, we restrict the prior to be fixed in SVAE and only focus on modeling the
conditional probabilities. All the metrics are evaluated based on samples held out from training. More
experimental details and supporting visualizations are hosted in App. B. We draw comparisons in
the quality of (1) generated posterior samples (or latent distribution samples for Latent FM) and (2)
generated posterior predictive samples, and downstream tasks, such as latent space clustering.

For (1), given a large training dataset, the posterior distribution should be able to provide an accurate
representation of the latent distribution. Therefore, under simulation settings where latent ground
truth is known, we are able to evaluate the discrepancy between learned latent representation and the
truth, provided z ~ ¢, (z|x) with & ~ pgasa(z).



Table 1: Comparing generated samples to data samples with W7 metric (Earth Mover’s Distance). Wi
metric is evaluated with samples from marginal data distribution p(21) and that generated from p1 (1) =
f p1(x1]21)q1(2z1)dz1. SFA and FM achieves comparable performance on marginal density estimations.

VAE VampVAE GMVAE FM LatentFM(w/VAE) SFA  Mixture-SFA
Wilp,p) L 0.119  0.081 0457  0.025  0.496(0.145) 0.024 0.046

Table 2: Subspace clustering on MNIST with latent mixtures models GMVAE and Mixture-SFA. Evaluated on
a held-out set of size 1000.

logp(x|z)t logp(z|z) T SSIMT softNMIfT NMIT ARI?T

GMVAE —1133 0.667 0.634 0.698 0.161 0.0716
Mixture-SFA —905.803 725.232 0.779 0.728 0.489 0.332

For (2), we conduct posterior predictive check to evaluate the discrepancy of the samples from
Pdata(x) and pyreqa(Z|z) = [ p1(2]2)p(2|z)dz. To sample from the latter, we follow

mdiata(m)7 Z|$ qu(z|:c), :7U|z~p1(93|z).

We evaluate the diversity of the generated samples using Vendi score (Friedman & Dieng, 2022);
quality of image generation with SSIM (Wang et al., 2004); quality of latent clustering with ARI
(Hubert & Arabie, 1985), NMI (Strehl & Ghosh, 2002) and probabilistic version softNMI (Eq. 13).

Summary of findings. In conditional density modeling (Pinwheel), SFA consistently outperforms
LatentFM and VAE-based models, showing better data density reconstruction and better latent space
modelling. To assess scalability, we apply SFA to a single-cell RNA-seq dataset, where it effectively
models high-dimensional gene expression data and outperforms VAEs in reconstruction quality. On
image data (MNIST), both SFA and its mixture extension (Mixture-SFA) learn meaningful latent
representations, generate high-fidelity samples, and perform well on latent-space clustering tasks.
Finally, we highlight SFA’s versatility on sequential data using the pendulum video dataset, where it
successfully captures the low-dimensional periodic structure of the underlying physical system.

SVAE and SFA comparison. The SVAE baseline uses 5-VAE (Higgins et al., 2017) with a
regularization parameter to balance likelihood and KL terms during training. This is crucial for
balancing the likelihood and posterior components in training. SFA is much more stable in jointly
learning the conditional probabilities, without the generation-latent learning trade-off often encoun-
tered in VAE training. When the latent is lower-dimensional, a smaller posterior model is sufficient
relative to the model size needed for the likelihood. When learning multiple components jointly,
simpler parametric approximation family are preferred over conditional CNFs for training stability.
Computation-wise, SFA (2.4M parameters) requires 13.220 &£ 1.848 seconds per epoch, comparable
to VAE’s 12.789 4 2.011 seconds.

4.1 MIXTURE MODELING: PINWHEEL DATA

We first illustrate the ability of SFA in learning conditional distributions using the toy example of
the pinwheel dataset, with five clusters each having the shape of a blade (Johnson et al., 2016). The
class membership is not provided during training. the goal is to evaluate if the posterior is able to
uncover the latent structure of the data, and whether the model is able to capture the observed data
distribution. In Fig. 1, we visualize the generated data together with their representation coded in
1D colorbar. SFA is able to reconstruct the support of the ground truth distribution, in addition to
capturing a meaningful latent representation for the angular rotation. In contrast, both the Latent FM
and VAE-estimated density does not have well-separated components. As shown in Table 1, SFA
based methods achieve similar density estimation quality as FM and comparable to ground truth,
while SVAE based methods fail to model the density accurately.

4.2 IMAGE MODELING: MNIST DATA

Next, we consider MNIST dataset LeCun et al. (2010), where we aim to recover the probabilistic
assignment of each image to the 10 classes, and learn a low dimensional feature representation at



Table 3: Comparison of metrics across different datasets and methods. (a) Kang HVG dataset evaluated on
a held-out set of size 500. The observation has dimension 5000, due to the size, the log likelihood for CNF
cannot be directly computed by solving adjoint-ODE, therefore left out of the comparison. (b) GLDS dataset
over posterior samples of observed (RMSE, ), and latent (RMSE ). Evaluated on a held-out set of size 300.

@ HVG (b) Pendulum

logp(z|z) T Vendi(x)T NMIT ARI? RMSE, | RMSE, |

VAE —40.040 26.580 0.412  0.257
LatentFM - 5.801 0.617  0.457 GLDSVAE 4.574 8.090
SFA 384.137 737.728 0.633 0.460 LDS-SFA 3.233 1.526

the same time. We first consider the graphical model with continuous latent, and compare SFA to
VAE and Latent FM on the latent space clustering task. In addition, to check if the learned latent
space captures desirable structures in the data, such as stroke and abstract shape, we sample from
the latent distribution encoding Out-of-Distribution (OOD) data in the EMNIST dataset Cohen et al.
(2017). Result and comparisons are summarized in Table 4 and Fig. 6. Notably, VAE has a posterior
collapse, resulting in unstructured latent space. On the other hand, both Latent FM and SFA learn
meaningful representations that generalize to OOD samples, with SFA achieving better clustering
performance and higher diversity (Vendi score). Performance using mixture graphical model are
organized in Fig. 3 and Fig. 6. GMVAE improves generation quality and latent class separation over
VAE. However, Mixture-SFA still achieves better clustering quality as shown in Table 4.

4.3 GENE EXPRESSION MODELING: SINGLE-CELL RNA-SEQ DATA

The dataset obtained from Lotfollahi et al. (2023) includes PBMCs from eight patients with Lupus.
The data consists of 7 cell types, and treated and control with IFN-£ (Kang et al., 2018). The observed
count is normalized and log(x + 1) transformed, then 5,000 HVGs are selected. We apply continuous
latent to learn the low-dim representation of the high-dimensional differential expression data. Fig. 4
indicates that both the SFA and Latent FM are able to produce meaningful clusters of the cell type in
the latent space. While both methods has good accuracy in the downstream clustering task, SFA has
a larger Vendi score in the generated samples (Table 3a), indicating better diversity.

4.4 SEQUENTIAL MODELING: PENDULUM TRAJECTORY VIDEO DATA

We choose a pendulum trajectory dataset for LDS example. The dynamics is driven by the pendulum
physical system modeled as a damped harmonic oscillator. The latent trajectory is 2 dimensional,
consisting of angle and angular velocity. The observation is a video with discrete time frames mapped
from latent trajectory. Additional details on model implementations are in App. B.3. We compare
SVAE with SFA in Table 3b, where we measure the discrepancy between the generated and ground
truth of both observed and latent dynamics using RMSE. LDS-SFA outperforms in both aspects.

5 DISCUSSION

In this work, we introduced structured flow autoencoders (SFA), a framework that integrates con-
tinuous normalizing flows (CNFs) with probabilistic graphical models (PGMs) to achieve both
high-fidelity generation and structured latent representation learning. At the core of SFA is our
proposed structured conditional flow matching (SCFM) objective, which extends flow matching
by explicitly modeling latent variables, enabling the estimation of both the generative likelihood
p(x|z) and the posterior p(z|x). This approach improves upon existing methods like Variational
Autoencoders (VAEs), which rely on restrictive parametric assumptions, and flow-based models,
which often lack structured interpretability. By leveraging the flexibility of CNFs while maintaining
the interpretability of PGMs, SFA provides a principled and expressive framework for learning
complex data distributions. Empirical results demonstrate the effectiveness of SFA in capturing both
marginal densities and structured latent dependencies, outperforming existing generative models in
density estimation and representation learning. This work highlights the potential of bridging neural
density estimation with structured probabilistic modeling, paving the way for more interpretable and
scalable generative frameworks.
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A THEORETICAL DETAILS

We formally present the probabilistic representation of solutions to the continuity equation when
the vector field fails to be Lipchitz w.r.t . In this case, the solution to the characteristic ODE (flow
ODE) is not unique. When using neural nets to parameterize the vector field, we want to verify that
the solution of the ODE indeed induces a solution to the continuity equation.

Firstly, we denote y1; : [0,1] — P(R?) as the path of probability indexed by ¢, ACP(0,1;R?) as
the space of absolutely continuous curves v : [0, 1] — R? with finite p energy, i.e. |[y/| € LP(0,1).
Denote T as the space of continuous map 7 : [0, 1] — R%. Let e; : (,) — 7(t) as the evaluation
map. Then define the curve of probability measure induced by the evaluation map as

:U'? = 6ttma te [Oa 1]

where by definition,
Jo@aii@ = [ v, vo e m. te .1
X
Then finally recall that the continuity equation

Oupir + V- (vtp) =0 inRE x (0,1).

Theorem A.1 (Ambrosio et al. (2008) Theorem 8.2.1). Let y; : [0,1] — P(RY) be a narrowly
continuous solution of the continuity equation for a suitable Borel vector field vi(x) such that for
some p > 1,

/01 /Rd |vg () [Pdp (2)dt < +o00.

i Then (a) there exists a probability measure 1 in R? x T' such that that concentrates on the
set of pairs (x,7) such that v € ACP(0,1;R?) is a solution of the ODE #(t) = v:((t))
for L*-a.e. t € [0,1] with v(0) = .
and (b) py = py vt € [0, 1].

ii Conversely, any n satisfies (a) and fol Jrasr oe(v(t))|dn(x,v)dt < 400 induces a solution
of the continuity equation via p; = egfn, with po = eofin.

The converse argument can be readily extended to the conditional vector field v(-, -, 2) : [0, 1] x R? —
R? for any v-a.e. z. Then the solution curve to the characteristic ODE would be indexed by z,
denoted as 7.

A.1 PROOFSIN § 3

In the following, we use the same notation in the main paper for the proof details of Proposition 3.1
in § 3. We restate the theorem in the following for completeness

Proposition (Proposition 3.1). Given conditional vector field vi(x|z) that generates the path
{p:(x|z)} of probability kernel for p(z) a.e. z. vy is the marginal vector field that generates
the marginal probability path p:(x) over t € [0, 1] under regularity conditions.

Proof. If the vector field v:(-|z) is measurable w.r.t z, then the flow v, solving the characteristic
ODE is measurable w.r.t z. Consequently, the probability p;(-|z) = ¥ipo(-) is a regular conditional
probability. If we further impose regularity on the conditional vector field v;(x|2), then there exists a
unique solution to the continuity equation (see Lemma 8.1.4 Ambrosio et al. (2008)).

Assume continuity and boundedness of v;(x|z)p:(x|z) and its divergence; continuity of p;(x|z)

and 2 p, (z|z) in both ¢ and 2, as well as uniformly bounded %p;(z|z) for all ¢ € [0, 1] and almost
all z. These regularity conditions ensures Leibniz integral rule is satisfied, so that the exchange of
derivative and divergence with integral is valid.

It is sufficient to show that IE,,, (| [v:(2|2)] and p; () satisfies the continuity equation. Firstly, it is
given that

%Pt(:ﬂz) = =V (vi(z|2)pe(z]2)).
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for p(z) a.e. z. Now, using Bayes rule

an@ = [ Gl

:/ =V - (ve(z]2)pe(x]2))p(2)

=9 [ (wutal) L) )pt<w>dz

=V (Ep, a1y [0e (2] 2)]pe (2))
which concludes the proof. O

A.2 PROOFSIN § 3.2

Recall the posterior arising from the latent dynamic model is
22l ~ p(29)2lS)) = TT p(e)2lo Y, 2l). (10)
se[S]

We present the extension of Proposition 3.1 to the latent dynamic model in the following theorem.
The proof idea relies on verifying the joint continuity equation over the trajectory is satisfied and the
corresponding structured conditional flow matching objective is well defined.

Theorem A.2. With conditional flow defined by Eq. 7, and posterior defined by Eq. 10, the FM
objective is derived to be Eq. 9, which has the same gradient as the flow matching objective that
matches v to the marginal vector field uy.

2

L5crM = Boympiusaminpi(@ilon) || D By ol pis)) [0e(@f]270)] — we (2 | 23)]|
t~Unif{0,1] s€[S]

Proof. Assume regularity conditions that gaurantees the exchange of integration and divergence,
differentiation w.r.t. ¢.

We first show that [ 37, (s ut(@s |23 )pe (@ [z (s))d; is the marginalized vector field that gener-
ates {p;([g))}. In the following p(z1|xo) = p(}) for simplicity of indexing,

d d
apt(ﬂc[sﬂ Z/dtpt(iﬁ[s |2(s))p(x[5) ) ds)

/Z ¢(z|xl) Hpt :cj\a: S])da: 9]

s€[S] J#s
/ Z —V - (pe(zs |2l ug (5| 2l) Hpt w]|:1c p(x s )da:[s]
sels] J#s (11)

=-V-({> /Ut x| )pi (@) [2)s)) de s pi (2 5)

se[S]

==V Ep (@l Zut(ws‘wi) P(@s))
s€[S]

The second equality is by conditional independence of the transported samples for each s € [S] and
applying chain rule on the product p;(z|z1) [, e(s) Pt(®s |z1). This shows the marginal vector field
is additive in the time index s following the marginal vector field defined for each s € [S].

Now, we’d like to derive the conditional flow matching objective from the marginal flow matching,

and show the two has the same gradient with respect to the NN parameterized marginal vector field
v;. The marginal VF for LDS takes the form

Ep, (o) 10 ((57) — e (i) |17 (12)
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It is then sufficient to look at the cross term and the squared term on v,. Firstly,

Ept(fc[s ) <Ut (.’B), Ut (CC))

/< Z/“t sl )pe (@, |2s))de >pt(93[51)d93[31

se[S]
/Z / ve(x), ug (|2 ))/pt(az[ls]|w[s])dmisdw;pt(w[s])dw[s]
se[S]
/Z vi(®), ui(@s|a)) pe (s |2 ]s)pi (25 ) da [y da )
se[S]

1
=Ep, (a5 |2l p(@ly) <Ut(11?)7 Ut(:cslws)>
s€[S]

for the quadratic term, it directly follows from iterated expectations

]Epf z[s ||Ut( )”2 = Ept(:l:[s]Iw[ls])p(m%s])Hvt(w)HQ'

Therefore optimizing v; with Eq. 12 is equivalent to optimizing the marginal flow matching objective
2

fEp, (51wl p(aly)) || 0¢(E) = > w(@s|xy)
s€[S]

Finally, to introduce the structured FM objective with latent dynamical system, we verify the marginal
vector field v; arisen from marginalizing v (xs|2,) generates the probability path {p;(z[s))}. The
proof is similar to the previous ones, where we verify that the continuity equation is satisfied.

d d
@pt(ﬂf[S]) :/%Pt(w[sq|Z[S])p(z[51)dz[51

/Z 5| zs) Hpt xj|z;)p(z(s))dz(s)

se[s] J#s
/ Z -V 'Ut ms‘zs Pt :13‘5|Zé Hpt wJ|zJ S])dz[S]
se[S] J#s
=-V- Z /Ut s|zs)pe(21s7|157)d 2157 - P(T[9))
s€[S]

==V [ Ep(zg |2 Z ve(®s|20) | p(@(s))
s€[S]

It is notable that the conditional independence and Markov assumption gives rise to the filtering
probability p(zs|zs)) and p(z}|zs)).

In particular, the objective Eq. 9 depends on the entire sequence through the sum over [S], due to
the conditional independence structure of the likelihood. As it requires access to the full observed
sequence at every step s € [S], the training procedure is entirely offline.

O

B EXPERIMENT DETAILS

All experiments are conducted on a MacBook Pro equipped with an Apple M2 Pro chip and 16 GB
of memory.

The Pinwheel dataset is a classic benchmark for density estimation task. SFA is demonstrated to be
able to meaningfully capture latent distribution as well as observed distribution.
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For VAE, we use Gaussian distribution with diagonal covariance for posterior and likelihood family.
The parameters of Gaussian are parameterized by Multilayer Perceptrons (MLPs) and mapped from
context vector. For SFA, we use MLP to parameterize the conditional vector fields v;, and use
Gaussian parametric family indexed by ¢, « for the posterior flow.

With latent mixture, we use constant time Gumbel-Softmax network to model the latent class
probability for both GMVAE and Mixture-SFA. We use tanh activation function for all models
applied to this dataset.

To compare, the samples and latent representations are generated based on the estimated conditional

probabilities,
id.d. - id.d.
zi ~7p(2), iz~ pr(xlz), ZilTe T~ q(z]T).

(a) SFA 7 (b) Latent FM 7 (c) VAE

Figure 4: RNAseq dataset: Latent space visualization in 2D, projected with TSNE (perplexity=30).

B.1 SINGLE CELL RNA-SEQ

The Single Cell RNA-seq dataset Kang et al. (2018) consists of transformed count vector of size
5000, therefore presents challenges in modelling with CNF and likelihood based optimization. SFA
directly tackles this complexity by learning a meaningful latent representation while not requiring
computation of log-likelihood during training.

We parameterize the CNF v; with MLP, and uses a 32-dim Gaussian approximation family for the
posterior that varies across time ¢ and observation x. The VAE model uses Gaussian encoder and
decoder with NN parameterized parameters that is time independent. For the latent FM, we use MLP
encoder and decoder, 32 dim latent space and CNF to learn the latent distribution p(z).

B.2 MNIST DATA

For GMVAE, we use Gaussian distribution with diagonal covariance for posterior and likelihood
family. MLPs are used to map context vectors to the means and covariances of the Gaussians. The
latent class probability is via a Gumbel-Softmax network, which uses MLP to map from context
vector to logits, then apply Gumbel-Softmax trick for sampling.

For Mixture-SFA, we also use MLP to parameterize the conditional vector fields v; and Gaussian
posterior with parameter indexed by ¢, . It is notable that with larger differences in the dimensionality
and scale, a linear map is used to firstly map the context vectors to vectors of the same size. Then
apply concatenation and feed to the main network. We also use Gumbel-Softmax network to model
the latent class probability. Alternatively, we can use a 10 dimensional vector field to model the
distribution of logits.

For both model, we use softplus activation function and train until convergence. We observe that a
smaller network is usually sufficed for modelling the latent, which also increases training speed.

We compare the performance of the two methods from 2 perspectives.

1. Posterior Predictive: for every test sample x;, we first sample from the posterior z;|x; ~
q(z|z), then sample from the likelihood &; pew|2zi ~ p(x|2;).

2. Latent Space Representation: for every test sample x;, we sample from the posterior
&ile; ~ q(&|x;), then from z;|x; ~ g(z|x) to obtain a latent representation of the observed

16



SRl
S EREEEER

&
5
<)
o]

HENGEHAEEENS SEESRRREAA

NENGLRIENANS
MENEGLEE NS

(c) GMVAE Posterior Predictive

Figure 5: Comparison of Posterior Predictive Results: (a) GMVAE and (b) Mixture-SFA.
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data point. We visualize the class probability samples {; } with histogram, and the sample
{z;} with TSNE (complexity = 30) projected from 64 dimensional space onto 3 dimensional

space.

logp(z|z) T logp(z|z) T Vendit SSIMT NMI(OOD)1T ARI(OOD) T
VAE —453.648 —85.448 63.286 0.419 0.039(0.033)  0.017(0.012)
VampVAE —584.845 155.820 1.140 0.866  0.006(0.006)  0.000(0.000)
Latent FM - - 8380  0.980  0.488(0.392) 0.381(0.194)
Latent FM (VAE) —910925 —11.192 19.631 0.697 0.309(0.152)  0.205(0.073)
SFA —916.901 793.262 25.589 0.716  0.490(0.394) 0.356(0.208)
w/Deterministic Latent ~ —858.385 - 10.189 0.679  0.501(0.333)  0.379(0.155)

Table 4: Comparison of metrics for MNIST dataset between VAE, latent FM and SFA. Evaluated on
a held-out set of size 1000. The OOD dataset consists of first 10 classes of letters and the first 10
classes of digits in EMNIST. The clustering is done in the latent space via k-means with k given.
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() VAE

(e) SFA (OOD) (f) Latent FM (OOD) (2) VAE (OOD) (h) GMVAE
Figure 6: MNIST dataset: Latent space visualization in 2D projected with TSNE (perplexity=50).
(a)-(c),(e)-(g) follows from the continuous latent graphical model, (d) and (b) employs latent mixture

model. The OOD dataset consists of first 10 classes of letters and the first 10 classes of digits in
EMNIST.
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(a) Posterior Samples (&) (b) Posterior Samples (z)

Figure 7: GMVAE Posterior Samples: (a) samples from latent variable &: each column corresponds
to different images, each row corresponds to different class label; and (b) latent variable 2z, with
TSNE projection from 64 dimensional to 3 dimensional space.

SoftNMI To assess the quality of latent probabilistic cluster assignment for Mixture-SFA and
GMVAE, we use a soft Normalized Mutual Information (softNMI), which computes the discrepancy
between a one-hot label vector and a probability vector based on entropy,

H(p)+ H(q) — H(p,q)

softNMI(p, @) = == )

e [0,1], (13)

where H (p) is the entropy function on the marginal, H (p, ¢) is the entropy on the joint. Higher score
suggests higher correlation between the posterior class assignment probability and true class label.

From Table 4, we observe the stochastic latent helps to increase the diversity of the generation, while
variants of VAE has poor generation quality, the FM based models have better performance in image
generation quality. However, there’s a notable trade-off in reconstruction quality and generation
diversity, where stochastic latent have higher Vendi score while suffer a slight decrease in SSIM
score, and vice versa for the deterministic latent. In addition, for downstream clustering task, SFA
with deterministic latent has better NMI and ARI score for within distribution sample, yet SFA with
stochastic latent has better NMI and ARI for out-of-distribution samples.
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Figure 8: Mixture-SFA Results: (a) Posterior Samples (&) and (b) Posterior Samples (z).
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Figure 9: Comparison of Pendulum Dynamics: Ground Truth and GLDSVAE.

B.3 LATENT DYNAMICAL SYSTEM

To model the full conditional posterior ¢(z |z[8*1]’“”[s] ), we use sequence model to separately encode
the observation sequence x s and full latent history z[s=1 to a context vector. For the input sequence,
as it is fixed in length, we use an attention pooling to reduce it to a fixed length vector. For the latent,
we use GRU to iteratively encode the historic latent sequence into fixed length latent embeddings. We
apply this to both GLDSVAE and LDS-SFA. Therefore, the full posterior of GLDSVAE is modeled

by
28|27 25 ~ Gaussian (u (hz(z[sfl]), hm(az[s])) 2 (hz(z[sfl}), hm(m[5}>) .

The likelihood, with conditional independence assumption is modeled by Gaussian (j1(zs), X(zs)).

The likelihood is modeled with CNF, where the vector field is indexed by MLP, the incorporation of
time and latent representation z is done via concatenation.
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C THE USE OF LARGE LANGUAGE MODELS (LLMS)
LLM is used to refine the code of model architecture and is used to polish the writing of the draft.

LLM is not used in generate research idea or writing to the extent that they could be regarded as a
contributor.
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