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ABSTRACT

We present a new quadratic model for the certification problem in adversarial ro-
bustness, which simultaneously accounts for all possible target classes. Building
on this model, we propose a novel semidefinite programming (SDP) relaxation for
incomplete verification. A key advantage of our approach is that it certifies robust-
ness in a single optimization, avoiding the need for a separate resolution per class.
This yields a significant computational speed-up and enables scalability to large
datasets with many classes. To further gain in efficiency, we also propose an effec-
tive pruning strategy of active neurons, thus reducing the problem dimensionality
and accelerating convergence.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable success and are widely implemented in
various domains, including computer vision and natural language processing. This rapid adoption of
DNNs has often prioritized efficiency and automation, overshadowing the crucial aspect of safety.

The research community has extensively studied various aspects of robustness, including out-of-
distribution generalization, robustness to data corruption, and resistance to adversarial attacks. In
particular, DNN have especially been proven vulnerable to adversarial attacks Goodfellow et al.
(2015), wherein malicious actors exploit the inherent complexity of these models to generate exam-
ples that deceive classifiers. This issue has raised concerns in many critical domains of applications
of neural networks, like autonomous vehicles or robotics, where adversarial attacks could be a mean
for malicious acts.

An adversarial attack consists of solving a constrained optimization problem to determine an adver-
sarial example for a given data x, i.e., a data in the neighborhood of x which is classified differently
by the DNN. These attacks represent a significant threat, particularly when the attacker has knowl-
edge of the model architecture and parameters. In response, two main approaches have emerged to
enhance the robustness of DNNs against such attacks: adversarial training and certified defenses.
Adversarial training methods aim to improve robustness by performing adversarial augmentations.
While these methods do offer increased resilience, they are not foolproof and can still be vulnerable
to sophisticated attacks. On the other hand, certified defenses provide mathematical guarantees of
robustness against adversarial attacks.

The certification problem for neural networks with ReLU activation functions is NP-complete Katz
et al. (2017). This inherent complexity implies that providing a complete certification requires sub-
stantial computational effort and remains limited in scalability. Many approaches solve combina-
torial models to assess the DNNs predictions stability around each data. Several Mixed-Integer
Programming (MIP) formulations were introduced to provide formal proofs of small Relu DNNs
Tjeng et al. (2019); Fischetti & Jo (2018); Cheng et al. (2017) but remain intractable for medium to
large-scale problems.

Computing a non-negative lower bound is sufficient to certify that no adversarial attack is possible
for a given target class. Thus, in order to speed up the certification, many approaches solve a re-
laxation of the original certification problem. In this paper, we focus on incomplete verifiers that
provide lower bounds on the certification problem: a positive bound guarantees robustness while a
negative bound is inconclusive. They constitute a compromise between efficiency and scalability,
aiming to achieve the highest possible lower bound within a time limit. Most of the incomplete
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Figure 1: Multiclass certification The proposed method provides a new quadratic formulation for
certifying a neural network across all labels simultaneously. This formulation relies on binary vari-
ables {βj} indicating the class associated with the worst adversarial example. To further reduce the
number of variables, we also propose a pruning strategy that removes both inactive (blue) and active
(yellow) neurons. Combined with a chordal decomposition of the SDP matrix (here represented
by blue and purple constraints see Eq. (15)), this approach removes terms required to express the
ReLu activations, which is compensated with the introduction of dedicated constraints see Eqs. (28)
to (31). For instance, once neuron zk2 is removed, the quadratic interaction zk2z

l
3 is no longer repre-

sented in the matrix. To address this, we bound the dependencies of zl3 with respect to neurons from
previous layers ie. zi0 and zj1.

certification methods are based on quadratic optimization formulations in which the ReLU is ex-
pressed as a quadratic non-convex equality from which a linear relaxation is computed Wong &
Kolter (2018). Despite bringing promising results for certification, current approaches using SDP
relaxations offer limited scalability in particular when certifying mid-to-large scale datasets com-
posed of multiple classes. Indeed, these approaches are targeted ones, i.e. each combinatorial model
tests if there exists an adversarial attack for one data and one target class. Thus, formally certifying
a single data point requires looping over all possible target classes. This requirement can be rapidly
cumbersome as modern datasets such as ImageNet-1k or ImageNet-21k propose hundreds or thou-
sands of classes. Furthermore, as each neuron brings its own set of constraints in the optimization
problem, current SDP approaches struggle for deep networks.

Contributions To deal with the aforementioned limitations we introduce a new model for the
certification problem that is based on an untargeted quadratic formulation (QP ). This new approach
allows us to certify each data by solving a single optimization problem and significantly speeds
up the certification process. Our new formulation has the key advantage of preserving the non-
negativity condition, certifying the data whenever a non-negative lower bound of (QP ) is obtained.
We further introduce valid quadratic inequalities that tighten the bound of the relaxed problem.
Finally, to scale up the certification, we propose an efficient pruning strategy able to remove all
stable neurons from the constraints. This allows us to further reduce the solution time. An interesting
result is that this pruning strategy is generic and can be applied to other SDP relaxations. Finally, we
present computational results demonstrating the efficiency of our methods against state-of-the-art
approaches.

2 RELATED WORKS

Certification problem Complete certification methods aim to provide definitive guarantees about
the absence of adversarial examples within a given input region. Seminal works include approaches
based on Mixed-Integer Linear Programming (MILP), which model ReLU activations through in-
teger constraints, enabling exact reasoning over the network’s activations. The MILP formulations
proposed by Fischetti & Jo (2018); Tjeng et al. (2019) demonstrate formal verification for small-
sized ReLU networks. Similarly, satisfiability modulo theories solvers have been employed to pro-
vide sound and complete verification Ehlers (2017); Katz et al. (2017). However, a key limitation of
complete verifiers remains their limited scalability to deep networks or high-dimensional datasets.

Incomplete verifiers aim to compute tight lower bounds on neural network robustness, providing
formal certification guarantees whenever these bounds are sufficiently strong. A positive bound
confirms robustness, while a negative one remains inconclusive, making these methods an interesting
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compromise between scalability and theoretical soundness. Incomplete verifiers are derived into a
wide variety of approaches including convex relaxations via duality Wong & Kolter (2018); Gowal
et al. (2019), linear bounding of ReLU activations Weng et al. (2018), or discretized input space
exploration Huang et al. (2017). However, most incomplete verifiers may yield conservative bounds,
and even well-optimized linear relaxations can fail to produce tight lower bounds over the objective.

Semi Definite Programming (SDP) relaxations have emerged as a promising class of incomplete
verifiers for neural network verification as they produce sharper lower bounds than traditional linear
programming approaches. While SDP methods are computationally more intensive, foundational
works Raghunathan et al. (2018); Zhang (2020) have demonstrated empirical tightness compared
to LP relaxations. This was further advanced by integrating geometric constraints such as triangle
relaxations Batten et al. (2021) and Reformulation-Linearization Technique (RLT) cuts Lan et al.
(2022), which refine the feasible region for ReLU-activated networks. However, the relaxation be-
comes looser with increasing depth, and solving SDPs for deep networks often results in scalability
challenges. This phenomenon is exacerbated when dealing with multiple classes as one SDP relax-
ation needs to be computed for each target class to achieve certification.

3 PRELIMINARIES

Deep Neural Networks (DNNs) considered in this work are non-linear functions that map the input
set to a measurable label set. They are described as successive layers given by the composition of a
linear and a non-linear transformation.

Each layer k contains nk neurons, indexed by Jk = {1, ..., nk}. The output zk+1 ∈ Rnk+1

of every layer k ∈ K = {0, ...,K − 2} is computed by a ReLU activation function: zk+1 =
ReLU(Wk+1zk + bk+1), where bk ∈ Rnk , Wk ∈ Rnk×nk−1 are the learned parameters of the
network. Given a finite labeled dataset D = {xi, yi}, the predicted class is given by y∗ =

argmaxj∈JK
zjK for data x = z0 where zjK is the jth component of vector zK = WKzK−1 + bK .

For a given ϵ > 0, the certification task verifies that for each data (x, y) and all z0 ∈ Bϵ(x) (the∞-
norm balls of center x and radius ϵ) the DNN correctly predicts the class y. Defining J̄K = JK\{y},
the set of all possible targets for a given sample, W j

K , the jth row of matrix W j
K , and D+, the set of

well-classified data and their labels, we formally define robustness as follows:

Property 1 (Targeted Robustness). For a data (x, y) ∈ D+, a target class j ∈ J̄K and ϵ > 0, a
neural network is (ϵ, j)−robust in x, if

min
z0∈Bϵ(x)

zyK − zjK ≥ 0

Property 2 (Full robustness). For ϵ > 0, a neural network is ϵ−robust if for all (x, y) ∈ D+

min
j∈J̄K

min
z0∈Bϵ(x)

zyK − zjK ≥ 0 (1)

Our aim in this paper is to determine whether a DNN satisfies the positivity Property 2. More
formally, considering a data (x, y) ∈ D+, we consider the following optimization problem (Cert)
defined for all j ∈ JK :

(Cert)


min
z0

(
W y

KzK−1 + byK
)
−

(
W j

KzK−1 + bjK
)

s.t. zk+1 = ReLU(Wk+1zk + bk+1) k ∈ K (2)
x− ϵ ≤ z0 ≤ x+ ϵ (3)

where Constraints (2) fix the output of layers in K and Constraint (3) ensures that x belongs to
Bϵ(x). The objective is the difference between the logit of the true class y and the target class j.

Solving (Cert) to global optimality is hard due to the non-convexity of Constraints (2). However,
by denoting v(Cert) the optimal value of (Cert), Property 2 is reached when v(Cert) ≥ 0, for all
j ∈ JK and (x, y) ∈ X+. Thus, it is sufficient to compute a non-negative lower bound of (Cert) for
all j ∈ JK to ensure full robustness.
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A quadratic formulation of (Cert) was introduced in Raghunathan et al. (2018), obtaining the fol-
lowing targeted formulation:

(QP j
t )


min
z0

(
W y

KzK−1 + byK
)
−

(
W j

KzK−1 + bjK
)

s.t. zk+1 ≥ 0, zk+1 ≥Wk+1zk + bk+1, ∀k ∈ K, (4)
zk+1 ⊙ (zk+1 −Wk+1zk − bk+1) = 0, ∀k ∈ K, (5)
zk ⊙ zk − (Lk + Uk)⊙ zk + Uk ⊙ Lk ≤ 0, ∀k ∈ [0,K − 1] (6)

where Lk and Uk are lower and upper bounds over the preactivation vector of layer k. Constraints (4)
combined with Constraints (5) are equivalent to Constraints (2). Constraints (6) can be rewritten as
(Uk − zk) ⊙ (zk − Lk) ≥ 0, which enforces Lk ≤ zk ≤ Uk when Lk ≤ Uk. For k = 0, this is a
quadratic equivalent to Constraints (3). Note that there exist efficient methods to propagate bounds
across the network starting from the bounds of the input layer (e.g., L0 = x − ϵ and U0 = x + ϵ
with the∞ norm) Wang et al. (2021) giving bounds Lk and Uk on the preactivation vector for all
layers k.
Property 3 (Target-positivity property). If the optimal value of the targeted quadratic formulation
v(QP j

t ) is non-negative, the DNN satisfies Property 1.

Proof. See Appendix A.

Due to the non-convexity of Constraints (5) and (6), solving formulation (QP j
t ) to global optimality

is impractical even for small-sized DNNs. However, Property 3 ensures that the development of
suitable relaxations can be sufficient to certify the robustness. In particular, using semi-definite
relaxations for quadratic programming was widely studied Anstreicher (2009) (see Sec. D.2). Let
P = [1 z] [1 z]

T be the matrix that collects all the linear and quadratic terms in (QP j
t ). Then,

the semi-definite relaxation of targeted problem (QP j
t ) has the form:

(SDP j
t − IP )



min
P

(
W y

KP [zK−1] + byK
)
−
(
W j

KP [zK−1] + bjK
)

s.t. P [zk+1] ≥ 0, P [zk+1] ≥Wk+1P [zk] + bk+1, ∀k ∈ K (7)

diag
(
P [zk+1z

⊤
k+1]−Wk+1P [zkz

⊤
k+1]

)
= bk+1P [zk], ∀k ∈ K (8)

diag
(
P [zkz

⊤
k ]
)
− (Lk + Uk)P [zk] + Uk ⊙ Lk ≤ 0, ∀k ∈ [0,K − 1] (9)

P ⪰ 0, P [1] = 1 (10)

From its definition, each element of P is related to a given term in (Cert) and the symbolic indexing
P [.] is used to index the vectors of elements of matrix P . Constraints (7)–(9) correspond to the
linearization of Constraints (4)–(6) by the matrix variable P .

Note that matrix P exhibits a block diagonal structure. Leveraging chordal decomposition tech-
niques Vandenberghe & Andersen (2015), as outlined in Batten et al. (2021), P can be decomposed
into multiple submatrix variables. Specifically, the decomposition yields K − 1 matrix variables,
each associated to two consecutives layers k and k+1: Pk = [1 zk zk+1] [1 zk zk+1]

⊤. This
decomposition allows to deal with multiple modest-sized SDP matrices rather than P . This change
is expressed in the previous constraints (7)–(9) by injecting these matrices as:

Pk[zk+1] ≥ 0, Pk[zk+1] ≥Wk+1Pk[zk] + bk+1, ∀k ∈ K (11)

diag
(
Pk[zk+1z

⊤
k+1]−Wk+1Pk[zkz

⊤
k+1]

)
= bk+1Pk[zk], ∀k ∈ K (12)

diag
(
Pk[zkz

⊤
k ]
)
− (Lk + Uk)Pk[zk] + Uk ⊙ Lk ≤ 0, ∀k ∈ [0,K − 1] (13)

Pk[zk+1] ≤ Ak+1Pk[zk] +Bk+1, ∀k ∈ K (14)

The triangular constraint (14) introduced in Ehlers (2017) tighten the upper bounds of a neuron j of
layer k according to its activation status with Ak = lk ⊙Wk, Bk = lk ⊙ (bk − Lk) + ReLU(Lk).
The variable lk = ReLU(Uk)−ReLU(Lk)

Uk−Lk
indicates whether a neuron is stable active (lk = 1), stable

inactive (lk = 0), or unstable (0 < lk < 1). In the case of a stable active neuron, i.e. Lj
k ≥ 0

then zjk ≤ W j
kzk−1 + bjk. If it is stable inactive, i.e. U j

k ≤ 0 then zjk ≤ 0. In the unstable case,

constraint (14) reduces to zjk ≤
Uj

k

Uj
k−Lj

k

(W j
kzk−1 + bjk) +

Uj
k

Uj
k−Lj

k

(bjk − Lj
k) (see Appendix B.3).
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It has been further improved in Lan et al. (2022) with the addition of RLT (Reinforcement Lineariza-
tion Technique) cuts, giving the following (SDP j

t ) problem:

(SDP j
t )



min
(
W y

KPK−2[zK−1] + byK
)
−
(
W j

KPK−2[zK−1] + bjK
)

s.t. (11)− (14)

Pk[(1 zk+1)(1 zk+1)
⊤] = Pk+1[(1 zk+1)(1 zk+1)

⊤] (15)
RLT (p) (16)

Pk = [1 zk zk+1] [1 zk zk+1]
⊤ ⪰ 0, Pk[1] = 1, (17)

where the minimization over P has been omitted for clarity of notation. Constraints (15) ensure the
coherence of the variables across consecutive matrices Pk and Pk+1. For Lk ≤ zk ≤ Uk ∀k ∈ K,
Constraints (16) are RLT cuts Sherali & Adams (1990). They result from the product of linear valid
inequalities (triangular constraint, bound constraints) to obtain quadratic inequalities. A percentage
p of these RLT cuts is carefully chosen by a heuristic. We refer the reader to the supplementary
material Sec. B.5 for more details on RLT cuts.

Using (SDP j
t ) to certify a DNN requires solving one SDP for each data (x, y) ∈ X+ and each pos-

sible target (j ∈ J̄K). This leads to two significant drawbacks. First, the certification process fails
to scale with the number of classes. Second, since solving multiple SDP relaxations for each data
point is computationally demanding, the number of cuts must be restricted, which in turn weakens
the tightness of the resulting bounds on the objective. To answer these limitations, we now intro-
duce a new untargeted model that certifies a sample for all targets by solving only one SDP, thus
considerably reducing the certification burden.

4 METHOD

4.1 A NEW QUADRATIC MODEL FOR FULL CERTIFICATION

To avoid solving |J̄K | SDPs for each data (x, y) ∈ X+, we design a new model that directly checks
Property 2. For this, we introduce binary variables (βj)j∈J̄K

with βj equals to 1 if and only if the
worst adversarial example is of class j. Thus, the left-hand-side of Equation (1) can be obtained by
minimizing zyK −

∑
j∈J̄K

βjz
j
K . Using this objective, we define the following quadratic formulation

of the full-robustness (see Property 2) of a DNN:

(QPu)



minW y
KzK−1 + byK −

∑
j∈J̄K

βj

(
W j

KzK−1 + bjK
)

s.t. (4)− (6)∑
j∈J̄K

βj = 1 (18)

βj ∈ {0, 1} j ∈ J̄K (19)

Constraint (18) ensures that only one binary variable βj will be non-zero. We now prove that v(QPu)

coincides with the lowest value of v(QP j̄
t ) over all target classes.

Theorem 1. Given a data (x, y) ∈ X+, and ϵ > 0, we have v(QPu) = min
j̄∈J̄K

v(QP j̄
t )

Proof. See Appendix A.

From this theorem, we can deduce that the non-negativity of v(QPu) ensures the full robustness.
Indeed, an optimal value of (QPu) will set βj̄ = 1 for the target class j̄ which minimizes zyK − zj̄K .

Property 4 (Full positivity property). If v(QPu) is non-negative, the DNN satisfy Property 2.

(QPu) has only |J̄K | additional binary variables and 1 more constraint than (QP j
t ). Note that one

can prune some of these binary variables based on the lower and upper bounds of their logits: a class

5
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j ∈ J̄K can be pruned if there exists another class j̃ ∈ J̄K such that U j
K ≤ Lj̃

K since the associated
βj will be zero in any optimal solution of (QPu). Indeed, if there exists an adversarial attack, the
most damaging one would not target class j, but a class in J̄K\{j}. In the following, we assume
that the dominated classes are excluded from the set J̄K B.1. This implies

⋂
j∈J̄K

[Lj
K , U j

K ] ̸= ∅.

Similarly to (QP j
t ), the direct solution of (QPu) is impractical even for small-sized DNNs. Thus,

we build a tight semidefinite relaxation of (QPu) that may certify the DNN using Property 4.

4.2 A TIGHT SDP RELAXATION

In order to handle the additional binary variables βj in our SDP relaxation, for k ∈ {0, ...,K − 3},
we use Pk as defined in Constraint (17) and we introduce an additional matrix to linearize the
products βjzK , i.e. PK−2 = [1 zK−2 zK−1 zK β] [1 zK−2 zK−1 zK β]

⊤. We build
the following SDP relaxation of (QPu):

(SDP )



min W y
K PK−2[zK−1] + byK −

∑
j∈J̄K

(W j
K PK−2[βjzK ] + bjK)

s.t. (7)− (15)∑
j∈J̄K

PK−2[βj ] = 1 (20)

diag
(
PK−2[ββ

⊤]
)
= PK [β] (21)

Pk ⪰ 0 k ∈ {0, . . . ,K − 2} (22)

To tighten (SDP ), we use several cuts. First, to tighten the linearization of products β by z, we
use McCormick cuts McCormick (1976) for k ∈ {K − 2,K − 1} present in matrix PK−2, that are
defined as follows:

βjzk ≥ 0, βjzk ≥ Ukβj + zk − βj , βjzk ≤ Ukβj , βjzk ≤ zk (23)

Similarly, we tighten the products βj1z
j2 of the objective function by use of the McCormick en-

velopes for all (j1, j2) ∈ JK × JK :

βj1z
j2
K ≤ zj2K −Lj2

K−1(βj1−1), βj1z
j2
K ≤ U j2

K βj1 , βj1z
j2
K ≥ zj2K −U j2

K (βj1−1), βj1z
j2
K ≥ Lj2

Kβj1
(24)

Then, we build 3 new specific families of valid quadratic cuts for (QPu). First, since β is a unit
vector, a subset of entries can be fixed, reducing the number of terms that require explicit modeling,
and we get:

βj1βj2 = 0 ∀(j1, j2) ∈ J̄K , j1 ̸= j2 (25)
Finally, for all pairs of two distinct adversarial targets j1, j2, we introduce new inequalities that
leverage the specific structure certification problem. These constraints allow coupling the variables
βj1 , βj2 , zj1K , zj2K , βj1z

j1
K and βj2z

j2
K using only two constraints. Intuitively, constraint 27 encourages

the logit of the adversarial target selected by the model to exceed that of other possible targets. The
two constraints are given below:{

βj2z
j2
K ≤ (1− βj1)z

j1
K + βj2U

j2
K − (1− βj1)L

j1
K + βj2(L

j1
K − zj1K ) (26)

βj2z
j2
K ≥ zj1K − (1− βj2)U

j1
K (27)

Proposition 1. Constraints (26) and (27) are valid inequalities of (QPu).

Proof. See Appendix A.

4.3 PRUNING OF STABLE ACTIVE NEURONS

Formulating the certification problem with the smallest possible model is crucial to accelerating its
resolution. With this in mind, recent works have shown Jung et al. (2020) that a significant fraction of
ReLU units can become inactive across training and stay inactive under small perturbations. DNN
can thus achieve natural sparsity after training, which can be leveraged to reduce the number of
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variables in the certification model. In modern architectures commonly used in computer vision,
more than half of the neurons can be inactive Kurtz et al. (2020); Tjeng et al. (2019), directly
translating into an equivalent reduction in the number of variables. Beyond inactive units, we argue
that stable active neurons should also be taken into account, thus achieving a far more compact
formulation of the certification problem than in the original optimization problem.

The variable zjk corresponding to a stable active neuron can be replaced by its linear expression
W j

kzk−1 + bjk. By recursively substituting each stable active neuron of vector zk−1 by its linear
expression in terms of zk−2, and so on, the neuron zjk can be linearly expressed across multiple
layers.

The chordal decomposition that we consider in (SDP j
t ) and (SDPu) uses matrices Pk which only

model the links between two consecutive layers. However, unmodeled quadratic terms appear in
Constraint (5), i.e. zjk+1(z

j
k+1 − Wkzk + bk) = 0. Indeed, let zak be the sub-vector of active

neurons of layer k, and zuk the sub-vector of unstable neurons (inactive neurons have been removed),

Constraint (5) becomes zjk+1(z
j
k+1−W

j
k,uz

u
k−bk) = zjk+1W

j
k,az

a
k =

k−1∑
l=0

Ai
lz

j
k+1z

i
l+Bzjk+1, where

A and B are derived from products of linear layer weights (more information in Appendix B.2). To
keep the chordal decomposition in our SDP relaxation, we bound the obtained right-hand side.
More precisely, we use McCormick cuts based on the bounds of zjk+1 and zil to create two linear
upper bounds and two linear lower bounds on the quadratic products zjk+1z

i
l (for more information

see B.2). We then substitute our quadratic terms by their linear bounds in the ReLU constraint and
obtain the following four relaxed ReLU constraints :

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≤ (C1 +B)zjk+1 (28)

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≤ (C2 +B)zjk+1 (29)

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≥

k−1∑
l=0

C3,lzl + C3,k+1z
j
k+1 + C3 (30)

zjk+1(z
j
k+1 −W j

k,uz
u
k − bk) ≥

k−1∑
l=0

C4,lzl + C4,k+1z
j
k+1 + C4 (31)

where coefficient of Ck−1 are a linear combination of the coefficients Aa
k−1 and the lower and upper

bounds on products of zkzk−1 defined by the McCormick envelopes.

We prune active neurons on all layers except the penultimate layer, which is in the objective function
of (SDPu). Finally, we obtain the following enhanced SDP relaxation, where Pk matrices have been
truncated:

(SDPu)

min W y
KPK−2[zK−1] + byK −

∑
j∈J̄K

(W j
KPK−2[βjzK−1] + bjK)

s.t. (7)− (15), (17), (20)− (31)

Note that this pruning strategy of stable active neurons is a generic approach that can be applied
to any SDP relaxation, either targeted or multiclass. As shown by our experiences of Section 5.3,
applying this strategy to (SDPu) or (SDPt) clearly speeds up the resolution. This size reduction
comes at the cost of relaxing some equality constraints with inequalities Eqs. (28) to (31). However,
the new constraints added to our formulation counterbalance this relaxation, ensuring that the overall
certification performances remain competitive.

By denoting na
k the number of stable active neurons on layer k, and nu

k the number of unstable
neurons, Proposition 2 specifies the reduction of size resulting from pruning.

Proposition 2. The pruning of active neurons reduces the dimensions of each matrix variable Pk

from (1 + na
k + nu

k + na
k+1 + nu

k+1)
2 to (1 + nu

k + nu
k+1)

2, and reduces PK−2 in SDPu from(
1 + na

K−2 + nu
K−2 + na

K−1 + nu
K−1)

2 + |JK |
)2

to
(
1 + nu

K−2 + nu
K−1)

2 + |JK |
)2

.
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Network PGD
SDPu (ours) SDPt SDPt,layer SDP-IP β-CROWN

Cert. Time Cert. Time Cert. Time Cert. Time Cert. Time
6x100 96 86 323 74 399 72 22 72 100 69 2
6x200 99 85 441 74 2109 67 87 69 2154 64 3
9x100 95 77 925 35 2614 26 212 27 1634 22 4
9x200 100 71 1679 53 4081 47 650 47 4483 43 5

Table 1: Comparison of our untargeted method SDPu with other SDP approaches from literature.
Column PGD is an overestimation of actual robustness.

5 RESULTS

5.1 IMPLEMENTATION DETAILS

We ran our experiments on a Linux machine on a 64-core CPU and a 264Go RAM. We use the
Python API of the MOSEK optimizer MOSEK ApS (2019), and fixed the number of threads to 4.

We evaluate SDPu (see details in Appendix B) on MNIST (10 classes). We reproduced the evalu-
ation protocol from previous works on DNN certification Raghunathan et al. (2018); Batten et al.
(2021); Lan et al. (2022) by considering 4 different fully connected neural networks adversarially
trained with PGD attacks (see Appendix Sec. D.4). Neural networks used are 6x100 and 9x100
from Singh et al. (2019) tested under the same ϵ = 0.026; 6x200 and 9x200 from Singh et al.
(2019) tested under the same ϵ = 0.015. We have reproduced these networks to the best of our
knowledge and report the detailed architecture and adversarial training in Appendix C for future
reproducibility. We conducted our first two experiments on 100 data points: the first 10 images of
each class from the MNIST train set.

We ran the experiments of targeted SDP models across all non trivially certified adversarial targets
after inspection of the logit bounds (see the number of remaining targets in Table 4 of Appendix C
and the algorithms used in B.1). The bounds on the preactivation values are computed with α − β-
CROWN Wang et al. (2021).

5.2 STATE-OF-THE-ART COMPARISON

To fully evaluate the proposed method and its interest with respect to other incomplete verifiers,
we compare with the following methods: β-CROWN method from Wang et al. (2021); SDP-IP
from Raghunathan et al. (2018), SDPt,layer from Batten et al. (2021) with a chordal decomposition
of matrices, ablation of stable inactive neurons, and the triangular constraint ; SDPt from Lan et al.
(2022) with a chordal decomposition of matrices, ablation of stable inactive neurons, the triangular
constraint, and 10% of the RLT cuts ; SDPu with a chordal decomposition of matrices, ablation of
stable inactive and active neurons, the triangular constraint, and 100% of the RLT cuts for 6x100
and 9x100, 60% for 6x200 and 9x200. The results are reported in Tab. 1, where each line
corresponds to one network. Column PGD is an overestimation of actual robustness, and for each
method Column Cert. is the percentage of full robustness (across all targets), and Column Time
is the mean total runtime per image (seconds) across all classes. β-CROWN is GPU-accelerated
and offers fast verification; however, it is unable to tighten the bounds sufficiently to eliminate all
possible target classes when the number of neurons increases, as in 9x100 and 9x200. Method
SDP-IP does not involve chordal decomposition of matrix variables nor efficient cuts. As expected,
it reaches a low certification average percentage within a huge computation time. The impact of
the introduction of both pruning of inactive neurons and chordal decomposition of matrices on the
computation time can be observed with methods SDPt,layer, SDPt, and SDPu. For SDPt,layer,
we observe a clear speed-up of the certification process (in comparison with SDP-IP), but with a
very low certification percentage (even sometimes lower than SDP-IP). The use of RLT cuts in
SDPt improves the certification percentage, but slows the full computation. Note that since SDPt

needs to solve up to 9 SDP models to certify, the cost of adding the RLT cuts is significant, and
only a small proportion can be added (10% in our experiments) to keep tractability. Finally, we
observe that our new method SDPu achieved the best performances by a clear margin in terms of
certification percentage (increased by 19 percentage points on average). Furthermore, it achieves the
best certification and computation time tradeoff by consistently showing the lowest or second lowest
computation time among other SDP-based methods. Indeed, the aggregation of classes allows us to
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SDPt SDPu(ours)

Pruning Inactives Full Inactives Full
Network Cert. Time Cert. Time Cert. Time Cert. Time
6x100 74 399 72 131 94 384 86 323
6x200 74 2109 64 1367 90 544 85 441

Table 2: Impact of the ablation of neurons (stable inactive only or stable inactive and active)

add more RLT cuts while remaining tractable. Note that the pruning of stable active neurons also has
a significant impact on the size of our model (SDPu) (see the proportion of stable active neurons in
Table 4), which further accelerates the total computation time.

5.3 STABLE ACTIVE NEURONS PRUNING

We now study the impact of the ablation of stable active neurons on the performance of methods
SDPt and SDPu. We ran our experiments on networks 6x100 and 6x200, and we report the results
in Table 2. For each method, we consider two cases: pruning of inactive neurons only, and pruning
of both stable active and inactive neurons. The results reveal a similar trend for both methods.
As expected, the greater the number of pruned neurons, the faster the resolution. Performing this
ablation along with chordal decomposition allows for drastically reducing the number of variables.
The pruning slightly reduces the quality of some constraints, but the impact on the percentage of
certification remains limited.

5.4 MULTICLASS SCALING

Figure 2: Impact of the number of classes

Finally, we assess the scalability of our method with
respect to large-scale, multi-class datasets. We con-
structed a composite dataset by merging EMNIST
Balanced, KMNIST, and FashionMNIST, re-
sulting in a total of 67 distinct classes. We trained
neural networks on subsets of this dataset, with 5,
20, 50, and 67 classes respectively, and we compare
the runtime performance of SDPu against SDPt. We
report the results in Figure 2, where each line plots
the computation time (in seconds) according to the
number of classes. We observe that the computation
time of SDPt explodes when the number of classes
increases, while the computation time of SDPu re-
mains stable. Clearly, the aggregation of classes
enables a significant speed-up towards large multi-
class datasets. Note moreover that while pruning of
trivially certified targets with β-CROWN is useful for
scaling, its effectiveness decreases with a large num-
ber of classes. This reflects how obtaining good robustness in a context of a large multi-class dataset
is more challenging. Moreover, it reveals how a unified approach across all classes is needed to
achieve full robustness.

6 CONCLUSION

We have introduced a new SDP model to verify ReLU networks across all targets, enabling a sig-
nificant speedup compared to current SDP models. We are further able to improve both targeted
and untargeted models thanks to a reduction in the size of the SDP models by ablation of variables
corresponding to stable active neurons. Further work could include the combination of multiclass
certification, together with a branch and bound strategy to perform complete verification.
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