

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST SDP CERTIFICATION OF NEURAL NETWORKS : TOWARDS LARGE MULTI-CLASS DATASETS

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a new quadratic model for the certification problem in adversarial robustness, which simultaneously accounts for all possible target classes. Building on this model, we propose a novel semidefinite programming (SDP) relaxation for incomplete verification. A key advantage of our approach is that it certifies robustness in a single optimization, avoiding the need for a separate resolution per class. This yields a significant computational speed-up and enables scalability to large datasets with many classes. To further gain in efficiency, we also propose an effective pruning strategy of active neurons, thus reducing the problem dimensionality and accelerating convergence.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable success and are widely implemented in various domains, including computer vision and natural language processing. This rapid adoption of DNNs has often prioritized efficiency and automation, overshadowing the crucial aspect of safety.

The research community has extensively studied various aspects of robustness, including out-of-distribution generalization, robustness to data corruption, and resistance to adversarial attacks. In particular, DNN have especially been proven vulnerable to adversarial attacks (Goodfellow et al., 2015), wherein malicious actors exploit the inherent complexity of these models to generate examples that deceive classifiers. This issue has raised concerns in many critical domains of applications of neural networks, like autonomous vehicles or robotics, where adversarial attacks could be a mean for malicious acts.

An *adversarial attack* consists of solving a constrained optimization problem to determine an adversarial example for a given data x , *i.e.*, a data in the neighborhood of x which is classified differently by the DNN. These attacks represent a significant threat, particularly when the attacker has knowledge of the model architecture and parameters. In response, two main approaches have emerged to enhance the robustness of DNNs against such attacks: adversarial training and certified defenses. Adversarial training methods aim to improve robustness by performing adversarial augmentations. While these methods do offer increased resilience, they are not foolproof and can still be vulnerable to sophisticated attacks. On the other hand, certified defenses provide mathematical guarantees of robustness against adversarial attacks.

The certification problem for neural networks with ReLU activation functions is NP-complete (Katz et al., 2017). This inherent complexity implies that providing a *complete certification* requires substantial computational effort and remains limited in scalability. Many approaches solve combinatorial models to assess the DNNs predictions stability around each data. Several Mixed-Integer Programming (MIP) formulations were introduced to provide formal proofs of small ReLU DNNs (Tjeng et al., 2019; Fischetti & Jo, 2018; Cheng et al., 2017) but remain intractable for medium to large-scale problems.

Computing a non-negative lower bound is sufficient to certify that no adversarial attack is possible for a given target class. Thus, in order to speed up the certification, many approaches solve a relaxation of the original certification problem. In this paper, we focus on *incomplete* verifiers that provide lower bounds on the certification problem: a positive bound guarantees robustness while a negative bound is inconclusive. They constitute a compromise between efficiency and scalability, aiming to achieve the highest possible lower bound within a time limit. Most of the incomplete cer-

Figure 1: **Multiclass certification** The proposed method provides a new quadratic formulation for certifying a neural network across all labels simultaneously. This formulation relies on binary variables $\{\beta_j\}$ indicating the class associated with the worst adversarial example. To further reduce the number of variables, we also propose a pruning strategy that removes both inactive (blue) and active (yellow) neurons. Combined with a chordal decomposition of the SDP matrix (here represented by blue and purple constraints see Eq. (15)), this approach removes terms required to express the ReLU activations, which is compensated with the introduction of dedicated constraints see Eqs. (28) to (31). For instance, once neuron z_2^k is removed, the quadratic interaction $z_2^k z_3^l$ is no longer represented in the matrix. To address this, we bound the dependencies of z_3^l with respect to neurons from previous layers *i.e.* z_0^i and z_1^j .

fication methods are based on quadratic optimization formulations in which the ReLU is expressed as a quadratic non-convex equality from which a linear relaxation is computed (Wong & Kolter, 2018). Despite bringing promising results for certification, current approaches using SDP relaxations offer limited scalability in particular when certifying mid-to-large scale datasets composed of multiple classes. Indeed, these approaches are targeted ones, *i.e.* each combinatorial model tests if there exists an adversarial attack for one data and one *target* class. Thus, formally certifying a single data point requires looping over all possible target classes. This requirement can be rapidly cumbersome as modern datasets such as ImageNet-1k or ImageNet-21k propose hundreds or thousands of classes. Furthermore, as each neuron brings its own set of constraints in the optimization problem, current SDP approaches struggle for deep networks.

Contributions To deal with the aforementioned limitations, we introduce a new model for the certification problem that is based on an untargeted quadratic formulation (QP_U) as illustrated in the left part of Fig. 1. This new approach allows us to certify each data by solving a *single* optimization problem and significantly speeds up the certification process. Our new formulation has the key advantage of preserving the non-negativity condition, certifying the data whenever a non-negative lower bound of (QP_U) is obtained. We further introduce valid quadratic inequalities that tighten the bound of the relaxed problem. Finally, to scale up the certification, we propose an efficient pruning strategy able to remove *all stable* neurons from the constraints as can be seen in the right part of Fig. 1. This allows us to reduce the solution time. An interesting result is that this pruning strategy is generic and can be applied to other SDP relaxations. Finally, we present computational results demonstrating the efficiency of our methods against state-of-the-art approaches.

2 RELATED WORKS

Certification problem Complete certification methods aim to provide definitive guarantees about the absence of adversarial examples within a given input region. Seminal works include approaches based on Mixed-Integer Linear Programming (MILP), which model *ReLU* activations through integer constraints, enabling exact reasoning over the network’s activations. The MILP formulations proposed by (Fischetti & Jo, 2018; Tjeng et al., 2019) demonstrate formal verification for small-sized *ReLU* networks. Similarly, satisfiability modulo theories solvers have been employed to provide sound and complete verification (Ehlers, 2017; Katz et al., 2017). However, a key limitation of complete verifiers remains their limited scalability to deep networks or high-dimensional datasets.

Incomplete verifiers aim to compute tight lower bounds on neural network robustness, providing formal certification guarantees whenever these bounds are sufficiently strong. A positive bound confirms robustness, while a negative one remains inconclusive, making these methods an interesting

108 compromise between scalability and theoretical soundness. Incomplete verifiers are divided into a
 109 wide variety of approaches including convex relaxations via duality (Wong & Kolter, 2018; Gowal
 110 et al., 2019), linear bounding of *ReLU* activations (Weng et al., 2018), or discretized input space ex-
 111 ploration (Huang et al., 2017). However, most incomplete verifiers may yield conservative bounds,
 112 and even well-optimized linear relaxations can fail to produce tight lower bounds over the objective.
 113

114 **Semi Definite Programming (SDP) relaxations** have emerged as a promising class of incom-
 115 plete verifiers for neural network verification as they produce sharper lower bounds than traditional
 116 linear programming approaches. While SDP methods are computationally more intensive, founda-
 117 tional works (Raghunathan et al., 2018; Zhang, 2020; Dathathri et al., 2018; Chiu & Zhang; Lan
 118 et al., b) have demonstrated empirical tightness compared to LP relaxations. This was further ad-
 119 vanced by integrating geometric constraints such as triangle relaxations (Batten et al., 2021) and
 120 Reformulation-Linearization Technique (RLT) cuts (Lan et al., 2022), which refine the feasible re-
 121 gion for *ReLU*-activated networks. However, the relaxation becomes looser with increasing depth,
 122 and solving SDPs for deep networks often results in scalability challenges. This phenomenon is
 123 exacerbated when dealing with multiple classes as one SDP relaxation needs to be computed *for*
 124 *each target class* to achieve certification.
 125

3 PRELIMINARIES

127 Deep Neural Networks (DNNs) considered in this work are non-linear functions that map the input
 128 set to a measurable label set. They are described as successive layers given by the composition of a
 129 linear and a non-linear transformation.
 130

131 Each layer k contains n_k neurons, indexed by $\mathcal{J}_k = \{1, \dots, n_k\}$. The output $z_{k+1} \in \mathbb{R}^{n_{k+1}}$
 132 of every layer $k \in [K-2]$ (i.e. $\{0, \dots, K-2\}$) is computed by a *ReLU* activation func-
 133 tion: $z_{k+1} = \text{ReLU}(W_{k+1}z_k + b_{k+1})$, where $b_k \in \mathbb{R}^{n_k}$, $W_k \in \mathbb{R}^{n_k \times n_{k-1}}$ are the learned
 134 parameters of the network. Given a finite labeled dataset $\mathcal{D} = \{x_i, y_i\}$, the predicted class
 135 is given by $y^* = \text{argmax}_{j \in \mathcal{J}_K} z_K^j$ for data $x = z_0$ where z_K^j is the j^{th} component of vector
 136 $z_K = W_K z_{K-1} + b_K$.
 137

138 For a given $\epsilon > 0$, the certification task verifies that for each data (x, y) and all $z_0 \in \mathcal{B}_\epsilon(x)$ (the ∞ -
 139 norm balls of center x and radius ϵ) the DNN correctly predicts the class y . Defining $\bar{\mathcal{J}}_K = \mathcal{J}_K \setminus \{y\}$,
 140 the set of all possible targets for a given sample, W_K^j , the j^{th} row of matrix W_K , and \mathcal{D}^+ , the set of
 141 well-classified data and their labels, we formally define robustness as follows:

142 **Property 1** (Targeted Robustness). *For a data $(x, y) \in \mathcal{D}^+$, a target class $j \in \bar{\mathcal{J}}_K$ and $\epsilon > 0$, a
 143 neural network is (ϵ, j) -robust in x , if*

$$\min_{z_0 \in \mathcal{B}_\epsilon(x)} z_K^y - z_K^j \geq 0$$

144 **Property 2** (Full robustness). *For $\epsilon > 0$, a neural network is ϵ -robust if for all $(x, y) \in \mathcal{D}^+$*

$$\min_{j \in \bar{\mathcal{J}}_K} \min_{z_0 \in \mathcal{B}_\epsilon(x)} z_K^y - z_K^j \geq 0 \quad (1)$$

145 Our aim in this paper is to determine whether a DNN satisfies the positivity Property 2. More
 146 formally, considering a data $(x, y) \in \mathcal{D}^+$, we consider the following optimization problem (Cert)
 147 defined for all $j \in \mathcal{J}_K$:

$$\text{(Cert)} \begin{cases} \min_{z_0} (W_K^y z_{K-1} + b_K^y) - (W_K^j z_{K-1} + b_K^j) \\ \text{s.t. } z_{k+1} = \text{ReLU}(W_{k+1}z_k + b_{k+1}) \quad k \in [K-2] \\ x - \epsilon \leq z_0 \leq x + \epsilon \end{cases} \quad (2)$$

148 where Constraints (2) fix the output of the hidden layers and Constraint (3) ensures that x belongs
 149 to $\mathcal{B}_\epsilon(x)$. The objective is the difference between the logit of the true class y and the target class j .
 150

151 Solving (Cert) to global optimality is hard due to the non-convexity of Constraints (2). However,
 152 by denoting $v(\text{Cert})$ the optimal value of (Cert), Property 2 is reached when $v(\text{Cert}) \geq 0$, for all
 153 $j \in \mathcal{J}_K$ and $(x, y) \in \mathcal{D}^+$. Thus, it is sufficient to compute a non-negative lower bound of (Cert) for
 154 all $j \in \mathcal{J}_K$ to ensure full robustness.
 155

162 A quadratic formulation of (Cert) was introduced in (Raghunathan et al., 2018), obtaining the fol-
 163 lowing targeted formulation:
 164

$$(QP_T^j) \begin{cases} \min_{z_0} (W_K^y z_{K-1} + b_K^y) - (W_K^j z_{K-1} + b_K^j) \\ \text{s.t. } z_{k+1} \geq 0, \quad z_{k+1} \geq W_{k+1} z_k + b_{k+1}, \quad \forall k \in [K-2], \\ z_{k+1} \odot (z_{k+1} - W_{k+1} z_k - b_{k+1}) = 0, \quad \forall k \in [K-2], \\ z_k \odot z_k - (L_k + U_k) \odot z_k + U_k \odot L_k \leq 0, \quad \forall k \in [K-1] \end{cases} \quad (4)$$

$$(5)$$

$$(6)$$

170 where L_k and U_k are lower and upper bounds over the preactivation vector of layer k . Constraints (4)
 171 combined with Constraints (5) are equivalent to Constraints (2). Constraints (6) can be rewritten as
 172 $(U_k - z_k) \odot (z_k - L_k) \geq 0$, which enforces $L_k \leq z_k \leq U_k$ when $L_k \leq U_k$. For $k = 0$, this is a
 173 quadratic equivalent to Constraints (3). Note that there exist efficient methods to propagate bounds
 174 across the network starting from the bounds of the input layer (e.g., $L_0 = x - \epsilon$ and $U_0 = x + \epsilon$
 175 with the ∞ norm) (Wang et al., 2021) giving bounds L_k and U_k on the preactivation vector for all
 176 layers k .

177 **Property 3** (Target-positivity property). *If the optimal value of the targeted quadratic formulation
 178 $v(QP_T^j)$ is non-negative, the DNN satisfies Property 1.*

179 Due to the non-convexity of Constraints (5) and (6), solving formulation (QP_T^j) to global optimality
 180 is impractical even for small-sized DNNs. However, Property 3 ensures that the development of
 181 suitable relaxations can be sufficient to certify the robustness. In particular, using semi-definite
 182 relaxations for quadratic programming was widely studied (Anstreicher, 2009) (see Sec. D.1). Let
 183 $P = [1 \ z] [1 \ z]^T$ be the matrix that collects all the linear and quadratic terms in (QP_T^j) . Then,
 184 the semi-definite relaxation of targeted problem (QP_T^j) has the form:
 185

$$(SDP_T^j - IP) \begin{cases} \min_P (W_K^y P[z_{K-1}] + b_K^y) - (W_K^j P[z_{K-1}] + b_K^j) \\ \text{s.t. } P[z_{k+1}] \geq 0, \quad P[z_{k+1}] \geq W_{k+1} P[z_k] + b_{k+1}, \quad \forall k \in [K-2] \\ \text{diag}(P[z_{k+1} z_{k+1}^\top] - W_{k+1} P[z_k z_{k+1}^\top]) = b_{k+1} P[z_k], \quad \forall k \in [K-2] \\ \text{diag}(P[z_k z_k^\top]) - (L_k + U_k) P[z_k] + U_k \odot L_k \leq 0, \quad \forall k \in [K-1] \\ P \succeq 0, P[1] = 1 \end{cases} \quad (7)$$

$$(8)$$

$$(9)$$

$$(10)$$

193 From its definition, each element of P is related to a given term in (Cert) and the symbolic indexing
 194 $P[.]$ is used to index the vectors of elements of matrix P . Constraints (7)–(9) correspond to the
 195 linearization of Constraints (4)–(6) by the matrix variable P .

196 Note that matrix P exhibits a block diagonal structure. Leveraging chordal decomposition tech-
 197 niques (Vandenberghe & Andersen, 2015), as outlined in (Batten et al., 2021), P can be decomposed
 198 into multiple submatrix variables. Specifically, the decomposition yields $K-1$ matrix variables,
 199 each associated to two consecutive layers k and $k+1$: $P_k = [1 \ z_k \ z_{k+1}] [1 \ z_k \ z_{k+1}]^\top$. This
 200 decomposition allows to deal with multiple modest-sized SDP matrices rather than P . This change
 201 is expressed in the previous constraints (7)–(9) by injecting these matrices as:
 202

$$\begin{cases} P_k[z_{k+1}] \geq 0, \quad P_k[z_{k+1}] \geq W_{k+1} P_k[z_k] + b_{k+1}, \quad \forall k \in [K-2] \end{cases} \quad (11)$$

$$\begin{cases} \text{diag}(P_k[z_{k+1} z_{k+1}^\top] - W_{k+1} P_k[z_k z_{k+1}^\top]) = b_{k+1} P_k[z_k], \quad \forall k \in [K-2] \end{cases} \quad (12)$$

$$\begin{cases} \text{diag}(P_k[z_k z_k^\top]) - (L_k + U_k) P_k[z_k] + U_k \odot L_k \leq 0, \quad \forall k \in [K-1] \end{cases} \quad (13)$$

$$\begin{cases} P_k[z_{k+1}] \leq A_{k+1} P_k[z_k] + B_{k+1}, \quad \forall k \in [K-2] \end{cases} \quad (14)$$

209 The triangular constraint (14) introduced in (Ehlers, 2017) tightens the upper bounds of a neuron j
 210 of layer k according to its activation status with $A_k = l_k \odot W_k$, $B_k = l_k \odot (b_k - L_k) + \text{ReLU}(L_k)$.
 211

212 The variable $l_k = \frac{\text{ReLU}(U_k) - \text{ReLU}(L_k)}{U_k - L_k}$ indicates whether a neuron is stable active ($l_k = 1$), stable
 213 inactive ($l_k = 0$), or unstable ($0 < l_k < 1$). In the case of a *stable active* neuron, i.e. $L_k^j \geq 0$
 214 then $z_k^j \leq W_k^j z_{k-1} + b_k^j$. If it is *stable inactive*, i.e. $U_k^j \leq 0$ then $z_k^j \leq 0$. In the *unstable* case,
 215 constraint (14) reduces to $z_k^j \leq \frac{U_k^j}{U_k^j - L_k^j} (W_k^j z_{k-1} + b_k^j) + \frac{U_k^j}{U_k^j - L_k^j} (b_k^j - L_k^j)$ (see Appendix B.3).

It has been further improved in (Lan et al., 2022) with the addition of RLT (Reinforcement Linearization Technique) cuts, giving the following (SDP_T^j) problem:

$$(SDP_T^j) \left\{ \begin{array}{l} \min (W_K^y P_{K-2}[z_{K-1}] + b_K^y) - (W_K^j P_{K-2}[z_{K-1}] + b_K^j) \\ \text{s.t. (11) - (14)} \\ P_k[(1 z_{k+1})(1 z_{k+1})^\top] = P_{k+1}[(1 z_{k+1})(1 z_{k+1})^\top] \\ RLT(p) \\ P_k = [1 \ z_k \ z_{k+1}] [1 \ z_k \ z_{k+1}]^\top \succeq 0, P_k[1] = 1, \end{array} \right. \quad (15)$$

$$(16)$$

$$(17)$$

where the minimization over P has been omitted for clarity of notation. Constraints (15) ensure the coherence of the variables across consecutive matrices P_k and P_{k+1} . For $L_k \leq z_k \leq U_k \forall k \in [K-1]$, Constraints (16) are RLT cuts (Sherali & Adams, 1990). They result from the product of linear valid inequalities (triangular constraint, bound constraints) to obtain quadratic inequalities. A percentage p of these RLT cuts is carefully chosen by a heuristic. We refer the reader to the supplementary material Sec. B.5 for more details on RLT cuts.

Using (SDP_T^j) to certify a DNN requires solving one SDP for each data $(x, y) \in \mathcal{D}^+$ and each possible target ($j \in \bar{\mathcal{J}}_K$). This leads to two significant drawbacks. First, the certification process fails to scale with the number of classes. Second, since solving multiple SDP relaxations for **each** data point is computationally demanding, the number of cuts must be restricted, which in turn weakens the tightness of the resulting bounds on the objective. To answer these limitations, we now introduce a new *untargeted* model that certifies a sample for all targets by solving only one SDP, thus considerably reducing the certification burden.

4 METHOD

4.1 A NEW QUADRATIC MODEL FOR FULL CERTIFICATION

To avoid solving $|\bar{\mathcal{J}}_K|$ SDPs for each data $(x, y) \in \mathcal{X}^+$, we design a new model that directly checks Property 2. As shown in the left part of Fig. 1, we thus introduce binary variables $(\beta_j)_{j \in \bar{\mathcal{J}}_K}$ with β_j equals to 1 if and only if the worst adversarial example is of class j . Thus, the left-hand-side of Equation (1) can be obtained by minimizing $z_K^y - \sum_{j \in \bar{\mathcal{J}}_K} \beta_j z_K^j$. Using this objective, we define the

following quadratic formulation of the *full-robustness* (see Property 2) of a DNN:

$$(QP_U) \left\{ \begin{array}{l} \min W_K^y z_{K-1} + b_K^y - \sum_{j \in \bar{\mathcal{J}}_K} \beta_j (W_K^j z_{K-1} + b_K^j) \\ \text{s.t. (4) - (6)} \\ \sum_{j \in \bar{\mathcal{J}}_K} \beta_j = 1 \\ \beta_j \in \{0, 1\} \end{array} \right. \quad (18)$$

$$j \in \bar{\mathcal{J}}_K \quad (19)$$

Constraint (18) ensures that only one binary variable β_j will be non-zero. We now prove that $v(QP_U)$ coincides with the lowest value of $v(QP_T^j)$ over all target classes.

Theorem 1. *Given a data $(x, y) \in \mathcal{D}^+$, and $\epsilon > 0$, we have $v(QP_U) = \min_{\bar{j} \in \bar{\mathcal{J}}_K} v(QP_T^{\bar{j}})$*

From this theorem, we can deduce that the non-negativity of $v(QP_U)$ ensures the full robustness. Indeed, an optimal value of (QP_U) will set $\beta_{\bar{j}} = 1$ for the target class \bar{j} which minimizes $z_K^y - z_K^{\bar{j}}$.

Property 4 (Full positivity property). *If $v(QP_U)$ is non-negative, the DNN satisfies Property 2.*

(QP_U) has only $|\bar{\mathcal{J}}_K|$ additional binary variables and 1 more constraint than (QP_T^j). Note that one can prune some of these binary variables based on the lower and upper bounds of their logits: a class $j \in \bar{\mathcal{J}}_K$ can be pruned if there exists another class $\tilde{j} \in \bar{\mathcal{J}}_K$ such that $U_K^j \leq L_K^{\tilde{j}}$ since the associated β_j will be zero in any optimal solution of (QP_U). Indeed, if there exists an adversarial attack, the

most damaging one would not target class j , but a class in $\bar{\mathcal{J}}_K \setminus \{j\}$. In the following, we assume that the dominated classes are excluded from the set $\bar{\mathcal{J}}_K$ B.1. This implies $\bigcap_{j \in \bar{\mathcal{J}}_K} [L_K^j, U_K^j] \neq \emptyset$.

Similarly to (QP_T^j) , the direct solution of (QP_U) is impractical even for small-sized DNNs. Thus, we build a tight semi-definite relaxation of (QP_U) that may certify the DNN using Property 4.

4.2 A TIGHT SDP RELAXATION

In order to handle the additional binary variables β_j in our SDP relaxation, for $k \in [K-3]$, we use P_k as defined in Constraint (17) and we introduce an additional matrix to linearize the products $\beta_j z_K$, i.e. $P_{K-2} = [1 \ z_{K-2} \ z_{K-1} \ z_K \ \beta] [1 \ z_{K-2} \ z_{K-1} \ z_K \ \beta]^\top$. We build the following SDP relaxation of (QP_U) :

$$(SDP) \left\{ \begin{array}{l} \min W_K^y P_{K-2}[z_{K-1}] + b_K^y - \sum_{j \in \bar{\mathcal{J}}_K} (W_K^j P_{K-2}[\beta_j z_K] + b_K^j) \\ \text{s.t. (7) - (15)} \\ \sum_{j \in \bar{\mathcal{J}}_K} P_{K-2}[\beta_j] = 1 \\ \text{diag}(P_{K-2}[\beta \beta^\top]) = P_{K-2}[\beta] \\ P_k \succeq 0 \quad k \in [K-2] \end{array} \right. \quad (20)$$

$$(21)$$

$$(22)$$

To tighten (SDP) , we use several cuts. First, to tighten the linearization of products β by z , we use McCormick cuts (McCormick, 1976) for $k \in \{K-2, K-1\}$ present in matrix P_{K-2} , that are defined as follows:

$$\beta_j z_k \geq 0, \ \beta_j z_k \geq U_k \beta_j + z_k - \beta_j, \ \beta_j z_k \leq U_k \beta_j, \ \beta_j z_k \leq z_k \quad (23)$$

Similarly, we tighten the products $\beta_{j_1} z_{j_2}$ of the objective function by use of the McCormick envelopes for all $(j_1, j_2) \in \bar{\mathcal{J}}_K \times \bar{\mathcal{J}}_K$:

$$\beta_{j_1} z_K^{j_2} \leq z_K^{j_2} - L_{K-1}^{j_2}(\beta_{j_1} - 1), \ \beta_{j_1} z_K^{j_2} \leq U_K^{j_2} \beta_{j_1}, \ \beta_{j_1} z_K^{j_2} \geq z_K^{j_2} - U_K^{j_2}(\beta_{j_1} - 1), \ \beta_{j_1} z_K^{j_2} \geq L_K^{j_2} \beta_{j_1} \quad (24)$$

Then, we build 3 new specific families of valid quadratic cuts for (QP_U) . First, since β is a unit vector, a subset of entries can be fixed, reducing the number of terms that require explicit modeling, and we get:

$$\beta_{j_1} \beta_{j_2} = 0 \quad \forall (j_1, j_2) \in \bar{\mathcal{J}}_K, j_1 \neq j_2 \quad (25)$$

Finally, for all pairs of two distinct adversarial targets j_1, j_2 , we introduce new inequalities that leverage the specific structure of the certification problem. These constraints allow coupling the variables $\beta_{j_1}, \beta_{j_2}, z_K^{j_1}, z_K^{j_2}, \beta_{j_1} z_K^{j_1}$ and $\beta_{j_2} z_K^{j_2}$ using only two constraints. Intuitively, constraint 27 encourages the logit of the adversarial target selected by the model to exceed that of other possible targets. The two constraints are given below:

$$\left\{ \begin{array}{l} \beta_{j_2} z_K^{j_2} \leq (1 - \beta_{j_1}) z_K^{j_1} + \beta_{j_2} U_K^{j_2} - (1 - \beta_{j_1}) L_K^{j_1} + \beta_{j_2} (L_K^{j_1} - z_K^{j_1}) \\ \beta_{j_2} z_K^{j_2} \geq z_K^{j_1} - (1 - \beta_{j_2}) U_K^{j_1} \end{array} \right. \quad (26)$$

$$(27)$$

Proposition 1. *Constraints (26) and (27) are valid inequalities of (QP_U) .*

4.3 PRUNING OF STABLE ACTIVE NEURONS

Formulating the certification problem with the smallest possible model is crucial to accelerating its resolution. With this in mind, recent works have shown (Jung et al., 2020) that a significant fraction of *ReLU* units can become inactive across training and stay inactive under small perturbations. DNN can thus achieve natural sparsity after training, which can be leveraged to reduce the number of variables in the certification model *cf. right part of Fig. 1*. In modern architectures commonly used in computer vision, more than half of the neurons can be inactive (Kurtz et al., 2020; Tjeng et al., 2019), directly translating into an equivalent reduction in the number of variables. *Beyond*

inactive units, stable **active** neurons should also be taken into account (see (Serra et al.; Botoeva et al.)), thus achieving a far more compact formulation of the certification problem than in the original optimization problem.

The variable z_k^j corresponding to a stable active neuron can be replaced by its linear expression $W_k^j z_{k-1} + b_k^j$. By recursively substituting each stable active neuron of vector z_{k-1} by its linear expression in terms of z_{k-2} , and so on, the neuron z_k^j can be linearly expressed across multiple layers.

The chordal decomposition that we consider in (SDP_T^j) and (SDP_U) uses matrices P_k which only model the links between two consecutive layers. However, unmodeled quadratic terms appear in Constraint (5), i.e. $z_{k+1}^j(z_{k+1}^j - W_k z_k + b_k) = 0$. Indeed, let z_k^a be the sub-vector of active neurons of layer k , and z_k^u the sub-vector of unstable neurons (inactive neurons have been removed), Constraint (5) becomes $z_{k+1}^j(z_{k+1}^j - W_{k,u}^j z_k^u - b_k) = z_{k+1}^j W_{k,a}^j z_k^a = \sum_{l=0}^{k-1} A_l^i + B z_{k+1}^j$, where A and B are derived from products of linear layer weights (more information in Appendix B.2). This formulation leads to new cross-layer dependencies as products $z_{k+1}^j z_l^i$ between non consecutive layers l and $k+1$ appear, which are not represented in matrices from the chordal decomposition. To keep this decomposition in our SDP relaxation, we bound the obtained right-hand side. As illustrated in the right part of Fig. 1, we use McCormick cuts based on the bounds of z_{k+1}^j and z_l^i to create two linear upper bounds and two linear lower bounds on the quadratic products $z_{k+1}^j z_l^i$ (for more information see B.2). We then substitute our quadratic terms by their linear bounds in the $ReLU$ constraint and obtain the following four relaxed $ReLU$ constraints :

$$\begin{cases} z_{k+1}^j(z_{k+1}^j - W_{k,u}^j z_k^u - b_k) \leq (C_1 + B)z_{k+1}^j \end{cases} \quad (28)$$

$$\begin{cases} z_{k+1}^j(z_{k+1}^j - W_{k,u}^j z_k^u - b_k) \leq (C_2 + B)z_{k+1}^j \end{cases} \quad (29)$$

$$\begin{cases} z_{k+1}^j(z_{k+1}^j - W_{k,u}^j z_k^u - b_k) \geq \sum_{l=0}^{k-1} C_{3,l} z_l + C_{3,k+1} z_{k+1}^j + C_3 \end{cases} \quad (30)$$

$$\begin{cases} z_{k+1}^j(z_{k+1}^j - W_{k,u}^j z_k^u - b_k) \geq \sum_{l=0}^{k-1} C_{4,l} z_l + C_{4,k+1} z_{k+1}^j + C_4 \end{cases} \quad (31)$$

where the coefficients of C_{k-1} are a linear combination of the coefficients A_{k-1}^a and the lower and upper bounds on products of $z_k z_{k-1}$ defined by the McCormick envelopes.

We prune active neurons on all layers except the penultimate layer, which is in the objective function of (SDP_T^j) . Finally, we obtain the following enhanced SDP relaxation, where P_k matrices have been truncated:

$$(SDP_U) \begin{cases} \min W_K^y P_{K-2}[z_{K-1}] + b_K^y - \sum_{j \in \bar{\mathcal{J}}_K} (W_K^j P_{K-2}[\beta_j z_{K-1}] + b_K^j) \\ \text{s.t. (7) - (15), (17), (20) - (31)} \end{cases}$$

Note that this pruning strategy of stable active neurons is a generic approach that can be applied to any SDP relaxation, either targeted or multiclass. As shown by our experiences of Section 5.3, applying this strategy to (SDP_U) or (SDP_T) clearly speeds up the resolution. This size reduction comes at the cost of relaxing some equality constraints with inequalities Eqs. (28) to (31). However, the new constraints added to our formulation counterbalance this relaxation, ensuring that the overall certification performances remain competitive.

By denoting n_k^a the number of stable active neurons on layer k , and n_k^u the number of unstable neurons, Proposition 2 specifies the reduction of size resulting from pruning.

Proposition 2. *The pruning of active neurons reduces the dimensions of each matrix variable P_k for $k \in [K-3]$ from $(1 + n_k^a + n_k^u + n_{k+1}^a + n_{k+1}^u)^2$ to $(1 + n_k^u + n_{k+1}^u)^2$, and reduces P_{K-2} in SDP_U from $(1 + n_{K-2}^a + n_{K-2}^u + n_{K-1}^a + n_{K-1}^u)^2 + |\bar{\mathcal{J}}_K|^2$ to $(1 + n_{K-2}^u + n_{K-1}^u)^2 + |\bar{\mathcal{J}}_K|^2$.*

378 379 380 381 382 383	384 385 386 387 388 389 390	391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431	Network	PGD	SDP _U (ours)		SDP _T		SDP _{T,layer}		SDP _{T-IP}		β -CROWN	
Cert.	Time	Cert.	Time	Cert.	Time	Cert.	Time	Cert.	Time	Cert.	Time					
6x100	96	86	323	74	399	72	22	72	100	69	2					
6x200	99	85	441	74	2109	67	87	69	2154	64	3					
9x100	95	77	925	35	2614	26	212	27	1634	22	4					
9x200	100	71	1679	53	4081	47	650	47	4483	43	5					

Table 1: Comparison of our untargeted method SDP_U with other SDP approaches from literature. Column PGD is an overestimation of actual robustness.

5 RESULTS

5.1 IMPLEMENTATION DETAILS

We ran our experiments on a Linux machine on a 64-core CPU and a 264Go RAM. We use the Python API of the MOSEK optimizer (MOSEK ApS, 2019), and fixed the number of threads to 4.

We evaluate SDP_U (see details in Appendix B) on MNIST (10 classes). We reproduced the evaluation protocol from previous works on DNN certification (Raghunathan et al., 2018; Batten et al., 2021; Lan et al., 2022) by considering 4 different fully connected neural networks adversarially trained with PGD attacks (see Appendix Sec. D.3). Neural networks used are 6x100 and 9x100 from (Singh et al., 2019) tested under the same $\epsilon = 0.026$; 6x200 and 9x200 from (Singh et al., 2019) tested under the same $\epsilon = 0.015$. We have reproduced these networks to the best of our knowledge and report the detailed architecture and adversarial training in Appendix C.3 for future reproducibility. We conducted our first two experiments on 100 data points: the first 10 images of each class from the MNIST train set.

5.2 STATE-OF-THE-ART COMPARISON

To fully evaluate the proposed method with respect to other incomplete verifiers, we compare with the following methods: β -CROWN method from (Wang et al., 2021); SDP_T-IP from (Raghunathan et al., 2018), $SDP_{T,layer}$ from (Batten et al., 2021) with a chordal decomposition of matrices, ablation of stable inactive neurons, and the triangular constraint ; SDP_T from (Lan et al., 2022) with a chordal decomposition of matrices, ablation of stable inactive neurons, the triangular constraint, and 10% of the RLT cuts ; SDP_U with a chordal decomposition of matrices, ablation of stable inactive and active neurons, the triangular constraint, and 100% of the RLT cuts for 6x100 and 9x100, 60% for 6x200 and 9x200. The results are reported in Tab. 1, where each line corresponds to one network. We ran the experiments of targeted SDP models across all non trivially certified adversarial targets after inspection of the logit bounds (see the number of remaining targets in Table 3 of Appendix C.3 and the algorithms used in B.1). The bounds on the preactivation values are computed with $\alpha - \beta$ -CROWN (Wang et al., 2021). Column PGD is an overestimation of actual robustness, and for each method Column Cert. is the percentage of full robustness (across all targets), and Column Time is the mean total runtime per image (seconds) across all classes.

β -CROWN is GPU-accelerated and offers fast verification; however, it is unable to tighten the bounds sufficiently to eliminate all possible target classes when the number of neurons increases, as in 9x100 and 9x200. Method SDP_T-IP does not involve chordal decomposition of matrix variables nor efficient cuts. As expected, it reaches a low certification average percentage within a huge computation time. The impact of the introduction of both pruning of inactive neurons and chordal decomposition of matrices on the computation time can be observed with methods $SDP_{T,layer}$, SDP_T , and SDP_U . For $SDP_{T,layer}$, we observe a clear speed-up of the certification process (in comparison with SDP_T-IP), but with a very low certification percentage (even sometimes lower than SDP_T-IP). The use of RLT cuts in SDP_T improves the certification percentage, but slows the full computation. Note that since SDP_T needs to solve up to 9 SDP models to certify, the cost of adding the RLT cuts is significant, and only a small proportion can be added (10% in our experiments) to keep tractability. Finally, we observe that our new method SDP_U achieved the best performances by a clear margin in terms of certification percentage (increased by 19 percentage points on average). Furthermore, it achieves the best certification and computation time tradeoff by consistently showing the lowest or second lowest computation time among other SDP-based methods. Indeed, the aggregation of classes allows us to add more RLT cuts while remaining tractable. Note that the

432	433	434	435	SDP_T				SDP_U (ours)				
				Pruning Network	Inactives		Full		Inactives		Full	
436	437	438	439		Cert.	Time	Cert.	Time	Cert.	Time	Cert.	Time
6x100		74	399	6x100	72	131	94	384	86	323		
6x200		74	2109	6x200	64	1367	90	544	85	441		

Figure 2: Impact of the ablation of neurons (stable inactive only or stable inactive and active)

pruning of stable active neurons also has a significant impact on the size of our model (SDP_U) (see the proportion of stable active neurons in Table 3), which further accelerates the total computation time.

5.3 STABLE ACTIVE NEURONS PRUNING

We now study the impact of the ablation of stable active neurons on the performance of methods SDP_T and SDP_U . We ran our experiments on networks 6x100 and 6x200, and we report the results in Table 2. For each method, we consider two cases: pruning of inactive neurons only **using 50% of RLT cuts**, and pruning of both stable active and inactive neurons. The results reveal a similar trend for both methods. As expected, the greater the number of pruned neurons, the faster the resolution. Performing this ablation along with chordal decomposition allows for drastically reducing the number of variables. The pruning slightly reduces the quality of some constraints, but the impact on the percentage of certification remains limited.

5.4 MULTICLASS SCALING

Finally, we assess the scalability of our method with respect to large-scale, multi-class datasets. We constructed a composite dataset by merging EMNIST Balanced, KMNIST, and FashionMNIST, resulting in a total of 67 distinct classes. We trained neural networks on subsets of this dataset, with 5, 20, 50, and 67 classes respectively, **with one representative for each class and $\epsilon = 0.05$** . We compare the runtime performance of SDP_U against SDP_T and β -CROWN. We report the results in Figure 6, where each line plots the computation time (in seconds) according to the number of classes **and also specifies the certification percentage**. We observe that the computation time of SDP_T increases greatly with the number of classes, while the computation time of SDP_U remains stable. Clearly, the aggregation of classes enables a significant speed-up towards large multi-class datasets. Note moreover that while pruning of trivially certified targets with β -CROWN is useful for scaling, its effectiveness decreases for large number of classes. **Furthermore, our approach is the only one showing satisfying certification scores when the number of classes increases, while the performances significantly drop for (SDP_T) and β -CROWN.** This reflects how obtaining good robustness becomes challenging for large multi-class datasets, thus highlighting the relevance of a unified approach across all classes.

6 CONCLUSION

We have introduced a new SDP model to verify ReLU networks across all targets, enabling a significant speedup compared to current SDP models. We are further able to improve both targeted and untargeted models thanks to a reduction in the size of the SDP models by ablation of variables corresponding to stable active neurons. Further work could include the combination of multiclass certification, together with a branch and bound strategy to perform complete verification.

Figure 3: Impact of the number of classes over the certification time and accuracy

486 REFERENCES
487

488 K. M. Anstreicher. Semidefinite programming versus the reformulation-linearization technique for
489 nonconvex quadratically constrained quadratic programming. *Journal of Global Optimization*, 43
490 (2):471–484, 2009. ISSN 1573-2916. doi: 10.1007/s10898-008-9372-0. URL <http://dx.doi.org/10.1007/s10898-008-9372-0>.

491

492 Ben Batten, Panagiotis Kouvaros, Alessio Lomuscio, and Yang Zheng. Efficient Neural Network
493 Verification via Layer-based Semidefinite Relaxations and Linear Cuts. In *Proceedings of the*
494 *Thirtieth International Joint Conference on Artificial Intelligence*, pp. 2184–2190, Montreal,
495 Canada, August 2021. International Joint Conferences on Artificial Intelligence Organization.
496 ISBN 978-0-9992411-9-6. doi: 10.24963/ijcai.2021/301. URL <https://www.ijcai.org/proceedings/2021/301>.

497

498 Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener. Efficient
499 verification of ReLU-based neural networks via dependency analysis. 34(4):3291–3299. ISSN
500 2374-3468, 2159-5399. doi: 10.1609/aaai.v34i04.5729. URL <https://ojs.aaai.org/index.php/AAAI/article/view/5729>.

501

502 Rudy Bunel, Ilker Turkaslan, Philip H S Torr, M Pawan Kumar, Jingyue Lu, and Pushmeet Kohli.
503 Branch and Bound for Piecewise Linear Neural Network Verification. *JMLR*, 2020.

504

505 S. Burer and D. Vandenbussche. A finite branch-and-bound algorithm for nonconvex quadratic
506 programming via semidefinite relaxations. *Mathematical Programming*, 113(2):259–282, Jun
507 2008. ISSN 1436-4646. doi: 10.1007/s10107-006-0080-6. URL <https://doi.org/10.1007/s10107-006-0080-6>.

508

509 S. Burer and D. Vandenbussche. Globally solving box-constrained nonconvex quadratic programs
510 with semidefinite-based finite branch-and-bound. *Comput Optim Appl*, 43:181–195, 2009.

511

512 Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks, March
513 2017. URL <http://arxiv.org/abs/1608.04644>. arXiv:1608.04644 [cs].

514

515 J. Chen and S. Burer. Globally solving nonconvex quadratic programming problems via completely
516 positive programming. *Mathematical Programming Computation*, 4(1):33–52, 2012.

517

518 Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum Resilience of Artificial Neural
519 Networks. In Deepak D’Souza and K. Narayan Kumar (eds.), *Automated Technology for Veri-
520 fication and Analysis*, volume 10482, pp. 251–268. Springer International Publishing, Cham,
521 2017. ISBN 978-3-319-68166-5 978-3-319-68167-2. doi: 10.1007/978-3-319-68167-2_18. Series Ti-
522 tle: Lecture Notes in Computer Science.

523

524 Hong-Ming Chiu and Richard Y. Zhang. Tight certification of adversarially trained neural networks
525 via nonconvex low-rank semidefinite relaxations. In *Proceedings of the 40th International Con-
526 ference on Machine Learning*, pp. 5631–5660. PMLR. URL <https://proceedings.mlr.press/v202/chiu23a.html>. ISSN: 2640-3498.

527

528 Hong-Ming Chiu, Hao Chen, Huan Zhang, and Richard Y. Zhang. SDP-CROWN: Efficient Bound
529 Propagation for Neural Network Verification with Tightness of Semidefinite Programming, June
530 2025. URL <http://arxiv.org/abs/2506.06665>. arXiv:2506.06665 [cs].

531

532 Sumanth Dathathri, Alex Kurakin, Aditi Raghunathan, Jonathan Uesato, Rudy Bunel, Shreya
533 Shankar, Jacob Steinhardt, Ian Goodfellow, Percy Liang, and Pushmeet Kohli. Enabling certifica-
534 tion of verification-agnostic networks via memory-efficient semidefinite programming. *NeurIPS*,
535 2018.

536

537 Ruediger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks, August
538 2017. URL <http://arxiv.org/abs/1705.01320>. arXiv:1705.01320 [cs].

539

Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic, and Martin Vechev. Complete Verification
via Multi-Neuron Relaxation Guided Branch-and-Bound, April 2022. URL <http://arxiv.org/abs/2205.00263>. arXiv:2205.00263 [cs].

540 Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear op-
 541 timization. *Constraints*, 23(3):296–309, July 2018. ISSN 1383-7133, 1572-9354.
 542 doi: 10.1007/s10601-018-9285-6. URL <http://link.springer.com/10.1007/s10601-018-9285-6>.

543

544 Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial
 545 Examples, March 2015. URL <http://arxiv.org/abs/1412.6572>. arXiv:1412.6572
 546 [stat].

547

548 Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Timothy Mann, and Pushmeet Kohli. A
 549 dual approach to verify and train deep networks. In *Proceedings of the Twenty-Eighth Interna-
 550 tional Joint Conference on Artificial Intelligence, IJCAI-19*, pp. 6156–6160. International Joint
 551 Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/854. URL
 552 <https://doi.org/10.24963/ijcai.2019/854>.

553

554 Patrick Henriksen and Alessio Lomuscio. DEEPSPLIT: An Efficient Splitting Method for Neural
 555 Network Verification via Indirect Effect Analysis. In *Proceedings of the Thirtieth Interna-
 556 tional Joint Conference on Artificial Intelligence*, pp. 2549–2555, Montreal, Canada, August 2021. Interna-
 557 tional Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-9-6. doi:
 558 10.24963/ijcai.2021/351. URL <https://www.ijcai.org/proceedings/2021/351>.

559

560 Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural
 561 networks. In *International conference on computer aided verification*, pp. 3–29. Springer, 2017.

562

563 Florian Jaeckle, Jingyue Lu, and M. Pawan Kumar. Neural Network Branch-and-Bound for
 564 Neural Network Verification, July 2021. URL <http://arxiv.org/abs/2107.12855>.
 565 arXiv:2107.12855 [cs].

566

567 Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-
 568 importance based adaptive group sparse regularization. *Advances in neural information process-
 569 ing systems*, 33:3647–3658, 2020.

570

571 Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An Ef-
 572 ficient SMT Solver for Verifying Deep Neural Networks. *Computer Aided Verification*, May
 573 2017. doi: 10.48550/arXiv.1702.01135. URL <http://arxiv.org/abs/1702.01135>.
 574 arXiv:1702.01135 [cs].

575

576 Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth
 577 Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer,
 578 and Clark Barrett. The Marabou Framework for Verification and Analysis of Deep Neural Net-
 579 works. In Isil Dillig and Serdar Tasiran (eds.), *Computer Aided Verification*, volume 11561, pp.
 580 443–452. Springer International Publishing, Cham, 2019. ISBN 978-3-030-25539-8 978-3-030-
 581 25540-4. doi: 10.1007/978-3-030-25540-4_26. URL http://link.springer.com/10.1007/978-3-030-25540-4_26. Series Title: Lecture Notes in Computer Science.

582

583 Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world,
 584 February 2017. URL <http://arxiv.org/abs/1607.02533>. arXiv:1607.02533 [cs].

585

586 Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin,
 587 William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting activa-
 588 tion sparsity for fast inference on deep neural networks. In Hal Daumé III and Aarti Singh
 589 (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of
 590 *Proceedings of Machine Learning Research*, pp. 5533–5543. PMLR, 13–18 Jul 2020.

591

592 Jianglin Lan, Benedikt Brückner, and Alessio Lomuscio. A semidefinite relaxation based branch-
 593 and-bound method for tight neural network verification. 37(12):14946–14954, a. ISSN
 594 2374-3468, 2159-5399. doi: 10.1609/aaai.v37i12.26745. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26745>.

595

596 Jianglin Lan, Yang Zheng, and Alessio Lomuscio. Iteratively enhanced semidefinite relaxations
 597 for efficient neural network verification. 37(12):14937–14945, b. ISSN 2374-3468, 2159-
 598 5399. doi: 10.1609/aaai.v37i12.26744. URL <https://ojs.aaai.org/index.php/AAAI/article/view/26744>.

594 Jianglin Lan, Yang Zheng, and Alessio Lomuscio. Tight Neural Network Verification via Semidef-
 595 infinite Relaxations and Linear Reformulations. *AAAI*, 36(7):7272–7280, June 2022. ISSN 2374-
 596 3468, 2159-5399. doi: 10.1609/aaai.v36i7.20689. URL <https://ojs.aaai.org/index.php/AAAI/article/view/20689>.
 597

598 Yuke Liao, Blaise Genest, Kuldeep Meel, and Shaan Aryaman. Solution-aware vs global ReLU
 599 selection: partial MILP strikes back for DNN verification. URL <http://arxiv.org/abs/2507.23197>.
 600

601 Jingyue Lu and M. Pawan Kumar. Neural Network Branching for Neural Network Verification.
 602 *ICLR*, December 2019. doi: 10.48550/arXiv.1912.01329. URL <http://arxiv.org/abs/1912.01329> [cs].
 603

604 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 605 Towards Deep Learning Models Resistant to Adversarial Attacks, September 2019. URL <http://arxiv.org/abs/1706.06083>. arXiv:1706.06083 [stat].
 606

607 G.P. McCormick. Computability of global solutions to factorable non-convex programs: Part i -
 608 convex underestimating problems. *Mathematical Programming*, 10(1):147–175, 1976.
 609

610 Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: A Simple and
 611 Accurate Method to Fool Deep Neural Networks. In *2016 IEEE Conference on Computer Vision
 612 and Pattern Recognition (CVPR)*, pp. 2574–2582, Las Vegas, NV, USA, June 2016. IEEE. ISBN
 613 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.282. URL <http://ieeexplore.ieee.org/document/7780651/>.
 614

615 MOSEK ApS. *The MOSEK optimization toolbox for MATLAB manual. Version 9.2.*, 2019. URL
 616 <http://docs.mosek.com/9.0/toolbox/index.html>.
 617

618 Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram
 619 Swami. The Limitations of Deep Learning in Adversarial Settings, November 2015. URL <http://arxiv.org/abs/1511.07528>. arXiv:1511.07528 [cs].
 620

621 Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying ro-
 622 bustness to adversarial examples. *NeurIPS*, 2018.
 623

624 Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and Sébastien
 625 Bubeck. Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers.
 626 *NeurIPS*, 2019.
 627

628 Thiago Serra, Abhinav Kumar, and Sri Kumar Ramalingam. Lossless compression of deep neural
 629 networks. URL <http://arxiv.org/abs/2001.00218>.
 630

631 H.D. Sherali and W.P. Adams. A hierarchy of relaxation between the continuous and convex hull
 632 representations for zero-one programming problems. *SIAM Journal Discrete Mathematics*, 3:
 633 411–430, 1990.
 634

635 H.D. Sherali and W.P. Adams. *A reformulation-linearization technique for solving discrete and
 636 continuous nonconvex problems*, volume 31. Springer Science & Business Media, 2013.
 637

638 Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for cer-
 639 tifying neural networks. *Proceedings of the ACM on Programming Languages*, 3(POPL):1–30,
 640 January 2019. ISSN 2475-1421. doi: 10.1145/3290354. URL <https://dl.acm.org/doi/10.1145/3290354>.
 641

642 Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of Neural Networks with Mixed
 643 Integer Programming. *ICLR*, February 2019. doi: 10.48550/arXiv.1711.07356. URL <http://arxiv.org/abs/1711.07356> [cs].
 644

645 Ryota Ueda, Takami Sato, Ken Kobayashi, and Kazuhide Nakata. Interior-point vanishing problem
 646 in semidefinite relaxations for neural network verification. URL <http://arxiv.org/abs/2506.10269>.
 647

648 Lieven Vandenberghe and Martin S. Andersen. Chordal Graphs and Semidefinite Optimization.
 649 *Foundations and Trends® in Optimization*, 1(4):241–433, 2015. ISSN 2167-3888, 2167-
 650 3918. doi: 10.1561/2400000006. URL <http://www.nowpublishers.com/article/Details/OPT-006>. Publisher: Now Publishers.
 651

652 D. Vandenbussche and G. Nemhauser. A branch-and-cut algorithm for nonconvex quadratic pro-
 653 grams with box constraints. *Mathematical Programming*, 102(3):259–275, 2005a.
 654

655 D. Vandenbussche and G.L. Nemhauser. A polyhedral study of nonconvex quadratic programs with
 656 box constraints. *Mathematical Programming*, 102(3):531–557, 2005b.
 657

658 Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. Beta-
 659 CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network
 660 Robustness Verification. *NeurIPS*, 2021.

661 Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning,
 662 and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In
 663 *International Conference on Machine Learning*, pp. 5276–5285. PMLR, 2018.

664 Eric Wong and J Zico Kolter. Provable Defenses against Adversarial Examples via the Convex Outer
 665 Adversarial Polytope. *ICML*, 2018.
 666

667 Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
 668 Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang,
 669 Ekaterina Komendantskaya, Guy Katz, and Clark Barrett. Marabou 2.0: A Versatile Formal
 670 Analyzer of Neural Networks. In Arie Gurfinkel and Vijay Ganesh (eds.), *Computer Aided
 671 Verification*, volume 14682, pp. 249–264. Springer Nature Switzerland, Cham, 2024. ISBN
 672 978-3-031-65629-3 978-3-031-65630-9. doi: 10.1007/978-3-031-65630-9_13. URL https://link.springer.com/10.1007/978-3-031-65630-9_13. Series Title: Lecture
 673 Notes in Computer Science.
 674

675 Y. Yajima and T. Fujie. A polyhedral approach for nonconvex quadratic programming problems
 676 with box constraints. *Journal of Global Optimization*, 13(2):151–170, 1998.

677 Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
 678 General Cutting Planes for Bound-Propagation-Based Neural Network Verification. *NeurIPS*,
 679 2022.
 680

681 Richard Y Zhang. On the Tightness of Semidefinite Relaxations for Certifying Robustness to Ad-
 682 versarial Examples. *NeurIPS*, 2020.

683 Duo Zhou, Christopher Brix, Grani A Hanusanto, and Huan Zhang. Scalable Neural Network
 684 Verification with Branch-and-bound Inferred Cutting Planes. *NeurIPS*, 2024.
 685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701