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Abstract
Nowadays, unmanned aerial vehicles (UAVs) have achieved rapid development due to their flexible flight modes and broad

application prospects, which have played an important role in scenarios such as aerial photography, unmanned mapping,

agricultural plant protection, and power inspection. At the same time, as the frequency of global forest fires is increasing

year by year, traditional monitoring and search and rescue methods have little effect. People have begun to consider the

introduction of UAVs for forest monitoring and disaster relief. However, in practical applications, when a single UAV

performs tasks, there are problems of limited energy, poor robustness, and easy failures that affect the execution efficiency

of global tasks. Therefore, it is necessary to obtain the deployment plan of the UAVs offline in advance, and then fine-tune

the position of the UAVs online. This paper focuses on the solution of UAV deployment model offline. In complex forest

scenarios, due to terrain and signal coverage issues, we need to optimize this when deploying UAVs. At the same time, our

goal is to find the location of deployable UAVs in the forest area to maximize the global coverage area of UAVs.

Therefore, we divide the forest areas where UAVs need to be deployed and perform a grid modeling on them. On the basis

of grid modeling, an Adaptive Multiple Pruning Search Method (AMPSM) is proposed to solve the global UAV

deployment and maximum coverage area. In our experiments, we conducted a comparative analysis with the geometric

solution to solve the maximum coverage area, which proved the feasibility of the model and the method. The results show

that in the complex forest environment, our research can meet the requirements to a great extent, which can be extended to

more application scenarios.
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1 Introduction

Nowadays, unmanned aerial vehicles (UAVs) have

achieved rapid development due to their flexible flight

modes and broad application prospects [1, 2], which have

played an important role in scenarios such as aerial pho-

tography, unmanned mapping, agricultural plant protec-

tion, and power inspection [3]. At the same time, as the

frequency of global forest fires is increasing year by year,

traditional monitoring and search and rescue methods have

little effect. People have begun to consider the introduction

of UAVs for forest monitoring and disaster relief [4]. There

are increasingly more researches to leverage the use of

UAVs for providing monitoring coverage, and in applica-

tions for complex scenarios, some work is keen on using

UAVs for forest search and rescue [4–6], which may raise

more challenges and problems to be solved.

Traditional forest monitoring methods and monitoring

equipment are deployed in fixed locations for a long time

by adapting to the average coverage load and forest terrain

conditions in the space-time domain, while flexible UAVs

do not have such constraints in space and time [7]. Due to

this advantage, it is feasible to fly the UAVs to the corre-

sponding altitude for intermittent monitoring in a complex

forest environment.

Taking into account the complex terrain conditions of

the forest area, before the deployment and monitoring of
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UAVs, we need to conduct cognition and environmental

modeling of the monitored forest area. In this article, the

obtained forest environment is given by satellite images,

and then we artificially analyze the forest terrain, altitude,

signal coverage and other factors to divide the forest area

[8]. After the task of dividing is completed, we model the

forest area as a grid environment, use a grid of appropriate

precision to represent the forest area grid points, and

deploy UAVs on these grid points.

At present, relevant work has involved the emergency

deployment of UAVs in corresponding environments.

Relevant literature also provides some methods for coor-

dinated deployment of multiple UAVs to achieve maxi-

mum wireless coverage. For example, Chen et al. [9]

investigate the problem of minimizing the maximum

moving distance of sensors on a line interval for reaching

the full sensor coverage. Simultaneously, some methods

about efficient UAV deployment within current cellular

networks become popular gradually [10]. But these prob-

lems are all online UAV deployment problems, and only

local optimal solutions under time constraints can be

obtained. The work of this article is to train our model in an

offline environment, which solved the global optimal

solution and obtained the global optimal UAV deployment

plan, and then deploy the UAVs on the spot to maximize

the effective monitoring area. This method is well adapted

to the problem of coordinated deployment of UAVs in a

complex forest environment, and the forest environment is

not changeable. Therefore, the solution obtained can be

used for long-term UAV deployment under a specific

forest.

The purpose of the study of this paper is to discover a

global optimal static deployment plan for UAVs in a

gridded forest environment with a specific search method.

We want to obtain the optimal UAV deployment plan and

maximum coverage area in the same forest environment

and in different number of divided areas.

At present, when solving this type of deployment

problem, there are many methods of environmental mod-

eling, and ArcGIS is a popular method. However, we adopt

a grid modeling method, and after gird modeling the forest,

it is placed in a two-dimensional matrix for processing.

Any point in the matrix may be the deployment location of

the UAV.

After the above modeling of our problem, the problem is

transformed into the processing of the matrix. Getting the

optimal deployment points in the matrix and obtaining the

largest coverage point set is our goal. We use an Adaptive

Multiple Pruning Search Method (AMPSM) to search for

feasible deployment points in the matrix. Continuously

update and iterate to produce a set of optimal deployment

plans for UAVs. In our experiments, we compared complex

and more accurate geometric solution methods to further

verify the feasibility of our experimental results. On the

other hand, this comparative analysis also proves that the

way we model forest areas and the way we search for UAV

deployment plans is feasible.

Through this work we have done, in practical applica-

tions, the forest area can also be gridded. When a complex

forest area needs to deploy UAVs to perform monitoring

tasks, we can train the forest area model offline to obtain a

global UAV deployment plan, and then place the UAVs at

fixed points, which can save UAV resources. This work is

of great practical significance in large and complex forest

areas, which can be extended to more application scenar-

ios. In addition, we will apply the offline model to online in

further research, make dynamic deployment and anomaly

detection for UAVs, and combine the current popular sia-

mese neural network based few-shot learning [11] with

existing models to improve the robustness of the fused

model in the online environment.

The organization of this paper is as follows. Section 2

specifically introduces the related work of UAV deploy-

ment and the feasibility of grid modeling. In Sect. 3, our

system model is introduced in detail and the objective

function is defined. At the same time, the calculation

method of the maximum coverage area is studied. Then,

Sect. 4 gives our experimental method in detail and partly

explains the algorithm. Finally, in Sects. 5 and 6, we

analyze the results of our experiment and conduct a com-

parative analysis to get some conclusions and remarks.

2 Related work

Due to the maturity of UAV hardware technology and

UAV communication network technology, and the addition

of cloud computing services, the application scenarios of

UAVs are becoming more and more extensive, and quite a

few papers have explored UAV applications. In the field of

UAV monitoring, forest farms with a large area coverage

have gradually become the application scenarios of UAVs.

Some researchers have investigated this and put forward

the current challenges [1], but little work has focused on

the deployment of UAVs in a regional environment of

complex forests.

In recent years, due to the development of UAV nest

technology, we can place the UAV nest at the target

location before deploying UAVs for monitoring. The UAV

nest can manage the corresponding UAVs and power them

(non-working UAVs can also return to the corresponding

UAV nests for standby). The UAV nest equipment greatly

facilitates the deployment of UAVs in monitoring scenar-

ios, which solves the problems of battery life and UAV

management. Therefore, when we deploy UAVs, after we

get a global deployment plan, we place a nest (one nest
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corresponds to one UAV) at the corresponding location,

instead of letting a group of UAVs start flying from the

starting point to the corresponding location. In fact, in

complex scenarios, the deployment methods of the Internet

of Vehicles have gradually matured and landed in real

applications. For example, the method of using heteroge-

neous model aggregation to construct the Internet of

Vehicles also gives us some enlightenment to our UAV

deployment network [12].

When we consider the deployment of UAVs in forest

scenarios, due to communication problems, we need to use

Ultra Wideband (UWB) technology [13], which means that

we need to deploy UWBLOC stations. Taking into account

the signal problem, the size of the data transmission and the

delay in the data transmission process, before making a

UAV deployment decision in this scenario, we first parti-

tion the scenario so that the results after the decision have a

better robustness.

2.1 UAV deployment algorithms

So far, as far as we know, only a few work has focused on

the deployment of UAVs. After our analysis, it is found

that such a UAV deployment problem is actually NP-hard.

In a complex forest environment, it is very difficult to

directly deploy UAVs globally and find their latitude and

longitude positions. Zhao et al. [14] proposed two UAV

deployment algorithms in 2018, the centralized algorithm

and the distributed algorithm, to achieve on-demand cov-

erage and maintain interconnection among UAVs at the

same time. In their research, the centralized algorithm

adopts a heuristic method to select UAVs from all candi-

date UAV locations iteratively while jointly considering

the connectivity among UAVs and the associations

between the UAVs and UEs. While the distributed algo-

rithm requires no global information of UEs but autono-

mously controls the motion of each UAV in a distributed

manner with the effect of virtual forces. However, the use

scenarios of these two algorithms are limited to applica-

tions under certain special requirements, such as optimiz-

ing UAV altitude, optimizing tracking trajectory, and so

on. It is hard to achieve better results when deploying

UAVs in static scenarios to obtain the optimal coverage

area with them, so we will further consider dispatching the

UAVs dynamically in more complex scenarios [15].

2.2 Dynamic deployment strategy

The dynamic deployment strategy [16] of UAVs is also one

of the interests of many researchers. Driven by special

circumstances, several UAVs need to make decisions in a

short time and redeploy their positions. In this kind of

emergency dispatch and emergency deployment,

reinforcement learning is a good solution. Liu et al. [17]

proposed a Q-learning based deployment algorithm, in

which each UAV acts as an agent, making their own

decision for attaining 3-D position by learning from trial

and mistake. This kind of reinforcement learning deploy-

ment strategy is particularly suitable for position adjust-

ment and UAV scheduling in emergencies after the

relevant UAV static deployment plan has been completed.

In our complex forest environment, this kind of rein-

forcement learning algorithm is particularly suitable for

redeploying UAVs in the event of a fire in the forest,

completing the task of dynamic deployment (Table 1).

It needs to be mentioned again that the research focus of

this article is still on the static deployment of UAVs,

training deployment models offline, and conducting nor-

malized monitoring deployment of UAVs in forest envi-

ronments. When special circumstances occur in forest

areas, we will give deployment models for emergencies in

future researches. This paper first adopts grid modeling,

expresses and partitions irregular forest areas with grids,

then uses AMPSM to solve the global optimal deployment

plan, and improves the search efficiency through pruning,

proving the feasibility of the method.

3 System model and problem definition

3.1 System description

In the forest farm monitoring scenario and the mobile edge

computing environment, the location and deployment of

UAVs can be regarded as a network architecture, which is

composed by multiple UAVs, multiple pieces of forest and

a group of cloud servers. Among them, a UAV may be

responsible for a main forest area, or a UAV may also

perform monitoring tasks across multiple divided forest

areas. In this article, we ignore the possible impact of high-

altitude mountains or aerial obstacles on UAV monitoring

and communication, because these are not our focus of the

research. We regard the coverage of each UAV as a cir-

cular area with the centroid of the UAV as the center and

R as the radius. In our research, R is a fixed value.

Given a total cost of C to deploy UAVs, where C is a

constant value, the cost of deploying each UAV is assumed

to be known and the same, and the size of the forest area

covered by each UAV is the same. Each UAV can directly

access the edge UWB station. Due to the conditions of the

forest areas divided by forest farms are different, but the

surveillance range is relatively large, it is not necessary to

deploy UAVs in each forest area. If several UASs are

randomly selected for deployment, the coverage of multi-

ple UAVs will usually overlap, which will greatly waste

resources.
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The architecture of the forest UAV deployment network

is shown in Fig. 1. It consists of cloud server, UWB station

and several UAVs. We take the UAV as the center and

express its coverage as a circular envelope (the dotted

circle in Fig. 1). The Chief UAV is responsible for

peripheral monitoring and is always responsible for taking

over the location of UAVs that cannot work for some

reason (the main UAV is not our focus and is not included

in the scope of solving the UAV deployment location and

number of it). After the working UAV is deployed, it will

hover over the corresponding area to perform its work, and

report information to the cloud server when an emergency

has been monitored or malfunction occurs. However, the

coverage area between UAVs and UAVs often overlaps. As

shown in Fig. 1, the area where multiple circles overlap. If

there are more overlapping areas, when the UAV sends

back monitoring data to the cloud server, there will be

multiple data of the same forest area (considered as

redundant data). At the same time, the larger the

overlapping area, the smaller the average coverage area of

a single UAV, which may increase the number of deployed

UAVs [18]. Obviously, this is a waste of resources.

3.2 UAV location and deployment model

In this Paper, the goal of the UAV location and deployment

is to maximize the UAV coverage area of the forest area

given a certain cost budget. Therefore, the UAV deploy-

ment problem in the mobile cloud computing environment

can be expressed as a single-objective optimization prob-

lem [19], that is, the problem of maximizing the effective

coverage area of any number of UAVs.

We use 0� 1 Matrix Xi;j to indicate whether the i-th

UAV is monitoring the part of the j-th forest area. Among

them, if i-th UAV covers the part of j-th forest area, then

Xi;j ¼ 1. Otherwise, Xi;j ¼ 0. For all i and j, where

1� i�K, 1� j�N. Meanwhile, we use binary decision

variable Bi;j 2 0; 1 to Indicate whether to deploy i-th UAV

Table 1 Key terms and

description
Key Terms Description

R The radius of UAV monitoring coverage

C The cost of UAV deployment

K The number of UAVs

Sf The area of total forest

N The total number of forest areas divided

t The remaining cost of deploying UAVs

Wi The cost of deploying the i-th UAV

Fi The i-th forest area

Ui The area covered by the first i UAVs

S(i, j) The area of the i-th UAV covering of the j-th forest area

Luav The location to deploy the UAVs, Luav ¼ fL1;L2; :::; Lng
Tuav The target coverage of current UAVs

Fig. 1 UAV deployment model

under complex forest area
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over the j-th forest area. Among then, if the i-th UAV is

deployed over the j-th forest area, then Bi;j ¼ 1. Otherwise,

Bi;j ¼ 0. At the same time, the range of i, j is as described

above.

Using this method, we assume that every UAV may be

deployed over every divided forest area. Because the total

number of divided forest areas is N, the maximum number

of UAVs that can be deployed is N. We use Wiði ¼
1; 2; 3:::KÞ to represent the cost of deploying every UAV in

each forest area (Wi is set to be the same in this paper). In

addition, we use C to represent the total cost budget, and t

to represent the remaining cost after deploying several

UAVs, that is, t\ ¼ C.

The recursive formula of our UAV monitoring area

coverage problem can be described as follows:

Sði; 0Þ ¼ Sð0; jÞ ¼ 0

Ui ¼ Ui�1 t�Wi

Ui ¼ Ui�1 þ
XN

j¼1

Si;jt�Wi

ð1Þ

3.3 Grid model

This work is to solve the global problem of static deploy-

ment of UAVs in a complex forest environment. The

environment deployment diagram is shown in Fig. 1.

The required solution is the positions of several UAVs.

In order to facilitate the solution, geographic ArcGIS [20]

modeling is not used here (the location obtained is latitude

and longitude), and a relatively simple grid environment

modeling is selected (the location obtained is a grid of a

certain row and column, and it will also facilitate the

solution and optimization variation), the size of the grid

does not use a variable-scale learning algorithm in the

preliminary stage [21], and is only regarded as a parameter

that is artificially adjusted. The setting of this parameter is

also regarded as our scale for the division of forest

environment.

Figure 1 is used to model the grid environment to get

Fig. 2, and the edge of the environment needs to be gridded

in the follow-up work.

After grid modeling, we can assume that the obtained

forest environment falls in a two-dimensional matrix.

Under complex forest conditions, considering the base

station configuration and signal issues, the forest area is

first artificially divided, as shown in Fig. 3.

Before giving the formal matrix representation of the

forest area, we discuss the following constraints.

• Due to the base station deployment and signal issues,

only one UAV can be placed in each forest area after

artificial division.

• The total cost C determines how many UAVs can be

deployed, that is, how many forest areas can deploy

UAVs at most. To simplify the problem, assume that

the cost of deploying each UAV Wi is the same.

• The coverage radius of each UAV R is equal and

constant.

When the forest environment is grid modeled, we select the

deployable UAVs in a two-dimensional matrix for a certain

cost, and the goal is to obtain the maximum coverage area

of the forest by the UAVs, which reflected that the most

effective grid points with the most coverage in the matrix

(Fig. 4).

The two-dimensional matrix of the entire forest area and

surrounding environment is expressed as follows:

In this matrix, the invalid environment that does not

belong to the forest area is marked as 0, and the point set in

Fig. 2 Forest area based on grid modeling

Fig. 3 Forest area after artificial partition
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the forest area are numbered according to the numbers that

divide the area.

Also, in this matrix, we specify the UAV selection rules

and the formal representation of the covered area when

solving the deployment plan. The formalized problem is

dened by

max Tuav ð2Þ

and

Tuav ¼ effective
XK

i¼1
Sði; jÞ;

XK

i¼1
Wi �C ð3Þ

4 Deployment algorithm

At this time, the coverage of the UAV when deployed is

the set of neighbor points at its location. This method of

updating the matrix point set is very similar to the

chromosome mutation in genetic algorithm [22]. In our

update process, the updated point set depends on the

UAV’s position in the matrix and the UAV’s monitoring

radius. When the neighbor point set of the UAV’s location

is completely contained in the circular coverage area of the

UAV, these neighbor point set will be updated initially.

Matrix½i�½j� ¼ A;

if Matrix½i�½j� ! ¼0

and Matrix½i�½j�
in the coverage,

Matrix½i�½j�; otherwise.

8
>>><

>>>:
ð4Þ

After some point set in the matrix have been occupied by

UAVs, we need to perform two tasks. On the one hand, it is

to mark the area where the UAV is located to prevent the

subsequent deployment of the UAV from occupying the

points in the area; on the other hand, it is to calculate the

coverage area generated by the current UAV with the

points updated. When updating these neighbor point sets, it

is obvious that the non-forest point set with 0 in the matrix

should not be updated. In addition, when a UAV is

deployed at a certain location, if some neighbor points in

its coverage have been updated (that is, the coverage area

of the UAV overlaps with another deployed UAV’s cov-

erage area), these neighbor points will not be updated and

keep the state.

When searching for the coverage point set of a certain

UAV, we use the location of the UAV as the center and

gradually search from its surroundings. In addition, when

getting a better deployment point, we perform a back-

tracking operation.

Obviously, after grid modeling the forest environment,

our goal can be further optimized to solve so that the

number of updated points in the matrix reaches the

maximum.

max numðMatrix½i�½j� ¼¼ AÞ ð5Þ

Fig. 4 The two-dimensional matrix of the entire forest area and

surrounding environment
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In this paper, we use an adaptive multiple pruning

search method (AMPSM), as shown in Algorithm 1. Our

goal is to meet the aforementioned constraints under the

condition of a certain cost, so that the deployment position

of the UAVs meets the maximum coverage.

In this algorithm, we conducted an in-depth analysis of

the model and realized that this NP-hard search process can

be pruned. Therefore, we innovatively propose this adap-

tive multi-pruning search method. The maximum possible

number of coverage points is compared with the maximum

number of coverage points in the current search state. If the

maximum possible number of coverage points is less than

the maximum number of coverage points in the current

search state, stop the search state [23]. At the same time,

we also carried out pruning during the backtracking

process.

At this time, the M in the algorithm is the two-dimen-

sional matrix we get, which represent the forest area and

the surroundings [24]. Since the cost C is determined in

advance, and assuming that the cost of deploying each

UAV Wi is the same, we can get the maximum number of

UAVs that can be deployed in advance based on the cost

and the number of the divided areas. F is the total number

of divided areas, and the UAV’s monitoring coverage

radius R is also given in the algorithm.

It can be seen from the output of the algorithm that the

final deployment locations L� and the maximum coverage

area C� of the UAVs are what we need. We store the

deployment locations L� of the UAVs in an array. During

the execution of the algorithm, we generate the array

gradually.

The two most important parts of this algorithm are to

update the maximum coverage area and the optimal

deployment plan. As we can see, we have updated both in

the process of iteration and backtracking. In the process of

backtracking, we focus on processing L�, which is the key

to generating the final deployment plan. This process will

be repeated until the maximum number of iterations F is

met. Finally, the optimal coverage C is obtained.

5 Eeperimental results and performance
evaluation

5.1 Simulation setup

In our experiment, MacBook Air with Quad-Core Intel

Core i5 at 1.1GHz, 256GB Hard Disk and 8GB RAM is

leveraged to conduct simulation experiments. In Table 2,

the key parameters are illustrated as shown.

Table 2 Parameter settings

Key Parameter Value

F 10

R 2

C INT MAX

Coverage -INT MAX

N 11

M Matrix 18½ � 14½ �
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The comparative approach is leveraged to make com-

prehensive evaluations, and this approach is described as

follows:

Geometric solution: This approach regards the coverage

area of a UAV as a circle, the center point coordinates are

the grid position selected by the UAV, and the radius of the

circle is the UAV coverage radius. Such area of a circular

is the coverage area of a UAV [25]. Since UAVs are

deployed in various locations, if the areas covered by the

two UAVs do not overlap, the effective total coverage area

is directly added to the area of the two circular areas. If

they overlap, the effective total coverage area must be

Fig. 5 UAV deployment results

with AMPSM (Partition pattern:

F = 4, K = 4)

Table 3 Experimental results in

a given two-dimensional matrix
The number of divided areas Maximum coverage (Unit) Average algorithm running time (Sec)

4 52 0.004530

6 78 0.019516

8 102 0.456046

10 120 2.034920

Fig. 6 UAV deployment results

with AMPSM (Partition pattern:

F = 6, K = 6)
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added to each individual small area. In the following series

of geometric figures, we will give calculation methods for

various overlapping situations [26].

5.2 Performance evaluation on adaptive
multiple pruning search method

In this section, we conduct simulations to evaluate the

performances of our proposed deployment algorithm. All

the values reported later are collected from the average of

100 runs for each algorithm. The number of divided forest

areas is set to 10, and the coverage radius of the UAV is set

to 2 units. These values are obtained by equivalent trans-

formation after mapping the forest area to a two-dimen-

sional matrix.

Fig. 7 UAV deployment results

with AMPSM (Partition pattern:

F = 8, K = 8)

Fig. 8 UAV deployment results

with AMPSM (Partition pattern:

F = 10, K = 10)

Fig. 9 The coverage ratio of each UAV in different number of

divided areas
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5.2.1 Deploy UAVs in the given two-dimensional matrix

We first experiment with Algorithm 1 in an 18*14 two-

dimensional matrix. At this time, the total grid points are

252 and the total forest area is 156. Figure 5 shows the

maximum coverage area obtained by deploying UAVs

when the forest area is divided into different numbers of

areas [27].

It can be seen from Table 3 that as the number of

divided areas increases, the maximum coverage area

increases regularly. As the number of divided areas

increases, the running time of the algorithm also expo-

nentially increases. Note that when the number of deployed

UAVs is greater than 6, the running time of the algorithm

has an explosive growth, but the performance of the

algorithm in solving the global deployment plan is very

stable. Therefore, depending on the size of the target area

and heterogeneity of UAVs, an appropriate number of

UAVs needs to be selected and deployed. In particular, the

experimental data show that on the basis of ensuring the

effective monitoring coverage of UAV clusters deployed in

complex scenarios, the running time of the algorithm is

maintained at the level of milliseconds and seconds under

small-scale area division. So it can be predicted under this

data that in practical engineering applications, large-scale

area division may make the number of UAVs and area

division reach 100 or more, and the model can ensure that

the UAVs deployment can be completed in a few minutes

and ensure more accurate global optimal coverage benefits.

The above analysis reflects the good robustness of the

model in this paper.

At the same time, in our experiment, we give the UAV

deployment results under different forest divisions. As

shown in Figs. 5, 6, 7, and 8, (a) represents the initial state

of the forest area in the matrix, and the points marked -1 in

(b) are the location of the UAVs we need to deploy.

After deploying these UAVs, we analyze the coverage

ratio of UAVs in different areas relative to the forest area

[28]. This work can help us analyze the experimental

results by ASPSM. Figure 9 shows the UAV coverage ratio

of each area in different regions [29]. It should be men-

tioned that the maximum coverage area of each UAV is 13

Units, which means that the maximum coverage ratio of

each UAV relative to the entire forest area is 8.3% When

we analyze the experimental results in a certain situation

[30], we first use the formula
PK

i¼1 ratioðKiÞ to find the

total coverage of all deployed UAVs. For example, when

the Partition pattern was chosen (F = 10, K = 10), we

evaluate the difference between the total coverage ratio of

UAVs in each region and the overall effective coverage.

By calculation, the value of
P10

i¼1 ratioðKiÞ is 76.923%,

and the value of effective coverage ratio is 76.923%. This

means that our AMPSM algorithm reduces the overlapping

coverage area to a minimum on the basis of meeting the

(a) (b)(a) (b)

(c) (d)

Fig. 10 The several situations of

the UAV deployment
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maximum coverage, and the average effective coverage

area of each UAV in the forest area is larger, which proves

the advantage of the algorithm in this scenario.

5.2.2 Coverage comparison with geometric solution

In this paper, we use geometric figures to detail the cal-

culation method of the effective coverage area of the

UAVs, which will be our comparative analysis. We regard

the coverage area of a UAV as a circle, the center point

coordinates are the grid position selected by the UAV, and

the radius of the circle is the UAV coverage radius. Such

area of a circular is the coverage area of a UAV. Since

UAVs are deployed in various locations, if the areas cov-

ered by the two UAVs do not overlap, the effective total

coverage area is directly added to the area of the two cir-

cular areas. If they overlap, the effective total coverage

area must be added to each individual small area. In the

following series of geometric figures, we will give calcu-

lation methods for various overlapping situations [26].

Figure 10 shows the several situations of the UAV

deployment. In the Fig. 10a, g1, g2 indicate that two UAVs

have been deployed, and the coverage area of the two

UAVs g1 and g2 is known, and then we start to deploy the

third UAV g3 (assuming t[ ¼ Wi at this time). Since the

coverage area of g3 overlaps with g1 and g2 at this time,

when calculating the total coverage area, the circular area

of g3 is not directly added, but the non-overlapping area is

added [31, 32]. At this time, the calculation formula for the

non-overlapping area is:

S ¼ SðarchÞA1A5 þ SðpolygonÞA1A6A5xðarchÞA1A6 � SðarchÞA5A6

ð6Þ

In the Fig. 10b, g1, g2 indicate that two UAVs that have

been deployed, and then the third UAV g3 is to be

deployed. The difference from (a) is that the non-over-

lapping area in (b) is divided into two parts. The calcula-

tion formula for the area of the lower half of the non-

overlapping area is:

S ¼ SðarchÞA2A3 þ SðpolygonÞA2A3A5xðarchÞA2A5 � SðarchÞA3A5

ð7Þ

Similarly, the calculation formula for the area of the upper

non-overlapping area is:

S ¼ SðarchÞA1A4 þ SðpolygonÞA1A4A6xðarchÞA1A6 � SðarchÞA4A6

ð8Þ

In the Fig. 10c, g1, g2 indicate that two UAVs that have

been deployed, and then the third UAV g3 is to be

deployed. The calculation formula for the non-overlapping

area is:

S ¼ SðarchÞA1A3 � SðpolygonÞA1A2A3xðarchÞA1A2 � SðarchÞA2A3

ð9Þ

In the Fig. 10d, g1, g2, g3, g4, g5 indicate that five UAVs

that have been deployed, and then the 6-th UAV g6 is to be

deployed. The calculation formula for the non-overlapping

area is:

S = SðpolygonÞA1A2A3A4A5A6A7 þ SðarchÞA3A4

þSðarchÞA1A7 � SðarchÞA1A2 � SðarchÞA2A3

�SðarchÞA4A5 � SðarchÞA5A6 � SðarchÞA6A7

ð10Þ

The advantage of geometrically solving the coverage area

is the accuracy when solving the overlapping area, but the

iteration is often complicated, and multiple iterations are

required to calculate the overall effective coverage area of

multiple UAVs. When we use grid modeling, we also

optimize the overlap area calculation, which makes our

algorithm perform well compared to the geometric solution

when searching the maximum coverage area [33]. The

specific comparison is given in Fig. 10.

Obviously, we can see from Fig. 11 that grid modelling

and AMPSM have also obtained good results for more

accurate but complex geometric solutions, which further

proves the feasibility of our model. And in the complex

forest environment, our method is more suitable for UAV

deployment, which means that it is convenient to obtain a

feasible deployment plan.

At the same time, we can find that when K\8, the

geometric solution method can obtain a larger coverage

area than ASPSM, and when K� 8, ASPSM can obtain

better results than geometric solution. When the K value is

small, the geometric solution method is better and easy to

understand. When the K value is large, the grid model we

proposed greatly reduces the search space for UAV

deployment, and the search units in the grid model are all

clear and knowable, which can quickly reach the global

convergence. This makes us finally obtain the minimum

overlap area in the example of K ¼ 10, so that the effective

Fig. 11 The coverage comparison of two methods
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coverage area achieves a better result of the relatively

geometric solution.

6 Conclusion

The deployment of multiple UAVs in forest to provide

monitoring coverage is of great practical importance. To

the best of our knowledge, this is the rst work to deal with

the UAV deployment of maxing coverage under a grid

modelling. At the same time, we also proposed an adaptive

multiple pruning search method to solve the optimal

deployment plan of UAVs. When UAVs are initially

located in grid points, the deployment problem is proved to

be NP-hard. By using AMPSM, we have obtained the

optimal UAV deployment plan and maximum coverage

area under different number of divided areas. The theo-

retical results draw in this paper are further conrmed by our

experimental evaluation.
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