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Abstract
Many real-world systems can be modeled as dynamic graphs,
where nodes and edges evolve over time, requiring spe-
cialized models to capture their evolving dynamics in risk-
sensitive applications effectively. Graph neural networks
(GNNs) for temporal graphs are one such category of spe-
cialized models. For the first time, our approach integrates
a reject option strategy within the framework of GNNs for
continuous-time dynamic graphs (CTDGs). This allows the
model to strategically abstain frommaking predictions when
the uncertainty is high and confidence is low, thus minimiz-
ing the risk of critical misclassification and enhancing the re-
sults and reliability. We propose a coverage-based abstention
prediction model to implement the reject option that max-
imizes prediction within a specified coverage. It improves
the prediction score for link prediction and node classifi-
cation tasks. Temporal GNNs deal with extremely skewed
datasets for the next state prediction or node classification
task. In the case of class imbalance, our method can be fur-
ther tuned to provide a higher weight to the minority class.
Exhaustive experiments are presented on four datasets for
dynamic link prediction and two datasets for dynamic node
classification tasks. This demonstrates the effectiveness of
our approach in improving the reliability and area under
the curve (AUC)/average precision (AP) scores for predic-
tions in dynamic graph scenarios. The results highlight our
model’s ability to efficiently handle the trade-offs between
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able solution for applications requiring high precision in
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1 Introduction
In the modern era, numerous systems are modeled as dy-
namic graphs where nodes and edges evolve over time. These
systems include social and interaction networks [22], traffic
networks [1] trade networks [29], biological networks[2] and
transaction networks[24] among others. Particularly in risk-
sensitive applications such as fraud detection[30], fake news,
polarization identification[6], financial transactions[24], blockchain
security [3], epidemic modeling[38], anomaly detection[31]
and disease prediction[3], the stakes for accurate and reliable
predictions are exceptionally high.
Traditional graph neural networks (GNNs) and their ex-

tensions to dynamic graphs have shown promise in captur-
ing the complex interactions and evolving structures within
these networks. However, they often fall short where the cost
of misclassification is significant and abstaining from mak-
ing a prediction could mitigate risk. The additional challenge
of highly skewed temporal1 datasets for node classification
1“temporal” and “dynamic” will be used interchangeably.
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(A.) Unclear Boundary (B.) Clear Boundary

Figure 1.Decision Boundary: (A) is not clear and smooth; (B)
becomes clearer after abstaining confusing/noisy samples.
The examples to be rejected are decided by the objective
function, which consists of the losses over unrejected sam-
ples and a fixed cost for rejected samples. The minimum
value of the objective will be achieved only with a proper
choice of rejected examples.

(such as Wikipedia, Reddit datasets[22]) makes it harder for
the models to predict correctly. Recent works on temporal
GNNs[7, 32, 41, 42] solve for node classification and link
prediction tasks.

Real-world classification tasks, such as anomaly detection
or credit card fraud prediction in dynamic networks, often
involve overlapping class distributions and class imbalance,
leading to prediction uncertainty. Figure 1(A) illustrates such
a scenario. The minority class (red crosses) is infrequent and
significantly overlaps with the majority class (blue circles)
in a specific region. A classifier attempting to perfectly sepa-
rate these classes might require a complex decision boundary
(conceptualized by the irregular green line), potentially lead-
ing to overfitting or unreliable predictions for samples near
this boundary.
Figure 1(B) conceptually motivates the benefit of absten-

tion. By identifying samples with high prediction uncertainty
(typically those within the overlap region), the model can
choose to abstain from making a prediction for them. This
allows the model to focus on making high-confidence predic-
tions for the remaining samples, which might now be effec-
tively separated by a simpler, more robust decision boundary
(conceptualized by the circular green line). This improves
both interpretability and trustworthiness, especially in set-
tings where wrong decisions are costly.
Classifiers with abstention are well explored in the ma-

chine learning community[4, 12, 18, 23]. Such models allow
a classifier to withhold a prediction when the uncertainty
associated with the decision is high. This approach has not
been widely investigated in the context of dynamic graphs,
where the temporal evolution of the data adds a layer of
complexity to uncertainty management.

Motivated by the critical need for precision in predictions,
especially in environments where trade-offs between false

positives and false negatives carry substantial consequences,
we explore the integration of the abstention option with the
continuous time dynamic graphs (CTDGs) learning method.
The open problem, therefore, is to incorporate a mechanism
that allows CTDGs to abstain frommaking predictions under
high uncertainty, thus reducing the risk of misclassifications
in sensitive applications. To address this, we propose a novel
framework that integrates the reject option into CTDGs
for both link prediction and node classification tasks. This
framework aims to enhance model reliability by minimizing
the risk associated with uncertain predictions.
We solve this challenge by extending the methodologies

of temporal GNNs to incorporate a reject option classifica-
tion. Our approach involves designing a specialized neural
network architecture that dynamically adjusts its confidence
threshold based on the evolving graph structure and node
interactions. This method allows the model to strategically
abstain from making predictions when uncertainty is high,
leveraging a coverage-based model to optimize the trade-off
between accurate prediction and the cost of abstention.

Our main goal is uncertainty management using the reject
option. While analyzing the data, we find that extreme class
imbalance is often present in node classification tasks for
CTDG datasets. As uncertainty amplifies due to class imbal-
ance and noisy boundary between the classes, our approach
tries to handle both problems together. Previous works have
struggled to effectively manage the disproportion between
classes, which is particularly problematic in risk-sensitive
domains where minority classes may carry significant im-
portance. Our approach handles extreme class imbalance by
optimizing the model’s training to better represent minor-
ity classes, thereby significantly improving performance in
these challenging scenarios. This advancement is a pioneer-
ing step in dynamic GNNs research, offering a powerful tool
for domains where class imbalance profoundly affects the
utility and reliability of the model. Our main contributions
are as follows:

1. Uncertainty management with reject option: We
integrate a reject option strategy into the framework
of CTDGs. This empowers the model to abstain from
making predictions when it lacks sufficient confidence,
addressing the critical need for risk mitigation in sensi-
tive applications. To achieve this, we propose a coverage-
based approach to incorporate the reject option, allow-
ing for the customization of the model’s behavior to
optimize predictions within a set coverage limit.

2. Managing extreme class imbalance: Drawing from
recent literature for class imbalance mitigation, we
address this problem in dynamic graph node classifica-
tion, an area largely unexplored for extreme imbalance.

3. Comprehensive evaluation:We conduct extensive
experiments on various dynamic graph datasets for
link prediction and node classification to demonstrate
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the effectiveness of our approach. Our results highlight
the ability of our models to effectively manage trade-
offs between prediction confidence and coverage while
significantly improving performance metrics.

2 Related Work
Graph Neural Networks. GNNs[33] are the go-to method
for dealing with graph data. GNNs address the limitation of
learning representations[13] for nodes and edges. GNNs em-
ploy variousmessage passing schemes (GCN[21], GraphSAGE[14],
GAT[39] etc.) to aggregate and update node embedding,
enabling them for prediction tasks like node classification,
link prediction, graph classification, and graph clustering.
PyG[11] offers a flexible framework based on Pytorch[27]
for GNNs that allows to build models for specific graph prob-
lems. However, challenges remain in efficiently handling the
evolving nature of dynamic graphs, where nodes and edges
can change over time.
Temporal Graphs. Dynamic graphs [19] are categorized
into discrete-time (DTDGs)[26] and continuous-time (CTDGs)[22]
settings. In this paper, we focus on CTDGs. CTDGs are
addressed using node-based methods, such as DyRep[37],
TGN[32], and TCL[40] utilize node information, such as tem-
poral neighbors and previous histories of nodes, to create
node embedding, and edge-basedmethods like GraphMixer[7]
and CAWN[41] directly generate embeddings for the edge
of interest. DyGFormer[43] proposed a transformer-based
architecture that uses a neighbor co-occurrence encoding
scheme along with a patching technique to effectively cap-
ture long-term temporal dependencies in dynamic graphs.
Recent methods, such as DyGMamba[9] and FreeDyG[35],
incorporate state-space models and frequency-domain analy-
sis for better encoding of interactions. TGB[17] benchmarks
popular temporal graph models treated the task as a ranking
problem. DyGLib[40] based on PyG[11], provides a unified
library for implementing various CTDG methods. We uti-
lize DyGLib to set up experiments and integrate a rejection
module.
Uncertainty Estimation & Classification With Rejec-
tion (CwR). CwR can be classified broadly into cost-based
and coverage-basedmethods. Cost-based CwRmethod aligns
well with cost-sensitive learning[10] where the cost of mis-
classification can be used to inform the decision to abstain
from prediction. Variants of support vector machine (SVM)
with reject option are presented in [34]. [4] introduces a
novel approach to multi-class classification with rejection
compatible with arbitrary loss functions, addressing the need
for flexibility in adapting to different datasets. In coverage-
based CwR, SelectiveNet[12] introduces a novel approach
by integrating the reject option directly within the deep neu-
ral network architecture. [5, 25] provide calibrated losses
for multi-class reject option classification. [4] proposes a
general recipe to convert any multi-class loss function to

accommodate the reject option, calibrated to loss 𝑙0𝑑1. They
treat rejection as another class. Conformal prediction (CP)
provides valid uncertainty estimates by constructing pre-
diction sets that contain the true label with a predefined
confidence level. CF-GNN[15] integrates CP with GNNs to
generate uncertainty-aware predictions on graph data. In
our task for CTDGs, we only handle binary classification,
unlike [8]. So, there is little scope to apply this method in
this setting.

3 Preliminaries
This section introduces the concepts and notations used
throughout this paper. Our work focuses on extending GNN
to temporal graphs, incorporating a classification with a
rejection option for enhanced prediction in both link predic-
tion and node classification tasks.

Deep Learning on Static Graphs. It focuses on learning
representations for graphs that do not change over time. A
static graph is denoted as G = (V, E), where V is the set
of nodes and E ⊆ V × V represents the set of edges con-
necting these nodes. Each node 𝑢 ∈ V and edge (𝑢, 𝑣) ∈ E
can have associated features w𝑢 and e𝑢𝑣 , respectively. GNNs
use features and the structure of the graph to learn a func-
tion 𝑓 : V → R𝑑 . It aggregates information from the local
neighborhoods of nodes through a series of message-passing
operations that map nodes to a 𝑑-dimensional embedding
space.
Deep Learning on Dynamic Graphs. Dynamic graphs are
a sequence of non-decreasing chronological interactions to
accommodate changes over time. They represent evolving re-
lationships within the graph. A dynamic graph is represented
as a series of graphs G𝑡 = (V𝑡 , E𝑡 ) at discrete time steps 𝑡 , or
as a continuous stream of interactions (𝑢, 𝑣, 𝑡) ∈ E𝑡 , where
𝑢, 𝑣 ∈ V𝑡 are nodes, and 𝑡 represents the time of interaction.
The primary goal in deep learning on dynamic graphs is to
learn a function 𝑓 : V𝑡 → R𝑑 that captures not only the
structural features but also its temporal dynamics, facilitat-
ing tasks such as temporal link prediction and dynamic node
classification.
Classification with Rejection. Rejection classification in-
troduces a decision framework in which a model, given an
input 𝑥 ∈ X, can choose to abstain from making a prediction
if it lacks confidence. Given a prediction model 𝑓 : X → Y,
where X is the input space and Y is the output label space,
and an abstention function 𝑞 : X → {0, 1}. For each sam-
ple 𝑥 , the model predicts an abstention score 𝑎(𝑥) where
𝑎 : X ∈ [0, 1]. We first sort the abstention scores for all the
interactions and then select a threshold 𝜃 value that aligns
with the desired coverage. For an input 𝑥 , if the abstention
score, 𝑎(𝑥) ≤ 𝜃 then 𝑞(𝑥) = 0 (the model is confident) and
the model predicts 𝑓 (𝑥). In case 𝑎(𝑥) > 𝜃 then 𝑞(𝑥) = 1
and the model abstains the decision for input 𝑥 . For a given
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Figure 2. The model overview of classification with rejection for task-agnostic temporal graphs. Input to the model is a
temporal graph with 𝑡 timestamps, which is processed through an encoder that samples neighbours from all interactions
from previous timestamps 𝑡 < 𝑡𝑥 of these nodes, then aggregates and yields an updated temporal node embedding. These
embeddings are passed to a Prediction function 𝑓 (𝑥) to predict downstream tasks such as whether a link exists or not for link
prediction or whether a user is blocked or not for node classification at time 𝑡 . The output embeddings also pass through the
Abstention function, predict a single score, and check if 𝑎(𝑥) > 𝜃 threshold i.e. 𝑞(𝑥) = 1. When it is true, the model abstains;
otherwise, it proceeds to make a prediction. The Auxiliary head exposes all samples to the model, including samples with high
abstention scores, only during training.

𝜃 ∈ (0, 1), the objective is to maximize the probability of cor-
rect prediction for the subset of the inputs where 𝑞(𝑥) = 0:
max
𝑓 ,𝑞

𝑃 (𝑓 (𝑥) = 𝑦 |𝑞(𝑥) = 0) = max
𝑓 ,𝑞

𝑃 (𝑓 (𝑥) = 𝑦 |𝑎(𝑥) ≤ 𝜃 )

(1)
Problem Formulation. Given a continuous-time temporal
graph G𝑡 with a tuple (𝑢, 𝑣, 𝑡) ∈ E𝑡 representing an interac-
tion between nodes 𝑢, 𝑣 ∈ V𝑡 , at time 𝑡 ∈ T , our objective is
to design a temporal GNN model that addresses the problem
of learning effective representations for link prediction and
node classification while incorporating a reject option to
manage uncertainty in predictions.
1. Link Prediction: Given a temporal graph, i.e., source
node, destination node, current timestamp, and historical
interactions before 𝑡 , predict the presence or absence of links
at time 𝑡 . Where the abstain mechanism aims to make a pre-
diction or refuse to predict for a pair of nodes based on a
coverage criterion.
2. Node Classification: Predict the label or state of a node in
a temporal graph at a time 𝑡 based on previous information,
with the option to abstain from the prediction on certain
nodes to ensure high confidence in the predictions made.

4 Method
In this section, we describe our approach for both link predic-
tion and node classification in dynamic graphs in continuous
time using the coverage-based method. A neural network
architecture designed for dynamic graphs can be seen as
a combination of an encoder and a decoder. The encoder

serves to transform a dynamic graph into node embeddings,
whereas the decoder utilizes these embeddings to make pre-
dictions. Our method considers temporal graph networks to
incorporate a reject option, enhancing prediction and han-
dling uncertainty effectively. The architecture is illustrated
in Fig. 2.

4.1 Temporal Graph Encoder
Our approach is based on the concept of temporal graph
networks, which are designed as an encoder-decoder pair
for dynamic graph learning. The encoder maps a dynamic
graph into the temporal node embeddings z𝑢 (𝑡), capturing
the temporal interactions among the nodes. The encoder up-
dates the node embeddings with each interaction, ensuring
those reflect the graph’s latest state. Few such models are
memory-based TGN[32], MLP-based GraphMixer[7], graph
transformer-based TCL[40], random-walk-based CAWN[41],
SSM-based DyGMamba[9] etc.

4.2 Coverage-Based Dynamic Link Prediction
Our approach to link prediction uses the concept of absten-
tion prediction[12] to manage the uncertainty inherent in
predicting links in a dynamic graph employing an abstention
model (𝑓 , 𝑞) where 𝑓 is the prediction function and 𝑞 is the
abstention function. The abstention function 𝑞 : X → {0, 1},
if it takes value one, then the prediction is kept on hold for a
given pair of nodes based on a coverage criterion. We modify
the decoder part of the model to incorporate a reject option
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through an abstention prediction mechanism. This mecha-
nism evaluates each potential link for its likelihood and the
model’s confidence in its prediction. By allowing the model
to abstain from making predictions when the uncertainty
exceeds a threshold 𝜃 , we ensure it only predicts links it
is confident about. The abstention prediction objective is
defined as follows:

LE𝑡

(𝑓 ,𝑞) = 𝑟 (𝑓 , 𝑞 |E𝑡 ) + 𝜆Ψ(𝑐 − 𝜙 (𝑞 |E𝑡 )) (2)

where 𝑟 (𝑓 , 𝑞 |E𝑡 ) is the empirical abstention risk, 𝜆 is a hy-
perparameter controlling the importance of the coverage
constraint, Ψ(𝑏) = max(0, 𝑏)2 is a quadratic penalty function
that helps ensure that the model does not abstain excessively,
and 𝑐 is the target coverage rate. The empirical abstention
risk (𝑟 (𝑓 , 𝑞 |E𝑡 )) and the empirical coverage (𝜙 (𝑞 |E𝑡 )) are
calculated as follows:

𝑟 (𝑓 , 𝑞 |E𝑡 ) =

∑
(𝑢,𝑣,𝑡 ) ∈E𝑡

ℓ (𝑓 (z𝑢 (𝑡), z𝑣 (𝑡)), 𝑦E𝑡
) (1 − 𝑞(z𝑢 (𝑡), z𝑣 (𝑡)))

|E𝑡 | 𝜙 (𝑞 |E𝑡 )
(3)

𝜙 (𝑞 |E𝑡 ) =
1

|E𝑡 |
∑︁

(𝑢,𝑣,𝑡 ) ∈E𝑡

(1 − 𝑞(z𝑢 (𝑡), z𝑣 (𝑡))) (4)

where ℓ is the loss function and z𝑢 (𝑡), z𝑣 (𝑡) are the temporal
node embeddings for source and destination node for link
prediction, respectively, and 𝑦E𝑡

is the binary label of link
between two nodes if exists or not. 𝜙 , the empirical coverage
rate of the abstention function 𝑞, calculates the rate at which
the edges till time 𝑡 are selected, where |E𝑡 | is the number of
edges. The overall training objective combines the abstention
loss with an auxiliary loss. For our case, we use the standard
binary cross-entropy as an auxiliary loss, denoted as LE𝑡

ℎ

computed on the same prediction task. This auxiliary loss is
generated by a dedicated auxiliary prediction head, active
only during training. Its purpose is to ensure the shared en-
coder learns from all training instances, including those the
abstention head might abstain from. This approach prevents
overfitting to only high-confidence samples and promotes
more robust representations. The overall training objective
is:

LE𝑡 = 𝛼LE𝑡

(𝑓 ,𝑞) + (1 − 𝛼)LE𝑡

ℎ
(5)

Where 𝛼 is a parameter controlling the trade-off between
abstention and auxiliary losses.
The temporal graph encoder captures node interaction

timing using a time encoder, which is incorporated into
the temporal node embeddings. This time information is
then passed to both the abstention and prediction functions,
allowing themodel to decide whether to abstain frommaking
a prediction at a given time 𝑡 .

4.3 Coverage-Based Dynamic Node Classification
For node classification or user state change prediction[22],
we apply a framework similar to link prediction, using the ab-
stention prediction mechanism to introduce a reject option.
Node embedding z𝑢 (𝑡), derived from the temporal graph en-
coder, incorporates information from the node’s interaction
history and its neighbors to produce a comprehensive repre-
sentation of its current state in the graph. It serves as input
to a classification model that incorporates a coverage-based
abstention mechanism. The classifier is designed to accu-
rately predict node labels 𝑦𝑡 ∈ Y while being able to abstain
from predictions when uncertainty exceeds the threshold 𝜃 .
The abstention prediction objective in this case is as follows:

LV𝑡

(𝑓 ,𝑞) = 𝑟 (𝑓 , 𝑞 |V𝑡 ) + 𝜆Ψ(𝑐 − 𝜙 (𝑞 |V𝑡 )) (6)

Where the empirical abstention risk (𝑟 (𝑓 , 𝑞 |V𝑡 )) and the em-
pirical coverage (𝜙 (𝑞 |V𝑡 )) are calculated as follows:

𝑟 (𝑓 , 𝑞 |V𝑡 ) =
∑

𝑢∈V𝑡
ℓ (𝑓 (z𝑢 (𝑡)), 𝑦𝑡 ) (1 − 𝑞(z𝑢 (𝑡))

|V𝑡 | 𝜙 (𝑞 |V𝑡 )
(7)

𝜙 (𝑞 |V𝑡 ) =
1

|V𝑡 |
∑︁
𝑢∈V𝑡

(1 − 𝑞(z𝑢 (𝑡))) (8)

where |V𝑡 | is the number of nodes. The node classification
model is trained by minimizing a loss function that balances
the precision of the abstention prediction with the desired
coverage level, which is given by:

LV𝑡 = 𝛼LV𝑡

(𝑓 ,𝑞) + (1 − 𝛼)LV𝑡

ℎ
(9)

where LV𝑡

ℎ
is the auxiliary loss (binary cross-entropy).

4.4 Handling Extreme Class Imbalance for Dynamic
Node Classification

Dealing with an extreme class imbalance in node classifi-
cation within CTDGs presents significant challenges. Class
imbalance adversely affects model performance, particularly
for minority classes, which is crucial for many real-world
applications. To address this, we introduce an approach that
modifies the training process to better represent minority
classes, thereby improving the model’s performance. We
modify the components of our training objective given in
Equation (9).
Auxiliary Loss for Class Imbalance: We propose an aux-
iliary loss function that explicitly accounts for the dispro-
portionate representation of classes by assigning a higher
weight to the minority class, which is defined as:

LV𝑡

ℎ
= 𝛽LV𝑡

ℎ𝑚𝑖𝑛𝑜𝑟
+ LV𝑡

ℎ𝑚𝑎𝑗𝑜𝑟
(10)

where LV𝑡

ℎ𝑚𝑖𝑛𝑜𝑟
and LV𝑡

ℎ𝑚𝑎𝑗𝑜𝑟
represent the loss for the minor-

ity and majority classes, respectively, and 𝛽 is a weighing
factor that amplifies the contribution of the minority class to
the overall loss. In our experiments, we set hyperparameter
𝛽 > 1, highlighting our focus on the minority class, given
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its significantly lower representation (less than 0.2% in our
dataset). This allows us to tune our model’s performance,
ensuring that it provides reliable predictions in the case of
extreme class imbalance.

5 Experimental Setup
In this section, we discuss experimental setup, which com-
prises baselines, datasets used, evaluation tasks performed,
metrics used, and implementation details.

5.1 Dataset Used
We use four distinct datasets for dynamic link prediction and
two for dynamic node classification where labels are avail-
able. We have chosen popular datasets like Wikipedia[22],
Reddit (Soical Media)[22], and also included challenging
datasets like UN Trade (Economics) and Can. Parl. (Poli-
tics) for diversity. These datasets are publicly available 2 by
DGB[29].

5.2 Baselines Used
Although our framework is compatible with various tem-
poral graph models supported by DyGLib[43], we opted to
utilize TGN[32] and GraphMixer[7] due to their widespread
adoption as baselines.
TGN Encoder [32] : The key components of TGN Encoder
are: a) Memory module maintains a compressed represen-
tation of each node’s historical interactions. b) Message
function computes the impact of new interactions on the
state of the node. c) Message aggregator combines mes-
sages from multiple events involving the same node in a
batch, improving the update process. d)Memory updater
integrates new interaction messages into the node’s memory.
e) Embedding module generates the current embedding of
a node using its memory and the memories of its neighbors.
GraphMixer Encoder [7]: GraphMixer presents a simple,
straightforward, yet effective approach built upon two pri-
mary modules: a link encoder and a node encoder based on
multilayer perceptrons (MLPs) without relying on complex
GNN architectures. a) Link-encoder employs a fixed time-
encoding functioncos(𝝎𝑡). It encodes temporal information
of links, followed by an MLP-Mixer[36] to summarize this
temporal link information effectively. b) Node-encoder uti-
lizes neighbor mean-pooling to aggregate and summarize
the features of nodes, capturing essential node identity and
feature information for subsequent processing steps.

5.3 Evaluation Tasks and Metrics
We evaluate the performance of our proposed model in two
primary tasks: link prediction and node classification in
dynamic graph settings to enhance the practical applica-
bility and trustworthiness of the predictions by following
[29, 32, 41–43]. For the dynamic link prediction task, our

2https://zenodo.org/record/7213796#.Y1cO6y8r30o

objective is to predict the likelihood of a link forming be-
tween two nodes at a given time. This task is divided into
two settings: transductive and inductive. The transductive
setting focuses on predicting future links among nodes ob-
served during training, while the inductive setting aims at
predicting links between the nodes not seen during training.
Following established protocols, we utilize a multilayer per-
ceptron (MLP) to process concatenated node embeddings of
source and destination and output link probabilities. Evalua-
tion metrics for this task include average precision (AP) and
area under the receiver operating characteristic curve (AUC-
ROC), with random (rnd), historical (hist), and inductive (ind)
negative sampling strategies (NSS)[29] employed to improve
the evaluation since the latter two are more challenging. Ran-
dom NSS randomly selects negative edges from all possible
node pairs, risking easy examples and collisions with posi-
tive edges. Historical NSS selects negatives from previously
observed but currently absent edges, testing prediction of
edge re-occurrence. Inductive NSS focuses on edges seen dur-
ing testing but not training, assessing model generalization
to unseen edges.
The dynamic node classification task seeks to identify

the label of a node at a specific time. Using the foundation
set by the transductive dynamic link prediction model as a
pre-trained model on a full dataset, we use a separate MLP
for label prediction, adhering to the classification with a re-
ject option mechanism to allow uncertainty handling. The
datasets used for evaluation exclude those without dynamic
node labels. The primary metric for this task is AUC-ROC,
selected to address label imbalance issues commonly encoun-
tered in dynamic graphs[32, 42, 43].

For both tasks, we use a chronological data split strategy,
allocating 70% of the data for training, 15% for validation, and
15% for testing to simulate real-world temporal dynamics and
ensure a fair evaluation of our model’s predictive capabilities.

5.4 Implementation Details
For the link prediction task, we optimize both the models by
Adam optimizer[20] for all datasets. For the node classifica-
tion task, we optimize both the models by Adam optimizer
for the Wikipedia dataset and SGD for the Reddit dataset.
We train the models for 75 epochs and use the early stop-
ping strategy with a patience of 10. We select the model that
achieves the best performance in the validation set for testing.
We set the batch size to 200, 𝜆 to 32, 𝛼 to 0.5, i.e., equal weight
to both abstention prediction loss and auxiliary loss for all
the methods on all the datasets. We perform the grid search
to find the best settings of some critical hyperparameters.
This step is conducted during training. We tune the learning
rate using cross-validation. Even though the training process
aims to meet the target coverage 𝑐 via the loss function, the
actual coverage achieved on the test set with a fixed thresh-
old 𝑒.𝑔.𝜃 = 0.5 may differ due to distribution shift. Therefore,

6

https://zenodo.org/record/7213796#.Y1cO6y8r30o


Confidence First: Reliability-Driven Temporal Graph Neural Networks TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

Table 1. AP for transductive dynamic link prediction with random, historical, and inductive negative sampling strategies for
various coverage rates. The best and second-best results are emphasized by bold and underlined.

NSS Coverage TGN GraphMixer
(%) Wikipedia Reddit UN Trade Can. Parl. Wikipedia Reddit UN Trade Can. Parl.

rnd

100 98.56 ± 0.06 98.63 ± 0.02 64.87 ± 1.93 74.14 ± 1.51 97.30 ± 0.05 97.35 ± 0.02 61.68 ± 0.16 79.96 ± 0.95
90 99.33 ± 0.06 99.28 ± 0.07 71.67 ± 1.04 75.38 ± 1.44 98.24 ± 0.07 97.66 ± 0.06 68.57 ± 0.21 80.56 ± 1.71
80 99.73 ± 0.08 99.54 ± 0.06 76.59 ± 1.50 77.21 ± 5.87 98.89 ± 0.06 98.41 ± 0.03 72.50 ± 1.24 82.44 ± 1.31
70 99.85 ± 0.02 99.81 ± 0.04 79.09 ± 1.66 81.57 ± 7.38 99.61 ± 0.14 99.32 ± 0.08 71.64 ± 8.98 95.25 ± 0.65
60 99.88 ± 0.02 99.86 ± 0.04 81.46 ± 1.81 90.19 ± 3.50 99.68 ± 0.11 99.52 ± 0.11 69.99 ± 11.27 95.98 ± 0.57
50 99.87 ± 0.05 99.91 ± 0.03 84.46 ± 0.95 89.46 ± 6.67 99.63 ± 0.08 99.65 ± 0.11 80.94 ± 2.11 94.68 ± 1.25

hist

100 87.07 ± 0.81 80.63 ± 0.30 59.44 ± 2.22 70.92 ± 2.11 91.14 ± 0.16 77.50 ± 0.54 57.61 ± 1.11 80.66 ± 1.37
90 90.81 ± 0.59 81.68 ± 1.07 70.36 ± 0.80 74.18 ± 1.94 94.25 ± 0.43 78.17 ± 0.25 63.36 ± 3.08 83.10 ± 1.57
80 94.46 ± 0.64 83.78 ± 0.33 74.44 ± 3.55 72.82 ± 6.51 96.57 ± 0.63 80.57 ± 0.33 69.35 ± 3.68 84.08 ± 2.60
70 95.99 ± 3.62 87.25 ± 1.76 71.94 ± 8.63 76.08 ± 9.00 97.99 ± 2.64 83.61 ± 1.96 75.01 ± 4.15 94.97 ± 0.55
60 97.06 ± 3.84 88.66 ± 1.68 76.36 ± 2.16 86.97 ± 4.56 98.56 ± 2.81 85.32 ± 1.76 69.62 ± 1.57 95.05 ± 0.97
50 97.82 ± 4.50 89.27 ± 2.41 76.65 ± 2.85 87.34 ± 3.79 97.40 ± 3.50 85.91 ± 2.04 81.70 ± 2.52 94.18 ± 1.33

ind

100 86.57 ± 0.96 88.02 ± 0.35 61.70 ± 2.21 68.05 ± 2.69 88.83 ± 0.13 85.21 ± 0.28 60.89 ± 1.01 77.74 ± 1.42
90 89.75 ± 1.03 90.17 ± 0.82 72.31 ± 0.77 71.28 ± 2.90 92.11 ± 0.23 85.76 ± 0.34 67.57 ± 2.52 79.98 ± 2.47
80 93.19 ± 0.57 92.89 ± 0.80 77.43 ± 2.94 69.06 ± 9.77 95.04 ± 0.37 88.74 ± 0.43 74.08 ± 1.72 79.26 ± 3.90
70 95.85 ± 3.61 94.95 ± 2.27 75.75 ± 6.69 72.87 ± 10.05 96.45 ± 3.70 91.38 ± 0.86 79.47 ± 2.22 93.47 ± 0.56
60 96.76 ± 4.00 96.57 ± 2.68 78.65 ± 1.93 84.91 ± 5.02 97.66 ± 3.90 93.11 ± 1.45 77.98 ± 1.54 94.11 ± 0.84
50 97.75 ± 4.63 95.93 ± 3.33 78.30 ± 2.15 85.12 ± 6.52 94.79 ± 6.29 94.35 ± 1.60 85.47 ± 2.57 94.28 ± 1.07

to analyze the model’s performance-reliability trade-off con-
sistently, we evaluate at predefined coverage levels (e.g., 90%,
80%, etc.). For each target coverage level reported (e.g., 80%),
we calculate the corresponding threshold 𝜃80 by finding the
80th percentile of the uncertainty scores 𝑎(𝑥) produced by
the model on the entire test set. Metrics are then computed
solely on the test samples satisfying 𝑎(𝑥) ≤ 𝜃80. The 𝜃 values
range from 0 to 1. For node classification, we search for the
best value of 𝛽 in the range of [2,100] and get the best results
when 𝛽 = 2 or 5. Both encoders use 100D time encoding and
172D output representation. TGN uses 172D node memory
with 2 graph attention heads, using GRU for memory up-
dates. GraphMixer uses 2 MLP-Mixer layers with a time slot
gap of 2000 interactions. We run each model five times with
seeds from 0 to 4 and report the average performance and
standard deviation to eliminate deviations. We use NVIDIA
GeForce RTX 4090 with 24 GB memory for link prediction
task. The GPU device used for the node classification task is
NVIDIA GeForce RTX 2080 Ti with 11 GB memory.

6 Experimental Results
In this section, we report the performance of our proposed
continuous-time dynamic graph neural network with a reject
option and compare our results with baselines.

6.1 Results: Dynamic Link Prediction
We evaluated our rejection-aware framework on the dynamic
link prediction task using both TGN and GraphMixer as base
encoders, comparing performance against standard baselines
run using DyGLib [42]. The primary goal was to assess the

improvement in prediction reliability when allowing the
model to abstain based on uncertainty.
Table 1 summarizes the transductive link prediction re-

sults, reporting Average Precision (AP) across all three neg-
ative sampling strategies (NSS). The 100% coverage rows
represent the baseline performance without rejection. A con-
sistent and significant trend is observed across all datasets,
models, and NSS settings: as the coverage level decreases
(meaning the model abstains on a larger fraction of uncer-
tain predictions, from 90% down to 50% coverage), the AP
score calculated on the remaining non-abstained predictions
progressively improves.
This shows the effectiveness of the rejection mechanism

in filtering out low-confidence predictions, thereby enhanc-
ing the precision of the accepted ones. For example, focusing
on the challenging Canadian Parliament (Can. Parl.) dataset,
which exhibits lower baseline scores, the improvement is no-
table. With our model, the AP/AUC score notably increases,
emphasizing the model’s efficiency in managing harder pre-
diction environments. For example, using TGN with random
NSS, the AP increases from a baseline of (1st row) at 100%
coverage to 90.19% AP (5th row) at 60% coverage in Can. Parl.
dataset, marking almost 16.05% improvement in AP. These
gains show the value of abstention for boosting trustwor-
thiness, particularly in environments with sparse or noisy
interaction data typical of many real-world social or infor-
mation networks.
Further illustrating the performance-reliability trade-off,

Figure 3 plots the relationship between coverage and predic-
tion performance (AUC) for the inductive link prediction task
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Figure 3. Performance (AUC %) vs. Coverage (%) Trade-off for Inductive Link Prediction in Random NSS.

(using Random NSS). Consistent with the AP results, the in-
ductive AUC generally increases as coverage decreases (mov-
ing rightward on the x-axis). This confirms that the benefits
of abstention—achieving higher accuracy on a more reliable
subset of predictions—extend to the demanding inductive
setting, where generalization to unseen graph elements is
crucial. The visual trend highlights the model’s capability to
manage uncertainty effectively across different evaluation
scenarios.
One observation is that AP/AUC increases to a certain

point (peak) as coverage decreases. It starts decreasing as
coverage goes on decreasing.

6.2 Results: Dynamic Node Classification
For dynamic node classification, we evaluate our model on
the Wikipedia and Reddit datasets, as shown in Table 2. The
initial results with 100% coverage use DyGLib, which es-
tablishes a benchmark. As we implement the reject option,
progressively rejecting 10% of samples in each subsequent
test until we reach 60% coverage, we observe a significant
improvement in AUC scores (where 𝛽 = 1). For example, in
Table 2 we achieve 89.78% AUC (ninth row) in 60% coverage
w.r.t. 86.23% AUC (first row) in 100% coverage for the TGN
model on Wikipedia, marking almost 3.55% improvement in
AUC.

This increase in AUC with decreasing coverage indicates
that the model is effectively prioritizing more reliable predic-
tions, as less certain predictions are rejected. Furthermore,
due to the extreme imbalance in class distribution (minority
class below 0.2%), we provide higher weightage to minority
class in the auxiliary loss, which led to further improvements
in AUC (where 𝛽 > 1). For example, in Table 2, we get 69.58%
AUC (tenth row) with 𝛽 = 5 w.r.t.66.03% AUC (ninth row) in
60% coverage for TGN model on Reddit dataset. This marks
almost 3.55% improvement in AUC while addressing the

class imbalances. This strategy improves the efficacy of our
approach in not only managing the reject option but also
addressing extreme class imbalances, which are particularly
challenging in dynamic environments.

Table 2. AUC for coverage-based dynamic node classifica-
tion for various coverage rates with and without handling
class imbalance. The best and second-best performing results
are emphasized by bold and underlined fonts. ∗ denotes 𝛽 is
2, otherwise 5 for all other cases where 𝛽 > 1.

Cover- 𝛽
TGN GraphMixer

age(%) Wikipedia Reddit Wikipedia Reddit
100 = 1 86.23 ± 3.30 63.08 ± 1.48 86.19 ± 1.10 64.81 ± 2.08

90 = 1 88.00 ± 2.00 64.81 ± 1.54 87.27 ± 1.72 65.26 ± 2.07
> 1 88.44 ± 2.33∗ 65.12 ± 1.53 87.61 ± 1.06∗ 66.20 ± 1.88

80 = 1 88.78 ± 3.46 65.63 ± 1.31 87.93 ± 1.53 66.08 ± 2.99
> 1 90.02 ± 2.29∗ 66.31 ± 3.26 88.05 ± 1.72 67.00 ± 2.40

70 = 1 89.48 ± 2.53 66.10 ± 2.34 87.79 ± 1.37 67.42 ± 3.27
> 1 90.64 ± 3.37 67.90 ± 1.81 88.38 ± 0.99∗ 68.23 ± 2.96

60 = 1 89.78 ± 2.76 66.03 ± 3.45 85.97 ± 2.62 67.23 ± 3.36
> 1 89.86 ± 2.52 69.58 ± 2.96 84.83 ± 2.30∗ 67.87 ± 4.01

In real-world scenarios, we can’t reject 40-50% predictions.
But as we can see, with a decrease in coverage, performance
keeps on increasing. Note that the model rejects examples; it
does not predict very confidently. We have to find a balance
between the rate of abstention and the model confidence
based on the application domain, number of data points, etc.
Overall, the experiments validate our hypothesis that inte-
grating a reject option within CTDGs significantly enhances
the reliability and accuracy of predictions in dynamic graphs.
The clear improvement in performance metrics across dif-
ferent datasets, coverage settings, and tasks confirms the
practical utility of our model in risk-sensitive applications,
where precision and reliability are crucial.
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7 Conclusion
The experimental findings convincingly demonstrate the ef-
ficacy of our proposed CTDG model with a reject option for
both link prediction and node classification tasks. The model
strategically abstains frommaking predictions when encoun-
tering high uncertainty, leading to a significant improvement
in AUC/AP scores. This establishes the model’s proficiency
in managing the trade-off between prediction confidence and
coverage. In the future, we can explore cost-based or other
abstention methods to enhance the model’s applicability in
different contexts. Another future direction could involve
demonstrating the model’s performance in real-world ap-
plications, showcasing its practical relevance. Considering
our method for another kind of graph model, such as dis-
crete time temporal graphs, can also be explored. Overall,
our work presents a compelling solution for dynamic graph
applications that demand high precision and reliability, par-
ticularly in risk-sensitive domains. The model’s ability to
effectively manage uncertainty and class imbalance makes
it a valuable tool for various real-world applications.
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A Datasets
We use four publicly available datasets in our experiments,
detailed below. The dataset statistics are shown in Table 3.

• Reddit [22]: A month’s worth of posts from users
across the 984 most active subreddits, resulting in a to-
tal of 672,447 interactions from the 10,000 most active
users. Each post’s content is transformed into a fea-
ture vector using LIWC [28]. This dataset also includes
dynamic labels indicating whether users are banned
from posting, with 366 true banned labels, marking a
proportion of 0.05% of the interactions.

• Wikipedia [22]: Comprising one month of Wikipedia
edits, this dataset captures interactions from users who
have made edits on the 1,000 most edited pages, to-
taling 157,474 interactions from 8,227 users. Each in-
teraction is represented as a 172-dimensional LIWC
feature vector. Additionally, dynamic labels are pro-
vided to indicate temporary bans of users, with 217
positive banned labels among the interactions, equat-
ing to 0.14%.

• Canadian Parliament (Can. Parl.) [16]: This dy-
namic political network dataset records interactions
betweenMembers of Parliament (MPs) in Canada from
2006 to 2019, where nodes represent MPs and links
indicate mutual "yes" votes on bills. The weight of a
link reflects the frequency of mutual affirmative votes
within a year.

• UN Trade [29]: Spanning over 30 years, this dataset
documents food and agriculture trade between 181
nations. The links between nations are weighted by
the normalized value of agriculture imports or exports,
showing the intensity of trade relationships.

Table 3. Datasets. #N&L Feat. denotes node and link feature
dimension.

Datasets #Nodes #Links #N&L Feat. Bipartite Time Granularity Label
Wikipedia 9,227 157,474 – & 172 True Unix 2
Reddit 10,984 672,447 – & 172 True Unix 2
Can. Parl. 734 74,478 – & 1 False Years –
UN Trade 255 507,497 – & 1 False Years –

B Hyperparameters
All three encoders use 100-dimensional time encoding and
172-dimensional output representation. TGN uses a 172-
dimensional node memory and uses 2 graph attention heads
like DyGFormer, with memory updates managed by Gated
Recurrent Units (GRU). GraphMixer does not use node mem-
ory but instead has 2 MLP-Mixer layers and operates with a
time gap of 2000. DyGFormer introduces a 50-dimensional
neighbor co-occurrence encoding alongside the time encod-
ing and employs 2 Transformer layers to process the input.
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Table 5. Compute Statistics for Can. Parl. dataset on link
prediction

TG Encoder Train Time
(Sec/epoch)

Test Time
(Sec)

GPU Usage
(MB)

TGN 9 1 668
TGAT 75 22 2800
GraphMixer 27 6 1708
CAWN 161 36 12114
DyGFormer 91 20 18326
TCL 15 1 1616
Jodie 4 1 640

We perform the grid search to find the best settings of
some critical hyperparameters. However, this step is con-
ducted during training. Once the model is trained, the num-
ber of covered examples on the test dataset will vary sig-
nificantly as 𝜃 changes because the model has not seen the
test data during training. Nevertheless, with the selection
scores for each interaction available, we sorted them and
selected a 𝜃 value that aligns with the desired coverage. The
𝜃 values range from 0 to 1. As the coverage decreases to 90%,
80%, and so on down to 50%, the uncertainty threshold 𝜃 also
decreases accordingly.
We experimented with a wide range of 𝛽 values as a hy-

perparameter and found that when 𝛽 the value is less than
10, it produces a better result. We’re attaching the following
table for TGN on theWikipedia dataset to show the variation
AUC w.r.t. different values of beta. Below is the comparison
between 𝛽 vs. AUC shown in Table 4.

Table 4. Effect of 𝛽 on AUC at coverage 90%, 80% and 70%,
respectively for TGN encoder on Wikipedia dataset

𝛽 AUC@90 AUC@80 AUC@70
1 88 88.78 89.48
2 88.44 90.02 90.28
5 87.96 89.7 90.64
10 87.56 89.14 89.98
25 87.67 88.29 89.42
100 86.84 88.32 88.74

C Compute Statistics
We have compared compute statistics for different temporal
graph encoders for the Can. Parl. dataset in table 5 on the
link prediction task. We train a maximum of 100 epochs for
training. Based on the following table, we have chosen to
use TGN and GraphMixer as our baseline.

D Additional Results
Tables 6 and 7 present the link prediction results for induc-
tive AP and transductive AUC-ROC, respectively. We have
added link prediction results for DyGFormer[43] on all four
datasets in Table 8 for the transductive setting and Table 9 for
the inductive setting. We have also added node classification
results for DyGFormer in Table 10.
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Table 6. AP for inductive dynamic link prediction with random, historical, and inductive negative sampling strategies for
various coverage rates. The best and second-best performing results are emphasized by bold and underlined fonts.

NSS Coverage TGN GraphMixer
(%) Wikipedia Reddit UN Trade Can. Parl. Wikipedia Reddit UN Trade Can. Parl.

rnd

100 97.98 ± 0.08 97.34 ± 0.05 56.55 ± 2.24 57.21 ± 1.22 96.82 ± 0.06 95.13 ± 0.01 61.83 ± 0.09 59.38 ± 1.05
90 99.08 ± 0.06 98.23 ± 0.14 63.23 ± 1.72 57.08 ± 2.88 98.03 ± 0.12 95.76 ± 0.14 68.16 ± 0.19 58.96 ± 0.85
80 99.57 ± 0.07 98.79 ± 0.10 66.04 ± 3.86 57.77 ± 4.64 98.76 ± 0.08 96.76 ± 0.12 70.97 ± 1.19 58.83 ± 0.99
70 99.77 ± 0.05 99.45 ± 0.09 65.51 ± 2.31 64.57 ± 8.02 99.49 ± 0.14 98.39 ± 0.23 70.54 ± 7.44 70.65 ± 3.30
60 99.82 ± 0.06 99.68 ± 0.04 61.23 ± 5.83 69.82 ± 6.54 99.59 ± 0.12 98.75 ± 0.25 68.45 ± 9.95 76.29 ± 4.96
50 99.80 ± 0.08 99.73 ± 0.04 60.69 ± 5.56 71.55 ± 7.14 99.46 ± 0.09 99.03 ± 0.29 78.39 ± 0.90 76.44 ± 2.39

hist

100 82.12 ± 1.37 61.59 ± 0.48 52.96 ± 1.27 56.75 ± 1.29 87.63 ± 0.28 61.73 ± 0.36 56.41 ± 0.95 58.64 ± 0.77
90 84.97 ± 1.13 61.84 ± 0.66 59.12 ± 3.88 55.95 ± 2.40 91.30 ± 0.47 62.42 ± 0.29 60.48 ± 2.44 58.70 ± 0.90
80 88.85 ± 0.83 63.02 ± 0.89 61.20 ± 4.00 56.47 ± 4.78 94.22 ± 1.03 63.66 ± 0.27 65.74 ± 4.66 58.85 ± 1.53
70 92.42 ± 4.94 66.99 ± 4.34 58.80 ± 5.99 65.27 ± 9.09 96.01 ± 3.95 66.98 ± 3.44 74.08 ± 3.63 73.00 ± 2.67
60 94.81 ± 5.67 67.96 ± 3.89 58.90 ± 4.34 70.98 ± 6.00 97.33 ± 4.50 68.73 ± 3.33 70.64 ± 1.50 77.83 ± 4.37
50 96.63 ± 6.68 68.83 ± 6.00 59.02 ± 5.16 71.27 ± 8.94 94.79 ± 6.78 69.43 ± 3.38 82.22 ± 1.63 78.41 ± 1.74

ind

100 82.12 ± 1.38 61.59 ± 0.48 52.90 ± 1.25 56.78 ± 1.31 87.63 ± 0.28 61.74 ± 0.35 56.35 ± 0.93 58.63 ± 0.79
90 84.98 ± 1.13 61.85 ± 0.66 59.06 ± 3.89 55.97 ± 2.41 91.30 ± 0.47 62.44 ± 0.28 60.31 ± 2.54 58.72 ± 0.92
80 88.86 ± 0.82 63.01 ± 0.90 61.16 ± 3.98 56.53 ± 4.87 94.22 ± 1.03 63.69 ± 0.26 65.64 ± 4.79 58.89 ± 1.61
70 92.45 ± 4.95 66.98 ± 4.35 58.78 ± 5.95 65.39 ± 9.15 96.01 ± 3.95 67.00 ± 3.44 74.13 ± 3.50 73.01 ± 2.65
60 94.80 ± 5.68 67.98 ± 3.88 58.83 ± 4.36 70.90 ± 6.02 97.33 ± 4.51 68.76 ± 3.31 70.65 ± 1.47 77.81 ± 4.34
50 96.64 ± 6.69 68.84 ± 5.99 58.98 ± 5.22 71.21 ± 8.90 94.79 ± 6.78 69.48 ± 3.35 82.16 ± 1.72 78.45 ± 1.73

Table 7. AUC for transductive dynamic link prediction with random, historical, and inductive negative sampling strategies for
various coverage rates. The best and second-best performing results are emphasized by bold and underlined fonts.

NSS Coverage TGN GraphMixer
(%) Wikipedia Reddit UN Trade Can. Parl. Wikipedia Reddit UN Trade Can. Parl.

rnd

100 98.48 ± 0.07 98.59 ± 0.02 67.74 ± 1.66 77.94 ± 1.55 97.01 ± 0.07 97.20 ± 0.02 64.89 ± 0.21 84.64 ± 0.57
90 99.32 ± 0.05 99.31 ± 0.06 70.24 ± 0.92 80.17 ± 1.44 98.04 ± 0.08 97.63 ± 0.07 68.01 ± 0.21 85.39 ± 1.04
80 99.75 ± 0.09 99.57 ± 0.06 74.50 ± 1.21 82.32 ± 2.21 98.72 ± 0.07 98.40 ± 0.03 70.52 ± 0.70 86.77 ± 0.94
70 99.88 ± 0.06 99.85 ± 0.02 76.71 ± 1.64 82.05 ± 5.10 99.63 ± 0.28 99.41 ± 0.06 71.36 ± 4.07 93.05 ± 1.10
60 99.90 ± 0.04 99.90 ± 0.02 79.25 ± 1.86 88.03 ± 3.69 99.72 ± 0.22 99.59 ± 0.10 69.69 ± 7.48 94.13 ± 0.94
50 99.90 ± 0.02 99.92 ± 0.01 82.14 ± 1.18 89.69 ± 2.49 99.61 ± 0.19 99.72 ± 0.05 77.15 ± 2.89 92.91 ± 1.43

hist

100 83.01 ± 0.60 80.92 ± 0.18 63.78 ± 2.37 73.64 ± 2.14 88.00 ± 0.22 77.31 ± 0.27 63.40 ± 1.06 83.56 ± 2.13
90 89.27 ± 0.41 84.50 ± 0.80 68.93 ± 0.88 77.51 ± 0.72 92.46 ± 0.57 79.94 ± 0.83 66.35 ± 1.82 86.34 ± 1.15
80 94.43 ± 0.67 87.24 ± 0.50 72.87 ± 2.63 77.12 ± 2.51 95.50 ± 0.67 83.49 ± 0.59 69.23 ± 1.06 85.54 ± 2.00
70 95.23 ± 6.09 89.86 ± 2.21 72.42 ± 4.33 76.69 ± 5.84 97.35 ± 4.18 85.97 ± 2.10 72.67 ± 1.16 92.43 ± 1.03
60 96.25 ± 6.11 91.55 ± 2.31 74.73 ± 1.93 83.84 ± 4.56 97.87 ± 4.38 87.94 ± 2.70 70.61 ± 1.15 92.35 ± 1.68
50 96.81 ± 6.82 90.91 ± 2.69 75.39 ± 1.98 86.68 ± 0.89 95.94 ± 5.50 89.17 ± 2.65 76.47 ± 3.75 92.23 ± 1.42

ind

100 82.76 ± 0.71 84.58 ± 0.33 66.06 ± 2.26 70.93 ± 2.25 84.93 ± 0.27 82.31 ± 0.24 67.06 ± 0.81 80.88 ± 1.28
90 88.18 ± 0.59 89.34 ± 0.55 70.75 ± 0.93 75.64 ± 2.36 89.76 ± 0.39 84.96 ± 0.91 69.81 ± 1.52 83.37 ± 1.56
80 93.18 ± 0.53 92.79 ± 0.93 75.36 ± 2.52 73.70 ± 5.28 93.81 ± 0.37 88.71 ± 0.33 73.27 ± 1.02 82.50 ± 2.33
70 95.14 ± 5.94 94.59 ± 4.28 75.28 ± 3.59 74.17 ± 5.77 95.52 ± 5.89 91.16 ± 2.90 77.07 ± 0.54 90.82 ± 0.85
60 96.07 ± 6.15 96.36 ± 4.84 77.08 ± 1.77 82.36 ± 4.60 96.78 ± 6.04 93.10 ± 3.57 77.74 ± 1.66 91.40 ± 1.37
50 96.80 ± 6.84 94.63 ± 5.72 76.93 ± 1.37 85.01 ± 2.03 92.49 ± 9.71 94.31 ± 3.73 81.14 ± 4.06 92.10 ± 1.31
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Table 8. AP and AUC score for transductive dynamic link prediction with DyGFormer with random, historical, and inductive
negative sampling strategies for various coverage rates. The best and second-best performing results are emphasized by bold
and underlined fonts.

NSS Coverage AP AUC
(%) Wikipedia Reddit UN Trade Can. Parl. Wikipedia Reddit UN Trade Can. Parl.

rnd

100 99.11 ± 00.02 99.21 ± 00.01 65.37 ± 00.29 98.32 ± 00.19 99.01 ± 00.01 99.14 ± 00.01 69.06 ± 00.37 98.01 ± 00.18
90 99.60 ± 00.03 99.64 ± 00.05 61.02 ± 05.45 99.04 ± 00.48 99.57 ± 00.04 99.62 ± 00.06 64.72 ± 03.46 98.81 ± 00.62
80 99.86 ± 00.04 99.78 ± 00.05 67.45 ± 07.22 99.32 ± 00.22 99.86 ± 00.07 99.81 ± 00.09 69.30 ± 03.73 99.10 ± 00.41
70 99.86 ± 00.05 99.87 ± 00.02 77.76 ± 01.59 99.05 ± 00.44 99.92 ± 00.05 99.93 ± 00.01 75.45± 0.03 98.49 ± 00.81
60 99.93 ± 00.01 99.88 ± 00.01 62.40 ± 11.67 99.52 ± 00.52 99.96 ± 00.00 99.94 ± 00.01 65.46 ± 09.23 99.31 ± 00.83
50 99.92 ± 00.02 99.13 ± 01.11 60.21 ± 03.03 99.72 ± 00.23 99.96 ± 00.01 99.65 ± 00.42 66.19 ± 04.06 99.67 ± 00.27

hist

100 74.60 ± 05.62 81.39 ± 01.49 60.73 ± 02.84 98.57 ± 00.12 75.00 ± 02.99 80.56 ± 00.46 70.70 ± 03.06 98.28 ± 00.18
90 74.39 ± 03.53 84.42 ± 02.18 58.81 ± 02.81 98.97 ± 00.70 78.67 ± 02.87 86.48 ± 01.20 63.94 ± 03.04 98.68 ± 00.93
80 82.89 ± 08.86 86.12 ± 02.04 70.69 ± 08.71 99.33 ± 00.28 85.53 ± 06.40 90.18 ± 01.19 71.99 ± 05.76 99.09 ± 00.48
70 80.86 ± 08.52 87.13 ± 00.92 80.53± 7.57 98.97 ± 00.47 85.89 ± 07.03 92.21 ± 00.37 75.74 ± 9.98 98.31 ± 00.91
60 71.71 ± 16.94 88.35 ± 02.93 57.65 ± 10.77 99.47 ± 00.55 79.09 ± 15.62 92.99 ± 01.11 58.43 ± 09.18 99.22 ± 00.90
50 77.36 ± 21.58 89.47 ± 01.96 58.31 ± 04.63 99.67 ± 00.28 82.18 ± 23.39 89.45 ± 05.38 62.83 ± 06.28 99.60 ± 00.33

ind

100 67.87 ± 12.41 91.17 ± 00.79 56.47 ± 01.79 98.66 ± 00.10 69.88 ± 07.37 86.52 ± 00.82 65.25 ± 02.23 98.37 ± 00.16
90 64.93 ± 06.60 95.11 ± 00.92 60.74 ± 03.45 99.20 ± 00.46 71.65 ± 05.05 93.89 ± 00.85 66.49 ± 03.17 99.00 ± 00.60
80 76.77 ± 09.48 97.72 ± 00.95 72.23 ± 08.04 99.45 ± 00.29 80.53 ± 07.03 97.92 ± 01.19 74.00 ± 05.45 99.26 ± 00.48
70 72.54 ± 15.14 98.72 ± 00.81 82.98± 6.71 99.05 ± 00.45 78.35 ± 13.70 99.25 ± 00.39 79.65± 06.71 98.50 ± 00.83
60 68.53 ± 21.58 99.38 ± 00.38 64.11 ± 11.79 99.53 ± 00.53 73.34 ± 20.90 99.64 ± 00.14 67.77 ± 09.98 99.33 ± 00.85
50 77.02 ± 28.63 95.00 ± 05.90 69.00 ± 05.72 99.74 ± 00.21 77.23 ± 31.64 92.84 ± 09.24 75.88 ± 05.65 99.69 ± 00.26

Table 9. AP and AUC score for inductive dynamic link prediction by DyGFormer with random, historical, and inductive
negative sampling strategies for various coverage rates. The best and second-best performing results are emphasized by bold
and underlined fonts.

NSS Coverage AP AUC
(%) Wikipedia Reddit UN Trade Can. Parl. Wikipedia Reddit UN Trade Can. Parl.

rnd

100 98.66 ± 00.04 98.73 ± 00.03 63.03 ± 00.26 93.13 ± 00.57 98.57 ± 00.02 98.58 ± 00.03 65.90 ± 00.32 91.36 ± 00.86
90 99.38 ± 00.06 99.32 ± 00.08 59.56 ± 04.65 94.73 ± 00.87 99.35 ± 00.04 99.24 ± 00.09 62.68 ± 02.80 92.59 ± 00.69
80 99.77 ± 00.04 99.66 ± 00.11 66.13 ± 08.17 95.93 ± 00.88 99.81 ± 00.07 99.66 ± 00.16 67.06± 04.76 94.09 ± 01.24
70 99.85 ± 00.05 99.81 ± 00.01 76.05 ± 1.44 96.15 ± 00.22 99.89 ± 00.07 99.89 ± 00.01 73.26 ± 2.64 94.26 ± 00.29
60 99.82 ± 00.04 99.81 ± 00.01 60.29 ± 11.96 96.76 ± 01.56 99.90 ± 00.02 99.89 ± 00.01 62.11 ± 09.78 95.46 ± 02.24
50 99.85 ± 00.02 98.76 ± 01.44 56.92 ± 02.35 97.24 ± 01.56 99.92 ± 00.01 99.44 ± 00.66 61.56 ± 03.49 95.97 ± 02.34

hist

100 63.13 ± 09.13 61.80 ± 01.32 53.48 ± 01.52 93.41 ± 00.54 64.28 ± 06.05 62.78 ± 00.26 60.61 ± 02.21 91.79 ± 00.72
90 61.22 ± 05.53 63.41 ± 01.09 58.02 ± 04.60 95.05 ± 00.88 65.74 ± 04.76 65.75 ± 00.30 62.86 ± 03.68 93.09 ± 00.65
80 69.87 ± 06.59 63.68 ± 00.98 65.44 ± 06.97 96.29 ± 00.68 73.77 ± 05.50 67.94 ± 00.53 66.95 ± 04.56 94.54 ± 01.04
70 67.35 ± 12.76 64.18 ± 01.47 79.83 ± 6.85 96.31 ± 00.27 71.72 ± 12.03 70.39 ± 00.87 75.73 ± 9.28 94.43 ± 00.39
60 61.81 ± 14.01 65.11 ± 01.81 59.21 ± 10.25 96.89 ± 01.42 67.78 ± 16.27 70.18 ± 02.23 61.19 ± 08.50 95.60 ± 02.11
50 66.38 ± 19.47 69.21 ± 04.52 61.33 ± 03.75 97.35 ± 01.50 70.91 ± 26.14 69.35 ± 06.52 67.26 ± 04.67 96.14 ± 02.24

ind

100 63.13 ± 09.15 61.77 ± 01.32 53.51 ± 01.51 93.42 ± 00.54 64.28 ± 06.05 62.76 ± 00.26 60.65 ± 02.20 91.81 ± 00.72
90 61.19 ± 05.52 63.38 ± 01.09 58.04 ± 04.59 95.06 ± 00.88 65.72 ± 04.77 65.73 ± 00.30 62.88 ± 03.66 93.10 ± 00.65
80 69.86 ± 06.60 63.66 ± 00.97 68.95 ± 06.27 96.30 ± 00.68 73.76 ± 05.49 67.92 ± 00.53 69.82 ± 04.54 94.55 ± 01.04
70 67.34 ± 12.78 64.14 ± 01.46 79.85 ± 6.86 96.32 ± 00.27 71.72 ± 12.04 70.36 ± 00.86 75.76 ± 9.28 94.43 ± 00.39
60 61.80 ± 14.02 65.09 ± 01.80 59.23 ± 10.25 96.90 ± 01.41 67.78 ± 16.27 70.15 ± 02.24 61.23 ± 08.51 95.61 ± 02.11
50 66.40 ± 19.52 69.19 ± 04.50 61.34 ± 03.75 97.35 ± 01.51 70.92 ± 26.20 69.33 ± 06.48 67.27 ± 04.66 96.13 ± 02.25
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Table 10. AUC for coverage-based dynamic node classification by DyGFormer for various coverage rates, with and without
handling class imbalance. The best and second-best performing results are emphasized in bold and underlined fonts, respec-
tively.

Coverage 𝛽
DyGFormer

(%) Wikipedia
100 = 1 87.04 ± 1.08

90 = 1 87.19 ± 0.86
= 2 88.02 ± 1.87

80 = 1 88.47 ± 3.32
= 2 88.97 ± 2.37

70 = 1 86.96 ± 3.60
= 2 89.17 ± 4.72

60 = 1 83.79 ± 3.76
= 2 83.42 ± 2.71
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