HollowFlow: Efficient Sample Likelihood Evaluation
using Hollow Message Passing

Johann Flemming Gloy! Simon Olsson'*

' Department of Computer Science and Engineering,
Chalmers University of Technology and University of Gothenburg
SE-41296 Gothenburg, Sweden.

{gloy, simonols}@chalmers.se

Abstract

Flow and diffusion-based models have emerged as powerful tools for scientific
applications, particularly for sampling non-normalized probability distributions,
as exemplified by Boltzmann Generators (BGs). A critical challenge in deploying
these models is their reliance on sample likelihood computations, which scale
prohibitively with system size n, often rendering them infeasible for large-scale
problems. To address this, we introduce HollowFlow, a flow-based generative
model leveraging a novel non-backtracking graph neural network (NoBGNN).
By enforcing a block-diagonal Jacobian structure, HollowFlow likelihoods are
evaluated with a constant number of backward passes in n, yielding speed-ups of up
to O(n?): a significant step towards scaling BGs to larger systems. Crucially, our
framework generalizes: any equivariant GNN or attention-based architecture
can be adapted into a NoBGNN. We validate HollowFlow by training BGs on two
different systems of increasing size. For both systems, the sampling and likelihood
evaluation time decreases dramatically, following our theoretical scaling laws. For
the larger system we obtain a 102 x speed-up, clearly illustrating the potential of
HollowFlow-based approaches for high-dimensional scientific problems previously
hindered by computational bottlenecks.

1 Introduction

Efficiently sampling high-dimensional, non-normalized densities — a cornerstone of Bayesian infer-
ence and molecular dynamics — remains computationally intractable for many scientific applications.
Boltzmann generators (BGs) [1]] address this by training a surrogate model p; (x) to approximate
the Boltzmann distribution y(x) = Z~! exp(—pu(x)), where u(x) is the potential energy of the
system configuration x € Q C RY, j the inverse temperature, and Z the intractable partition
function. While BGs enable unbiased estimation of observables through reweighting x; ~ p; with
weights w; o< u(x;)/p1(x;), their practicality is limited by a fundamental trade-off: likelihood
computations of expressive surrogates rely on N automatic differentiation backward passes with
system dimensionality [V, rendering them infeasible for large-scale problems.

To address this problem, we outline a framework combining non-backtracking equivariant graph
neural networks with continuous normalizing flows (CNFs), breaking this trade-off. This strategy
enforces a Jacobian that can easily be split into a block-diagonal and a block-hollow part, reducing
the number of backward passes required for likelihood computation to scale as O(1) in N. Our
contributions include:

Hollow Message Passing (HoMP): A general scheme for message passing with a block-
diagonal Jacobian structure.

*Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

c(x) T(h,x

~—

Y@ G0
Jox) = +
o) = (e
(x) s NoBGNN . a Jetx) I+
0 0 0 (block- (block-
. = . hollow) diagonal)
@“\—/ (b)
T \T T
Tr(Jyx) = g + + é
(C) BP 1 BP2 BP3

Figure 1: Summary of HollowFlow: (a) A vector field b is parametrized with an (equivariant)
non-backtracking graph neural network (NoBGNN) and a series of (equivariant) neural networks 7;,
such that its Jacobian J; (b) can be decomposed into a block-hollow and block-diagonal part with
block size d (in this example, d = 3,n = 5). (c) Efficient evaluation of the trace of the Jacobian with
only d instead of nd backward passes (BP) through the network. The vector components are one
where the entry is green and zero elsewhere.

Theoretical Proofs and Guarantees: A proof of the block-diagonal structure of HoMP
and scaling laws of the computational complexity of forward and backward passes.

Scalable Boltzmann Generators: A HollowFlow-based BG implementation achieving
10'-10% x faster sampling and likelihood evaluation, e.g., 10%x for LJ55, a system of 55
particles in 3-dimensions interacting via pair-wise Lennard-Jones potentials.

Experiments on multi-particle systems validate HollowFlow’s scalability, bridging a critical gap in
high-dimensional generative modelling for the sciences.

2 Background

2.1 Boltzmann Generators and Observables

Computing observables by averaging over the Boltzmann distribution is a central challenge in
chemistry, physics, and biology. The Boltzmann distribution is given by,

w(x) = Z7 1 exp(—pu(x)) @)
where 3 = (kgT)~! is the inverse thermal energy and u : — R is the potential energy of a system
configuration x € Q C RV,

Observables are experimentally measurable quantities, such as free energies [214]]. Generating
ensembles which align with certain observables can give us fundamental insights into the physics of
molecules, including mechanisms, rates, and affinities of drugs binding their targets [3, 6], protein
folding [/, |8]], or phase transitions [9H12].

The primary strategies for generating samples from the Boltzmann distribution involve Markov
Chain Monte Carlo (MCMC) or molecular dynamics (MD) simulations. These approaches generate
unbiased samples from the Boltzmann distribution asymptotically, however, mix slowly on the
complex free energy landscape of physical systems, where multiple, metastable states are separated
by low-probability channels. In turn, extremely long simulations are needed to generate independent
sampling statistics using these methods. In the molecular simulation community, this problem has
stimulated the development of a host of enhanced sampling methods, for a recent survey, see [|13].

Boltzmann Generators [[1]] instead try to learn an efficient surrogate from biased simulation data, and
recover unbiased sampling statistics through importance weighting. The key advantage of BGs is
that sampling using modern generative methods, such as normalizing flows, is much faster than the
conventional simulation based approaches, which would enable amortization of the compute cost per
Boltzmann distributed sample.

2.2 Normalizing Flows

To enable reweighting, evaluating the sample likelihood under a model, p1, is critical. A normalizing
flow (NF) [14}|15]] allows efficient sampling, and sample likelihood evaluation, by parameterizing
a diffeomorphism, ¢g : RN — RY, with a constrained Jacobian structure. The diffeomorphism
(or flow) ¢ maps an easy-to-sample base distribution, pg to an approximation p; of the empirical
data density, pp, e.g., by minimizing the forward Kullback-Leibler divergence, Dkr,(ppl|p1) =
Ex~pp [logpp(x) — log p1(x)]. The change in log-density when transforming samples with ¢y is
given by

NF -1 09y ! (x)
Alog p™(x) := log p1(x) — log po(¢y, ~ (x)) = log |det x|)
Computing the log-determinant of a general N x N Jacobian is computationally expensive (O(N?3)),

-1
however, endowing the Jacobian a%ax(x) with structure, i.e., triangular [[16H18|], can make the

likelihood evaluation fast.

Continuous Normalizing Flows A flow can also be parametrized as the solution to an initial value
problem, specified by a velocity field by (x,t) : RY x [0, 1] — R of an ordinary differential equation
(ODE)

dx(t) = bo(x(t),t) dt, x(0) ~ po, x(1) ~ p1. 3)

The general solution to this problem is a flow, ¢g(x(t),t) : R x [0,1] — R¥, which satisfies the
initial condition, e.g., ¢9(x(0),0) = x(0). Such a model is known as a continuous normalizing
flow (CNF). The ODE eq. (B) together with the prior pg gives rise to a time-dependent distribution
p(x(t),t) given by the continuity equation

Orpr = =V - (piba(x,1)), 4

with 9; and V- denoting the partial derivative w.r.t. ¢ and the divergence operator, respectively.
Solving eq. (@) we get the change in log-probability for the CNF,

1
Alog p™F := log p1 (x(1)) — log po(x(0)) = 7/0 V - bo(x(t),t) dt.)

In principle, CNFs allow for much more expressive architectures to be used to parametrize by.

The currently most scalable approach to train CNFs is conditional flow matching (CFM) or related
objectives [19H22]. In CFM, the intractable flow matching loss, where by is regressed directly against
the unknown true vector field u;(x), of a flow ¢, is replaced by the conditional flow matching loss
which has the same gradient w.r.t. the parameters 6 [20]:

Lerm = Etntd[0,1],xpe (x]2),2~p(z) |00 (X, 1) — e (x[2)]]3- (6)

The true vector field u;(x) and its corresponding probability density p;(x) are given as marginals
over the conditional probability and an arbitrary conditioning distribution p(z):

X|z)u(x|z
pe(x) = / pe(x|2)p(z)dz and wy(x) = / pxlpulxlz) g, %
pe(x)
where we parameterize p;(x|z) and u;(x|z) with a linear interpolant with connections to optimal
transport theory [22]:

z = (x0,%x1), p(z)=m7(x0,x1) pe(x|z) =N(tx1+ (1 —1t)x0,0), us(x|z)=x3— xo,(g)

where the coupling 7 (X1, Xo) minimizes the 2-Wasserstein optimal transport map between the prior
po(X0) and the target 1(x1) using a mini-batch approximation [20} [22} [23].

Unfortunately, akin to general Jacobian log-determinant calculation of normalizing flows, computation
of V - by(x(t),t) (eq. (3)) requires O(IN') backward passes, for each numerical integration step along
t, making the evaluation of sample likelihoods impractical in high-dimensions, and consequently,
their use for BGs limited.

Equivariant flows Symmetries can be described in terms of a group G that acts on a finite-
dimensional vector space V' =2 R? through a group representation p : G — GL(d,R). A function
f:RY — R is called G-equivariant if f(p(g)z) = p(g) f(x) and h : R? — V" is called G-invariant
if h(p(g)x) = h(x) for all g € G and x € R? where V" is another vector space. If the vector field by
of a CNF is H-equivariant, where # < G and the prior density pg is G-invariant it has been shown
that the push forward density, of the flow ¢, p; is H-invariant [23-H25]. In practical applications,
symmetries under the Euclidean group E'(3) are of particular interest as these are the symmetries that
are naturally obeyed by many physical systems such as molecules. Thus, several GNN architectures

have been proposed that are equivariant or invariant under the action of E(3) or some subgroup of
E(3) [26L[27].

2.3 HollowNets

Reverse-mode automatic differentiation, or back-propagation, allows for the computation of vector-
Jacobian products with a cost which is asymptotically equal to that of the forward pass [28]. In
practice, we use this mode to compute the divergence of velocity fields parametrized with neural
networks. However, isolating the diagonal of the Jacobian to compute the divergence, for general,
free-form vector fields, requires O(N') backward passes [29, 30].

Using a special neural network construction HollowNet, Chen and Duvenaud showed, that one can
access the full diagonal of the Jacobian, J € RV*¥ with a single backward pass. A HollowNet
depends on two components:
Conditioner: h; = ¢;(x-;), where ¢; : RN-1 5 R 9)
Transformer: b; = 7;(x;,h;), where 7, : R x R"* — R (10)
where h; is a latent embedding which is independent of the 7’th dimension of the input, x. Applying
the chain rule to b; = 7;(r;, ¢;(r—;)), the Jacobian J = % decomposes as follows:
db or n Ot 0h
dx O0x 0Ohox’
~N~ =

Jdiag Jhollow

Y

which splits the Jacobian into diagonal J412& and ‘hollow’ JP°!"°% contributions [29]. The divergence
can then be evaluated in O(1) backward passes, through rewiring the compute graph and computing
1T Jdiag.

3 Hollow Message Passing

It is straightforward to construct HollowNets for regular feed-forward neural networks, and convo-
lutional neural networks, through masking operations [[29]]. However, extending these principles to
cases where the data or its domain are subject to other symmetries is not as straightforward.

To address this problem, we develop Hollow Message Passing (HoMP) to work with graph data,
subject to permutation equivariance. We further specialize this approach to work with data which is
subject to common Euclidean symmetries, useful in molecular applications. Here, molecules and
particle systems are represented as points in R? (typically d = 3), one for each of the n atoms or
particles, making N = dn. HOMP depends on the following developments:

Permutation Equivariant Conditioner: We make the conditioner functions {¢; }?_; per-
mutation equivariant, using a non-backtracking GNN (NoBGNN) in combination with a
changing underlying graph structure such that it fulfils the same constraints as the original
conditioner. Namely, giz =0Vvie{l,..,n}

Euclidean Symmetries of Node Features: We lift the HollowNet from working with scalar
features, i.e., x; € R to work with Euclidean features, e.g., x; € R?. Moreover, NoBGNN
allows for the use of message passing architectures that are invariant or equivariant under
the group action p(g), g € G of a group G. Furthermore, for each i there can be additional
scalar input data Z; € R. In practice (see section , x; € R? are the coordinates of an atom
while Z; encodes the atom type.

(a) (b) (©

Figure 2: Schematic example of line graph message passing. Blue: original graph (G), orange: line
graph (L(G)), gray: information flow between G and L(G). [(@)] Construction of the line graph nodes.
Every node in L(G) corresponds to one edge in G. The dashed arrows indicate information flow
before the message passing from G to L(G). [(b)| Construction of the edges of L(G). Information
flow after the message passing (dashed arrows) from L(G) to G.

Permutation Equivariant Conditioner We design a GNN for the conditioner such that information
from any node never returns to itself. A GNN where this holds for one message passing step is called
a non-backtracking GNN [31]] or a line graph GNN [32] and can be constructed as follows:

Let G = (N, E) be a directed graph with nodes N := {1, ...,n} and edges E C {(4,j)|i,j € N,i #
j}. To each node 4, we assign a node feature n;. Given G, we construct the non-backtracking line
graph L(G) = (N, E'9), where

N9 =E, E'Y9={(i,j,k)|(i,j) € E, (j.k) € E andi # k}. (12)
The node features of L(G) are nlg are defined to be

nd = n,. (13)

The hidden states h?j on L(G) are initialized to be ho =N, lg . Using this setup, a standard message
passing scheme [33] is applied on L(G):

mlzg - ¢(hll7)ﬂ méj = Z m;ij’ hfj—l = 1/)(th,) (14)
leNI(3,5)
lg
b= > R(h’ n) (15)
1EN(H)

#, 1 and R are all learnable functions, N9 (i, j) = {k|(k,i,7) € E'9}, N'(i) = {k|(k,i) € E} and
T is the number of message passing steps on the line graph. This construction is illustrated in fig.
The blue nodes and edges are part of G while the orange nodes and edges are part of L(G). The
gray dashed arrow in fig. illustrate the projection of the node features onto L(G) (eq.). The
orange arrows in fig. illustrate the message passing on L(G) (eq. (14)). Figure[2(c) visualizes
the projection of the node features from L(G) back to G as summarized in eq. . Equations (13)
and (14 .) take the role of the conditioner ¢(x) while eq. takes the role of the transformer 7(h, x

(see appendix [B).

So far, this GNN is, except in special cases that we detail in appendix [B] only non-backtracking if
just one message passing step is performed. In general, to ensure the non-backtracking nature of
the GNN, some connections in L(G) need to be removed after an appropriate number of message
passing steps. This can be done by keeping track of which nodes of L(G) received information of
which nodes of G after each message passing step. To this end, we define the three dimensional
time-dependent backtracking array B(t) € R™*"*"

Bht
B@Mk{l . 70 (16)

0 else.

with the additional convention that hl}: = 0 whenever (4, j) ¢ E. Notice that whenever B(t);;; = 1
information that started in node j will return to node j during readout. Algorithm [I]shows in detail
how B(t) is calculated (steps 8 and 11) and used to remove edges in L(G) (step 10). A more detailed
explanation and a proof that this construction does indeed result in a non-backtracking GNN for an
arbitrary number of message passing steps is given in appendix B]

Euclidean Symmetries of Node Features: In typical molecular applications, nodes are represented
in Euclidean space (e.g., x; € R? where d = 3) and may have additional features Z; (such as atom
type). Our goal is to embed (x;, Z;) € R? x R into a set of equivariant (v;) and invariant (s;) node
features, n; = (v;, s;) = embed(x;, Z;) € R™*? x R™ which serve as inputs for message passing
on L(G)(see eq.). For this task, we can use any G-equivariant embeddings inherent to GNN
architectures such as PaiNN or E3NN (for d = 3 and G < E(3)) [26}[27].

The message passing and readout functions (egs. and (I3)) are made G-equivariant by using the
message and update functions of any G-equivariant GNN. As we only modify the underlying graph
of the GNN, this trivially ensures equivariance.

By construction, the d-dimensional node inputs x; allow the Jacobian J; to be easily split into a
block-diagonal and block-hollow part with block size d x d. This observation and its consequences are
summarized in algorithm[I]and theorem] (see appendix [B]for a proof and additional explanations).
Algorithm T can also run on the pairwise euclidean differences of the node features x; (pd = true in
algorithm I . This is common practice in molecular applications to achieve translation invariance. A
brief illustration of algorithm[I]can be found in fig. [T}

Algorithm 1 Hollow message passing

Input: {x;, Z;}" , where x; € R?and Z; € R, pd € {true, false}
Returns: {b;}" ;, b; € R?

1: if pd then

2: dij = X; — Xy, €ij = embed(dij, Zl)

3: else

4: n; = embed(x;, Z;)

5: end if

6: Calculate G = (N, E), e.g., as a kNN graph. Self-loops, i.e., (¢,7) € E are prohibited.
7: Calculate the line graph L(G) = (N9, E'9) and its node features n.J:

€ij if pd

K n; else

N9 = E, E'9 = {(i,5,k)|(i,j) € E,(j,k) € Eandi £k}, nf = {

8: Calculate initial node features h?j and initial backtracking array B(0);;x:

(Y d(nyf)) if pd (Lif k € N9 (i, 7), 0else) if pd
hgj — EEN(i,5) , B(O)ijk _
nig else (1if k =14, Oelse) else

9: fort < 0to (79 — 1) do
10 Remove appropriate edges of L(G): E'Y « EY\ {(i,j,k) € E'Y|B(t);;, = 1}

11: Update backtracking array: B(t + 1);; = max;e o (i ;) { B () 1k, B(t)ijr }
12: Do message passing:

m}:cij = ¢<h§ja hfﬂ‘)a mfj = Zke/\f’g(i,j) miija hﬁg-“ = w(hgj’mgj)
13: end for

14: Perform readout and project back to G
lg embed(x;.detach() — x,,7;) ifpd
bj = Zie/\f(j) R(hz; ,Mij), wheren;; = { (js Zi)

n; else

Theorem 1 (Block-hollowness of HOMP). Algorithm|l|defines a function b : R™ — R whose
Jacobian Jyx) € RInXdn can be split into a block-hollow and a block-diagonal part, i.e.,

o) = Jex) + Ir(x) (17)

where J.(x) is block-hollow, while J . () is block-diagonal with block size d x d, respectively. This
structure of the Jacobian enables the exact computation of differential operators that only include
diagonal terms of the Jacobian with d instead of nd backward passes through the network.

In appendix |A| we show how HoMP can be adapted to attention mechanisms as well.

4 Computational Complexity

4.1 Graph Connectivity

The number of backward passes through a vector field b parametrized by algorithm [I] that is required
to compute its divergence is reduced by a factor of n compared to a standard GNN. However, the
forward pass through b is slower than through a standard GNN, as b is operating on the line graph.
This overhead will scale with the number of edges, which we denote #E for G and #E" for L(G).
In table[T|we show how the number of edges varies with graph types. For a fully connected graph,
#E'9 scales as n® resulting in an impractical overhead in high-dimensional systems. To address this,
we consider k nearest-neighbors (kNN) graphs instead which scale as #E'9 = O(nk?). Choosing
k < O(y/n) will leave the cost of a forward-pass through b comparable to a standard GNN with
a fully connected graph. To test whether this restriction in connectivity results in a sufficiently
expressive model, we empirically test different values for k in section

Using a kNN graph poses a locality assumption that might limit the model’s ability to learn the equi-
librium distribution of systems with long-range interaction (e.g., systems with coulomb interactions
such as molecules). One possible strategy to circumvent this problem is described in appendix [C]

Table 1: Number of edges of L(G) and G

fully connected k& neighbors

#E O(n?) O(nk)
#E'Y9 O(n?) O(nk?)

4.2 Divergence Calculation Speed-up

We summarize our runtime estimations for one integration step during inference RT**“?, including
likelihood calculations, for HollowFlow and a standard GNN based flow model in the following
theorem:

Theorem 2. Consider a GNN-based flow model with a fully connected graph Gy, and T message

passing steps and a HollowFlow model with a k neighbors graph Gy, and T'9 message passing steps.
Let both graphs have n nodes and d-dimensional node features.

The computational complexity of sampling from the fully connected GNN-based flow model including
sample likelihoods is

RT**P(G.) = O(Tnd), (18)
while the complexity of the HollowFlow model for the same task is
RT**P(L(G},)) = O(n(T'9k? + dk)). (19)

Moreover, the speed-up of HollowFlow compared to the GNN-based flow model is

RT*P(Gs..) o(Tn2d)

I\ TRz Lk (20)

RT***P(L(Gk))
A derivation of these estimates can be found in appendix

5 Experiments

We test HollowFlow on two Lennard-Jones systems with 13 and 55 particles, respectively, (LJ13,
LJ55). We also present results on Alanine dipeptide (ALA2) in Appendix [C.3]

To this end, we train a CNF (for training details and hyperparameters see appendix [D) using the
conditional flow matching loss [20] to sample from the equilibrium distribution of these systems.
We parametrize the vector field of our CNF using the O(3)-equivariant PaiNN architecture [26]. We
additionally use minibatch optimal transport [22| [34] and equivariant optimal transport [23]]. For each
system we train multiple different models:

Baseline: O(3)-equivariant GNN on a fully connected graph with 3-7 message passing
steps.

HollowFlow: O(3)-equivariant HollowFlow on a kNN graph with different values for &
with two message passing steps.

In the case of LJ13, we systematically test all values of &k from 2 to 12 in steps of 2 to gain insight into
how k affects the performance and runtime of the model. Based on our findings and the theoretical
scaling laws, we pick k € {7,27} for LJ55.

Motivated by the symmetry of pairwise interactions between atoms, all kNN graphs are symmetrized,
i.e., whenever the edge (i, 7) is included in the kNN graph the edge (j, ¢) is included as well, even if
it is not naturally part of the kNN graph.

All training details and hyperparameters are reported in appendix

Criteria to Assess Effectiveness We measure the sampling efficiency through the Kish effective
samples size (ESS) [35]. As the ESS is highly sensitive to outliers, we remove a right and left
percentile of the log importance weights, log w;, to get a more robust, yet biased, metric, ESS,...,
(see appendix [36]. As HOMP is, in general, a restriction compared to normal message passing,
we expect the ESS to be lower. However, as long as the speed-up is sufficiently large, our method can
still be an overall improvement.

To gauge the improvement we introduce a compute normalized, relative ESS, i.e., the number of
effective samples per GPU second and GPU usage during inference (see eq. (Z1))). This gives us
fairer grounds for comparison of HollowFlow against our baseline, a standard O(3)-equivariant CNF.
Further, by dividing the relative ESS for all hollow architectures by the baseline relative ESS, we
get the effective speed-up (EffSU) and correspondingly the EffSU,..,,, calculated from the relative
ESS, ¢, in the same way. To ensure a fair comparison, we ran all inference tasks on the same type of
GPU for every system, respectively. Details can be found in appendix

The results for LI13 and LJ55 are listed in tables[2]and[3] For both systems we observe that the ESS
and the ESS,..,,, are highest for the baseline and significantly smaller for HollowFlow. However, the
relative ESS,..,, is significantly higher for all HollowFlow models. This is reflected in the effective
speed-up EffSU,..,,, gauging how many times more samples we can generate per compute compared
to our non-hollow baseline. While the maximal EffSU,..,, that we observe for L.J13 is about 3.3
for k = 6, for LJ55 we observe a maximal EffSU,.,, of about 93.7 for k = 7. This shows that
HollowFlow can reduce the compute required for sampling by about two orders of magnitude on our
larger test system.

In fig. 3] we provide a detailed analysis of the runtime of different parts of models trained on LJ13
during sampling. Figure demonstrates that the vast majority of the compute in the baseline
model is spent on the divergence calculations while only a tiny fraction is spent on the forward pass.
fig. shows that exactly the opposite is true for HollowFlow, resulting in a decrease of runtime by
a factor of up to ~ 15, depending on k.

ESS x #samples
RT x (GPU usage)’

relative ESS(+)
relative ESS(baseline)

relative ESS = EffSU(-) = 2n

6 Related Works

Efficient Sample Likelihoods in Probability Flow Generative Models Evaluating the change
in probability associated with probability flow generative models is subject to research but broadly
fall into two different categories: 1) approximate estimator by invoking stochastic calculus [37]] or
trace estimators [30, (38} |39]] which are efficient, but prone to high variance 2) NFs with structured
Jacobians [[16H18], |40, |4 1]], possibly combined with annealing strategies [42-45] which offer efficiency,
but limited expressivity or an inability to exploit certain data symmetries such as permutation
equivariance.

Boltzmann Emulators and Other Surrogates Several works forego quantitative alignment with a
physical potential energy function u(x) in favor of scaling to larger systems through coarse-graining
or enabling faster sampling. These qualitative and semi-quantitative Boltzmann surrogates are often

— RILG) ")
5 10001 =< /(LG . 1
> RTV (G F10 = N
5 7(G)) 3 .
= 500 A ~ RT(G 2. =
£ / RT(L((G>>) 5 = § 102 4
0 T T T T T T T T T 0
2345678 9101112
k RT(G) RTY(G) RT/(G)
(@) (b)

Figure 3: Runtimes of HollowFlow and baseline for generating 10° LJ13 equilibrium samples.
All runtimes are multiplied by the GPU usage. Total runtime RT(L(G)) and runtime of the
forward passes RT/ (L(G)) and backward passes RT" (L(G)) of HollowFlow. In light blue: speed-
up (ratio of the runtimes of the fully connected baseline RT(G)) and HollowFlow . |(b)| Total runtime
and runtime of the forward and backward passes for the non-hollow fully connected baseline. The
forward and backward runtimes of the baseline were extrapolated from other runs, see appendix [D.6]
While the total runtime of the baseline is massively dominated by the backward pass, the opposite is
true for HollowFlow.

Table 2: Comparison of HollowFlow trained using different kNN graphs and the non-hollow fully
connected baseline, all trained on LJ13. The two rightmost columns show the effective speed-up
compared to the baseline eq. (2T) with and without weight clipping. Bold indicates best performance.

ESS (%) ESSyem (1) (%) EffSU,cr (1) EffSU

k=2 0.0540-955 2.922-95 1.059%-979 1.164:95
k=4 0.0418:397 10.3419:39 2.6492-857 0.643:52
k=6 3.3005300 20.20293 3.2603278 31.8753.80
k=8 27453236 20.6435:72 2.3103:323 18.2631;12
k=10 1.0575:3% 16.5015:3% 1.4841-492 5.51749
k=12 4.069%92 19.7215-8 1.6271-838 20.113%2°
baseline 2.1323231 40.7375-87 1 1

Table 3: Comparison of HollowFlow trained using different NN graphs and the non-hollow fully
connected baseline, all trained on LJ55. The two rightmost columns show the effective speed-up
compared to the baseline eq. @) with and without weight clipping. Bold indicates best performance.

ESS (%) ESSrem (1) (%) EffSU,ep, (1) EffSU

k=7 0.0069989 0.539:2¢ 93.73733°05, 82.26136,%6
k=27 0.0073:952 0.649:8 9.466995¢ 8.463%90
k=55 0.02099%5 0.749:77 4.36573%3 9.11;%18
baseline 0.0483955 2.96395 1 1

referred to as Boltzmann Emulators []1_3[] Some notable examples include, SMA-MD , BioEmu
(48], AlphaFlow [49], JAMUN [50]. and OpenComplex2 [51]]. Other approaches, instead aim to
mimic MD simulations with large time-steps including ITO [52H54]], TimeWarp [41]], ScoreDynamics
and related approaches [56-60].

Non-backtracking Graphs Non-backtracking graphs are applied in a variety of classical algo-
rithms, e.g., 162]). NoBGNN:Gs that are non-backtracking for only one message passing step have
been applied in a range of other context including for community detection [32], as way to reduce
over-squashing and alleviate redundancy in message passing [63]]. However, nobody has yet
exploited these methods to construct a NoBGNN that is non-backtracking for an arbitrary number of
message passing steps to give the Jacobian a structure that allows for cheap divergence calculations.

7 Limitations

We demonstrate good theoretical scaling properties of HollowFlow to large systems and support
this experimentally on systems of up to 165 dimensions. However, the kNN graph used in the
current HollowFlow implementation involves an assumption of locality, which may break down in
molecular and particle systems with long-range interactions, such as electrostatics. Future work
involves exploring strategies to incorporate such long-range interactions, which may involve other
strategies to construct the graph used in HollowFlow, Ewald-summation-based methods [64} 65]], or
linear/fast attention [66} |67]. Also, the fact that some edges in the line graph underlying HollowFlow
need to be removed after each message passing step might be problematic at scale. Despite that, there
is still a wide range of physical systems where long-range interactions are effectively shielded, such
as metals and covalent solids, which might enjoy the properties of HollowFlow models even without
these technical advances.

Overall, the performance of our baseline is not in line with state-of-the-art in terms of ESS for the
studied systems. However, since our HollowFlow models build directly on the baseline we anticipate
any improvement in the baseline to translate into the HollowFlow models as well.

8 Conclusions

We introduced HollowFlow, a flow-based generative model leveraging a novel NoBGNN based on
Hollow Message Passing (HoMP), enabling sample likelihood evaluations with a constant number
of backward passes independent of system size. We demonstrated theoretically that we can achieve
sampling speed-ups of up to O(n?), if the underlying graph G of HollowFlow is a kNN graph. By
training a Boltzmann generator on two different systems, we found significant performance gains in
terms of compute time for sampling and likelihood evaluation, the largest system enjoying a 10% x
speed-up in line with our theoretical predictions. Since HOMP can be adopted into any message-
passing-based architecture [[68]], our work can pave the way to dramatically boost the efficiency of
expressive CNF-based Boltzmann Generators for high-dimensional systems.

Acknowledgements

This work was partially supported by the Wallenberg Al, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation. Results were enabled by resources
provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) at Alvis
(projects: NAISS 2024/22-688 and NAISS 2025/22-841), partially funded by the Swedish Research
Council through grant agreement no. 2022-06725. The authors thank Ross Irwin and Selma Moqvist
and other team members of the AIMLeNS lab at Chalmers University of Technology for discussions,
feedback and comments.

References

[1] Frank Noé et al. “Boltzmann generators: Sampling equilibrium states of many-body systems
with deep learning”. In: Science 365.6457 (2019), eaaw1147.

[2] Jan Hendrik Prinz, Bettina Keller, and Frank Noé. “Probing molecular kinetics with Markov
models: Metastable states, transition pathways and spectroscopic observables”. In: Physical
Chemistry Chemical Physics 13.38 (2011), pp. 16912-16927. 1SSN: 14639076. DOI:|{10.1039/
clcp21258c|

[3] Simon Olsson et al. “Combining experimental and simulation data of molecular processes
via augmented Markov models”. In: Proceedings of the National Academy of Sciences of the
United States of America 114.31 (2017), pp. 8265-8270. 1SSN: 10916490.

[4] Christopher Kolloff and Simon Olsson. “Rescuing off-equilibrium simulation data through
dynamic experimental data with dynAMMOo”. In: Machine Learning: Science and Technology
4.4 (2023). 1SSN: 26322153. DOI:/10.1088/2632-2153/ad10ce.

[5] Ignasi Buch, Toni Giorgino, and Gianni De Fabritiis. “Complete reconstruction of an enzyme-
inhibitor binding process by molecular dynamics simulations”. In: Proceedings of the National
Academy of Sciences 108.25 (June 2011), pp. 10184—-10189. 1SSN: 1091-6490. DOI:|10.1073/
pnas.1103547108.

10

https://doi.org/10.1039/c1cp21258c
https://doi.org/10.1039/c1cp21258c
https://doi.org/10.1088/2632-2153/ad10ce
https://doi.org/10.1073/pnas.1103547108
https://doi.org/10.1073/pnas.1103547108

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

Nuria Plattner and Frank Noé. “Protein conformational plasticity and complex ligand-binding
kinetics explored by atomistic simulations and Markov models”. In: Nature Communications
6.1 (July 2015). 1SSN: 2041-1723. DO1:/10.1038/ncomms8653.

Kresten Lindorff-Larsen et al. “How fast-folding proteins fold”. In: Science 334.6055 (2011),
pp- 517-520.

Frank Noé et al. “Constructing the equilibrium ensemble of folding pathways from short
off-equilibrium simulations”. In: Proceedings of the National Academy of Sciences 106.45
(Nov. 2009), pp. 19011-19016. 1SSN: 1091-6490. DO1:|10.1073/pnas.0905466106.

M. Parrinello and A. Rahman. “Polymorphic transitions in single crystals: A new molecular
dynamics method”. In: Journal of Applied Physics 52.12 (Dec. 1981), pp. 7182-7190. ISSN:
1089-7550. DOI1:110.1063/1.328693.

William C. Swope and Hans C. Andersen. “10%-particle molecular-dynamics study of homo-
geneous nucleation of crystals in a supercooled atomic liquid”. In: Physical Review B 41.10
(Apr. 1990), pp. 7042-7054. 1SSN: 1095-3795. DOI:/10.1103/physrevb.41.7042.

Pieter Rein ten Wolde, Maria J. Ruiz-Montero, and Daan Frenkel. “Numerical Evidence for
bee Ordering at the Surface of a Critical fcc Nucleus™. In: Physical Review Letters 75.14 (Oct.
1995), pp. 2714-2717. 1SSN: 1079-7114. DOI:110.1103/physrevlett.75.2714|

Hendrik Jung et al. “Machine-guided path sampling to discover mechanisms of molecular
self-organization”. In: Nature Computational Science 3.4 (Apr. 2023), pp. 334-345. 1SSN:
2662-8457. DOI:|10.1038/s43588-023-00428-z,

Jérome Hénin et al. “Enhanced Sampling Methods for Molecular Dynamics Simulations
[Article v1.0]”. In: Living Journal of Computational Molecular Science 4.1 (2022). DOI:
10.33011/1ivecoms.4.1.1583|

Esteban G. Tabak and Eric Vanden-Eijnden. “Density estimation by dual ascent of the log-
likelihood”. In: Communications in Mathematical Sciences 8.1 (2010), pp. 217-233.

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows.
2016. arXiv:|1505.05770.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using Real NVP.
2016. eprint: larXiv:1605.08803.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked Autoregressive Flow for
Density Estimation. 2017. eprint: arXiv:1705.07057,

Durk P Kingma and Prafulla Dhariwal. “Glow: Generative flow with invertible 1x1 convolu-
tions”. In: Advances in neural information processing systems 31 (2018).

Qiang Liu. “Rectified flow: A marginal preserving approach to optimal transport”. In: arXiv
preprint arXiv:2209.14577 (2022).

Yaron Lipman et al. Flow Matching for Generative Modeling. 2023. arXiv: 2210 . 02747
[cs.LG].

Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. “Stochastic Interpolants: A
Unifying Framework for Flows and Diffusions”. In: arXiv (2023).

Alexander Tong et al. “Improving and generalizing flow-based generative models with mini-
batch optimal transport”. In: Transactions on Machine Learning Research (2024). Expert
Certification. ISSN: 2835-8856.

Leon Klein, Andreas Kramer, and Frank Noé. Equivariant flow matching. 2023. arXiv: 2306 .
15030 [stat.ML].

Jonas Kohler, Leon Klein, and Frank Noe. “Equivariant Flows: Exact Likelihood Generative
Learning for Symmetric Densities”. In: Proceedings of the 37th International Conference on
Machine Learning. Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine
Learning Research. PMLR, 13-18 Jul 2020, pp. 5361-5370.

Danilo Jimenez Rezende et al. Equivariant Hamiltonian Flows. 2019. arXiv:|1909. 13739
[stat.ML].

Kristof T. Schiitt, Oliver T. Unke, and Michael Gastegger. “Equivariant message passing for
the prediction of tensorial properties and molecular spectra”. In: CoRR abs/2102.03150 (2021).
arXiv:12102.03150.

Mario Geiger and Tess Smidt. e3nn: Euclidean Neural Networks. 2022. arXiv: 2207 .09453
[cs.LG].

11

https://doi.org/10.1038/ncomms8653
https://doi.org/10.1073/pnas.0905466106
https://doi.org/10.1063/1.328693
https://doi.org/10.1103/physrevb.41.7042
https://doi.org/10.1103/physrevlett.75.2714
https://doi.org/10.1038/s43588-023-00428-z
https://doi.org/10.33011/livecoms.4.1.1583
https://arxiv.org/abs/1505.05770
arXiv:1605.08803
arXiv:1705.07057
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/2306.15030
https://arxiv.org/abs/1909.13739
https://arxiv.org/abs/1909.13739
https://arxiv.org/abs/2102.03150
https://arxiv.org/abs/2207.09453
https://arxiv.org/abs/2207.09453

(28]

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]

[38]

[39]
[40]

[41]

[42]
[43]
[44]
[45]
[46]

[47]

[48]
[49]
[50]
[51]

[52]

Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles and Techniques of

Algorithmic Differentiation, Second Edition. Society for Industrial and Applied Mathematics,
Jan. 2008. 1SBN: 9780898717761. DOI:|10.1137/1.9780898717761.

Ricky T. Q. Chen and David Duvenaud. “Neural Networks with Cheap Differential Operators”.
In: CoRR abs/1912.03579 (2019). arXiv:|1912.03579.

Will Grathwohl et al. “Scalable Reversible Generative Models with Free-form Continuous
Dynamics”. In: International Conference on Learning Representations. 2019.

Seonghyun Park et al. Non-backtracking Graph Neural Networks. 2024. arXiv: 2310.07430
[cs.LG].

Zhengdao Chen, Xiang Li, and Joan Bruna. Supervised Community Detection with Line Graph
Neural Networks. 2020. arXiv: 1705.08415 [stat.ML]l

Justin Gilmer et al. Neural Message Passing for Quantum Chemistry. 2017. arXiv: 1704 |
01212 [cs.LG]L

Aram-Alexandre Pooladian et al. “Multisample Flow Matching: Straightening Flows with
Minibatch Couplings.” In: /ICML. Ed. by Andreas Krause et al. Vol. 202. Proceedings of
Machine Learning Research. PMLR, 2023, pp. 28100-28127.

Leslie Kish. Survey Sampling. John Wiley & Sons, 1965.

Selma Mogqvist et al. “Thermodynamic Interpolation: A Generative Approach to Molecular
Thermodynamics and Kinetics”. In: Journal of Chemical Theory and Computation 21.5 (Feb.
2025), pp. 2535-2545. ISSN: 1549-9626. DO1:/10.1021/acs. jctc.4c015657.

Marta Skreta et al. The Superposition of Diffusion Models Using the It6 Density Estimator.
2024. eprint: |arXiv:2412.17762.

M.F. Hutchinson. “A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines”. In: Communications in Statistics - Simulation and Computation 19.2 (Jan.
1990), pp. 433-450. 1SSN: 1532-4141. DOI:|10.1080/03610919008812866|

Ryan P. Adams et al. Estimating the Spectral Density of Large Implicit Matrices. 2018. eprint:
arXiv:1802.03451.

Laurence Illing Midgley et al. “SE(3) Equivariant Augmented Coupling Flows”. In: Thirty-
seventh Conference on Neural Information Processing Systems. 2023.

Leon Klein et al. “Timewarp: Transferable Acceleration of Molecular Dynamics by Learning
Time-Coarsened Dynamics”. In: Advances in Neural Information Processing Systems. Ed. by
A. Oh et al. Vol. 36. Curran Associates, Inc., 2023, pp. 52863-52883.

Laurence Illing Midgley et al. “Flow Annealed Importance Sampling Bootstrap”. In: The
Eleventh International Conference on Learning Representations. 2023.

Michael S. Albergo and Eric Vanden-Eijnden. NETS: A Non-Equilibrium Transport Sampler.
2024. eprint: |arXiv:2410.02711.

Marta Skreta et al. Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product
of Experts. 2025. eprint: arXiv:2503.02819,

Charlie B. Tan et al. Scalable Equilibrium Sampling with Sequential Boltzmann Generators.
2025. eprint: arXiv:2502.18462.

Bowen Jing et al. Torsional Diffusion for Molecular Conformer Generation. 2022. eprint:
arXiv:2206.01729.

Juan Viguera Diez et al. “Generation of conformational ensembles of small molecules via
surrogate model-assisted molecular dynamics”. In: Machine Learning: Science and Technology
5.2 (Apr. 2024), p. 025010. 1SSN: 2632-2153. DOI:|10.1088/2632-2153/ad3b64.

Sarah Lewis et al. “Scalable emulation of protein equilibrium ensembles with generative deep
learning”. In: (Dec. 2024). DOI1:{10.1101/2024.12.05.626885,

Bowen Jing, Bonnie Berger, and Tommi Jaakkola. AlphaFold Meets Flow Matching for
Generating Protein Ensembles. 2024. eprint: |arXiv:2402.04845|

Ameya Daigavane et al. JAMUN: Bridging Smoothed Molecular Dynamics and Score-Based
Learning for Conformational Ensembles. 2024. eprint: arXiv:2410.14621.

Qiwei Ye. “Towards Unraveling Biomolecular Conformational Landscapes with a Generative
Foundation Model”. In: (May 2025). DOI:/10.1101/2025.05.01.651643.

Mathias Schreiner, Ole Winther, and Simon Olsson. Implicit Transfer Operator Learning:
Multiple Time-Resolution Surrogates for Molecular Dynamics. 2023. arXiv: 2305 . 18046
[physics.chem-ph],

12

https://doi.org/10.1137/1.9780898717761
https://arxiv.org/abs/1912.03579
https://arxiv.org/abs/2310.07430
https://arxiv.org/abs/2310.07430
https://arxiv.org/abs/1705.08415
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1704.01212
https://doi.org/10.1021/acs.jctc.4c01557
arXiv:2412.17762
https://doi.org/10.1080/03610919008812866
arXiv:1802.03451
arXiv:2410.02711
arXiv:2503.02819
arXiv:2502.18462
arXiv:2206.01729
https://doi.org/10.1088/2632-2153/ad3b64
https://doi.org/10.1101/2024.12.05.626885
arXiv:2402.04845
arXiv:2410.14621
https://doi.org/10.1101/2025.05.01.651643
https://arxiv.org/abs/2305.18046
https://arxiv.org/abs/2305.18046

[53]

[54]

[55]

[56]
[57]
[58]

[59]

[60]
[61]
[62]

[63]

[64]

[65]

[66]
[67]
[68]
[69]

[70]
[71]

[72]

[73]

[74]

[75]

Juan Viguera Diez et al. “Boltzmann priors for Implicit Transfer Operators”. In: The Thirteenth
International Conference on Learning Representations. 2025.

Juan Viguera Diez, Mathias Schreiner, and Simon Olsson. Transferable Generative Models
Bridge Femtosecond to Nanosecond Time-Step Molecular Dynamics. 2025. eprint: arXiv |
2510.07589.

Tim Hsu et al. “Score Dynamics: Scaling Molecular Dynamics with Picoseconds Time Steps
via Conditional Diffusion Model”. In: Journal of Chemical Theory and Computation 20.6
(Mar. 2024), pp. 2335-2348. 1SSN: 1549-9626. DOI:|10.1021/acs. jctc.3c01361.

Fabian L. Thiemann et al. Force-Free Molecular Dynamics Through Autoregressive Equivariant
Networks. 2025. eprint: arXiv:2503.23794,

Magnus Petersen, Gemma Roig, and Roberto Covino. DynamicsDiffusion: Generating and
Rare Event Sampling of Molecular Dynamic Trajectories Using Diffusion Models. 2024.
Bowen Jing et al. Generative Modeling of Molecular Dynamics Trajectories. 2024. eprint:
arXiv:2409.17808l

Pantelis R. Vlachas et al. “Accelerated Simulations of Molecular Systems through Learning
of Effective Dynamics”. In: Journal of Chemical Theory and Computation 18.1 (Dec. 2021),
pp- 538-549. 1SSN: 1549-9626. DOI:/10.1021/acs. jctc. 1c00809.

Mhd Hussein Murtada, Z. Faidon Brotzakis, and Michele Vendruscolo. MD-LLM-1: A Large
Language Model for Molecular Dynamics. 2025. eprint: arXiv:2508.03709.

Mark Kempton. Non-backtracking random walks and a weighted lhara’s theorem. 2016. arXiv:
1603.05553 [math.CO].

M. E. J. Newman. Spectral community detection in sparse networks. 2013. arXiv: 1308.6494
[physics.soc-ph].

Ronggqin Chen et al. “Redundancy-Free Message Passing for Graph Neural Networks”. In:

Advances in Neural Information Processing Systems. Ed. by S. Koyejo et al. Vol. 35. Curran
Associates, Inc., 2022, pp. 4316-4327.

Arthur Kosmala et al. “Ewald-based Long-Range Message Passing for Molecular Graphs”. In:
International Conference on Machine Learning (ICML). 2023.

Bingqing Cheng. “Latent Ewald summation for machine learning of long-range interactions”.
In: npj Computational Materials 11.1 (Mar. 2025). 1SSN: 2057-3960. DOI:/10.1038/s41524-
025-01577-7.

J. Thorben Frank et al. Euclidean Fast Attention: Machine Learning Global Atomic Represen-
tations at Linear Cost. 2024. eprint: |arXiv:2412.08541.

Alessandro Caruso et al. Extending the RANGE of Graph Neural Networks: Relaying Attention
Nodes for Global Encoding. 2025. eprint: jarXiv:2502.13797.

Petar Velivckovi€. “Message passing all the way up”. In: ICLR 2022 Workshop on Geometrical
and Topological Representation Learning. 2022.

Michael M. Bronstein et al. Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,
and Gauges. 2021. arXiv:|2104.13478 [cs.LG].

Petar Velivckovié et al. Graph Attention Networks. 2018. arXiv:(1710.10903 [stat.ML].
Jason Ansel et al. “PyTorch 2: Faster Machine Learning Through Dynamic Python Bytecode
Transformation and Graph Compilation”. In: 29th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems, Volume 2 (ASPLOS ’24).
ACM, Apr. 2024. DOI:|10.1145/3620665 . 3640366.

Michael Poli et al. TorchDyn: Implicit Models and Neural Numerical Methods in PyTorch.
Kiristof T. Schiitt et al. “SchNetPack: A Deep Learning Toolbox For Atomistic Systems”. In:
Journal of Chemical Theory and Computation 15.1 (2019), pp. 448—455. D0OI1:|10.1021/acs |
jctc.8b00908. eprint: https://doi.org/10.1021/acs. jctc.8b00908,

Kristof T. Schiitt et al. “SchNetPack 2.0: A neural network toolbox for atomistic machine
learning”. In: The Journal of Chemical Physics 158.14 (Apr. 2023), p. 144801. 1SSN: 0021-
9606. DOI: |10.1063/5.0138367. eprint: https://pubs.aip.org/aip/jcp/article-
pdf/doi/10.1063/5.0138367/16825487/144801_1_5.0138367 .pdf,

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-Weighted Linear Units for Neural
Network Function Approximation in Reinforcement Learning. 2017. eprint: arXiv: 1702
03118.

13

arXiv:2510.07589
arXiv:2510.07589
https://doi.org/10.1021/acs.jctc.3c01361
arXiv:2503.23794
arXiv:2409.17808
https://doi.org/10.1021/acs.jctc.1c00809
arXiv:2508.03709
https://arxiv.org/abs/1603.05553
https://arxiv.org/abs/1308.6494
https://arxiv.org/abs/1308.6494
https://doi.org/10.1038/s41524-025-01577-7
https://doi.org/10.1038/s41524-025-01577-7
arXiv:2412.08541
arXiv:2502.13797
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/1710.10903
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1063/5.0138367
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0138367/16825487/144801_1_5.0138367.pdf
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0138367/16825487/144801_1_5.0138367.pdf
arXiv:1702.03118
arXiv:1702.03118

[76] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv:
1412.6980 [cs.LG].

14

https://arxiv.org/abs/1412.6980

A Adaptation of HollowFlow to Attention

As illustrated in [69], attention can be considered a special case of message passing neural networks.
Thus, the adaptation is straightforward, we outline two possible strategies in this section.

First, we replace the general message function ¢ (eq. (I4)) by a product of the importance coefficients
from a self-attention mechanism a : R™* x R™* — R and a learnable function ¢ : R™» — R"»:

m%@lj = (K)é()7 mfj = Z mkzg? ht+1 w(h’fj’) (22)
keN9(i,5)
N9(i, j) is defined in eq. (28).

Second, for graph-attention-like mechanism [70], we define the line graph softmax function for a
graph G with the corresponding notion of nearest neighbors A%9:4 (i, 5):

exp (Yijk)

softmaxy; (yijr) =) 23)
! Zlef\ﬂs«q(i,j) eXp (yijl)
The updates of HollowFlow then become
afcfj = softmax{; (a(hj;, hy,)) (24)
1
' =o > apiWih | (25)

KEN19:(i,5)

where W;; € R™»*"" is a learnable weight matrix, o : R — R is a nonlinearity (applied element
wise) and a : R™ x R™ — R is a non-linear self-attention function, typically a feed-forward
neural network One can also generalize to multi-head attention by independently executing eqs.
and (25)), possibly even on differently connected graphs {G, } _ potentially circumventing expres-
siveness problems and then concatenating the result:

, t
akfj softmax; (a(Whj;,

Whj;)) (26)
H
Wit = || o Z ap LWLt | . (27)
q=1 keN'tg.a(i,j5)
Here, W49 and ij € R xnnxH are learnable weight matrices and H is the number of attention
heads.

These formulations demonstrate that both self-attention and graph-attention layers can be integrated
into HollowFlow without altering its block-hollow Jacobian structure, enabling efficient divergence
computations within attention-based architectures.

B Derivations and Proofs

B.1 Hollowness of HollowFlow

We first reintroduce some notation and do then restate algorithm [T]and theorem [I] and proof it.

Notational remarks By N'9(i, j) and AV (i) we mean the following notions of nearest neighbors:

N,) = {k|(k,i,j) € E'9} (28)
NG) = {k|(k,i) € E}. (29)

Equation is illustrated in fig. 4 The functions ¢, ¢, 1,1 and R used in algorithm [1] are all
learnable functions. B(t) € R"*"*" is the three-dimensional time-dependent back tracking array
(see eq. (I6) and algorithm[I)), the integer ¢ indicates the current message passing step. The binary
variable pd € {true, false} indicated whether the algorithms runs on the (translation invariant)
pairwise differences or not. The detach() method means that derivatives w.r.t. the detached variable
are ignored (i.e., equal to zero).

15

Figure 4: Schematic example of the graph G (in blue) and its line graph L(G) (in orange):
The line graph nodes encircled with a continuos red line correspond to A*9(4,) while the node
encircled with a dashed red line corresponds to N9 (4, j). Two edges of L(G) are labelled explicitly
to illustrate our labelling convention.

Algorithm 1 Hollow message passing

Input: {x;, Z;}" , where x; € R?and Z; € R, pd € {true, false}
Returns: {b;}" ,, b; € RY

1: if pd then

2: dij =X; — Xy, €ij = embed(dij, Z,)

3: else

4: n; = embed(xi, Zz)

5: end if

6: Calculate G = (N, E), e.g., as a kNN graph. Self-loops, i.e., (i,7) € E are prohibited.
7: Calculate the line graph L(G) = (N9, E'9) and its node features nig :

€ij if pd

Y n; else

N = B, B9 = {(i,5,k)|(i,§) € B, (j,k) € Eandi #k}, nl¥ = {

8: Calculate initial node features h?j and initial backtracking array B(0);;:

U(z Aqu(nﬁj;)) if pd (Lif k € N'9(i, 4), 0else) if pd
hiy = q PP . B(0)ijk =
nig else (Lif k =4, Oelse) else

9: fort <+ 0to (7% — 1) do
10: Remove appropriate edges of L(G): E'9 < E'Y9\ {(i,5,k) € EY9|B(t);jx = 1}
11: Update backtracking array: B(t + 1)y = maxjeno(;, jy 1B ()i, B(t)ijn }
12: Do message passing:
mfm‘ = fi’(hﬁja i), mfj = ZkeN’g(i,j) m};ija hzrl = w(hgjvmgj)

13: end for
14: Perform readout and project back to G:

tg embed(x;.detach() — x;,Z;) ifpd

bj = Yien() R(h]; ", nij), wheren;; = {n elseZ e
j

Theorem (Block-hollowness of HOMP). Algorithmdeﬁnes a function b : R¥ — R whose
Jacobian Jyx) € RInxdn can be split into a block-hollow and a block-diagonal part, i.e.,

Jox) = Jex) + Irx) (30)

where J.(x) is block-hollow, while J . (x is block-diagonal with block size d x d, respectively. This
structure of the Jacobian enables the exact computation of differential operators that only include
diagonal terms of the Jacobian with d instead of nd backward passes through the network.

Remark: Figure] might be a helpful illustration to keep track of the indices when reading the proof.

16

Proof. By the chain rule step 14 gives

db; OR OhL" OR ony
j—Z<ma”+a |- G1)
i€\ Xk g O

If we show that 2-ht; = 0¥t > 0 and (‘?;‘T —0if j # k) for all (4,7) € E and for all k €

{1, ...,n} the Jacobian decomposes as stated. We split the proof into two cases:

Case 1: pd = false:

That g%j =0if j # kis trivial for all k € {1,...,n} as n;; = embed(x;, Z;).

We show %hﬁj =0 forall ¢ > 0 and for all (¢, j) € E by induction on ¢:
Base case:

1. h?j = embed(x;, Z;) is by definition independent of x; for all (i, j) € E.

2. Furthermore, B(0);;, is by definition one exactly when h?j depends on x, and zero other-
wise (see step 8).

Induction step: Assume

1. h; is independent of x; for all (i,7) € E and

2. B(t)i;k is zero exactly when hﬁj is independent of xy.

We want to show that these conditions also hold for ¢ + 1.

To see that hf;.rl is independent of x; for all (i,5) € E, by step 12 of algorithm |1 and the first

induction hypothesis, we only need to show that &}, does not depend on x; for all k € N(i, j).
Assume h}, does depend on x;. By the second induction hypothesis, this implies B(t);; = 1 and
by step 10 of algorithmthus (k,i,7) ¢ E'9. This means k ¢ N'9(i, j), a contradiction.

Next, we prove (B(t + 1);; = 0 if and only if hﬁjl is independent of x;) by proving both
implications:

B(t+1)j5 =0 = hfjﬂ is independent of x;,:

Assume B (t + 1) = 0. By step 11 of algorithmthis implies B(t)ur, = 0V 1 € N9(i,5) and
B(t);jx = 0. By the second induction hypothesis it follows that A}, and h! ; are independent of x,
for all | € N'9(i, j) which by step 12 of algorithmimplies that hf;rl is independent of xj.

hﬁ;rl is independent of x;, = B(t + 1), = 0:
Assume hﬁ;-rl is independent of x;. By step 12 of algorithm || this implies that hﬁj and h}, are

independent of x;, for all I € N"%9(i, §). By the second induction hypothesis and step 11 of algorithm
we get B(t + 1), = 0 as desired.

Case 2: pd = true:

That 2%2 = 0if j # k is trivial for all k € {1,...,n} as n;; = embed(x;.detach() —x;, Z;)) and

OXp,
the detach() method means that we ignore derivatives w.r.t. the detached variable.

We again show %hﬁj =0 forall ¢ > 0 and for all (¢, j) € F by induction on ¢. The only difference

compared to case 1 is the base case, as h?j is initialized differently.

17

Base case:
1. h?j is a function of nﬁfz where k € N'9(i,j). As k # jand i # 7, h% is independent of x;.

2. We need to show B(0)y, is zero exactly when Ay, is independent of x.. Assume B(0);;1, =
0. Then k ¢ N (i, j) by step 8. Thus, by definition of h?j (step 8), h?j is independent of
x. Conversely, let h?j be independent of xj. Then k ¢ N (i, j) meaning B(0);;; = 0 by
step 8.

Induction step: The induction step is the same as in case 1.

Jacobian diagonal with d backward passes: We can now exploit the decomposition eq. of
the Jacobian to get all its diagonal terms with only d vector-Jacobian products (backward passes).

This can be achieved by applying the detach() operation to hg;-lg in step 14 of algorithm [1|such
that the block-diagonal part of the decomposition eq. @D remains unchanged while the hollow part
vanishes. If we construct d column vectors {v; € R"}T_, as

(v1); = {1 ifj=i+dk—1), ke{l,..,n}

32
0 else, (32)

The vector-Jacobian products {J,v; le do then give us access to all diagonal terms of J;, e.g.,
tr(Jp) = Zle vl Jpv; (see fig. Elfor an illustration in the case n = 5,d = 3). O

Further remarks The conditioner ¢(x) and the transformer 7(h, x) shown in fig.|l|can explicitly
be written component-wise as follows:

¢;(x) = {h]" Vien() = hy (33)
lg
Tj(hj7xj): Z R(hz; 7nij)? (34)
€N (5)

1 . .
where hg; ’ and n; ; are defined as in algorlthm

Whenever a directed graph G acyclic, its directed line graph L(G) will also be acyclic which implies
that even without edge removal in L(G) (step 10 in algorithm 1)) message passing on the line graph
ensures that information starting from node ¢ of GG can never return to itself after an arbitrary number
of message passing steps. If the shortest cycle in G has length g (i.e., G has girth g), one can do at
most g — 2 message passing steps without returning information if no edges of L(G) are removed.
The shift —2 comes from the fact that initialization of the node features (step 7 in algorithm) and
the readout (step 14 in algorithm [I)) effectively bridge one edge of G each.

B.2 Computational Complexities

Theorem@ Consider a GNN-based flow model with a fully connected graph G ¢. and T' message

passing steps and a HollowFlow model with a k neighbors graph Gy, and T'9 message passing steps.
Let both graphs have n nodes and d-dimensional node features.

The computational complexity of sampling from the fully connected GNN-based flow model including
sample likelihoods is

RT*'P(G.) = O(T'n’d), ™)
while the complexity of the HollowFlow model for the same task is
RT**P(L(G},)) = O(n(T"k* + dk)). (™)

Moreover, the speed-up of HollowFlow compared to the GNN-based flow model is

RT*'P(Gy.) 0 Tn?d
RT*P(L(Gy)) \TWk2+dk)’

18

Proof. The sampling procedure involves a forward pass and one divergence calculation for each
integration step. We start by estimating the runtimes of the forward pass RT/. The key assumption is
that the computational complexity of the forward pass is proportional to the number of edges of the
graph (see table[T)) and the number of message passing steps.:

RT/(Gf.) = O(T#Ey.) = O(Tn?) (35)
RT/ (L(G})) = O(TY#EY) = O(T"nk?). (36)

The computational complexity of the divergence calculation RT"Y will be proportional to the number
of backward passes necessary to compute the divergence times the complexity for each backward
pass. For the fully connected GNN we need dn backward passes at the cost of O(T#ZE/.):

RTY (G.) = O(T#E}.dn) = O(Tnd). (37)
For HollowFlow we only need d backward passes by exploiting the structure of the Jacobian (See the-

orem. Each of these backward passes has a complexity O(#FE}), as we only need to backpropagate
through the transformer, not the conditioner:

RTY(L(G})) = O(#Exd) = O(dnk). (38)

The runtime of one integration step, RT*'°?, that is proportional to the total runtime, will scale as
RT/ + RTV. Thus, we get

RTstep(GfC) — RTS (Ge) + RTY (Gye) = O(TnQ) + O(Tngd) = O(Tng’d), 39
RT*“P(L(Gy)) = RTY(L(GL) + RTV (L(Gy)) = O(Tnk?) + O(dnk) = O(n(TK? + k).
(40)

where the right term in the sum in eq. dominates as O(n®) > O(n?) and d is a constant
independent of n and 7. The speed-up during sampling with likelihood evaluation when using
HollowFlow compared to a standard, fully connected GNN is thus

RT**P(G ¢, Tn2d Tnd
=0 _ e) (@) Lna , 41)

RT® ep(L(Gk)) Tlgk2 + dk Tlg
where the last equality assumes k = O(y/n) (see section4.1)). In conclusion, we expect a speed-up
of O(n?) for constant k and a speed-up of O(n) for k = O(\/n). O

B.3 Memory scaling of B(t)

From the definition of B(t) (eq.) one might expect a cubic memory scaling in n. However, it is
sufficient to only save information about from which nodes of G all the nodes of L(G) have received
information from. If G has n nodes and L(G) has n;4 nodes, the size of the array will effectively be
nnyg. For a kNN graph, n;, = O(nk) so the memory requirements of B(t) in our implementation
scale as n%k.

C Additional Results

C.1 Non-equivariant HollowFlow

Adaptation of HollowFlow to non-equivariant GNN architectures is straightforward as HollowFlow
only affects the construction of the underlying graph while preserving the message and update
functions of the GNN including their equivariance properties. Relaxing permutation symmetry can
be done by using unique embeddings for all nodes in the graph (as done for Alanine Dipeptide, see

appendix [C.3).
C.2 Multi-head HollowFlow

Using a kNN graph poses a locality assumption that might limit the models ability when learning
the distribution of systems with long-range interactions (e.g., systems with coulomb interactions
such as molecules). To circumvent the locality assumption while still keeping the computational cost
manageable, we additional consider a multi-head strategy with H heads. The central idea is to run
HoMP on H different graphs in parallel and sum up the result. These graphs can be constructed in
different ways, we explore the following two strategies:

19

Table 4: LJ13
ESS (%) ESSyem (1) (%) EffSUyem (1) EffSU

k=2 0.0545-955 2.922-95 1.0591-979 1.164:95
k= 0.0415-397 10.341939 2.6492-857 0.643:62
k=6 3.3005:3%% 20.2030-29 3.26035275 31.8753%:80
=38 2.7453-23¢ 20.6429°72 2.3102:323 18.2631:12
k=10 1.0573:39% 16.5018-5% 1.4841-492 5.519-49
k=12 4.0694925 19.7219-89 1.6271-838 20.113%2°
H=2 2.1993:62% 17.55{7-64 1.6131-522 12.083%38
H=3 0.7419:232 13.781383 1.3391:347 4.17%:9%
H=4 0.3330-742 11.3211-3% 1.0641-071 1.85¢:17
H=21T=1 373032 23.35334 0.8649-858 8.531%5t
H=31T=1 2484342 19.0613:12 1.2061-353 9.231590
H=4T=1 0.32201% 11.52}1:38 0.8459-85% 1.42%:33
H=41=2 2239233 15.3213-29 0.8490-8%2 7.403%90
baseline k = 6 0.0020-993 43.52%5°%3 1.0101-944 0.009:99
baseline 21322231 40.7310-87 1 1

1. Non-overlapping scale separation: Consider a fully connected graph G embedded in
euclidean space with # E edges and sort the edges by length. Divide this list into H equally
sized chunks of length #E/H with no overlap. If there is a remainder, distribute the
remaining edges to the heads as equally as possible.

2. Overlapping scale separation with overlap number I: Consider a fully connected graph
G embedded in euclidean space with #F edges and sort the edges by length. Divide this
list into H equally sized chunks of size #F /(H — I) such that the centers of these chunks
are spaced evenly. If there is a remainder, distribute the remaining edges to the heads as
equally as possible.

Both strategies ensure that there is no locality assumption. The first strategy assumes scale separability
while the second one allows for a (limited) scale overlap. In terms of scaling, observe that #F =
O(n?) for a fully connected graph. Thus, each head has O(n?/(H — I)) edges giving us on average
O(n/(H — I)) edges per node. Finally, the line graph of each head has thus O(n?/(H — I)?) edges,
giving us O(Hn?/(H — I)?) line graph edges in total. Thus, if we, e.g., choose the number of heads
H and the overlap number I proportional to n, the scaling is O(n?).

We test both of the aforementioned multi-head strategies on LJ13, LI55 and Alanine Dipeptide. The
results together with the single-head results from the main paper can be found in tables [4]to [6]

C.3 Alanine Dipeptide

We additionally trained HollowFlow and a corresponding baseline on Alanine Dipeptide using a
number of different graph connecting strategies (multi headed and single headed). For all models,
we break permutation equivariance. Interestingly, the overlapping multi-head strategy with H = 3
and I = 1 seems to perform best in terms of ESS,..,, out of all HollowFlow models, suggesting
that multi-head approaches might be a promising direction to alleviate limitations of HollowFlow.
However, we do not observe an effective speed-up of HollowFlow compared to the non-hollow
baseline. We believe that further hyperparameter tuning and engineering efforts might close this
performance gap.

20

Table 5: LJ55
ESS (%) ESSpem (1) (%) EffSU,en (1) EffSU

k=17 0.0069-349 0.539-2¢ 93.73723°971 82.26136,56
k=27 0.0079:382 0.649:8% 9.4663-939 8.461%90

k =55 0.02099%2 0.74977 4.3654 3% 9.1153%18
H=2 0.0089-98% 0.533-25 5.2593-559 6.449:97
H=4 0.0069-3%% 0.719:%2 7.198%:378 4.86%5-22
H=6 0.0099-982 0.483:5% 5.9018-24 9.3913,89
H =3 0.0159:9%0 0.539:23 7.1448393 15.412%3
H =10 0.0069-959 0.533-25 7.6045:949 7.023%52
baseline k = 27 0.0070-982 0.643-87 0.3249:332 0.280-1%
baseline 0.048):055 2.963-93 1 1

Table 6: ALA2
ESS (%) ESSyem (1) (%) EffSUyenm (1) EffSU

H=2 0.0083-958 0.68971 0.5669-259 3.6355¢

H=3 0.0129:957 0.239:33 0.1989-243 4.975%9°
H=4 0.0069-99% 0.119:43 0.1149-128 2.715:35

H=5 0.0033:995 0.049:93 0.0429-9%0 1.43%24

H=31=1 0017332 0.735:75 0.3999-315 3.647-99

k=11 0.0109:932 0.52924 0.5889-818 4.528:39

baseline 0.1359-224 16.14;%-27 1 1

D Experimental Details

D.1 Code and Libraries

All models and training is implemented using PyTorch [71] with additional use of the following
libraries: bgflow [1},24], torchdyn [72]], TorchCFM [20, 22]] and SchNetPack (73, (74]. The conditional
flow matching and equivariant optimal transport implementation is based on the implementation used
in [23]. The implementation of the PaiNN [26]] architecture is based on [[73| 74]. The code and the
models are available here: https://github.com/olsson-group/hollowflow.

D.2 Benchmark Systems
The potential energy of the Lennard-Jones systems LJ13 and LJ55 is given by
L ¢ o\ 12 o\
U =g %((dm—) ‘2(%>> | “)

where the parameters are as in [23]]: r,, = 1, € = 1 and 7 = 1. d;; is the pairwise euclidean distance
between particle ¢ and j. Detailed information about the molecular system (Alanine Dipeptide) can
be found in [23]].

D.3 Training Data

We used the same training data as in [23]] available at https://osf.io/srqg7/7view_only=
28deeba0845546fb96d1b2f3556db0dab. The training data has been generated using MCMC,
details can be found in the appendix of [23]. For all systems we used 10> randomly selected samples
for training as in [23]). Validation was done using 10* of the remaining samples.

21

https://github.com/olsson-group/hollowflow
https://osf.io/srqg7/?view_only= 28deeba0845546fb96d1b2f355db0da5
https://osf.io/srqg7/?view_only= 28deeba0845546fb96d1b2f355db0da5

D.4 Hyperparameters

Choice of the Hyperparameter k£ Heuristically, we expect maximal expressiveness for mid-range
values of k: By construction, some of the connections in the line graph need to be removed after
a certain number of message passing (MP) steps (See appendix B for more details). The larger k,
the more connections need to be removed after only one MP step up to the point where (almost) no
connections are left after only one MP step. We thus have two counteracting effects when k increases:
The first MP step gains more connections and thus expressiveness while the second MP step and all
later MP steps loose connections and expressiveness. This effect is illustrated in fig.[5] Eventually,
the latter seems to take over limiting the expressiveness of the model for large values of k. This
non-linear qualitative scaling of performance with k is experimentally supported by the results in
table

10* 5 — k=2 — k=7
—T k= —_— k=
— k=4 k=9
10 4 . — k=5 k=10
g k= k=11
$ —
Q \
S o ¥
§10
BiS
101_

Figure 5: Average number of connections left in the line graph of a kNN graph G as a function of the
number of message passing steps. G has 55 nodes whose coordinates are sampled from a standard
Gaussian. The average is taken over 10 independently sampled graphs. The larger k, the faster the
line graph disconnects.

Discontinuities Caused by ANN Graph The vector field bg(x) (eq.) is constructed using a
kNN graph. This might cause discontinuities on the decision boundaries of the NN construction.
As the divergence of the vector field is only defined if it is differentiable, these discontinuities can
cause theoretical issues, including but not limited to the continuity equation not being well-defined
everywhere eq. (). We have not observed any numerical instabilities or other issues in practice. To
further validate empirically that the discontinuities do not cause problems, we tracked the divergence
of a trained, fully connected as well as a trained, 6 nearest-neighbors HollowFlow LJ13 model
during sampling using a forward Euler scheme with 20 integration steps. We monitor the maximum
and average absolute difference of the divergence of consecutive steps, computed over 1000 initial
conditions, to assess whether there are significant discontinuities in the divergence of the nearest-
neighbors model compared to the fully connected one. Results can be found in table[7] While both
values are slightly higher for the NN model, there are no significant differences further supporting
our claim that the discontinuities do not cause issues in practice.

Table 7: Maximal and average absolute difference of the divergence of consecutive steps, computed
over 1000 initial conditions, for two different LJ13 HollowFlow models.

model maximal difference average difference
fully connected 72.5 53
k=6 74.2 5.8

22

Hyperparameters Used in Experiments: Depending on the system, we used a different number
of message passing steps and a different value for the hidden dimension nj,, following [23|]. For
LJ13, we chose nj, = 32 for all runs. All HollowFlow experiments with LJ13 and NN graphs used
two message passing steps while the baselines and the multi-head experiments used three. For LJS5,
we chose nj, = 64 for all runs. All HollowFlow experiments with LJ55 and kNN graphs used two
message passing steps while the baselines and the multi-head experiments used seven. For Alanine
Dipeptide, we chose nj, = 64 and five message passing steps for all runs. All neural networks in the
PaiNN architecture use the SiLU activation function [75].

The training details for LJ13, LJ55 and Alanine Dipeptide are reported in tables§]to For LJ13, we
selected the last model for all kNN experiments and the fully connected baseline experiment, while
we selected the model with the lowest validation loss for all remaining experiments for inference.
For LJ55 and Alanine Dipeptide we always selected the model with the lowest validation loss for
inference. All training was done using the Adam optimizer [[76].

Generally, we observed that HollowFlow can be trained with a larger learning rate compared to
the baseline without running into instability issues. Nevertheless, the effect on model performance
seemed limited.

Table 8: Training details LJ13

l;f;tgh learning rate epochs gﬁglgﬁ

k=2 1024 5x 1074 1000 5.8

k=4 1024 5x 1074 1000 6.3

k=6 1024 5x 1074 1000 6.7

k= 1024 5x 1074 1000 7.3

k=10 1024 5x 1074 1000 7.5

k=12 1024 5x 1074 1000 7.9

H = 1024 5x 1074 1000 9.9

H=3 1024 5x 1074 1000 10.3

H=14 1024 5x 1074 1000 10.7

H=2T1T=1 1024 5x 1074 1000 13.1

H=31=1 1024 5x 1074 1000 11.0

H=4I=1 1024 5x 1074 1000 11.3

H=41=2 1024 5x 1074 1000 12.7

baseline k =6 256 5x 1074 1000 2.6

baseline 1024 5x 1074 1000 2.5

Table 9: Training details LI55
batch . training
size learning rate epochs time (h)

k=7 256 (5 x107%to5x 107°2,5 x 107%) (150, 850) 10.5
k=27 70 (b5x107*t05x 107°,5 x 107°) (150,69) 21.9
k=55 30 5x 1073 t0 1.7 x 1073 110 32.0
H=2 128 (5 x1073to5x 1074, 5 x 107%) (150, 850) 16.7
H=14 128 (5 x103t05x 10745 x 107%) (150, 850) 16.8
H=6 80 (5 x1073to5x 1074, 5 x 107%) (150,260) 11.8
H=28 128 (G x1072t05 x 10745 x 107%) (150, 850) 14.0
H=10 128 (5 x1073t05x 1074, 5 x 107%) (150, 850) 14.0
baseline £k = 27 1024 (5x107*to5 x 1075, 5 x 107%) (150, 850) 6.6
baseline 256 (5x107%t05x107°,5x 107°) (150, 844) 24.0

All inference details for LJ13, LJ55 and Alanine Dipeptide are reported in tables [T1] to The
integration of the ODE (eq. (3)) was performed using a fourth order Runge Kutta solver with a fixed
step size. We used 20 integration steps.

23

Table 10: Training details Alanine Dipeptide

batch . training
size learning rate epochs time (h)
H=2 100 (5x1073to5 x 1074, 5 x 10~%) (150, 850) 20.3
H=3 100 (5 x1073t05x 1074, 5 x 107%) (150,850) 17.2
H=14 128 (5x1073to5 x 1074, 5 x 107%) (150, 850) 16.7
H=5 128 5x1073to5 x 1074, 5 x 107%) (150, 850) 16.8
H=31= 80 (5x1073to5 x 1074, 5 x 10~%) (150,260) 11.8
k=11 128 5x103to5 x 1074, 5 x 107%) (150, 850) 14
baseline 1024 5x 1074 1000 6.6
Table 11: Sampling details LJ13
batch GPU GPU mem.

RT (s) RT/ (s) RTV (s) sze usage (%) usage (%) # samples
k=2 407 367 29 40000 71 66 2 x 10°
k=4 674 577 83 1024 61 92 2 x 10°
k= 887 790 71 3500 73 67 2 x 10°
k=28 1141 1023 86 3500 82 46 2 x 10°
k=10 1411 1275 97 3500 82 86 2 x 10°
k=12 1532 1389 103 3500 83 84 2 x 10°
H = 1723 1527 159 1024 66 73 2 x 10°
H=3 1886 1682 165 1024 57 42 2 x 10°
H=14 2050 1833 174 1024 54 26 2 x 10°
H=2TI1=1 3581 3261 242 1024 79 64 2 x 10°
H=31I1=1 2488 2221 207 1024 66 96 2 x 10°
H=4I1=1 2395 2135 202 1024 60 53 2 x 10°
H=41=2 3197 2856 257 1024 59 52 2 x 10°
baseline k£ = 6 4599 36 4450 12000 98 64 2 x 10°
baseline 2508 29 2425 1000 85 18 1 x 10°

Table 12: Sampling details LI55
batch GPU GPU mem.

RT (s) RT/ (s) RTV (s) sze usage (%) usage (%) # samples
k=17 1370 1147 171 256 73 56 4 x 10*
k=27 12609 11820 599 70 96 61 4 %104
k=155 31439 30028 1114 30 96 83 4 % 10*
H= 22602 20239 2173 10 79 67 4 %104
H=14 20048 17897 1902 15 87 87 4 x 10*
H= 16586 14618 1707 18 87 84 4 %104
H=238 14960 13097 1596 20 87 69 4 %104
H =10 13725 11982 1445 25 90 80 4 x 10*
baseline £ = 27 353693 348 351221 256 99 65 4 %104
baseline 529793 596 525997 250 99 82 4 x 10*
D.5 Errors

All errors were obtained as a 68% symmetric percentile around the median from bootstrap sampling
using 1000 resampling steps. The reported value is the mean of these bootstrap samples.

24

Table 13: Sampling details Alanine Dipeptide

batch GPU GPU mem.
size usage (%) usage (%) ## samples

RT(s) RT/(s) RTV (s)

H=2 2791 2382 370 100 70 79 5x 104
H=3 2532 2123 369 100 75 81 5 x 10%
H=14 2167 1837 284 128 72 92 5x10%
H=5 2182 1848 285 128 74 85 5x10?
H=31=1 3734 3236 431 80 79 91 5 x 10%
k=11 1838 1633 178 128 78 68 5x10%
baseline 26554 71 26094 1024 99 60 5x10%

D.6 Runtimes

The runtimes were computed by directly measuring the wall-clock time of the computation of
interest. Due to missing data, the runtimes of the forward and backward pass in fig. [3(b)|needed to be
extrapolated from a different run with the same model by assuming the same ratios to the known total
runtime.

D.7 Weight Clipping

As described in section [5} we remove a left and right percentile (i.e., one percent on each side)
of the log importance weights, log w;, to make the ESS and EffSU estimations more robust. The
corresponding quantities are named ESS,...,, and EffSU,..,,,. While these metrics are biased, this
procedure was necessary to obtain a reliable and robust estimate of the effective speed-up of hollow
flow as reflected in the errors of the right most column of tables []to 6}

D.8 Computing Infrastructure

All experiments were conducted on GPUs. The training and inference for LJ13 and Alanine Dipeptide
was conducted on a NVIDIA Tesla V100 SXM?2 with 32GB RAM. The training for LJ55 was conducted
on a NVIDIA Tesla A100 HGX with 40GB RAM, inference was performed on a NVIDIA Tesla A40
with 48GB RAM.

25

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our main claims are that the number of backward passes to evaluate the
diagonal of the Jacobian HollowFlow is constant in n and that this results in a dramatic
speed-up when evaluation sample likelihoods. This is shown theoretically in section[3]and
demonstrated in practice in section 5]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We included an extra section where we discuss limitations and potential issues
of our newly introduced method (section

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

26

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have two theoretical results (theorems [T and [2) that are both proved in
appendix

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We provide all details about the experiments in appendix
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

27

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The training data is publicly available as stated in appendix [D} The code,
including instructions on how to use it, will be made public.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details can be found in appendix [D}
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Errors are provided in all tables except for runtimes as that would require
several runs which is impractical due to the huge computational overhead. Details on how
those errors were calculated can be found in appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information about all compute resources that have been used are provided in
appendix [D}]
Guidelines:
» The answer NA means that the paper does not include experiments.
 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [NA]

Justification: The paper describes methodological contributions of broad interest and with
no immediate ethical concerns.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper describes methodological contributions of broad interest and with
no immediate societal impact.

Guidelines:

29

https://neurips.cc/public/EthicsGuidelines

11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper describes methodological contributions of broad interest and with
no immediate concerns about misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Details about the datasets and code used, including creators and license, are
reported in appendix
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

30

13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Our implementation of HollowFlow and the models we trained are detailed in
appendix [D] No new datasets have been created in the course of this work.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing nor research with human subjects is involved in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No crowdsourcing nor research with human subjects is involved in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

31

paperswithcode.com/datasets

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: All method development was done without the help of LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

32

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Boltzmann Generators and Observables
	Normalizing Flows
	HollowNets

	Hollow Message Passing
	Computational Complexity
	Graph Connectivity
	Divergence Calculation Speed-up

	Experiments
	Related Works
	Limitations
	Conclusions
	Adaptation of HollowFlow to Attention
	Derivations and Proofs
	Hollowness of HollowFlow
	Computational Complexities
	Memory scaling of B(t)

	Additional Results
	Non-equivariant HollowFlow
	Multi-head HollowFlow
	Alanine Dipeptide

	Experimental Details
	Code and Libraries
	Benchmark Systems
	Training Data
	Hyperparameters
	Errors
	Runtimes
	Weight Clipping
	Computing Infrastructure

