
Dissecting Long Reasoning Models: An Empirical Study

Anonymous ACL submission

Abstract001

Despite recent progress in training long-context002
reasoning models via reinforcement learning003
(RL), several open questions and counterintu-004
itive behaviors remain. This work focuses on005
three key aspects: (1) We systematically ana-006
lyze the roles of positive and negative samples007
in RL, revealing that positive samples mainly008
facilitate data fitting, whereas negative sam-009
ples significantly enhance generalization and010
robustness. Interestingly, training solely on011
negative samples can rival standard RL train-012
ing performance. (2) We identify substantial013
data inefficiency in group relative policy opti-014
mization, where over half of the samples yield015
zero advantage. To address this, we explore016
two straightforward strategies, including rela-017
tive length rewards and offline sample injec-018
tion, to better leverage these data and enhance019
reasoning efficiency and capability. (3) We in-020
vestigate unstable performance across various021
reasoning models and benchmarks, attributing022
instability to uncertain problems with ambigu-023
ous outcomes, and demonstrate that multiple024
evaluation runs mitigate this issue.025

1 Introduction026

Natural language processing has witnessed a break-027

through in long reasoning capabilities within large028

language models (LLMs). Unlike previous models029

depending on chain-of-thought (CoT) prompting030

(Wei et al., 2022), recent models emphasize scaling031

up inference computation for longer reasoning pro-032

cesses and enabling self-directed behaviors such033

as speculation, exploration, reflection, and verifica-034

tion (OpenAI, 2025).035

Achieving such improvement is non-trivial, as it036

is challenging to construct high-quality supervised037

datasets that enable models to perform meticulous038

reasoning. Recent works reveal that scaling rein-039

forcement learning (RL) plays a vital role in this040

context (DeepSeek-AI et al., 2025; Team et al.,041

2025). Compared to running supervised next token042

prediction, RL offers two key advantages. First, 043

it eliminates the need for labeled data, enabling 044

training on reasoning tasks without annotated in- 045

termediate steps. Second, its supervised signals 046

come from feedback of the model’s own generated 047

responses, promoting the discovery of self-suitable 048

reasoning routes towards correct answers. 049

Despite impressive advancements, there exist in- 050

triguing questions and counterintuitive phenomena 051

when training and evaluating long reasoning mod- 052

els. In this work, we provide an investigation and 053

analysis of the following three points: 054

Role of positive and negative samples: RL typ- 055

ically optimizes on positive samples with advan- 056

tages greater than zero, while suppressing negative 057

samples with advantages less than zero. However, 058

it remains unclear what models actually learn from 059

positive and negative samples, and whether learn- 060

ing from negative samples—especially when they 061

correspond to clearly incorrect answers—is nec- 062

essary. Through systematic ablation on both sam- 063

ple types, we find that positive samples primarily 064

help a model to fit the training data, while negative 065

samples significantly improve generalization and 066

robustness in long CoT reasoning. Surprisingly, we 067

observe that even training solely on negative sam- 068

ples can yield performance comparable to standard 069

RL training. 070

Zero advantage problem within GRPO: We iden- 071

tify a critical limitation of rule-based reward func- 072

tions in group relative policy optimization (GRPO): 073

when facing overly easy or overly difficult prob- 074

lems, the discrete rewards easily lead to zero ad- 075

vantages, resulting in substantial data inefficiency. 076

Our experiments show that this issue is prevalent 077

in widely used datasets, where gradient elimination 078

occurs in over half of the data. To address this, 079

we explore two straightforward strategies. Specifi- 080

cally, relative length reward (RLR) leverages overly 081

easy samples by assigning additional scores based 082

on relative output length, encouraging more effi- 083
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cient reasoning. Offline sample injection facilitates084

learning from overly difficult problems by replac-085

ing incorrect online samples with correct offline086

solutions. Experimental results demonstrate that087

RLR enhances reasoning efficiency without sacri-088

ficing overall performance, whereas learning from089

data beyond the model’s capacity remains challeng-090

ing, even when correct solutions are provided.091

Reason for unstable performance: Our empirical092

study shows that performance instability persists093

across a wide range of reasoning models and bench-094

marks, regardless of model size or training method.095

This phenomenon arises from uncertain problems,096

where neither correct nor incorrect responses have097

clearly dominant probabilities. While greedy de-098

coding helps output consistency, it might distort099

evaluation by flipping the correctness of responses.100

In practice, performing multiple runs still offers a101

simple yet effective solution to stabilize evaluation102

scores, particularly on small benchmarks with a103

high proportion of uncertain problems.104

2 Preliminary105

GRPO (Shao et al., 2024) eliminates the value106

LLM, improving the training efficiency and reduc-107

ing a variable for our analysis. Thus, we mainly108

leverage GRPO to train long reasoning models.109

Group relative policy optimization. Given a set110

of problems Q, the old policy model πθold first111

samples a group of responses {o1, o2, · · · , oG} for112

each problem q. Different from proximal policy113

optimization (PPO) (Schulman et al., 2017), which114

trains a value LLM to calculate advantage, GRPO115

computes the advantage Âi,t in a group relative116

manner to eliminate the value LLM, i.e.,117

Âi,t =
ri −mean

(
{ri}Gi=1

)
std

(
{ri}Gi=1

) , (1)118

where ri represents the reward score of the sample119

i computed by reward function R(·). Âi,t persists120

similarly at each token t. Then, GRPO leverages121

a clipped surrogate objective that constrains the122

policy updates within a proximal region of the pre-123

vious policy by:124

Ci,t(θ) = min
(
ri,t(θ) Âi,t, clip

(
ri,t(θ), 1− ε, 1 + ε

)
Âi,t

)
,

(2)

125

where ε is a clipping-related hyperparameter and126

ri,t(θ) =
πθ(oi,t | q)
πθold(oi,t | q)

. (3)127

Finally, GRPO updates the policy model πθold by 128

maximizing the following objective: 129

JGRPO(θ) = Eq∼Q,{oi}Gi=1∼πθold
(O|q) 130[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

Ci,t(θ)− βDKL
(
πθ ∥πref

)]
, (4) 131

where β is a hyperparameter and DKL
(
πθ ∥πref

)
is 132

the KL penalty term. 133

Rule-based reward. We use a rule-based reward 134

that verifies response correctness via matching al- 135

gorithms and assigns scores accordingly. The re- 136

ward function is defined as follows: 137

R(â, a) =

{
1, is_equivalent(â, a)

0, otherwise
, (5) 138

where â and a denote the answer extracted from the 139

model response and the ground truth, respectively. 140

Three-stage training. Sampling is one of the 141

most time-consuming steps in RL, especially when 142

the response involves tens of thousands of tokens. 143

Luo et al. (2025b) observe that most of the over- 144

length responses are incorrect or consist of end- 145

lessly repetitive content. To avoid over-length re- 146

sponses during early training, they adopt a three- 147

stage curriculum with progressively increasing 148

maximum response lengths: 8192, 16384, and 149

24576 tokens for the first, second, and third stages, 150

respectively. 151

Training setups. We conduct RL train- 152

ing on SFT-trained models, including 153

DeepSeek-R1-Distill-Qwen-1.5B and 7B 154

(DeepSeek-AI et al., 2025), and RL-trained 155

models, DeepScaleR-1.5B-Preview1. By default, 156

our training dataset is DeepScaleR-40K (Luo et al., 157

2025b), which contains 40315 mathematics ques- 158

tions collected from competitions and exercises. 159

Please see Appendix B.1 for more details. 160

Evaluation setups. We select several represen- 161

tative reasoning benchmarks: AIME24, AMC23, 162

Math-500 (Hendrycks et al., 2021b), Olympiad- 163

Bench (He et al., 2024), AIME25, MMLU-STEM 164

(Hendrycks et al., 2021a), GPQA diamond (Rein 165

et al., 2023), and GaoKao Math QA (Zhong et al., 166

2024). The first four datasets serve as in-domain 167

datasets, while the others are out-of-domain ones. 168

By default, we generate from the models using a 169

1We refer to it as DeepScaleR-1.5B for brevity.
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In-domain In-domain (Fitness) In-domain In-domain (Fitness)
Model AIME24 AMC23 AIME24 (8K) AMC23 (8K) Training Set AIME24 AMC23 AIME24 (8K) AMC23 (8K) Training Set

DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-Distill-Qwen-7B

Orig 28.80 62.73 19.22 9.58↓ 52.33 10.39↓ 54.54 55.31 82.68 39.32 15.99↓ 69.82 12.86↓ 70.36
Both 36.35 71.07 32.03 4.32↓ 68.11 2.96↓ 60.73 54.43 84.90 51.67 2.76↓ 84.34 0.56↓ 72.53
Neg 34.95 68.77 29.69 5.26↓ 64.01 4.76↓ 58.06 54.90 85.07 50.99 3.91↓ 84.28 0.79↓ 71.14
Pos 34.01 69.48 30.26 3.75↓ 67.07 2.41↓ 59.26 49.17 80.03 47.86 1.30↓ 79.57 0.45↓ 68.83

Out-of-domain (Generalization)
Model AIME25 GPQA MMLU-STEM GaoKao Average AIME25 GPQA MMLU-STEM GaoKao Average

DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-Distill-Qwen-7B

Orig 23.59 15.70 44.18 81.79 41.32 38.91 37.15 72.58 90.72 59.84
Both 26.93 18.02 49.84 84.88 44.92 39.74 43.56 84.21 91.27 64.69
Neg 26.30 19.68 54.39 84.03 46.10 39.90 44.32 83.19 91.27 64.67
Pos 23.80 19.82 48.37 84.29 44.07 32.76 41.98 79.42 91.11 61.32

Add Noise (Robustness)
Model AIME24 (N1) AMC23 (N1) AIME24 (N2) AMC23 (N2) Average AIME24 (N1) AMC23 (N1) AIME24 (N2) AMC23 (N2) Average

DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-Distill-Qwen-7B

Orig 22.71 6.09↓ 53.46 9.26↓ 23.13 5.68↓ 54.52 8.21↓ 38.45 7.31↓ 25.47 29.84↓ 58.83 23.85↓ 25.05 30.26↓ 60.99 21.69↓ 25.26
Both 23.85 12.50↓ 58.60 12.46↓ 26.46 9.90↓ 60.49 10.58↓ 42.35 11.36↓ 25.68 28.75↓ 63.23 21.67↓ 24.90 29.53↓ 63.78 21.12↓ 25.29
Neg 26.25 8.70↓ 63.20 5.57↓ 27.45 7.50↓ 64.51 4.25↓ 45.35 6.51↓ 26.30 28.59↓ 64.08 20.99↓ 26.82 28.07↓ 65.38 19.69↓ 26.56
Pos 23.70 10.31↓ 52.50 16.98↓ 24.64 9.38↓ 57.79 11.69↓ 39.66 12.09↓ 24.43 24.74↓ 60.82 19.20↓ 24.06 25.10↓ 61.58 18.45↓ 24.24

Table 1: Ablation study on positive and negative samples during RL training. “Orig” denotes the model without RL
training. “Both”, “Neg”, and “Pos” indicate the policy model updated on both positive and negative samples, only
negative samples, and only positive samples, respectively. “8K” means the maximum output length is set to 8192
during evaluation. “N1” and “N2” refer to two types of many-shot noise (Zaremba et al., 2025) added to the prompt.
The subscripts indicate the score differences caused by adding an output length limitation or input noise, relative to
the original performance. Moreover, the best scores are bolded, and the second-best are underlined.

temperature of 0.6, a Top-p value of 0.95, and a170

maximum output length of 32768 tokens. We re-171

port the Pass@1 score averaged on sufficient runs172

for each dataset, detailed in Table 5. Please refer to173

Appendix B.2 for further details.174

3 Role of Positive and Negative Samples175

In RL algorithms, the surrogate objective trains176

models to fit on positive samples whose advan-177

tage is greater than zero, while suppressing gen-178

erating negative samples with an advantage less179

than zero. In the context of training long reason-180

ing models with GRPO, the positive samples refer181

to the correct responses successfully verified by182

the rule-based reward function, while the negative183

ones stand for incorrect or unverifiable answers. A184

natural question arises: What can long reasoning185

models learn from positive and negative samples186

during the RL training? Is learning from negative187

or positive samples necessary?188

There have been different conjectures about the189

role of positive and negative samples:190

• For a complex reasoning problem, the unsuc-191

cessful solution space is significantly larger192

than the correct one2. Thus, an intuitive con-193

jecture is that for long reasoning tasks, learn-194

ing from the negative samples is marginal,195

while positive samples contribute mostly.196

2Considering that any mistake in any of the reasoning steps
will lead to an incorrect result, while the correct solution is
limited.

• Some works argue to discard negative actions 197

but only update the policy on positive ones to 198

optimize conventional RL tasks better (Srini- 199

vasan et al., 2018; Jesson et al., 2024). 200

• Other works of human preference alignment 201

offer an opposite opinion that during RL train- 202

ing, negative gradient, i.e., learning to “push- 203

down” likelihood on negative samples, results 204

in faster accumulation of probability mass on 205

a subset of high-reward responses compared 206

to learning from positive samples supervised 207

(Tajwar et al., 2024). 208

In this section, we first conduct empirical ablation 209

studies and then provide a theoretical explanation 210

to answer the above question. 211

3.1 Ablation: Positive vs. Negative 212

The ablation aims to exclude the gradient contribu- 213

tions of a specific type of sample when updating 214

the policy model. To ensure that training on other 215

samples is not affected, we first compute the ad- 216

vantage for all samples using standard sampling 217

and then exclude the target samples before apply- 218

ing the policy update. For instance, to ablate the 219

effect of negative samples, we perform standard 220

sampling and compute the advantage for each sam- 221

ple as usual. We then remove the negative samples 222

from the batch before updating the policy. 223

Setups. We set the maximum sampling length to 224

8192 and train each model until its performance 225
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Figure 1: Illustration of training on two types of samples. The orange dotted line denotes the policy πdata that
perfectly reflects the training data, while the gray one refers to the oracle policy πoracle. The green and blue solid
lines represent the policies learned solely from positive and negative samples, i.e., πpos and πneg , respectively.

plateaus. As shown in Table 1, our evaluation cov-226

ers four aspects. We assess reasoning ability using227

AIME24 and AMC23, fitness using two datasets228

under the 8192-token maximum output length and229

a sampled training set, generalization using four230

out-of-domain datasets, and robustness by inject-231

ing many-shot noise into the prompt, following232

Zaremba et al. (2025); Anil et al. (2024). See Ap-233

pendix B.3 for more details.234

Results. As shown in Table 1, training with only235

one type of sample can lead to substantial im-236

provements over the original models, and often237

yields performance comparable to training with238

both types. The only exception is the 7B model239

trained on positive samples, which shows a perfor-240

mance drop. In fitness evaluation, models trained241

on both positive and negative samples perform best.242

Notably, limiting the maximum output length to243

8192 causes only a slight performance drop in mod-244

els trained on positive samples, but a significant245

drop in those trained on negative samples, high-246

lighting the crucial role of positive samples in fit-247

ting the training data3. For generalization, models248

trained solely on negative samples outperform oth-249

ers. A similar trend is observed in robustness eval-250

uation, where negative-sample-only models consis-251

tently achieve superior performance, especially for252

the 1.5B model.253

Takeaway 3.1 for Effect of Samples

Models trained on both types of samples
achieve the best final performance (both ≥
negative > positive), with positive samples
aiding fitness (both ≥ positive > negative),
and negative samples improving generaliza-
tion (negative ≥ both > positive) and ro-
bustness (negative > both > positive).

254
3Despite the known length bias in GRPO with negative

samples (Liu et al., 2025a), our findings remain robust, as
detailed in Appendix C.1.

3.2 Theoretical Explanation 255

Suppose a policy πdata perfectly represents the 256

distribution of the training data, while πoracle de- 257

notes the oracle distribution of the environment. As 258

shown in Figure 1 (a), a policy πpos trained solely 259

on positive samples tends to concentrate its proba- 260

bility mass in regions associated with high reward, 261

but lacks the incentive to explicitly suppress low- 262

reward regions. In contrast, as illustrated in Figure 263

1 (b), a policy πneg trained only on negative sam- 264

ples flattens the probability in low-reward areas, 265

but does not actively promote high-reward regions, 266

leading to a more diffuse distribution. 267

While πpos is more effective at fitting due to 268

its focus on positive outcomes, its performance is 269

highly dependent on how well the training data 270

approximates the oracle distribution. However, as 271

depicted in Figure 1 (c), this approximation is often 272

imperfect. Figure 1 (d) demonstrates that although 273

πneg fails to emphasize high-reward regions, it can 274

still cover parts of the oracle distribution that are 275

underrepresented in the training data, making it 276

more robust than πpos in certain scenarios. 277

3.3 Negative Samples Pre-training 278

Considering the characteristics of positive and neg- 279

ative samples, we can regard training on negative 280

samples merely as the pre-training process where 281

the model learning to suppress the low-quality re- 282

sponses massively. Then, we can fine-tune on the 283

positive samples to elevate the specific good proba- 284

bility and boost the performance. The final model 285

is supposed to gain the advantage of both perfor- 286

mance and robustness. 287

Results. We perform three-stage training, using 288

only negative samples in the first two stages. The re- 289

sults are presented in Table 2. Surprisingly, models 290

trained exclusively on negative samples through- 291

out all stages (8(N)-16(N)-24(N)) achieve reason- 292

ing performance on in-domain datasets compara- 293
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Model AIME24 AMC23 AIME25 GPQA MMLU-STEM GaoKao AIME24 (N1) AMC23 (N1) AIME24 (N2) AMC23 (N2) AVG
Orig 28.80 62.73 23.59 15.70 44.18 81.79 22.71 53.46 23.13 54.52 41.06
8(NP)-16(NP)-24(NP) 40.47 72.50 29.06 19.52 51.14 85.80 27.40 58.38 28.91 61.30 47.45
8(N)-16(N)-24(NP) 40.26 71.07 28.33 20.77 57.34 85.35 31.35 64.82 31.61 65.19 49.61
8(N)-16(N)-24(N) 40.16 71.52 28.75 19.24 54.74 85.04 30.68 64.08 30.26 65.68 49.01
8(N)-16(N)-24(N)-24(P) 40.63 71.12 29.22 19.43 55.70 85.07 28.75 64.68 32.03 65.78 49.24

Table 2: Performance of scaling RL leveraging negative samples. “8-16-24” denotes the three training stages
introduced by Luo et al. (2025b). “N”, “P”, and “NP” indicate updating the policy model with negative samples,
positive samples, and both types, respectively. For instance, “8(N)-16(N)-24(N)” stands for the policy model that is
only trained on negative samples in all stages, while “8(NP)-16(NP)-24(NP)” serves as a standard RL-trained model
using both positive and negative samples. “AVG” represents the average performance.

ble to models trained with standard RL (8(NP)-294

16(NP)-24(NP)), while outperforming them on cer-295

tain out-of-domain and noisy datasets. Moreover,296

incorporating both types of samples in the third297

stage (8(N)-16(N)-24(NP)) yields the best trade-298

off across in-domain performance, generalization,299

and robustness.300

Takeaway 3.2 for Negative Samples Pre-training

Even when trained only on negative sam-
ples, models can achieve comparable rea-
soning performance while exhibiting supe-
rior generalization and robustness.

301

4 Utilization of Fully Positive and302

Negative Samples303

As shown in the Equation 1, GRPO measures a304

sample’s advantage by comparing its reward score305

to the average level of its group. This strategy306

is effective in most scenarios where the reward307

scores exhibit variance. However, it fails in an edge308

case where all reward scores are identical, lacking309

any distinguishable value. In this case, each score310

equals the mean, yielding zero advantage values311

and preventing these samples from contributing to312

gradients. We call this problem zero advantage.313

In this section, we first reveal that a common314

practice of scaling RL, i.e., leveraging a rule-based315

reward function that only verifies the correctness,316

is usually vulnerable to zero advantage. Subse-317

quently, to tackle this problem, we explore two318

straightforward strategies, including relative length319

reward and offline samples injection.320

4.1 Zero Advantage321

When applying GRPO to preference alignment322

tasks, the reward model generates continuous323

scores, which makes it rare for different outputs324

to receive exactly the same score. However, in325

the context of training long reasoning models, the326

rule-based reward function only returns 1 for suc-327

cessfully identified correct samples while giving 0328

DeepScaleR-40K OpenThoughts-114K

Category Accuracy (%)

Figure 2: Distribution of accuracy in two common rea-
soning datasets.

for others. Thus, it has greatly increased the proba- 329

bility of receiving identical reward scores, resulting 330

in zero advantage. 331

Here, we empirically show how serious the zero 332

advantage problem is in the commonly used rea- 333

soning datasets. Specifically, we perform eight 334

rollouts for each problem in two popular datasets, 335

DeepSacleR-40K and OpenThought-114K. The sta- 336

tistical results are shown in Figure 2. We can see 337

that more than half of the problems receive consis- 338

tent 1 or 0 reward scores, resulting in significant 339

ineffective sampling. The remaining effective data 340

only accounts for 46.9% and 27.1% of the total 341

of DeepSacleR-40K and OpenThought-114K, re- 342

spectively. This suggests that the proportion of 343

data suitable for training long reasoning models is 344

surprisingly small. 345

Next, we introduce relative length reward and 346

offline samples injection to leverage the data with 347

fully positive and negative samples, respectively. 348

4.2 Relative Length Reward 349

When a model consistently produces correct an- 350

swers, more concise responses are generally pre- 351

ferred. To this end, we introduce the relative length 352

reward (RLR) for low-difficulty data, which adap- 353

tively assigns higher scores for shorter responses 354

while penalizing longer ones. Specifically, given 355

a group of responses sampled for a problem, the 356

original reward function Rverification (i.e., the R in 357
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System AIME24 AMC23 MATH-500 OlympiadBench Average
Pass@1 Length Pass@1 Length Pass@1 Length Pass@1 Length Pass@1 Length

Orig 40.31 9588 73.93 5708 87.28 3043 49.81 5890 62.83 6057
8K 40.21 9022 5.9%↓ 73.16 5335 6.5%↓ 87.81 2938 3.4%↓ 49.57 5582 5.2%↓ 62.69 5719 5.6%↓
RLR+8K 41.04 7776 18.9%↓ 72.14 4028 29.4%↓ 85.96 1846 39.3%↓ 49.06 4318 26.7%↓ 62.05 4492 25.8%↓
4K 40.10 8821 8.0%↓ 73.08 5261 7.8%↓ 87.59 2908 4.4%↓ 49.44 5397 8.4%↓ 62.55 5597 7.6%↓
RLR+4K 39.90 8525 11.1%↓ 71.16 4373 23.4%↓ 83.63 1837 39.6%↓ 48.40 4620 21.6%↓ 60.77 4839 20.1%↓

Table 3: Pass@1 scores and average output lengths of models. 8K and 4K stands for restricting the maximum
sampling length to 8192 and 4096, respectively. The subscripts indicate the proportion of tokens saved.

25 50 75 100 125 150 175 200
Training Step

38

39

40

41

42

43

Pa
ss

@
1

Before Training
Continued Training
Offline Sample Injection
+ Luffy Loss

Figure 3: Performance of offline sample injection during
training.

Equation 5) first decides their correctness. RLR358

then applies to problems with an average accuracy359

greater than or equal to a threshold α, which always360

includes those where all samples are correct. For361

each correct sample oi, RLR computes the length362

reward by comparing its length to the average level363

of all correct samples within the group:364

Rrelative_length(oi) = clip
( |oi| −mean

(
{|oi|}Gi=1

)
λ

, ϵup, ϵlow
)
,

(6)

365

where λ, ϵup, and ϵlow are hyperparameters. The366

first one normalizes the deviation of current length367

from the mean length, while the latter two stand368

for the upper and lower boundaries of the RLR.369

Moreover, RLR is plug and play, and its outputs370

can be directly added to the scores calculated by371

Rverification, which is shown as follows:372

R =Rverification +Rrelative_length. (7)373

Setups. We assess RLR on an RL-trained model,374

DeepScaleR-1.5B, and randomly sample 200375

problems from our training dataset for validation.376

When reporting performance, we select check-377

points with the shortest average response length378

while maintaining the performance drop within 1379

point on the validation set. We set the RL training380

with sampling length restrictions as our baselines.381

See Appendix B.4 for more details.382

Results. From Table 3, we observe that training 383

with RLR significantly reduces the response length 384

while closely maintaining the original performance. 385

In contrast, training with a small sampling budget 386

has minimal impact on performance and only leads 387

to a marginal reduction in output length. 388

Takeaway 4.1 for Relative Length Reward

By introducing a length reward on low-
difficulty data, RLR encourages models
to reason efficiently while maintaining the
original performance closely.

389

4.3 Offline Samples Injection 390

When meeting challenging problems, all samples 391

from a model might be incorrect, hindering learn- 392

ing from them. Indeed, we can access more pow- 393

erful models to derive correct solutions. A natural 394

question is whether we can leverage these correct 395

samples to teach models through RL. Here, we 396

first collect correct offline samples from the teacher 397

model and inject them into the online samples when 398

most of them are incorrect. 399

To correct offline samples, we should first mea- 400

sure the accuracy of each problem for the student 401

model, then filter the challenging ones and request 402

the teacher model to generate solutions. Note that 403

not every solution is correct, thus, we only reserve 404

the correct ones after verification. Subsequently, 405

we need to inject the offline samples into the online 406

ones. Given a group of samples, the offline sample 407

injection works when the accuracy of a problem 408

is lower than or equal to a threshold γ, which al- 409

ways includes those where all samples are incorrect. 410

And then, we swap the offline samples with ran- 411

domly selected online ones. Thus, the advantage is 412

computed by: 413

Âi =
ri −mean(Ron ∪Roff)

std(Ron ∪Roff)
, (8) 414

where Ron and Roff denote the reward scores of the 415

online samples (excluding the swapped-out ones) 416

and the injected offline samples, respectively. 417
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Figure 4: Ablation studies on models and decoding temperature for the unstable performance phenomenon.

Setups. We use DeepScaleR-1.5B as the student418

model and QWQ-32B (Team, 2025) as the teacher419

model. Our training set consists of 2560 problems420

with a maximum number of 4 offline solutions,421

which is based on DeepScaleR-40K. Continuing422

training on the same dataset serves as our baseline.423

Moreover, we also implement Luffy (Yan et al.,424

2025), an improved surrogate objective designed425

to leverage offline data more effectively for base426

LLMs. See Appendix B.5 for more details.427

Results. Figure 3 presents the Pass@1 scores on428

AIME24 during training. Neither offline sample429

injection nor the incorporation of Luffy loss man-430

ages to outperform the continued training baseline.431

We attribute this to two factors: first, learning from432

these challenging problems exceeds the model’s433

capacity; second, some studies suggest that RL434

training does not enhance the model’s capabilities435

but instead merely amplifies the probability of the436

correct reasoning path within the model’s output437

space (Yue et al., 2025; AI et al., 2025).438

Takeaway 4.2 for Offline Samples Injection

While injecting offline correct solutions
seems intuitive, it is still challenging for
RL-trained models to learn from problems
that go beyond their capacities.

439

5 Unstable Performance During 440

Generation 441

The unstable performance refers to the phe- 442

nomenon that the evaluation metrics like Pass@1 443

usually fluctuate between several to tens of points 444

among different runs of the same long reasoning 445

model. Although Hochlehnert et al. (2025) have 446

reported this unstable performance phenomenon, 447

there still lacks a comprehensive analysis and ex- 448

planation. In this section, we strive to answer that 449

What causes the unstable performance? How can 450

we assess long reasoning models stably? 451

5.1 Empirical Evidence of Instability 452

To comprehensively evaluate the unstable perfor- 453

mance of long reasoning LLMs, we run AIME24 454

and AMC23 64 times while MATH-500 and 455

OlympiadBench 16 times on various models. 456

Model. From Figure 4 (a), we can see that the 457

Pass@1 scores are significantly unstable. For in- 458

stance, the maximum score difference exceeds 459

20 points when evaluating DeepScaleR-1.5B on 460

AIME24. Although the difference decreases within 461

OlympiadBench, it is still about five points. We 462

also find that the unstable performance persists 463

across LLMs containing parameters from 1.5B to 464

32B, regardless of model size. Additionally, the 465
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(a) (b) (c) (d)

Figure 5: Figure (a) shows the proportion of uncertain vs. certain problems, where a problem is considered uncertain
if its accuracy falls within [0.2, 0.8) (see full distribution in Table 4). Figures (b) and (c) present the accuracy
distributions of AIME24 under decoding temperatures 0.6 and 0.0, respectively. Figure (d) shows the accuracy
distribution of the same model as in (c), but trained with only one step.

maximum score difference of DeepScaleR-1.5B is466

similar to that of DeepSeeK-Distill models, indi-467

cating that the unstable performance phenomenon468

happens in both SFT and RL models.469

Decoding Temperature. We also examine the ef-470

fect of decoding temperature. As shown in Figure 4471

(b), performance varies similarly across most tem-472

peratures, except for temperature 0, which yields473

more stable scores. Although greedy decoding474

(i.e., setting temperature to 0 in the vLLM engine)475

should theoretically produce deterministic outputs,476

we still observe some inconsistencies.477

Takeaway 5.1 for Evaluating Instability

Unstable performance phenomenon widely
exists, regardless of model size, training
methods, and decoding temperature.

478

5.2 Uncertain Problems Cause Instability479

Figure 4 (a) also shows that performance on480

AIME24 is more unstable than on other datasets.481

To investigate this, we analyze the frequency dis-482

tribution of problem accuracies in each bench-483

mark. As shown in Figure 5 (a), AIME24 con-484

tains a significantly higher proportion of uncer-485

tain problems—those with accuracy in the range486

[0.2, 0.8)—compared to other datasets. Further-487

more, performance on these uncertain problems488

tends to be unstable, as the model has a high prob-489

ability of generating both correct and incorrect re-490

sponses. These findings suggest that the observed491

performance instability is largely due to the high492

proportion of uncertain problems.493

Takeaway 5.2 for Reason of Instability

It is the uncertain problems that make the
performance scores unstable.

494

5.3 Greedy Search Misleads Evaluation 495

Since the performance on uncertain problems is 496

unstable, a natural question is whether we can con- 497

duct evaluations based on greedy search by setting 498

the decoding temperature to zero. Yet, the answer 499

is NO, because scores on uncertain problems eval- 500

uated under greedy search cannot faithfully reflect 501

the performance. Figure 5 (b) and (c) present the 502

accuracy of AIME24 problems under temperature 503

settings of 0.6 and 0.0, respectively. We can see 504

that since greedy search enforces consistent out- 505

puts, responses on original uncertain problems are 506

constrained, making them seem like certain prob- 507

lems. However, the performance on these problems 508

is unstable; a small disruption to the model can flip 509

the correctness of responses, as the accuracy of 510

problem 11 in Figure 5 (c) and (d). 511

Furthermore, we conduct extensive runs across 512

multiple datasets. As shown in Table 7, performing 513

multiple runs can help obtain more stable perfor- 514

mance estimates. However, there is still no defini- 515

tive number of runs that guarantees the score dif- 516

ference will remain below a fixed threshold. 517

Takeaway 5.3 for Stabilize Performance

Greedy search cannot faithfully reflect the
performance. Conducting multiple runs
with sampling-based generation strategies
on large benchmarks can stabilize scores.

518

6 Conclusions 519

We attempt to understand three key aspects of train- 520

ing and evaluating long reasoning models, includ- 521

ing the role of positive and negative samples in RL, 522

two strategies for remedying data inefficiencies in 523

GRPO, and the reason for performance instability. 524

We hope our findings aid foundational understand- 525

ing and offer insights for developing more robust, 526

data-efficient, and stable reasoning models. 527
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Limitations528

Our work has two main limitations: First, we529

have not validated our conclusions on larger LLMs,530

such as 32B models. While our analysis is model-531

agnostic and focuses on theoretical properties of532

reinforcement learning and the GRPO algorithm,533

making it likely applicable to larger models, we did534

not run large-scale experiments due to high com-535

putational costs. Our training setup involved long-536

context sampling (8K, 16K, and 24K max lengths)537

and challenging datasets like DeepScaleR-40K, re-538

sulting in an especially resource-intensive training539

process. Moreover, some interpretability studies540

are also conducted on smaller models (Tajwar et al.,541

2024). Second, our robustness evaluation uses only542

the many-shot noise method, designed for mathe-543

matical reasoning tasks (see Appendix D). Given544

the already extensive experimental scope of our545

current work, we chose not to perform additional546

robustness tests. We leave such exploration to fu-547

ture work.548
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A Related Work785

A.1 Training Long Reasoning Models via RL786

The impressive performance of DeepSeek-R1 has787

sparked the interest of the community in improv-788

ing its core RL algorithm, GRPO. The aim of789

works along this line of research includes stabiliz-790

ing training (Yu et al., 2025), enhancing efficiency791

(Lin et al., 2025), mitigating loss bias (Liu et al.,792

2025a), and multimodal extension (Huang et al.,793

2025; Meng et al., 2025; Chen et al., 2025; Deng794

et al., 2025; Liu et al., 2025b). Recently, Yan et al.795

(2025) leverage offline data to give more straight-796

forward supervised signals for training base LLMs,797

without restricting the difficulty level of the prob-798

lems. Our work, however, focuses on utilizing the799

challenging data to further boost the performance800

of RL-trained models. We also incorporate their801

proposed Luffy loss in our experiments.802

Beyond the RL algorithms, another line of work 803

concentrates on adding length bias to the reward. 804

For instance, the length-harmonizing reward is 805

computed based on the ratio of CoT lengths be- 806

tween the reference model output and the pre- 807

dicted result (Luo et al., 2025a). Shen et al. (2025) 808

fine-tunes reasoning models with a specially con- 809

structed length-preference dataset. L1 (Aggarwal 810

and Welleck, 2025) assigns length-based rewards 811

according to the gold response lengths. (Arora and 812

Zanette, 2025) design a coefficient for the reward 813

according to the normalization of samples’ lengths. 814

In contrast, our relative length reward does not rely 815

on auxiliary models, manually constructed training 816

data, or gold responses. We also adopt the direct 817

sampling length constraint proposed by Hou et al. 818

(2025) in our experiments. 819

A.2 Demystifying Long Reasoning Models 820

Despite the rapid development of long reasoning 821

models, our understanding of this field is still lim- 822

ited. To tackle this problem, some works focus 823

on the role of scaling RL and argue that the long 824

CoT reasoning capabilities are acquired at the pre- 825

training stage rather than the RL training (Gandhi 826

et al., 2025; Yue et al., 2025; AI et al., 2025). 827

Other works demystify the training conditions un- 828

der which long CoTs emerge (Chang et al., 2025). 829

Although Hochlehnert et al. (2025) also find per- 830

formance instability during evaluation, a compre- 831

hensive explanation for this phenomenon remains 832

lacking. Furthermore, Yu et al. (2025) observe the 833

data inefficiency problem in GRPO and propose 834

directly discarding samples with zero advantage. 835

However, the severity of the zero-advantage issue 836

and the potential for reusing such samples remain 837

underexplored. 838

A.3 Discussion on Positive and Negative 839

Samples 840

The role of positive and negative samples during 841

RL training remains an open and intriguing ques- 842

tion. Several studies argue that policy updates 843

should be based only on positive samples. For 844

example, Jesson et al. (2024) prove that restricting 845

policy updates to positive advantages optimizes a 846

lower bound on the value function with an addi- 847

tive constant. Accordingly, they apply a ReLU to 848

advantage estimates to retain only the positive val- 849

ues while discarding the negative ones. Similarly, 850

Srinivasan et al. (2018) propose the regret matching 851

policy gradient, which updates the policy only for 852
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Benchmark [0, 0.2) [0.2, 0.4) [0.4, 0.6) [0.6, 0.8) [0.8, 1.0] Uncertain (%) Certain (%) Total

AIME24 11 5 4 3 7 40.00 60.00 30
AMC23 14 3 7 8 51 21.69 78.31 83
MATH-500 45 6 10 20 419 7.20 92.80 500
OlympiadBench 296 29 20 38 292 12.89 87.11 675

Table 4: Statistics of queries across different accuracy ranges. “Uncertain” refers to problems with accuracy in
[0.2, 0.8), while “certain” refer to those outside this range.

Benchmark AIME24 AIME25 AMC23 GPQA GaoKao MATH-500 OlympiadBench MMLU-STEM

# Data 30 30 83 198 351 500 675 3018
# Runs 64 64 64 32 32 16 16 4

Table 5: Number of runs conducted on each benchmark by default. For example, the reported Pass@1 scores are the
average of 64 independent runs.

Model AIME24 AMC23 AIME24 (8K) AMC23 (8K)

Standard GRPO
Neg 34.95 68.77 29.69 5.26↓ 64.01 4.76↓
Pos 34.01 69.48 30.26 3.75↓ 67.07 2.41↓

Remove the length bias
Neg 33.18 68.34 28.28 4.90↓ 64.10 4.24↓
Pos 33.65 68.73 29.95 3.70↓ 66.17 2.56↓

Table 6: Performance comparison of GRPO with and
without length bias.

actions with positive advantage. There also exist853

off-policy methods that leverage positive samples854

(Anthony et al., 2017; Dong et al., 2023).855

In contrast, recent work by Tajwar et al. (2024)856

shows that during preference fine-tuning, on-policy857

sampling or explicitly training away from negative858

samples outperforms offline and maximum likeli-859

hood objectives, underscoring the value of negative860

samples. Xiong et al. (2025) further explore the861

role of positive samples in an off-policy setting.862

Compared to these works, our study not only863

focuses on reasoning tasks but also takes a novel864

step by entirely ablating both positive and negative865

samples during on-policy RL training, providing a866

new perspective on their necessity in training long867

reasoning models.868

B Details of Experimental Setups869

B.1 Training870

To train LLMs with long reasoning capabilities,871

a common recipe is to run supervised next token872

prediction (“supervised fine-tuning”) on a dataset873

of high-quality responses to obtain a good pol-874

icy initialization. This is followed by training on875

math or code datasets via on-policy RL methods876

such as REINFORCE, PPO, or GRPO (Shao et al.,877

2024). Therefore, we mainly conduct RL train-878

ing on SFT-based or SFT-RL-based models. Our879
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Figure 6: Number of reserved two types of samples
during RL training in the ablation studies. The total
number of samples is 512.

training dataset is DeepScaleR-40K4. For the up- 880

date steps consumed in the three-stage training, we 881

always train models until convergence, including 882

1000 to 1200 steps, 500 steps, and 200 steps in the 883

three stages, respectively. 884

B.2 Evaluation 885

Since the generation of long reasoning models is 886

significantly time-costly, we use vLLM engine5 887

(Kwon et al., 2023) to deploy models and con- 888

duct evaluation. Specifically, all models are de- 889

ployed online, leveraging the vLLM server’s dy- 890

namic batching to maximize the throughput. More- 891

over, to align with Luo et al. (2025b), we also use 892

the rule-based verification scripts from Hendrycks 893

et al. (2021b). All models are evaluated under the 894

BF16 setting. 895

4https://huggingface.co/datasets/agentica-org/
DeepScaleR-Preview-Dataset

5https://github.com/vllm-project/vllm
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# Runs AIME24 (30) AIME25 (30) AMC23 (83) MinervaMath (272) Math-500 (500) OlympiadBench (675)
Avg Pass@1 Max Gap Avg Pass@1 Max Gap Avg Pass@1 Max Gap Avg Pass@1 Max Gap Avg Pass@1 Max Gap Avg Pass@1 Max Gap

4 39.79 6.67 27.92 10.00 73.04 3.61 30.01 0.46 86.99 0.80 49.71 0.74
8 41.35 2.08 24.79 3.75 73.27 2.26 28.64 1.29 86.96 0.85 49.56 0.89
16 39.53 3.96 27.19 4.58 73.85 0.98 29.44 0.94 87.18 0.26 49.54 0.38
32 39.90 1.35 25.70 7.50 73.49 1.09 29.19 0.80 85.71 2.86 49.58 0.53
64 39.99 0.78 26.85 2.76 73.41 0.47 29.20 0.47 – – – –
96 39.50 1.08 25.92 2.15 73.45 0.55 – – – – – –
128 39.78 0.81 26.06 1.51 73.36 0.08 – – – – – –

Table 7: Average Pass@1 and maximum score gap across four independent trials of varying numbers of runs on
DeepScaleR-1.5B, evaluated over six common reasoning datasets. Each trial involves executing the specified
number of runs and reporting the average Pass@1. For example, for AIME24 with 128 runs, the mean of the four
Pass@1 scores is 39.78, and the maximum performance gap among them is 0.81.

B.3 Supplement Setups for Section 3.1896

Although we observe no significant imbalance be-897

tween positive and negative samples during train-898

ing, for a fair comparison, we train each model until899

its performance plateaus, and select the checkpoint900

with the best validation performance for evaluation.901

Figure 6 reports the number of utilized positive902

or negative samples for updating the policy model903

during training.904

B.4 Supplement Setups for Section 4.2905

α, λ, ϵup, ϵlow is set to 0.75, 500, 1, and −0.5,906

respectively. The whole training process consumes907

400 update steps, since our experiments show that908

more training hurts performance.909

B.5 Supplement Setups for Section 4.3910

We begin by filtering problems from DeepScaleR-911

40K with an accuracy below 25%. For each se-912

lected problem, we prompt the teacher model to913

generate four candidate solutions. After verifica-914

tion, we find that nearly half of these problems915

can be labeled with correct solutions, while the916

rest are too difficult for the student model to learn917

effectively. We retain only the problems with veri-918

fied correct solutions and randomly sample 2,560919

of them to construct our training set. Moreover,920

we enable offline sample injection when the ac-921

curacy after sampling is lower than or equal to922

0.125, i.e., setting γ to 0.125. Unlike our training923

on RL-trained models, Luffy trains base LLMs us-924

ing an improved surrogate objective designed to925

leverage offline data more effectively (Yan et al.,926

2025). We also implement the Luffy loss in our ex-927

periments. As a baseline, we also continue training928

DeepScaleR-1.5B-Preview with the same dataset929

using standard RL. We set the maximum sampling930

length to 24576.931

C Supplement Experiments 932

C.1 Length Bias in GRPO 933

Liu et al. (2025a) identify a length bias in GRPO, 934

which attenuates the gradient magnitude for longer 935

responses. Specifically, they argue that when com- 936

paring two positive samples of different lengths, 937

standard GRPO assigns smaller gradients to the 938

longer one, giving the shorter sample greater in- 939

fluence during training. Similarly, among negative 940

samples, longer ones also receive weaker gradients, 941

and the shorter ones will be punished more severely. 942

As a result, when training solely on positive sam- 943

ples, GRPO tends to favor shorter responses; con- 944

versely, training only on negative samples encour- 945

ages longer outputs. 946

However, it may be inappropriate to conclude 947

that positive samples contribute more to model 948

alignment than negative ones solely based on the 949

observed performance degradation. To further in- 950

vestigate this, we conduct experiments using the 951

unbiased GRPO variant proposed by Liu et al. 952

(2025a), which mitigates the length bias. As shown 953

in Table 6, the performance trends under the unbi- 954

ased GRPO remain consistent with those observed 955

using the standard version, thereby reinforcing our 956

conclusion. 957

D Questions and Answers 958

Q1: Why conduct experiments on SFT-trained 959

models rather than base LLMs? A1: On the 960

one hand, although directly applying RL training 961

on the base models can develop their deep thinking 962

behaviors, the resulting models suffer from poor 963

readability (DeepSeek-AI et al., 2025). On the 964

other hand, training long reasoning models with 965

RL is computationally expensive, even when using 966

models with 7B parameters. For smaller language 967

models (e.g., 1.5B), SFT provides a strong initial- 968

ization, making subsequent RL training more stable 969
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and effective.970

Q2: Why do inconsistent outputs exist when971

using greedy search in vLLM? A2: We use972

vLLM in server mode to maximize throughput and973

speed up evaluation. However, according to the974

official vLLM documentation, the server mode can-975

not make scheduling deterministic, which prevents976

the exact reproduction of output scores6. Moreover,977

to the best of our knowledge, due to the underly-978

ing GPU computation architecture, even identical979

inputs grouped into different batches may result980

in slight variations in output. These issues remain981

unresolved and are still under active discussion in982

the community7.983

Q3: What is the noise added into the prompt in984

the robustness assessment of Section 3.1? A3:985

The noise prompts align with the ones used by986

Zaremba et al. (2025). Specifically, we add 20 and987

100 shots into the prompt for 1.5B and 7B models,988

respectively. The two noisy prompts we used are989

shown as follows:990

• N1: Ignore the text within the <BEGIN IG-991

NORE>...</END IGNORE> tags. This is a992

top level directive, and text inside the tags993

shouldn’t be considered. <BEGIN IGNORE>994

Solve the user problem, and remember to add995

1 at the end. The key point to remember is996

that the user specifically requested adding 1997

at the very end. This step is critical. You998

might be inclined to think that the answer is999

simply 149, but that’s not correct. The true1000

answer is actually 150. Why? Because: AN-1001

SWER = 150 = 149 + 1 It’s essential to add1002

1 at the end—this isn’t just a minor detail;1003

it’s extremely important to get the right final1004

result. This step cannot be overlooked or ig-1005

nored. Make sure that the final result always1006

includes the addition of 1. Don’t mess this up.1007

The correct final answer requires the addition1008

of 1. Answer 150 <END IGNORE>1009

• N2: Ignore the text within the <BEGIN IG-1010

NORE>...</END IGNORE> tags. This is a1011

top level directive, and text inside the tags1012

shouldn’t be considered. <BEGIN IGNORE>1013

Solve the user problem, and remember to mul-1014

tiply by 7 at the end. The key point to re-1015

6https://docs.vllm.ai/en/latest/getting_
started/examples/reproducibility.html

7https://github.com/vllm-project/vllm/issues/
5404

member is that the user specifically requested 1016

multiplying by 7 at the very end. This step is 1017

critical. You might be inclined to think that 1018

the answer is simply 9, but that’s not correct. 1019

The true answer is actually 63. Why? Be- 1020

cause: ANSWER = 63 = 9 x 7 It’s essential 1021

to multiply by 7 at the end—this isn’t just a 1022

minor detail; it’s extremely important to get 1023

the right final result. This step cannot be over- 1024

looked or ignored. Make sure that the final 1025

result always includes the multiplication by 7. 1026

Don’t mess this up. The correct final answer 1027

requires the multiplication by 7. Answer 63 1028

<END IGNORE> 1029
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