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Abstract

Text clustering methods were traditionally in-001
corporated into multi-document summariza-002
tion (MDS) as a means for coping with con-003
siderable information repetition. Particularly,004
clusters were leveraged to indicate information005
saliency as well as to avoid redundancy. Such006
prior methods focused on clustering sentences,007
even though closely related sentences usually008
contain also non-aligned parts. In this work,009
we revisit the clustering approach, grouping010
together sub-sentential propositions, aiming at011
more precise information alignment. Specifi-012
cally, our method detects salient propositions,013
clusters them into paraphrastic clusters, and014
generates a representative sentence for each015
cluster via text fusion. Our summarization016
method improves over the previous state-of-017
the-art MDS method in the DUC 2004 and018
TAC 2011 datasets, both in automatic ROUGE019
scores and human preference.1020

1 Introduction021

Common information needs are most often satis-022

fied by multiple texts rather than by a single one.023

Accordingly, there is a rising interest in Multi-024

Document Summarization (MDS) — generating025

a summary for a set of topically-related documents.026

Inherently, MDS needs to address, either explic-027

itly or implicitly, several subtasks embedded in this028

summarization setting. These include salience de-029

tection, redundancy removal, and text generation.030

While all these subtasks are embedded in Single-031

Document Summarization (SDS) as well, the chal-032

lenges are much greater in the multi-document033

setting, where information is heterogeneous and034

dispersed, while exhibiting substantial redundancy035

across linguistically divergent utterances.036

An appealing summarization approach that037

copes with these challenges, and is especially rele-038

vant for MDS, is clustering-based summarization.039

1Our code and system summaries will be release upon
publication.

• But the man, Rabei Osman Sayed Ahmed - expected to be the first of 29 

defendants to take the stand when the bombing trial begins Thursday in 

Madrid - also said in the recordings that the attack was carried out 

according to his plan. 

• The trial opened Thursday of 29 mostly Moroccan suspects charged 
with involvement in the 2004 Madrid train bomb attacks, which killed 
191 people and injured 1,824 in the worst terror strike to hit Spain.

• Of the 29 people who go on trial Thursday for the March 2004 Madrid 
train bombings, seven face some 40,000 years in jail if found guilty.

Figure 1: An example of a cluster of propositions,
shown within their source sentence context, from TAC
2011 (topic D1103). Clustering these as sentences
would yield noisy unaligned information, however
grouping together only the marked propositions keeps
information alignment clean. The first sentence is illus-
tratively divided into propositions, where only one of
them is aligned to those in the other sentences.

In such an approach, the goal is to cluster redun- 040

dant paraphrastic pieces of information across the 041

texts, which roughly convey the same meaning. 042

Repetition of information across texts, as captured 043

by paraphrastic clustering, typically indicates its 044

importance, and can be leveraged for salience detec- 045

tion. Moreover, representing a paraphrastic cluster 046

may facilitate generating a corresponding summary 047

that eliminates repetitions while fusing together 048

complementary details within the cluster. 049

Traditionally, clustering-based approaches were 050

widely used for summarization, mostly in extrac- 051

tive and unsupervised settings (Radev et al., 2004; 052

Zhang et al., 2015; Nayeem et al., 2018). Notably, 053

most of these works generated sentence-based clus- 054

ters, which tend to be noisy since a sentence typi- 055

cally consists of several units of information that 056

only partially overlap with other cluster sentences. 057

As a result, such clusters often capture topically 058

related sentences rather than paraphrases. Fig- 059

ure 1 exemplifies such a noisy cluster, which does 060

contain paraphrastic propositions (marked in blue) 061

within their full sentences (marked in black). An- 062

other line of research in summarization coped with 063

such noisy sentence-based setting, and looked into 064

1



the use of sub-sentential units for summarization,065

e.g., Li et al. (2016) summarizes with Elemen-066

tary Discourse Units (EDUs), while Ernst et al.067

(2021) endorse using OpenIE-based propositions068

(Stanovsky et al., 2018) for summarization.069

In this paper, we revisit and combine the070

clustering-based approaches along with sub-071

sentential setting, two research lines that were ex-072

plored only individually and rather scarcely in re-073

cent years. Specifically, we apply clustering-based074

summarization at the more fine-grained proposi-075

tional level, which avoids grouping non-aligned076

texts, yielding accurate paraphrastic clusters. These077

clusters also provide better control over the gener-078

ated summary sentences – as the generation compo-079

nent is only required to fuse similar propositions.080

Our model (§3) leverages gold reference sum-081

maries to derive training datasets for several sum-082

marization sub-tasks. First, salient document083

propositions were extracted, to train a salience084

model, by greedily maximizing alignment with the085

reference summaries. Then, an available propo-086

sition similarity model, trained from summary-087

source alignments (Ernst et al., 2021), provides the088

basis for agglomerative clustering (Ward, 1963).089

Finally, we created training data for a BART-based090

model for sentence fusion (Lewis et al., 2020)091

by aligning reference summary propositions with092

source proposition clusters. Similar to many other093

works, we leave inter-sentence coherence and sen-094

tence planning and ordering outside the scope of095

the current paper. Accordingly, our process pro-096

duces a bullet-style summary of individual concise097

and coherent sentences.098

Overall, our experiments (§4) show that this099

multi-step model outperforms strong recent end-to-100

end solutions, which do not include explicit model-101

ing of propositions and information redundancy. To102

the best of our knowledge, our approach achieves103

state-of-the-art results in our setting on the DUC104

2004 and TAC 2011 datasets, with an improvement105

of more than 1.5 and 4 ROUGE-1 F1 points respec-106

tively, over the previous best approach. Finally,107

we also suggest (§5) that clustering-based methods108

provide “explanations", or supporting evidence, for109

each generated sentence, in the form of the source110

cluster propositions (see an example in Table 1).111

2 Background and Related Work112

Clustering-based summarization. Clustering-113

based summarization approaches typically involve114

salience detection while avoiding redundancy. One 115

such approach clustered topically-related sentences, 116

after which cluster properties were leveraged for 117

rating sentence salience (Radev et al., 2004; Wang 118

et al., 2008; Wan and Yang, 2008). Another ap- 119

proach rated sentence salience and clustered sen- 120

tences simultaneously, iteratively improving the 121

two objectives (Cai et al., 2010; Wang et al., 2011; 122

Cai and Li, 2013; Zhang et al., 2015). Recently, 123

however, clustering methods have been gradually 124

marginalized out, being replaced by neural tech- 125

niques. More recently though, some approaches 126

(Nayeem et al., 2018; Fuad et al., 2019) presented 127

abstractive clustering-based summarization, where 128

topically-related sentences in each cluster are fused 129

together to generate a summary sentence candidate. 130

While most of previous clustering approaches op- 131

erated at the noisy sentence level, in our work we 132

present more accurate proposition-level clustering 133

that eventually enhances summarization. 134

Sub-sentence units in summarization. While 135

many summarization approaches extract full docu- 136

ment sentences, either for extractive summarization 137

or as an intermediate step for abstractive summa- 138

rization, there are methods that operated the sub- 139

sentential level. Li et al. (2016) produced extrac- 140

tive summaries consisting of Elementary Discourse 141

Units (EDUs) – clauses comprising a discourse unit 142

according to Rhetorical Structure Theory (RST) 143

(Mann and Thompson, 1988). Such extractive ap- 144

proaches usually focus on content selection, pos- 145

sibly disregarding the inferior coherence arising 146

from the concatenation of sub-sentence units. Ac- 147

cordingly, Arumae et al. (2019) established the 148

highlighting task, where salient sub-sentence units 149

are marked within their document to provide sur- 150

rounding context. Recently, Cho et al. (2020) pro- 151

posed identifying heuristically self-contained sub- 152

sentence units for the highlighting task. 153

Abstractive approaches have been extracting sub- 154

sentence units as a preliminary step for generation. 155

Such units range from words (Lebanoff et al., 2020; 156

Gehrmann et al., 2018), to noun or verb phrases 157

(Bing et al., 2015), to Open Information Extraction 158

(OpenIE) propositions (Pasunuru et al., 2021). In 159

our work, we follow the same extract-then-generate 160

pipeline, using OpenIE spans (Stanovsky et al., 161

2018) as proposition units. Since propositions are 162

meant to contain single standalone facts consist- 163

ing of a main predicate and its arguments, they are 164

beneficial for grouping mostly overlapping para- 165
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Figure 2: Our multi-document summarization process. (a) All propositions are extracted (OpenIE; Stanovsky
et al., 2018) from the documents. (b) Propositions are classified by a salience score (fine-tuned CDLM; Caciularu
et al., 2021). (c) Salient propositions are clustered (fine-tuned SuperPAL; Ernst et al., 2021), forming groups
of paraphrastic information units. (d) Clusters are ranked, as an indicator for information importance. (e) For
each cluster, its propositions are fused (fine-tuned BART; Lewis et al., 2020) to generate a concise and coherent
abstractive sentence. (f) The output summary is obtained as a bullet-style ranked list of the concise sentences.

phrases (unlike sentential paraphrases). In addition,166

propositions extracted with OpenIE can be noncon-167

tiguous, while alternative options, like EDUs, are168

limited to contiguous sequences.169

3 Method170

This section first provides an overview of our171

method, followed by subsections describing its172

components. We follow previous clustering-based173

approaches, where text segments are first clustered174

into semantically similar groups, exploiting redun-175

dancy as a salience signal. Then, each group is176

fused to generate a merged sentence, while avoid-177

ing redundancy. As we operate at the proposition-178

level, we first extract all propositions from the input179

documents (§3.1). Then, to facilitate the clustering180

step, we filter out non-salient propositions using a181

salience model (§3.2). Next, salient propositions182

are clustered based on their semantic similarity183

(§3.3). The largest clusters, whose information was184

most repeated, are selected to be included in the185

summary (§3.4). Finally, each cluster is fused to186

form a sentence for a bullet-style abstractive sum-187

mary (§3.5). In addition, to support extractive sum-188

marization, we provide an extractive version where189

a representative (source) proposition is selected190

from each cluster (3.6). Overall, clustering explicit191

propositions induces a multi-step process that re-192

quires dedicated training data for certain steps. To193

that end, we derive new training datasets for the 194

salience detection and the fusion models from the 195

original gold summaries. The full pipeline is illus- 196

trated in Figure 2, where additional implementation 197

details appear in §B in the Appendix. 198

3.1 Proposition Extraction 199

Aiming to generate proposition-based summaries, 200

we first extract all propositions from the source doc- 201

uments using Open Information Extraction (Ope- 202

nIE) (Stanovsky et al., 2018)2, following Ernst et al. 203

(2021). To convert an OpenIE tuple containing 204

a predicate and its arguments into a proposition 205

string, we simply concatenate them by their origi- 206

nal order, as illustrated in Figure 3 in the Appendix. 207

3.2 Proposition Salience Model 208

To facilitate the clustering stage, we first aim to fil- 209

ter non-salient propositions by a supervised model. 210

To that end, we derive gold labels for proposition 211

salience from the existing reference summaries. 212

Specifically, we select greedily propositions that 213

maximize ROUGE-1F-1 + ROUGE-2F-1 against 214

their reference summaries (Nallapati et al., 2017; 215

Liu and Lapata, 2019) and marked them as salient. 216

Using this derived training data, we fine-tuned 217

the Cross-Document Language Model (CDLM) 218

(Caciularu et al., 2021) as a binary classifier for 219

2https://demo.allennlp.org/open-information-extraction
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Cluster A

• The agreement will make Hun Sen prime minister and Ranariddh
president of the National Assembly.

• ...to a coalition deal...will make Hun Sen sole prime minister and
Ranariddh president of the National Assembly.

• The deal, which will make Hun Sen prime minister and Ranariddh
president of the National Assembly...ended more than three months of
political deadlock

• Last week...Hun Sen’s Cambodian People’s Party and Ranariddh’s
FUNCINPEC party agreed to form a coalition that would leave Hun
Sen as sole prime minister and make the prince president of the Na-
tional Assembly.

• In a long-elusive compromise...opposition leader Prince Norodom
Ranariddh will become president of the National Assembly

Cluster B
• ...opposition party leaders Prince Norodom Ranariddh and Sam
Rainsy are out of the country
• Sam Rainsy and his then-ally Prince Norodom Ranariddh led an
exodus of opposition lawmakers out of Cambodia

• Opposition leaders Prince Norodom Ranariddh and Sam
Rainsy...said they could not negotiate freely in Cambodia

• Opposition leaders Prince Norodom Ranariddh and Sam
Rainsy...citing Hun Sen’s threats

Cluster C

• Hun Sen’s Cambodian People’s Party narrowly won the polls

• Hun Sen’s ruling party narrowly won a majority in elections in July

• Hun Sen’s Cambodian People’s Party narrowly won the election.

• the ruling party narrowly won.

Cluster D

• A series of negotiations to forge a new government

• ...any...in deadlocked negotiations to form a government.

• A series of negotiations to forge a new government have failed.

Cluster E

• Hun Sen accused him of being behind a plot against his life.

• Sam Rainsy...to take refuge in a U.N. office in September to avoid
arrest after Hun Sen accused him of

• Sam Rainsy...to avoid arrest after Hun Sen accused him of being be-
hind a plot against his life.

Cluster F

• Hun Sen ousted Ranariddh in a coup.

• The men served as co-prime ministers until Hun Sen overthrew Ra-
nariddh in a coup last year.

• Hun Sen overthrew Ranariddh in a coup last year.

ClusterProp summary

A. The deal will make Hun Sen prime minister and Ranariddh presi-
dent of the National Assembly

B. The opposition party leaders Prince Norodom Ranariddh and Sam
Rainsy are out of the country

C. Hun Sen’s Cambodian People’s Party narrowly won the election.

D. A series of negotiations to forge a new government failed.

E. The U.N. accused him of being behind a plot against his life.

F. Hun Sen ousted Ranariddh in a coup last year.

G. The opposition alleging widespread fraud and intimidation by the
CPP
H. The parties have refused to enter into a coalition with Hun Sen
until their allegations of election fraud have been thoroughly investi-
gated.

Reference Summary

Cambodia King Norodom Sihanouk praised formation of a coalition
of the Countries top two political parties, leaving strongman Hun Sen
as Prime Minister and opposition leader Prince Norodom Ranariddh
president of the National Assembly.
The announcement comes after months of bitter argument following
the failure of any party to attain the required quota to form a govern-
ment.
Opposition leader Sam Rainey was seeking assurances that he and his
party members would not be arrested if they return to Cambodia.
Rainey had been accused by Hun Sen of being behind an assassi-
nation attempt against him during massive street demonstrations in
September.

Table 1: The proposition clusters and system and reference summaries for DUC 2004, topic D30001. Each sum-
mary sentence (lower left box) was fused from its corresponding cluster (top boxes) that also provides supporting
source evidence. An example of an unfaithful abstraction is marked in red.

predicting whether a proposition is salient or not.220

Propositions with a salience score below a certain221

threshold were filtered out. The threshold was222

optimized with the full pipeline against the final223

ROUGE score on the validation set. All proposi-224

tions contained in the clusters in Table 1 are exam-225

ples of predicted salient propositions. We chose226

to use CDLM as it was pretrained with sets of re-227

lated documents, and was hence shown to operate228

well over several downstream tasks in the multi-229

document setting (e.g., cross-document corefer-230

ence resolution and multi-document classification).231

3.3 Clustering232

Next, all salient propositions are clustered to se-233

manticly similar groups. Clusters of paraphrastic234

propositions are advantageous for summarization235

as they can assist in avoiding redundant information236

in an output summary. Furthermore, paraphrastic237

clustering offers redundancy as an additional indi- 238

cator for saliency, while the former salience model 239

(§3.2) does not utilize repetitions explicitly. To 240

cluster propositions we utilize SuperPAL (Ernst 241

et al., 2021), a binary classifier that measures para- 242

phrastic similarity between two propositions. All 243

pairs of salient propositions are scored with Super- 244

PAL, over which standard agglomerative clustering 245

(Ward, 1963) is applied. Examples of generated 246

clusters are presented in Table 1. 247

3.4 Cluster Ranking 248

The resulting proposition clusters are next ranked 249

according to cluster-based properties. We exam- 250

ined various features, listed in Table 2, on our vali- 251

dation sets. The features examined include: aver- 252

age of ROUGE scores between all propositions in 253

a cluster (‘Avg. ROUGE’), average of SuperPAL 254

scores between all propositions in a cluster (‘Avg. 255
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SuperPAL’), average of the salience model scores256

of cluster propositions (‘Avg. salience’), minimal257

position (in a document) of cluster propositions258

(‘Min. position’), and cluster size (‘Cluster size’).259

For each feature, (1) clusters were ranked ac-260

cording to the feature, (2) the proposition with the261

highest salience model score (§3.2) was selected262

from each cluster as a cluster representative, (3)263

the representatives from the highest ranked clus-264

ters were concatenated to obtain a system summary.265

We also measured combinations of two features266

(‘Cluster size + Min. position’ for example), where267

the first feature is used for primary ranking, and268

the second feature is used for secondary ranking in269

case of a tie. In all options, if a tie is still remained,270

further ranking between clusters is resolved accord-271

ing to the maximal proposition salience score of272

each cluster. The resulting ROUGE scores of these273

summaries on validation sets are presented in Table274

2.3 We found that ‘Cluster size’ yields the best275

ROUGE scores as a single feature, and ‘Min. po-276

sition’ further improves results as a secondary tie277

breaking ranking feature. Intuitively, a large cluster278

represents redundancy of information across docu-279

ments thus likely to indicate higher importance.280

3.5 Cluster Fusion281

Next, we would like to merge the paraphrastic282

propositions in each cluster, while consolidating283

complementary details, to generate a new coherent284

summary sentence. As mentioned, this approach285

helps avoiding redundancy, since redundant infor-286

mation is concentrated separately in each cluster.287

To train a cluster fusion model, we derived train-288

ing data automatically from the reference sum-289

maries, by leveraging the SuperPAL model (Ernst290

et al., 2021) (which was also employed in §3.3).291

This time, the model is used for measuring the simi-292

larity between each of the cluster propositions (that293

were extracted from the documents) and each of294

the propositions extracted from the reference sum-295

maries. The reference summary proposition with296

the highest average similarity score to all cluster297

propositions was selected as the aligned summary298

proposition of the cluster. This summary proposi-299

tion was used as the target output for training the300

generation model. Although these target OpenIE301

propositions may be ungrammatical or non-fluent,302

3We also tried training a regression model on a mixture of
features that should predict the ROUGE score of a proposition,
but results were comparable. Bettering the ranking process is
left for future work.

Cluster Feature DUC 2004 TAC 2011
R1 R2 R1 R2

Avg. ROUGE 35.9 7.48 38.14 9.93
Avg. salience 35.5 7.98 41.18 12.55
Min. position 37.25 8.89 38.86 11.37

Avg. SuperPAL 37.41 8.90 41.22 12.59
Cluster size 37.58 9.01 41.35 12.49

Cluster size + Avg. SuperPAL 37.54 8.96 41.45 12.71
Cluster size + Avg. salience 37.77 9.09 41.44 12.62
Cluster size + Min. position 38.05 9.21 41.68 12.78

Table 2: ROUGE F1 results on validation sets when
ranking clusters according to differing features (DUC
2004 is the validation set of TAC 2011 and vice versa).
Two combined features means ranking on the first fea-
ture, and breaking ties with the second feature.

a human examination has shown that BART tends 303

to produce full coherent sentences (mostly contain- 304

ing only a single proposition), even though it was 305

finetuned over OpenIE extractions as target. Exam- 306

ples of coherent generated sentences can be seen in 307

Table 1. 308

Accordingly, we fine-tuned a BART generation 309

model (Lewis et al., 2020) with this dedicated train- 310

ing data. As input, the model receives cluster propo- 311

sitions, ordered by their predicted salience score 312

(§3.2) and separated with special tokens. The fi- 313

nal bullet-style summary is produced by appending 314

generated sentences from the ranked clusters until 315

the desired word-limit is reached. 316

3.6 Extractive Summarization Version 317

To support extractive summarization settings, for 318

example when hallucination is forbidden, we cre- 319

ated a corresponding extractive version of our 320

method. In this version, we extracted a represen- 321

tative proposition for each cluster, which was cho- 322

sen according to the highest word overlap with the 323

sentence that was fused from this cluster by our 324

abstractive version. 325

4 Evaluation 326

4.1 Experimental Setup 327

Datasets. We train and test our summarizer with 328

the challenging DUC and TAC MDS benchmarks. 329

Specifically, following standard convention (Mao 330

et al., 2020; Cho et al., 2019), we test on DUC 2004 331

using DUC 2003 for training, and on TAC 2011 332

4For the Hi-MAP and MDS-Joint-SDS approaches we
present only DUC 2004 scores since TAC 2011 scores are
not available for them.

5The outputs of DPP-Caps (Cho et al., 2019), HL-XLNet
and HL-Tree (Cho et al., 2020) were re-evaluated using author
released output.
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Method TAC 2011 DUC 2004
R1 R2 RSU4 R1 R2 RSU4

ab
sr

ac
tiv

e
Opinosis (Ganesan et al., 2010) 25.15 5.12 8.12 27.07 5.03 8.63
Extract+Rewrite (Song et al., 2018) 29.07 6.11 9.20 28.9 5.33 8.76
PG (See et al., 2017) 31.44 6.40 10.20 31.43 6.03 10.01
Hi-MAP4 (Fabbri et al., 2019) - - - 35.78 8.90 11.43
PG-MMR (Lebanoff et al., 2018) 37.17 10.72 14.16 36.88 8.73 12.64
MDS-Joint-SDS4 (Jin and Wan, 2020) - - - 37.24 8.60 12.67
ProClusterabs (Ours) 41.45 12.75 16.16 38.71 9.62 14.07

ex
tr

ac
tiv

e

SumBasic (Vanderwende et al., 2007) 31.58 6.06 10.06 29.48 4.25 8.64
KLSumm (Haghighi and Vanderwende, 2009) 31.23 7.07 10.56 31.04 6.03 10.23
LexRank (Erkan and Radev, 2004) 33.10 7.50 11.13 34.44 7.11 11.19
HL-XLNetSegs5 (Cho et al., 2020) 37.32 10.24 13.54 36.73 9.10 12.63
HL-TreeSegs5 (Cho et al., 2020) 36.70 9.68 13.14 38.29 10.04 13.57
DPP-Caps-Comb5 (Cho et al., 2019) 38.14 11.18 14.41 38.26 9.76 13.64
RL-MMR (Mao et al., 2020) 39.65 11.44 15.02 38.56 10.02 13.80
ProClusterext (Ours) 40.98 12.40 15.77 38.73 9.64 13.89
Oracleprop 49.65 21.82 23.19 46.49 16.16 18.76

Table 3: Automatic ROUGE F1 evaluation scores on the TAC 2011 & DUC 2004 MDS test sets. Our solutions
(ProCluster) improve over the previous state-of-the-art methods both in the abstractive and extractive settings.
Notably, our abstractive approach also surpasses the best extractive ones.

using TAC 2008/2009/2010 for training. These333

sets contain between 30 and 50 topics each. For334

validation sets, we used DUC 2004 for the TAC335

benchmark and TAC 2011 for the DUC benchmark.336

Automatic evaluation metric. Following com-337

mon practice, we evaluate and compare our sum-338

marization system with ROUGE-1/2/SU4 F1 mea-339

sures (Lin, 2004). Stopwords are not removed, and340

the output summary is limited to 100 words.6 7341

4.2 Automatic Evaluation342

As seen in Table 3, our abstractive model, de-343

noted ProClusterabs for Propositional Clustering,344

surpasses all abstractive baselines by a large mar-345

gin in all measures on both TAC 2011 and DUC346

2004. Moreover, while the abstractive system347

scores were typically inferior to extractive system348

scores, ProClusterabs notably outperforms all ex-349

tractive baselines in both benchmarks. Overall, our350

ProClusterabs provides the new abstractive MDS351

state-of-the-art score in this setting.352

As said in §3.6, we also developed an extractive353

version, denoted ProClusterext. As ProClusterext354

selects document propositions that have the highest355

overlap with ProClusterabs sentences, ProClusterext356

achieves similar scores to ProClusterabs, yielding357

6ROUGE parameters: -c 95 -2 4 -U -r 1000 -n 4 -w 1.2 -a
-l 100 -m.

7Note that methods evaluated with ROUGE recall (instead
of F1) or limited to 665 bytes (instead of 100 tokens) are not
directly comparable to our approach.

the new extractive MDS state-of-the-art results. For 358

comparison we selected strong baseline, including 359

previous state-of-the-art in this setup, in both the 360

extractive and abstractive settings. See in Appendix 361

§C for more concise details over each baseline. For 362

reference, we also present a proposition-based ex- 363

tractive upperbound for each dataset (Oracleprop), 364

where document propositions were selected greed- 365

ily to maximize ROUGE-1F-1 + ROUGE-2F-1 with 366

respect to the reference summaries. 367

4.3 Ablation Analysis 368

To better apprehend the contribution of each of the 369

steps in our pipeline, Table 4 presents results of the 370

system when applying partial pipelines. 371

First, Salienceprop generates summaries simply 372

consisting of the highest scoring document propo- 373

sitions, according to the CDLM-based salience 374

model (§3.2). We also trained the salience model 375

on the sentence- rather than the proposition-level, 376

and similarly generated summaries of salient sen- 377

tences, denoted Saliencesent. The notable im- 378

provement of Salienceprop over Saliencesent in both 379

datasets reveals the advantage of working at the 380

proposition level for exposing salient information. 381

This observation is also apparent when compar- 382

ing the proposition-based oracle (Oracleprop) to the 383

sentence-based oracle method (Oraclesent). The re- 384

sults indicate that proposition-based systems have a 385

higher ROUGE upperbound across the board, sup- 386

porting its merit for use in summarization. 387
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method R1 R2 RSU4
TA

C
20

11
Oraclesent 47.53 19.83 22.10
Oracleprop 49.65 21.82 23.19
Oraclecluster-rep 43.40 14.61 17.46
Oracleranking 46.38 17.59 19.88
Saliencesent 37.32 9.59 13.40
Salienceprop 39.92 11.53 15.12
Salienceprop + Clustering 41.05 12.40 15.73
ProClusterabs 41.45 12.75 16.16

D
U

C
20

04

Oraclesent 43.91 14.50 17.39
Oracleprop 46.49 16.16 18.76
Oraclecluster-rep 39.74 10.76 14.56
Oracleranking 43.70 12.92 16.43
Saliencesent 37.38 9.09 12.90
Salienceprop 37.73 8.97 13.18
Salienceprop + Clustering 38.41 9.09 13.56
ProClusterabs 38.71 9.62 14.07

Table 4: Ablation ROUGE F1 scores on TAC 2011
and DUC 2004. Each additional step in our multi-step
method improves the output summaries. The Oracle
results indicate the potential of our approach. Specif-
ically, the benefit of summarizing on the proposition
level is quite evident.

Next, we would like to assess the contribu-388

tion of the clustering step. Therefore, we applied389

Salienceprop followed by clustering and ranking of390

clusters (Sections 3.2, 3.3 and 3.4), while leaving391

the fusion step aside. From each cluster we then se-392

lect the proposition with the highest salience score393

to be in the system summary. In both datasets,394

the clustering stage provides added improvement,395

suggesting its contribution to our pipeline.396

To further demonstrate the potential of our ap-397

proach, we also present two additional oracle398

scores for extractive upperbound analysis. First, we399

examine the potential of optimally selecting clus-400

ter representatives for the summary. We greedily401

select a single representative per cluster following402

the original cluster ranking (§3.4) that optimizes403

the overall ROUGE-1F-1 + ROUGE-2F-1 score of404

all selected representatives with respect to the ref-405

erence summaries (Oraclecluster-rep). These results406

express the improvement comparing to our final407

model (ProClusterabs), that a better cluster repre-408

sentative choice could produce, i.e., up to ~2 R-2409

points in TAC 2011 and ~1 point in DUC 2004.410

Another aspect to examine is the potential of411

enhanced cluster ranking. To that end, we first412

selected the highest salience-scoring proposition413

as a representative from each cluster. Then, we414

greedily selected representatives, one at a time, that415

maximized the overall ROUGE-1F-1 + ROUGE-416

2F-1 against the reference summaries. Effectively, 417

this points to a greedily optimized cluster choice 418

(Oracleranking). The potential improvement of bet- 419

ter cluster ranking compared to our final model 420

(ProClusterabs) is hence up to ~5 R-2 points in 421

TAC 2011 and ~3 points in DUC 2004. Indeed, 422

our approach leaves cluster ranking improvement 423

to future work. 424

Overall, we observe that all components of our 425

multi-step approach are indeed effective for MDS, 426

and that there is a great potential for further im- 427

provements within this architecture. 428

4.4 Human Evaluation 429

We further assessed our primary system, 430

ProClusterabs, through manual comparison against 431

PG-MMR, a strong abstractive MDS baseline. 432

Crowdworkers on Amazon Mechanical Turk8 433

were shown the summaries of a given topic from 434

the two systems in arbitrary order, along with a 435

corresponding reference summary. They were 436

asked to select the preferred system with respect 437

to Content (“Which of the system summaries has 438

higher content overlap with the reference?”) and 439

Readability (“Which of the system summaries 440

is more readable and well-understood?”). This 441

procedure was repeated for each of the four 442

available reference summaries per topic, and each 443

such triplet was evaluated by three workers. For 444

the final choice we first took the majority vote for 445

each triplet, and then summed up all the votes. 446

Table 5 shows that our summaries were favored 447

in terms of both content and readability by a large 448

margin in both datasets. As our work is focused 449

on selecting better salient content, the large gap 450

in favor of ProClusterabs in the content criterion 451

supports the advantage of our approach, and is 452

consistent with the ROUGE scores in §4.2. 453

While our summaries are (somewhat non- 454

conventionally) structured as bullet-style lists of 455

propositions rather than a coherent paragraph, eval- 456

uators preferred our style of summarization in 457

terms of readability. Moreover, as Table 6 points 458

out, ProClusterabs appears to be more abstractive 459

than PG-MMR, as suggested by the reduced n- 460

gram and sentence overlap with source documents. 461

Specifically, about half of the system summary sen- 462

tences of PG-MMR are fully copied, compared to 463

about a quarter in our method. While the intensi- 464

fied abstractiveness of our summaries could have 465

8https://www.mturk.com
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method Content Readability

TA
C PG-MMR 18% 27%

ProClusterabs 82% 73%
D

U
C PG-MMR 35% 41%

ProClusterabs 65% 59%

Table 5: Human preferences of system summaries, with
respect to content overlap with reference summaries
and overall readability, on TAC 2011 and DUC 2004.

System unigram bigram trigram sent.

TA
C

PG-MMR 98.36 94.42 91.97 50.11
ProClusterabs 99.08 91.40 81.07 24.39
Ref. Summs. 90.27 53.17 29.66 1.48

D
U

C

PG-MMR 98.34 94.99 90.91 50.82
ProClusterabs 98.86 89.72 78.28 23.50
Ref. Summs. 88.41 44.27 18.65 0.13

Table 6: Percentage of n-gram/sentence overlap be-
tween summaries and source documents in TAC 2011
and DUC 2004. Compared to PG-MMR, our system
has substantially less sequential overlap, indicating its
increased abstractiveness. Reference summaries are
naturally highly abstractive.

potentially hindered readability, our system was466

nevertheless preferred along this aspect as well.467

Our approach leaves fertile ground for further468

improving readability by fusing several clusters469

together to generate sentences containing multiple470

propositions, and by developing sentence planning471

and ordering models. Compatible training datasets472

for these models can be derived out of the gold473

reference summaries, as was done in this work for474

the salience (§3.2) and fusion (§3.5) models.475

5 Paraphrastic Clusters as Summary476

Evidence477

A unique advantage of a cluster-based summary is478

that each summary sentence is linked explicitly to479

a group of propositions from which the sentence480

was generated, in so providing an “explanation”,481

or support evidence, for the output. These cluster482

explanations can expand the reader’s knowledge483

and provide complementary facts from the nearby484

source context regarding the information from the485

generated sentence. Such a feature may be incor-486

porated in interactive summarization systems, as487

applied in (Shapira et al., 2017), where a user can488

choose to expand on the facts within a sentence of489

the presented summary.490

To assess the reliability of such feature, we491

verified that clusters indeed “explain” their gen-492

erated sentences. To that end, we conducted a493

crowdsourced annotation, where a worker marked 494

whether a cluster proposition mentions the main 495

idea of its corresponding generated sentence. Each 496

pair was examined by three workers, with the ma- 497

jority vote used for the final decision. On a random 498

selection of 25% of the clusters, we found that, on 499

average, 89% and 84% of a cluster’s propositions in 500

DUC 2004 and TAC 2011 support their correspond- 501

ing generated sentence, with an average cluster size 502

of 3.4 and 4.8 propositions, respectively. 503

Furthermore, given this strong alignment of a 504

cluster to its generated sentence, a cluster facilitates 505

effective verification of faithfulness of its corre- 506

sponding generated abstractive sentence. Since the 507

output sentence is based solely on its cluster propo- 508

sitions, the sentence’s correctness can be verified 509

against the “explaining" cluster instead of against 510

the full document set. An example of an unfaith- 511

ful abstraction is marked in red in Table 1. To 512

the best of our knowledge, this is the first attempt 513

for efficient manual assessment of faithfulness in 514

MDS. We conducted a respective evaluation pro- 515

cess, through crowdsourcing, to assess the faith- 516

fulness of our system summaries. A worker saw 517

a cluster and its generated sentence and marked 518

whether the sentence was faithful to its origin clus- 519

ter or not. Overall, this task cost a reasonable price 520

of 240$ for both the DUC 2004 and TAC 2011 521

datasets together. Over the full test sets, the annota- 522

tions showed that 80% and 90% of the DUC 2004 523

and TAC 2011 summary sentences, respectively, 524

were faithful to their corresponding clusters. 525

6 Conclusion 526

We advocate the potential of proposition-level units 527

as a cleaner and more accurate unit for summariza- 528

tion. To that end, we present a new proposition- 529

level pipeline for summarization that includes an 530

accurate paraphrastic propositional clustering com- 531

ponent followed by fusion of cluster propositions, 532

to generate concise and coherent summary sen- 533

tences. Our proposed method outperforms state-of- 534

the-art baselines in both automatic and human eval- 535

uation on the DUC and TAC MDS benchmarks. We 536

provide an ablation study that indicates the benefit 537

of each of the pipeline steps, as well as the poten- 538

tial for future improvement. Moreover, we demon- 539

strate the utility of the clustering-based approach 540

for providing source documents explanations and 541

for manually validating summary faithfulness. 542
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A Ethical Considerations796

Computation. We ran on 3 GPUs for 20 min-797

utes to finteune each of the salience model and the798

fusion model.799

The summarization model runs 10 minutes on 4800

GPUs to generate a summary. Most of the time is801

spent on the clustering step, in which we calculate802

the SuperPAL similarity score between all salient803

proposition pairs.804

Dataset. The DUC 2003 and 2004 and TAC805

2008-2011 datasets were acquired according to the806

required NIST guidelines (duc.nist.gov).807

Crowdsourcing. All human annotations and808

evaluations conducted with crowdsourcing were809

compensated as a 12$ per hour wage. We esti-810

mated the task payment by completing sample as-811

signments and obtaining the average assignment812

time.813

B Implementation Details814

B.1 Proposition Salience Model815

Datasets. For many previous summarization sys-816

tems these benchmarks were insufficiently large817

enough for training their models. Consequently, 818

they pretrained on a large scale summarization 819

dataset, such as CNN/DailyMail (Hermann et al., 820

2015), and then finetuned on DUC/TAC datasets 821

(e.g., Lebanoff et al., 2018; Mao et al., 2020). In 822

our case, we avoid external sources. However, as 823

DUC training data is much smaller than TAC’s 824

(30 topics vs. 138), and it was apparently too 825

small for the salience model training, we adopted 826

the trained salience model for TAC benchmark 827

(that was trained with TAC 2008-2010) as a pre- 828

trained model and then finetuned it with DUC 2003. 829

Accordingly, validating the TAC benchmark us- 830

ing DUC 2004 during the salience model training 831

causes data leakage since this model is later fine- 832

tuned to test on the same DUC 2004. To avoid that, 833

during the salience model training we used part of 834

TAC 2010 that was omitted from training data, as a 835

validation set (instead of DUC 2004). 836

Training Parameters. We trained the model for 837

10 epochs with learning rate of 1e-5 and batch size 838

of 6 instances on 3 DGX GPUs (meaning effective 839

batch size was 18). 840

Training. The CDLM model is fed with a propo- 841

sition within its document and the other documents 842

in the set. Specifically, since CDLM’s input size is 843

limited to 4,096 tokens, it is infeasible to feed the 844

full document set as a long sequence. Therefore, 845

following Lebanoff et al. (2019), only the first 20 846

sentences of each document are considered. Ac- 847

cordingly, a candidate proposition is input within 848

its full document (up to 20 sentences), while other 849

documents, ordered by their date, are truncated 850

evenly and concatenated to fill the remaining space 851

(9 sentences per document on average). 852

Each instance contains a proposition marked 853

with start and end special tokens, within its multi- 854

ple document context. A discontinuous proposition 855

is marked with special tokens before and after each 856

of its parts. In addition, sentence special token sep- 857

arators and document special token separators are 858

used, as required for CDLM. 859

In order to reduce computation complexity, 860

CDLM uses “local attention" (of 512 tokens) for 861

all tokens, while specific tokens are attended to all 862

4096 tokens (“global attention"). In our case, we 863

assigned global attention to the CLS token and to 864

the candidate proposition tokens, including their 865

special tokens. 866

For classification, we have added a binary classi- 867
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Albert Einstein published the theory of relativity in 
1915 and received the Physics Nobel Prize in 1921.

OpenIE Extraction

Concatenation

Figure 3: An example of OpenIE spans extracted from a sentence. First, a sentence is divided to OpenIE tuples,
including a predicate (verb) and its arguments. Then all predicates and their arguments are concatenated together
to a full span. This illustration uses AllenNLP’s Demo9.

fier layer on top of our CDLM. The classification868

layer gets the CDLM’s CLS output representation869

concatenated to the sum of the CDLM output rep-870

resentations of the candidate proposition tokens:871

CLS �
∑

i∈Prop

Ti (1)872

where Ti is the CDLM output representative of the873

i-th token, and Prop contains the token indices of874

the candidate proposition.875

As our proposition salience training dataset con-876

tains only a few positive (i.e., salient) propositions877

with respect to all propositions, it creates an unbal-878

anced dataset that may strongly bias the model to879

give a negative prediction. To cope with this, we880

randomly filter out 60% of the non-salient propo-881

sitions, while over sampling salient propositions882

until the dataset becomes balanced.883

B.2 SuperPAL Usage884

In this work we used the SuperPAL model (Ernst885

et al., 2021) as the similarity metric between propo-886

sitions for the clustering step (§3.3), and to create887

training data for the fusion model (§3.5). Origi-888

nally, SuperPAL was tuned with a validation set889

that contains three topics from DUC 2004 (taken890

from the full validation set which also contains 7891

additional topics, not from DUC 2004). In our set-892

ting, it may cause leakage since DUC 2004 is used893

as the test data. To avoid such leakage, we tuned894

SuperPAL again without using DUC 2004 topics895

at all (using the other 7 topics as a validation set).896

B.3 Fusion Model897

Training Parameters. We trained the model for898

3 epochs with learning rate of 3e-5 and batch size899

of 10 instances on 3 DGX GPUs (meaning effective 900

batch size was 30). 901

C Compared Methods 902

We compare our method to several strong abstrac- 903

tive baselines: Opinosis (Ganesan et al., 2010) gen- 904

erates abstracts from salient paths in a word co- 905

occurrence graph; Extract+Rewrite (Song et al., 906

2018) selects sentences using LexRank and gen- 907

erates for each sentence a title-like summary; PG 908

(See et al., 2017) runs a Pointer-Generator model 909

that includes a sequence-to-sequence network with 910

a copy-mechanism; PG-MMR (Lebanoff et al., 911

2018) selects representative sentences with MMR 912

(Carbonell and Goldstein, 1998) and fuses them 913

with a PG-based model; Hi-MAP (Fabbri et al., 914

2019) is a hierarchical version of the PG model 915

that allows calculating sentence-level MMR scores; 916

MDS-Joint-SDS (Jin and Wan, 2020) is a hierar- 917

chical encoder-decoder architecture that is trained 918

with SDS and MDS datasets while preserving doc- 919

ument boundaries. 920

We additionally compare to several strong ex- 921

tractive baselines: SumBasic (Vanderwende et al., 922

2007) extracts phrases with words that appear fre- 923

quently in the documents; KLSumm (Haghighi and 924

Vanderwende, 2009) extracts sentences that opti- 925

mize KL-divergence; LexRank (Erkan and Radev, 926

2004) is a graph-based approach where vertices 927

represent sentences, the edges stand for word over- 928

lap between sentences, and sentence importance 929

is computed by eigenvector centrality; DPP-Caps- 930

Comb (Cho et al., 2019) balances between salient 931

sentence extraction and redundancy avoidance by 932

optimizing determinantal point processes (DPP); 933
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HL-XLNetSegs and HL-TreeSegs (Cho et al., 2020)934

are two versions of a DPP-based span highlight-935

ing approach that heuristically extracts candidate936

spans by their probability to begin and end with937

an EOS token; RL-MMR (Mao et al., 2020) adapts938

a neural reinforcement learning single document939

summarization (SDS) approach (Chen and Bansal,940

2018) to the multi-document setup and integrates941

Maximal Margin Relevance (MMR) to avoid re-942

dundancy.943

D Annotation Guidelines944

We used Amazon Mechanical Turk10 for all three945

crowdsource tasks with a list of 90 pre-selected946

workers from English speaking countries. These947

workers accomplished high quality work in other948

NLP-related tasks we have conducted in the past.949

The crowdsourcing instructions of the tasks men-950

tioned in §5 are as follows: (the crowdsource in-951

structions for the manual summarization evaluation952

are already specified in §4.4)953

Supporting cluster evaluation. Read the fol-954

lowing two text spans, and answer the question955

below.956

Span Text A:957

<The generated sentence>958

Span Text B:959

<A proposition from the cluster>960

Is the main fact of Span Text A mentioned in961

Span Text B? (ignoring additional details)962

Yes/No963

Faithfulness Evaluation. Read the following964

group of text spans A and text span B, and an-965

swer the questions below. You can assume that966

all text spans in group A describe the same event,967

and therefore can be consolidated together to imply968

Text Span B.969

970

Examples:971

1. Group of Text Spans A:972

• They arrested John.973

• John was arrested.974

Text Span B:975

The FBI arrested John976

Is the Group of Text Spans A implies the977

fact in Text Span B?978

10https://www.mturk.com

Text Span B add a detail that is not mentioned 979

in A. Therefore the answer is No. 980

2. Group of Text Spans A: 981

• there were 10-12 girls and 15 boys in the 982

schoolhouse 983

• there were boys and girls in the school- 984

house 985

Text Span B: 986

there were 1012 girls and 15 boys in the 987

schoolhouse 988

Is the Group of Text Spans A implies the 989

fact in Text Span B? 990

Text Span B contradicts Group A (instead of 991

10-12 girls it says 1012 girls). Therefore the 992

answer is No. 993
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