FAST SDP CERTIFICATION OF NEURAL NETWORKS: TOWARDS LARGE MULTI-CLASS DATASETS

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a new quadratic model for the certification problem in adversarial robustness, which simultaneously accounts for all possible target classes. Building on this model, we propose a novel semidefinite programming (SDP) relaxation for incomplete verification. A key advantage of our approach is that it certifies robustness in a single optimization, avoiding the need for a separate resolution per class. This yields a significant computational speed-up and enables scalability to large datasets with many classes. To further gain in efficiency, we also propose an effective pruning strategy of active neurons, thus reducing the problem dimensionality and accelerating convergence.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success and are widely implemented in various domains, including computer vision and natural language processing. This rapid adoption of DNNs has often prioritized efficiency and automation, overshadowing the crucial aspect of safety.

The research community has extensively studied various aspects of robustness, including out-of-distribution generalization, robustness to data corruption, and resistance to adversarial attacks. In particular, DNN have especially been proven vulnerable to adversarial attacks Goodfellow et al. (2015), wherein malicious actors exploit the inherent complexity of these models to generate examples that deceive classifiers. This issue has raised concerns in many critical domains of applications of neural networks, like autonomous vehicles or robotics, where adversarial attacks could be a mean for malicious acts.

An adversarial attack consists of solving a constrained optimization problem to determine an adversarial example for a given data x, i.e., a data in the neighborhood of x which is classified differently by the DNN. These attacks represent a significant threat, particularly when the attacker has knowledge of the model architecture and parameters. In response, two main approaches have emerged to enhance the robustness of DNNs against such attacks: adversarial training and certified defenses. Adversarial training methods aim to improve robustness by performing adversarial augmentations. While these methods do offer increased resilience, they are not foolproof and can still be vulnerable to sophisticated attacks. On the other hand, certified defenses provide mathematical guarantees of robustness against adversarial attacks.

The certification problem for neural networks with ReLU activation functions is NP-complete Katz et al. (2017). This inherent complexity implies that providing a *complete certification* requires substantial computational effort and remains limited in scalability. Many approaches solve combinatorial models to assess the DNNs predictions stability around each data. Several Mixed-Integer Programming (MIP) formulations were introduced to provide formal proofs of small Relu DNNs Tjeng et al. (2019); Fischetti & Jo (2018); Cheng et al. (2017) but remain intractable for medium to large-scale problems.

Computing a non-negative lower bound is sufficient to certify that no adversarial attack is possible for a given target class. Thus, in order to speed up the certification, many approaches solve a relaxation of the original certification problem. In this paper, we focus on *incomplete* verifiers that provide lower bounds on the certification problem: a positive bound guarantees robustness while a negative bound is inconclusive. They constitute a compromise between efficiency and scalability, aiming to achieve the highest possible lower bound within a time limit. Most of the incomplete

Figure 1: **Multiclass certification** The proposed method provides a new quadratic formulation for certifying a neural network across all labels simultaneously. This formulation relies on binary variables $\{\beta_j\}$ indicating the class associated with the worst adversarial example. To further reduce the number of variables, we also propose a pruning strategy that removes both inactive (blue) and active (yellow) neurons. Combined with a chordal decomposition of the SDP matrix (here represented by blue and purple constraints see Eq. (15)), this approach removes terms required to express the ReLu activations, which is compensated with the introduction of dedicated constraints see Eqs. (28) to (31). For instance, once neuron z_2^k is removed, the quadratic interaction $z_2^k z_3^l$ is no longer represented in the matrix. To address this, we bound the dependencies of z_3^l with respect to neurons from previous layers ie. z_0^l and z_1^l .

certification methods are based on quadratic optimization formulations in which the ReLU is expressed as a quadratic non-convex equality from which a linear relaxation is computed Wong & Kolter (2018). Despite bringing promising results for certification, current approaches using SDP relaxations offer limited scalability in particular when certifying mid-to-large scale datasets composed of multiple classes. Indeed, these approaches are targeted ones, i.e. each combinatorial model tests if there exists an adversarial attack for one data and one *target* class. Thus, formally certifying a single data point requires looping over all possible target classes. This requirement can be rapidly cumbersome as modern datasets such as ImageNet-1k or ImageNet-21k propose hundreds or thousands of classes. Furthermore, as each neuron brings its own set of constraints in the optimization problem, current SDP approaches struggle for deep networks.

Contributions To deal with the aforementioned limitations we introduce a new model for the certification problem that is based on an untargeted quadratic formulation (QP). This new approach allows us to certify each data by solving a single optimization problem and significantly speeds up the certification process. Our new formulation has the key advantage of preserving the nonnegativity condition, certifying the data whenever a non-negative lower bound of (QP) is obtained. We further introduce valid quadratic inequalities that tighten the bound of the relaxed problem. Finally, to scale up the certification, we propose an efficient pruning strategy able to remove all stable neurons from the constraints. This allows us to further reduce the solution time. An interesting result is that this pruning strategy is generic and can be applied to other SDP relaxations. Finally, we present computational results demonstrating the efficiency of our methods against state-of-the-art approaches.

2 RELATED WORKS

Certification problem Complete certification methods aim to provide definitive guarantees about the absence of adversarial examples within a given input region. Seminal works include approaches based on Mixed-Integer Linear Programming (MILP), which model ReLU activations through integer constraints, enabling exact reasoning over the network's activations. The MILP formulations proposed by Fischetti & Jo (2018); Tjeng et al. (2019) demonstrate formal verification for small-sized ReLU networks. Similarly, satisfiability modulo theories solvers have been employed to provide sound and complete verification Ehlers (2017); Katz et al. (2017). However, a key limitation of complete verifiers remains their limited scalability to deep networks or high-dimensional datasets.

Incomplete verifiers aim to compute tight lower bounds on neural network robustness, providing formal certification guarantees whenever these bounds are sufficiently strong. A positive bound confirms robustness, while a negative one remains inconclusive, making these methods an interesting

compromise between scalability and theoretical soundness. Incomplete verifiers are derived into a wide variety of approaches including convex relaxations via duality Wong & Kolter (2018); Gowal et al. (2019), linear bounding of ReLU activations Weng et al. (2018), or discretized input space exploration Huang et al. (2017). However, most incomplete verifiers may yield conservative bounds, and even well-optimized linear relaxations can fail to produce tight lower bounds over the objective.

Semi Definite Programming (SDP) relaxations have emerged as a promising class of incomplete verifiers for neural network verification as they produce sharper lower bounds than traditional linear programming approaches. While SDP methods are computationally more intensive, foundational works Raghunathan et al. (2018); Zhang (2020) have demonstrated empirical tightness compared to LP relaxations. This was further advanced by integrating geometric constraints such as triangle relaxations Batten et al. (2021) and Reformulation-Linearization Technique (RLT) cuts Lan et al. (2022), which refine the feasible region for ReLU-activated networks. However, the relaxation becomes looser with increasing depth, and solving SDPs for deep networks often results in scalability challenges. This phenomenon is exacerbated when dealing with multiple classes as one SDP relaxation needs to be computed *for each target class* to achieve certification.

3 Preliminaries

Deep Neural Networks (DNNs) considered in this work are non-linear functions that map the input set to a measurable label set. They are described as successive layers given by the composition of a linear and a non-linear transformation.

Each layer k contains n_k neurons, indexed by $\mathcal{J}_k = \{1,...,n_k\}$. The output $z_{k+1} \in \mathbb{R}^{n_{k+1}}$ of every layer $k \in \mathcal{K} = \{0,...,K-2\}$ is computed by a ReLU activation function: $z_{k+1} = ReLU(W_{k+1}z_k + b_{k+1})$, where $b_k \in \mathbb{R}^{n_k}$, $W_k \in \mathbb{R}^{n_k \times n_{k-1}}$ are the learned parameters of the network. Given a finite labeled dataset $\mathcal{D} = \{x_i, y_i\}$, the predicted class is given by $y^* = \operatorname{argmax}_{j \in \mathcal{J}_K} z_K^j$ for data $x = z_0$ where z_K^j is the j^{th} component of vector $z_K = W_K z_{K-1} + b_K$.

For a given $\epsilon>0$, the certification task verifies that for each data (x,y) and all $z_0\in\mathcal{B}_\epsilon(x)$ (the ∞ -norm balls of center x and radius ϵ) the DNN correctly predicts the class y. Defining $\bar{\mathcal{J}}_K=\mathcal{J}_K\setminus\{y\}$, the set of all possible targets for a given sample, W_K^j , the j^{th} row of matrix W_K^j , and \mathcal{D}^+ , the set of well-classified data and their labels, we formally define robustness as follows:

Property 1 (Targeted Robustness). For a data $(x,y) \in \mathcal{D}^+$, a target class $j \in \bar{\mathcal{J}}_K$ and $\epsilon > 0$, a neural network is (ϵ, j) -robust in x, if

$$\min_{z_0 \in \mathcal{B}_{\epsilon}(x)} z_K^y - z_K^j \ge 0$$

Property 2 (Full robustness). For $\epsilon > 0$, a neural network is ϵ -robust if for all $(x, y) \in \mathcal{D}^+$

$$\min_{j \in \bar{\mathcal{J}}_K} \min_{z_0 \in \mathcal{B}_{\epsilon}(x)} z_K^y - z_K^j \ge 0 \tag{1}$$

Our aim in this paper is to determine whether a DNN satisfies the positivity Property 2. More formally, considering a data $(x,y) \in \mathcal{D}^+$, we consider the following optimization problem (Cert) defined for all $j \in \mathcal{J}_K$:

$$(\operatorname{Cert}) \begin{cases} \min_{z_0} \left(W_K^y z_{K-1} + b_K^y \right) - \left(W_K^j z_{K-1} + b_K^j \right) \\ \text{s.t. } z_{k+1} = \operatorname{ReLU}(W_{k+1} z_k + b_{k+1}) & k \in \mathcal{K} \\ x - \epsilon \le z_0 \le x + \epsilon \end{cases} \tag{2}$$

where Constraints (2) fix the output of layers in K and Constraint (3) ensures that x belongs to $\mathcal{B}_{\epsilon}(x)$. The objective is the difference between the logit of the true class y and the target class j.

Solving (Cert) to global optimality is hard due to the non-convexity of Constraints (2). However, by denoting v(Cert) the optimal value of (Cert), Property 2 is reached when $v(\text{Cert}) \geq 0$, for all $j \in \mathcal{J}_K$ and $(x,y) \in \mathcal{X}^+$. Thus, it is sufficient to compute a non-negative lower bound of (Cert) for all $j \in \mathcal{J}_K$ to ensure full robustness.

A quadratic formulation of (Cert) was introduced in Raghunathan et al. (2018), obtaining the following targeted formulation:

where L_k and U_k are lower and upper bounds over the preactivation vector of layer k. Constraints (4) combined with Constraints (5) are equivalent to Constraints (2). Constraints (6) can be rewritten as $(U_k - z_k) \odot (z_k - L_k) \ge 0$, which enforces $L_k \le z_k \le U_k$ when $L_k \le U_k$. For k = 0, this is a quadratic equivalent to Constraints (3). Note that there exist efficient methods to propagate bounds across the network starting from the bounds of the input layer (e.g., $L_0 = x - \epsilon$ and $U_0 = x + \epsilon$ with the ∞ norm) Wang et al. (2021) giving bounds L_k and U_k on the preactivation vector for all layers k.

Property 3 (Target-positivity property). *If the optimal value of the targeted quadratic formulation* $v(QP_t^j)$ *is non-negative, the DNN satisfies Property 1.*

Proof. See Appendix A.
$$\Box$$

Due to the non-convexity of Constraints (5) and (6), solving formulation (QP_t^j) to global optimality is impractical even for small-sized DNNs. However, Property 3 ensures that the development of suitable relaxations can be sufficient to certify the robustness. In particular, using semi-definite relaxations for quadratic programming was widely studied Anstreicher (2009) (see Sec. D.2). Let $P = \begin{bmatrix} 1 & z \end{bmatrix} \begin{bmatrix} 1 & z \end{bmatrix}^T$ be the matrix that collects all the linear and quadratic terms in (QP_t^j) . Then, the semi-definite relaxation of targeted problem (QP_t^j) has the form:

$$(SDP_t^j - IP) \begin{cases} \min_{P} \ \left(W_K^y P[z_{K-1}] + b_K^y\right) - \left(W_K^j P[z_{K-1}] + b_K^j\right) \\ \text{s.t.} \ P[z_{k+1}] \geq 0, \ P[z_{k+1}] \geq W_{k+1} P[z_k] + b_{k+1}, \ \forall k \in \mathcal{K} \\ \operatorname{diag} \left(P[z_{k+1} z_{k+1}^\top] - W_{k+1} P[z_k z_{k+1}^\top]\right) = b_{k+1} P[z_k], \ \forall k \in \mathcal{K} \end{cases}$$
 (8)
$$\operatorname{diag} \left(P[z_k z_k^\top]\right) - (L_k + U_k) P[z_k] + U_k \odot L_k \leq 0, \ \forall k \in [0, K-1]$$
 (9)
$$P \succeq 0, P[1] = 1$$
 (10)

From its definition, each element of P is related to a given term in (Cert) and the symbolic indexing P[.] is used to index the vectors of elements of matrix P. Constraints (7)–(9) correspond to the linearization of Constraints (4)–(6) by the matrix variable P.

Note that matrix P exhibits a block diagonal structure. Leveraging chordal decomposition techniques Vandenberghe & Andersen (2015), as outlined in Batten et al. (2021), P can be decomposed into multiple submatrix variables. Specifically, the decomposition yields K-1 matrix variables, each associated to two consecutives layers k and k+1: $P_k = \begin{bmatrix} 1 & z_k & z_{k+1} \end{bmatrix} \begin{bmatrix} 1 & z_k & z_{k+1} \end{bmatrix}^\top$. This decomposition allows to deal with multiple modest-sized SDP matrices rather than P. This change is expressed in the previous constraints (7)–(9) by injecting these matrices as:

$$\begin{cases} P_{k}[z_{k+1}] \geq 0, \quad P_{k}[z_{k+1}] \geq W_{k+1}P_{k}[z_{k}] + b_{k+1}, \quad \forall k \in \mathcal{K} \\ \operatorname{diag}(P_{k}[z_{k+1}z_{k+1}^{\top}] - W_{k+1}P_{k}[z_{k}z_{k+1}^{\top}]) = b_{k+1}P_{k}[z_{k}], \quad \forall k \in \mathcal{K} \\ \operatorname{diag}(P_{k}[z_{k}z_{k}^{\top}]) - (L_{k} + U_{k})P_{k}[z_{k}] + U_{k} \odot L_{k} \leq 0, \quad \forall k \in [0, K-1] \\ P_{k}[z_{k+1}] \leq A_{k+1}P_{k}[z_{k}] + B_{k+1}, \quad \forall k \in \mathcal{K} \end{cases}$$

$$(11)$$

The triangular constraint (14) introduced in Ehlers (2017) tighten the upper bounds of a neuron j of layer k according to its activation status with $A_k = l_k \odot W_k$, $B_k = l_k \odot (b_k - L_k) + \text{ReLU}(L_k)$. The variable $l_k = \frac{\text{ReLU}(U_k) - \text{ReLU}(L_k)}{U_k - L_k}$ indicates whether a neuron is stable active $(l_k = 1)$, stable inactive $(l_k = 0)$, or unstable $(0 < l_k < 1)$. In the case of a stable active neuron, i.e. $L_k^j \geq 0$ then $z_k^j \leq W_k^j z_{k-1} + b_k^j$. If it is stable inactive, i.e. $U_k^j \leq 0$ then $z_k^j \leq 0$. In the unstable case, constraint (14) reduces to $z_k^j \leq \frac{U_k^j}{U_k^j - L_k^j} (W_k^j z_{k-1} + b_k^j) + \frac{U_k^j}{U_k^j - L_k^j} (b_k^j - L_k^j)$ (see Appendix B.3).

It has been further improved in Lan et al. (2022) with the addition of RLT (Reinforcement Linearization Technique) cuts, giving the following (SDP_t^j) problem:

$$(SDP_t^j) \begin{cases} \min \left(W_K^y P_{K-2}[z_{K-1}] + b_K^y \right) - \left(W_K^j P_{K-2}[z_{K-1}] + b_K^j \right) \\ \text{s.t. } (11) - (14) \\ P_k[(1 z_{k+1})(1 z_{k+1})^\top] = P_{k+1}[(1 z_{k+1})(1 z_{k+1})^\top] \\ RLT(p) \\ P_k = \begin{bmatrix} 1 & z_k & z_{k+1} \end{bmatrix} \begin{bmatrix} 1 & z_k & z_{k+1} \end{bmatrix}^\top \succeq 0, P_k[1] = 1, \end{cases}$$

$$(15)$$

where the minimization over P has been omitted for clarity of notation. Constraints (15) ensure the coherence of the variables across consecutive matrices P_k and P_{k+1} . For $L_k \leq z_k \leq U_k \ \forall k \in \mathcal{K}$, Constraints (16) are RLT cuts Sherali & Adams (1990). They result from the product of linear valid inequalities (triangular constraint, bound constraints) to obtain quadratic inequalities. A percentage p of these RLT cuts is carefully chosen by a heuristic. We refer the reader to the supplementary material Sec. B.5 for more details on RLT cuts.

Using (SDP_t^j) to certify a DNN requires solving one SDP for each data $(x,y) \in \mathcal{X}^+$ and each possible target $(j \in \overline{\mathcal{J}}_K)$. This leads to two significant drawbacks. First, the certification process fails to scale with the number of classes. Second, since solving multiple SDP relaxations for **each** data point is computationally demanding, the number of cuts must be restricted, which in turn weakens the tightness of the resulting bounds on the objective. To answer these limitations, we now introduce a new *untargeted* model that certifies a sample for all targets by solving only one SDP, thus considerably reducing the certification burden.

4 METHOD

4.1 A NEW QUADRATIC MODEL FOR FULL CERTIFICATION

To avoid solving $|\bar{\mathcal{J}}_K|$ SDPs for each data $(x,y)\in\mathcal{X}^+$, we design a new model that directly checks Property 2. For this, we introduce binary variables $(\beta_j)_{j\in\bar{\mathcal{J}}_K}$ with β_j equals to 1 if and only if the worst adversarial example is of class j. Thus, the left-hand-side of Equation (1) can be obtained by minimizing $z_K^y - \sum_{j\in\bar{\mathcal{J}}_K} \beta_j z_K^j$. Using this objective, we define the following quadratic formulation

of the full-robustness (see Property 2) of a DNN:

$$(QP_{u}) \begin{cases} \min W_{K}^{y} z_{K-1} + b_{K}^{y} - \sum_{j \in \bar{\mathcal{J}}_{K}} \beta_{j} \left(W_{K}^{j} z_{K-1} + b_{K}^{j} \right) \\ \text{s.t. } (4) - (6) \\ \sum_{j \in \bar{\mathcal{J}}_{K}} \beta_{j} = 1 \\ \beta_{j} \in \{0, 1\} \end{cases}$$

$$(18)$$

Constraint (18) ensures that only one binary variable β_j will be non-zero. We now prove that $v(QP_u)$ coincides with the lowest value of $v(QP_t^{\bar{j}})$ over all target classes.

Theorem 1. Given a data
$$(x,y) \in \mathcal{X}^+$$
, and $\epsilon > 0$, we have $v(QP_u) = \min_{\bar{j} \in \bar{\mathcal{J}}_K} v(QP_t^{\bar{j}})$

Proof. See Appendix A.
$$\Box$$

From this theorem, we can deduce that the non-negativity of $v(QP_u)$ ensures the full robustness. Indeed, an optimal value of (QP_u) will set $\beta_{\bar{j}}=1$ for the target class \bar{j} which minimizes $z_K^y-z_K^{\bar{j}}$.

Property 4 (Full positivity property). If $v(QP_u)$ is non-negative, the DNN satisfy Property 2.

 (QP_u) has only $|\bar{\mathcal{J}}_K|$ additional binary variables and 1 more constraint than (QP_t^j) . Note that one can prune some of these binary variables based on the lower and upper bounds of their logits: a class

 $j\in \bar{\mathcal{J}}_K$ can be pruned if there exists another class $\tilde{j}\in \bar{\mathcal{J}}_K$ such that $U_K^j\le L_K^{\tilde{j}}$ since the associated β_j will be zero in any optimal solution of (QP_u) . Indeed, if there exists an adversarial attack, the most damaging one would not target class j, but a class in $\bar{\mathcal{J}}_K\setminus\{j\}$. In the following, we assume that the dominated classes are excluded from the set $\bar{\mathcal{J}}_K$ B.1. This implies $\bigcap_{j\in \bar{\mathcal{J}}_K}[L_K^j,U_K^j]\neq\emptyset$.

Similarly to (QP_t^j) , the direct solution of (QP_u) is impractical even for small-sized DNNs. Thus, we build a tight semidefinite relaxation of (QP_u) that may certify the DNN using Property 4.

4.2 A TIGHT SDP RELAXATION

In order to handle the additional binary variables β_j in our SDP relaxation, for $k \in \{0,...,K-3\}$, we use P_k as defined in Constraint (17) and we introduce an additional matrix to linearize the products $\beta_j z_K$, i.e. $P_{K-2} = \begin{bmatrix} 1 & z_{K-2} & z_{K-1} & z_K & \beta \end{bmatrix} \begin{bmatrix} 1 & z_{K-2} & z_{K-1} & z_K & \beta \end{bmatrix}^{\mathsf{T}}$. We build the following SDP relaxation of (QP_u) :

$$(SDP) \begin{cases} \min W_K^y \ P_{K-2}[z_{K-1}] + b_K^y - \sum_{j \in \bar{\mathcal{J}}_K} (W_K^j \ P_{K-2}[\beta_j z_K] + b_K^j) \\ \text{s.t. } (7) - (15) \\ \sum_{j \in \bar{\mathcal{J}}_K} P_{K-2}[\beta_j] = 1 \\ \text{diag}(P_{K-2}[\beta\beta^\top]) = P_K[\beta] \\ P_k \succeq 0 \qquad k \in \{0, \dots, K-2\} \end{cases}$$
(21)

To tighten (SDP), we use several cuts. First, to tighten the linearization of products β by z, we use McCormick cuts McCormick (1976) for $k \in \{K-2, K-1\}$ present in matrix P_{K-2} , that are defined as follows:

$$\beta_j z_k \ge 0, \ \beta_j z_k \ge U_k \beta_j + z_k - \beta_j, \ \beta_j z_k \le U_k \beta_j, \ \beta_j z_k \le z_k$$
 (23)

Similarly, we tighten the products $\beta_{j_1}z^{j_2}$ of the objective function by use of the McCormick envelopes for all $(j_1, j_2) \in \mathcal{J}_K \times \mathcal{J}_K$:

$$\beta_{j_1} z_K^{j_2} \le z_K^{j_2} - L_{K-1}^{j_2}(\beta_{j_1} - 1), \ \beta_{j_1} z_K^{j_2} \le U_K^{j_2} \beta_{j_1}, \ \beta_{j_1} z_K^{j_2} \ge z_K^{j_2} - U_K^{j_2}(\beta_{j_1} - 1), \ \beta_{j_1} z_K^{j_2} \ge L_K^{j_2} \beta_{j_1}$$
(24)

Then, we build 3 new specific families of valid quadratic cuts for (QP_u) . First, since β is a unit vector, a subset of entries can be fixed, reducing the number of terms that require explicit modeling, and we get:

$$\beta_{i_1}\beta_{i_2} = 0 \quad \forall (j_1, j_2) \in \bar{\mathcal{J}}_K, j_1 \neq j_2$$
 (25)

Finally, for all pairs of two distinct adversarial targets j_1, j_2 , we introduce new inequalities that leverage the specific structure certification problem. These constraints allow coupling the variables $\beta_{j_1}, \beta_{j_2}, z_K^{j_1}, z_K^{j_2}, \beta_{j_1} z_K^{j_1}$ and $\beta_{j_2} z_K^{j_2}$ using only two constraints. Intuitively, constraint 27 encourages the logit of the adversarial target selected by the model to exceed that of other possible targets. The two constraints are given below:

$$\begin{cases}
\beta_{j_2} z_K^{j_2} \le (1 - \beta_{j_1}) z_K^{j_1} + \beta_{j_2} U_K^{j_2} - (1 - \beta_{j_1}) L_K^{j_1} + \beta_{j_2} (L_K^{j_1} - z_K^{j_1}) \\
\beta_{j_2} z_K^{j_2} \ge z_K^{j_1} - (1 - \beta_{j_2}) U_K^{j_1}
\end{cases}$$
(26)

Proposition 1. Constraints (26) and (27) are valid inequalities of (QP_u) .

4.3 PRUNING OF STABLE ACTIVE NEURONS

Formulating the certification problem with the smallest possible model is crucial to accelerating its resolution. With this in mind, recent works have shown Jung et al. (2020) that a significant fraction of ReLU units can become inactive across training and stay inactive under small perturbations. DNN can thus achieve natural sparsity after training, which can be leveraged to reduce the number of

variables in the certification model. In modern architectures commonly used in computer vision, more than half of the neurons can be inactive Kurtz et al. (2020); Tjeng et al. (2019), directly translating into an equivalent reduction in the number of variables. Beyond inactive units, we argue that stable active neurons should also be taken into account, thus achieving a far more compact formulation of the certification problem than in the original optimization problem.

The variable z_k^j corresponding to a stable active neuron can be replaced by its linear expression $W_k^j z_{k-1} + b_k^j$. By recursively substituting each stable active neuron of vector z_{k-1} by its linear expression in terms of z_{k-2} , and so on, the neuron z_k^j can be linearly expressed across multiple layers.

The chordal decomposition that we consider in (SDP_t^j) and (SDP_u) uses matrices P_k which only model the links between two consecutive layers. However, unmodeled quadratic terms appear in Constraint (5), i.e. $z_{k+1}^j(z_{k+1}^j - W_k z_k + b_k) = 0$. Indeed, let z_k^a be the sub-vector of active neurons of layer k, and z_k^a the sub-vector of unstable neurons (inactive neurons have been removed),

Constraint (5) becomes
$$z_{k+1}^j(z_{k+1}^j - W_{k,u}^j z_k^u - b_k) = z_{k+1}^j W_{k,a}^j z_k^a = \sum_{l=0}^{k-1} A_l^i z_{k+1}^j z_l^i + B z_{k+1}^j$$
, where

A and B are derived from products of linear layer weights (more information in Appendix B.2). To keep the chordal decomposition in our SDP relaxation, we bound the obtained right-hand side. More precisely, we use McCormick cuts based on the bounds of z_{k+1}^j and z_i^i to create two linear upper bounds and two linear lower bounds on the quadratic products $z_{k+1}^j z_l^i$ (for more information see B.2). We then substitute our quadratic terms by their linear bounds in the ReLU constraint and obtain the following four relaxed ReLU constraints:

$$\begin{cases}
z_{k+1}^{j}(z_{k+1}^{j} - W_{k,u}^{j} z_{k}^{u} - b_{k}) \le (C_{1} + B) z_{k+1}^{j}
\end{cases}$$
(28)

$$z_{k+1}^{j}(z_{k+1}^{j} - W_{k,u}^{j} z_{k}^{u} - b_{k}) \le (C_{2} + B)z_{k+1}^{j}$$
(29)

$$\begin{cases}
z_{k+1}^{j}(z_{k+1}^{j} - W_{k,u}^{j} z_{k}^{u} - b_{k}) \leq (C_{1} + B) z_{k+1}^{j} & (28) \\
z_{k+1}^{j}(z_{k+1}^{j} - W_{k,u}^{j} z_{k}^{u} - b_{k}) \leq (C_{2} + B) z_{k+1}^{j} & (29) \\
z_{k+1}^{j}(z_{k+1}^{j} - W_{k,u}^{j} z_{k}^{u} - b_{k}) \geq \sum_{l=0}^{k-1} C_{3,l} z_{l} + C_{3,k+1} z_{k+1}^{j} + C_{3} & (30) \\
z_{k+1}^{j}(z_{k+1}^{j} - W_{k,u}^{j} z_{k}^{u} - b_{k}) \geq \sum_{l=0}^{k-1} C_{4,l} z_{l} + C_{4,k+1} z_{k+1}^{j} + C_{4} & (31)
\end{cases}$$

$$z_{k+1}^{j}(z_{k+1}^{j} - W_{k,u}^{j} z_{k}^{u} - b_{k}) \ge \sum_{l=0}^{k-1} C_{4,l} z_{l} + C_{4,k+1} z_{k+1}^{j} + C_{4}$$
(31)

where coefficient of C_{k-1} are a linear combination of the coefficients A_{k-1}^a and the lower and upper bounds on products of $z_k z_{k-1}$ defined by the McCormick envelopes.

We prune active neurons on all layers except the penultimate layer, which is in the objective function of (SDP_u) . Finally, we obtain the following enhanced SDP relaxation, where P_k matrices have been truncated:

$$(SDP_u) \begin{cases} \min \ W_K^y P_{K-2}[z_{K-1}] + b_K^y - \sum_{j \in \bar{\mathcal{I}}_K} (W_K^j P_{K-2}[\beta_j z_{K-1}] + b_K^j) \\ \text{s.t. } (7) - (15), \ (17), \ (20) - (31) \end{cases}$$

Note that this pruning strategy of stable active neurons is a generic approach that can be applied to any SDP relaxation, either targeted or multiclass. As shown by our experiences of Section 5.3, applying this strategy to (SDP_u) or (SDP_t) clearly speeds up the resolution. This size reduction comes at the cost of relaxing some equality constraints with inequalities Eqs. (28) to (31). However, the new constraints added to our formulation counterbalance this relaxation, ensuring that the overall certification performances remain competitive.

By denoting n_k^a the number of stable active neurons on layer k, and n_k^a the number of unstable neurons, Proposition 2 specifies the reduction of size resulting from pruning.

Proposition 2. The pruning of active neurons reduces the dimensions of each matrix variable P_k from $(1 + n_k^a + n_k^u + n_{k+1}^a + n_{k+1}^u)^2$ to $(1 + n_k^u + n_{k+1}^u)^2$, and reduces P_{K-2} in SDP_u from $(1 + n_{K-2}^a + n_{K-2}^u + n_{K-1}^u + n_{K-1}^u)^2 + |\mathcal{J}_K|)^2$ to $(1 + n_{K-2}^u + n_{K-1}^u)^2 + |\mathcal{J}_K|)^2$.

Network	PGD	SDP_u (ours)		SDP _t		${ m SDP}_{t,layer}$		SDP-IP		β -CROWN	
		Cert.	Time	Cert.	Time	Cert.	Time	Cert.	Time	Cert.	Time
6x100	96	86	323	74	399	72	22	72	100	69	2
6x200	99	85	441	74	2109	67	87	69	2154	64	3
9x100	95	77	925	35	2614	26	212	27	1634	22	4
9x200	100	71	1679	53	4081	47	650	47	4483	43	5

Table 1: Comparison of our untargeted method SDP_u with other SDP approaches from literature. Column PGD is an overestimation of actual robustness.

5 RESULTS

384

385

386 387

388 389

390 391

392

394

396

397

398

399

400

401 402

403

404

405

406 407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

428

429

430

431

5.1 IMPLEMENTATION DETAILS

We ran our experiments on a Linux machine on a 64-core CPU and a 264Go RAM. We use the Python API of the MOSEK optimizer MOSEK ApS (2019), and fixed the number of threads to 4.

We evaluate SDP $_u$ (see details in Appendix B) on MNIST (10 classes). We reproduced the evaluation protocol from previous works on DNN certification Raghunathan et al. (2018); Batten et al. (2021); Lan et al. (2022) by considering 4 different fully connected neural networks adversarially trained with PGD attacks (see Appendix Sec. D.4). Neural networks used are 6×100 and 9×100 from Singh et al. (2019) tested under the same $\epsilon=0.026$; 6×200 and 9×200 from Singh et al. (2019) tested under the same $\epsilon=0.015$. We have reproduced these networks to the best of our knowledge and report the detailed architecture and adversarial training in Appendix C for future reproducibility. We conducted our first two experiments on 100 data points: the first 10 images of each class from the MNIST train set.

We ran the experiments of targeted SDP models across all non trivially certified adversarial targets after inspection of the logit bounds (see the number of remaining targets in Table 4 of Appendix C and the algorithms used in B.1). The bounds on the preactivation values are computed with $\alpha - \beta$ -CROWN Wang et al. (2021).

5.2 STATE-OF-THE-ART COMPARISON

To fully evaluate the proposed method and its interest with respect to other incomplete verifiers, we compare with the following methods: β -CROWN method from Wang et al. (2021); SDP-IP from Raghunathan et al. (2018), SDP_{t,laver} from Batten et al. (2021) with a chordal decomposition of matrices, ablation of stable inactive neurons, and the triangular constraint; SDP_t from Lan et al. (2022) with a chordal decomposition of matrices, ablation of stable inactive neurons, the triangular constraint, and 10% of the RLT cuts; SDP_u with a chordal decomposition of matrices, ablation of stable inactive and active neurons, the triangular constraint, and 100% of the RLT cuts for 6x100 and 9×100 , 60% for 6×200 and 9×200 . The results are reported in Tab. 1, where each line corresponds to one network. Column PGD is an overestimation of actual robustness, and for each method Column Cert. is the percentage of full robustness (across all targets), and Column Time is the mean total runtime per image (seconds) across all classes. β -CROWN is GPU-accelerated and offers fast verification; however, it is unable to tighten the bounds sufficiently to eliminate all possible target classes when the number of neurons increases, as in 9x100 and 9x200. Method SDP-IP does not involve chordal decomposition of matrix variables nor efficient cuts. As expected, it reaches a low certification average percentage within a huge computation time. The impact of the introduction of both pruning of inactive neurons and chordal decomposition of matrices on the computation time can be observed with methods $SDP_{t,layer}$, SDP_t , and SDP_u . For $SDP_{t,layer}$, we observe a clear speed-up of the certification process (in comparison with SDP-IP), but with a very low certification percentage (even sometimes lower than SDP-IP). The use of RLT cuts in SDP_t improves the certification percentage, but slows the full computation. Note that since SDP_t needs to solve up to 9 SDP models to certify, the cost of adding the RLT cuts is significant, and only a small proportion can be added (10% in our experiments) to keep tractability. Finally, we observe that our new method SDP_u achieved the best performances by a clear margin in terms of certification percentage (increased by 19 percentage points on average). Furthermore, it achieves the best certification and computation time tradeoff by consistently showing the lowest or second lowest computation time among other SDP-based methods. Indeed, the aggregation of classes allows us to

		r.	SDP_t	$SDP_u(ours)$				
Pruning	Inactives			Full	Inactives		Full	
Network	Cert.	Time	Cert.	Time	Cert.	Time	Cert.	Time
6x100	74	399	72	131	94	384	86	323
6x200	74	2109	64	1367	90	544	85	441

Table 2: Impact of the ablation of neurons (stable inactive only or stable inactive and active)

add more RLT cuts while remaining tractable. Note that the pruning of stable active neurons also has a significant impact on the size of our model (SDP_u) (see the proportion of stable active neurons in Table 4), which further accelerates the total computation time.

5.3 STABLE ACTIVE NEURONS PRUNING

We now study the impact of the ablation of stable active neurons on the performance of methods ${\rm SDP}_t$ and ${\rm SDP}_u$. We ran our experiments on networks $6{\times}100$ and $6{\times}200$, and we report the results in Table 2. For each method, we consider two cases: pruning of inactive neurons only, and pruning of both stable active and inactive neurons. The results reveal a similar trend for both methods. As expected, the greater the number of pruned neurons, the faster the resolution. Performing this ablation along with chordal decomposition allows for drastically reducing the number of variables. The pruning slightly reduces the quality of some constraints, but the impact on the percentage of certification remains limited.

5.4 MULTICLASS SCALING

Finally, we assess the scalability of our method with respect to large-scale, multi-class datasets. We constructed a composite dataset by merging EMNIST Balanced, KMNIST, and FashionMNIST, resulting in a total of 67 distinct classes. We trained neural networks on subsets of this dataset, with 5, 20, 50, and 67 classes respectively, and we compare the runtime performance of SDP_u against SDP_t . We report the results in Figure 2, where each line plots the computation time (in seconds) according to the number of classes. We observe that the computation time of SDP_t explodes when the number of classes increases, while the computation time of SDP_u remains stable. Clearly, the aggregation of classes enables a significant speed-up towards large multiclass datasets. Note moreover that while pruning of trivially certified targets with β -CROWN is useful for scaling, its effectiveness decreases with a large num-

Figure 2: Impact of the number of classes

ber of classes. This reflects how obtaining good robustness in a context of a large multi-class dataset is more challenging. Moreover, it reveals how a unified approach across all classes is needed to achieve full robustness.

6 Conclusion

We have introduced a new SDP model to verify ReLU networks across all targets, enabling a significant speedup compared to current SDP models. We are further able to improve both targeted and untargeted models thanks to a reduction in the size of the SDP models by ablation of variables corresponding to stable active neurons. Further work could include the combination of multiclass certification, together with a branch and bound strategy to perform complete verification.

REFERENCES

- K. M. Anstreicher. Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. *Journal of Global Optimization*, 43 (2):471–484, 2009. ISSN 1573-2916. doi: 10.1007/s10898-008-9372-0. URL http://dx.doi.org/10.1007/s10898-008-9372-0.
- Ben Batten, Panagiotis Kouvaros, Alessio Lomuscio, and Yang Zheng. Efficient Neural Network Verification via Layer-based Semidefinite Relaxations and Linear Cuts. In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence*, pp. 2184–2190, Montreal, Canada, August 2021. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-9-6. doi: 10.24963/ijcai.2021/301. URL https://www.ijcai.org/proceedings/2021/301.
- Rudy Bunel, Ilker Turkaslan, Philip H S Torr, M Pawan Kumar, Jingyue Lu, and Pushmeet Kohli. Branch and Bound for Piecewise Linear Neural Network Verification. *JMLR*, 2020.
- S. Burer and D. Vandenbussche. A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. *Mathematical Programming*, 113(2):259–282, Jun 2008. ISSN 1436-4646. doi: 10.1007/s10107-006-0080-6. URL https://doi.org/10.1007/s10107-006-0080-6.
- S. Burer and D. Vandenbussche. Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound. *Comput Optim Appl*, 43:181–195, 2009.
- Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks, March 2017. URL http://arxiv.org/abs/1608.04644. arXiv:1608.04644 [cs].
- J. Chen and S. Burer. Globally solving nonconvex quadratic programming problems via completely positive programming. *Mathematical Programming Computation*, 4(1):33–52, 2012.
- Chih-Hong Cheng, Georg Nührenberg, and Harald Ruess. Maximum Resilience of Artificial Neural Networks. In Deepak D'Souza and K. Narayan Kumar (eds.), *Automated Technology for Verification and Analysis*, volume 10482, pp. 251–268. Springer International Publishing, Cham, 2017. ISBN 978-3-319-68166-5 978-3-319-68167-2. doi: 10.1007/978-3-319-68167-2_18. URL http://link.springer.com/10.1007/978-3-319-68167-2_18. Series Title: Lecture Notes in Computer Science.
- Hong-Ming Chiu, Hao Chen, Huan Zhang, and Richard Y. Zhang. SDP-CROWN: Efficient Bound Propagation for Neural Network Verification with Tightness of Semidefinite Programming, June 2025. URL http://arxiv.org/abs/2506.06665. arXiv:2506.06665 [cs].
- Sumanth Dathathri, Alex Kurakin, Aditi Raghunathan, Jonathan Uesato, Rudy Bunel, Shreya Shankar, Jacob Steinhardt, Ian Goodfellow, Percy Liang, and Pushmeet Kohli. Enabling certification of verification-agnostic networks via memory-efficient semidefinite programming. *NeurIPS*, 2018.
- Ruediger Ehlers. Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks, August 2017. URL http://arxiv.org/abs/1705.01320. arXiv:1705.01320 [cs].
- Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic, and Martin Vechev. Complete Verification via Multi-Neuron Relaxation Guided Branch-and-Bound, April 2022. URL http://arxiv.org/abs/2205.00263. arXiv:2205.00263 [cs].
- Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization. *Constraints*, 23(3):296–309, July 2018. ISSN 1383-7133, 1572-9354. doi: 10.1007/s10601-018-9285-6. URL http://link.springer.com/10.1007/s10601-018-9285-6.
 - Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adversarial Examples, March 2015. URL http://arxiv.org/abs/1412.6572. arXiv:1412.6572 [stat].

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Timothy Mann, and Pushmeet Kohli. A dual approach to verify and train deep networks. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19*, pp. 6156–6160. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/854. URL https://doi.org/10.24963/ijcai.2019/854.

- Patrick Henriksen and Alessio Lomuscio. DEEPSPLIT: An Efficient Splitting Method for Neural Network Verification via Indirect Effect Analysis. In *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence*, pp. 2549–2555, Montreal, Canada, August 2021. International Joint Conferences on Artificial Intelligence Organization. ISBN 978-0-9992411-9-6. doi: 10.24963/ijcai.2021/351. URL https://www.ijcai.org/proceedings/2021/351.
- Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety verification of deep neural networks. In *International conference on computer aided verification*, pp. 3–29. Springer, 2017.
- Florian Jaeckle, Jingyue Lu, and M. Pawan Kumar. Neural Network Branch-and-Bound for Neural Network Verification, July 2021. URL http://arxiv.org/abs/2107.12855.arXiv:2107.12855 [cs].
- Sangwon Jung, Hongjoon Ahn, Sungmin Cha, and Taesup Moon. Continual learning with node-importance based adaptive group sparse regularization. *Advances in neural information processing systems*, 33:3647–3658, 2020.
- Guy Katz, Clark Barrett, David Dill, Kyle Julian, and Mykel Kochenderfer. Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks. *Computer Aided Verification*, May 2017. doi: 10.48550/arXiv.1702.01135. URL http://arxiv.org/abs/1702.01135. arXiv:1702.01135 [cs].
- Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Aleksandar Zeljić, David L. Dill, Mykel J. Kochenderfer, and Clark Barrett. The Marabou Framework for Verification and Analysis of Deep Neural Networks. In Isil Dillig and Serdar Tasiran (eds.), *Computer Aided Verification*, volume 11561, pp. 443–452. Springer International Publishing, Cham, 2019. ISBN 978-3-030-25539-8 978-3-030-25540-4. doi: 10.1007/978-3-030-25540-4.26. URL http://link.springer.com/10.1007/978-3-030-25540-4_26. Series Title: Lecture Notes in Computer Science.
- Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world, February 2017. URL http://arxiv.org/abs/1607.02533. arXiv:1607.02533 [cs].
- Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexander Matveev, John Carr, Michael Goin, William Leiserson, Sage Moore, Nir Shavit, and Dan Alistarh. Inducing and exploiting activation sparsity for fast inference on deep neural networks. In Hal Daumé III and Aarti Singh (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pp. 5533–5543. PMLR, 13–18 Jul 2020.
- Jianglin Lan, Yang Zheng, and Alessio Lomuscio. Tight Neural Network Verification via Semidefinite Relaxations and Linear Reformulations. *AAAI*, 36(7):7272–7280, June 2022. ISSN 2374-3468, 2159-5399. doi: 10.1609/aaai.v36i7.20689. URL https://ojs.aaai.org/index.php/AAAI/article/view/20689.
- Jingyue Lu and M. Pawan Kumar. Neural Network Branching for Neural Network Verification. *ICLR*, December 2019. doi: 10.48550/arXiv.1912.01329. URL http://arxiv.org/abs/1912.01329. arXiv:1912.01329 [cs].
- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards Deep Learning Models Resistant to Adversarial Attacks, September 2019. URL http://arxiv.org/abs/1706.06083. arXiv:1706.06083 [stat].
- G.P. McCormick. Computability of global solutions to factorable non-convex programs: Part i convex underestimating problems. *Mathematical Programming*, 10(1):147–175, 1976.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2574–2582, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/CVPR.2016.282. URL http://ieeexplore.ieee.org/document/7780651/.

- MOSEK Aps. *The MOSEK optimization toolbox for MATLAB manual. Version* 9.2., 2019. URL http://docs.mosek.com/9.0/toolbox/index.html.
- Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z. Berkay Celik, and Ananthram Swami. The Limitations of Deep Learning in Adversarial Settings, November 2015. URL http://arxiv.org/abs/1511.07528. arXiv:1511.07528 [cs].
- Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Semidefinite relaxations for certifying robustness to adversarial examples. *NeurIPS*, 2018.
- Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, and Sébastien Bubeck. Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers. *NeurIPS*, 2019.
- H.D. Sherali and W.P. Adams. A hierarchy of relaxation between the continuous and convex hull representations for zero-one programming problems. *SIAM Journal Discrete Mathematics*, 3: 411–430, 1990.
- H.D. Sherali and W.P. Adams. A reformulation-linearization technique for solving discrete and continuous nonconvex problems, volume 31. Springer Science & Business Media, 2013.
- Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certifying neural networks. *Proceedings of the ACM on Programming Languages*, 3(POPL):1–30, January 2019. ISSN 2475-1421. doi: 10.1145/3290354. URL https://dl.acm.org/doi/10.1145/3290354.
- Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating Robustness of Neural Networks with Mixed Integer Programming. *ICLR*, February 2019. doi: 10.48550/arXiv.1711.07356. URL http://arxiv.org/abs/1711.07356. arXiv:1711.07356 [cs].
- Lieven Vandenberghe and Martin S. Andersen. Chordal Graphs and Semidefinite Optimization. Foundations and Trends® in Optimization, 1(4):241–433, 2015. ISSN 2167-3888, 2167-3918. doi: 10.1561/2400000006. URL http://www.nowpublishers.com/article/Details/OPT-006. Publisher: Now Publishers.
- D. Vandenbussche and G. Nemhauser. A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. *Mathematical Programming*, 102(3):259–275, 2005a.
- D. Vandenbussche and G.L. Nemhauser. A polyhedral study of nonconvex quadratic programs with box constraints. *Mathematical Programming*, 102(3):531–557, 2005b.
- Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. Beta-CROWN: Efficient Bound Propagation with Per-neuron Split Constraints for Neural Network Robustness Verification. *NeurIPS*, 2021.
- Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane Boning, and Inderjit Dhillon. Towards fast computation of certified robustness for relu networks. In *International Conference on Machine Learning*, pp. 5276–5285. PMLR, 2018.
 - Eric Wong and J Zico Kolter. Provable Defenses against Adversarial Examples via the Convex Outer Adversarial Polytope. *ICML*, 2018.
- Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, Pei Huang, Ori Lahav, Min Wu, Min Zhang, Ekaterina Komendantskaya, Guy Katz, and Clark Barrett. Marabou 2.0: A Versatile Formal Analyzer of Neural Networks. In Arie Gurfinkel and Vijay Ganesh (eds.), *Computer Aided Verification*, volume 14682, pp. 249–264. Springer Nature Switzerland, Cham, 2024. ISBN

Notes in Computer Science. Y. Yajima and T. Fujie. A polyhedral approach for nonconvex quadratic programming problems with box constraints. Journal of Global Optimization, 13(2):151–170, 1998. Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. General Cutting Planes for Bound-Propagation-Based Neural Network Verification. NeurIPS, 2022. Richard Y Zhang. On the Tightness of Semidefinite Relaxations for Certifying Robustness to Ad-versarial Examples. NeurIPS, 2020.

978-3-031-65629-3 978-3-031-65630-9. doi: 10.1007/978-3-031-65630-9_13. URL https:

//link.springer.com/10.1007/978-3-031-65630-9_13. Series Title: Lecture