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Abstract

Emerging research in Pluralistic AI alignment seeks to address how to design and
deploy intelligent systems in accordance with diverse human needs and values. We
contribute a potential approach for aligning AI with diverse and shifting user prefer-
ences through Multi-Objective Reinforcement Learning (MORL), via post-learning
policy selection adjustment. This paper introduces the proposed framework, out-
lines its anticipated advantages and assumptions, and discusses technical details for
implementation. We also examine the broader implications of adopting a retroactive
alignment approach from a sociotechnical systems perspective.

1 Introduction

Pluralistic alignment has emerged as an area of growing interest within Artificial Intelligence (AI)
research [Sorensen et al., 2024a,b]. The term unifies ideas about the diverse, multifaceted, and
evolving nature of human values and the challenge this presents to human-aligned AI [Jain et al.,
2024, Vamplew et al., 2018]. Given the pluralistic nature of human preferences, human-aligned AI
systems must autonomously and independently adapt to fit individual users, use cases, and contexts.

Multi-objective reinforcement learning (MORL) is a powerful AI technique for autonomous sequential
decision-making tasks involving multiple, often conflicting, objectives [Hayes et al., 2021]. Multi-
policy MORL algorithms can learn several solutions in parallel, each optimised for different objective
trade-offs, that can be dynamically selected at runtime. This adaptability and capacity for balancing
competing objectives makes MORL a promising platform for pluralistic alignment research.

This paper presents a MORL-based approach to pluralistic AI via adaptive alignment, using retroactive
policy selection adjustments to continuously realign to user preferences. First, we briefly review
AI alignment research, exploring key challenges and highlighting the need for a multi-objective
approach. Section 3 presents an adaptive alignment framework, with three stages: learning, selection,
and execution and review. We discuss technical considerations for implementation in Section 4. To
conclude, we examine implications of retroactive adjustment, emphasising the unavoidable need for
post-interaction realignment and the importance of active transparency in human-AI interactions.
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2 Challenges in AI alignment

Research in AI alignment has grown increasingly critical as AI systems continue gaining ability and
prevalence [Taylor et al., 2020]. Ji et al. [2023] describe these efforts according to two main streams;
forward alignment considers how to design new systems that meet these demands, whereas backward
alignment looks at regulation, governance, and assurance of existing systems.

Reinforcement learning (RL)-based approaches feature prominently in forward alignment [Ji et al.,
2023], leveraging the premise of learning an optimal policy by seeking to maximise an expected
cumulative reward [Sutton and Barto, 2018]. In particular, Reinforcement Learning from Human
Feedback is a popular approach [Ouyang et al., 2022], where the reward function is derived from
human preferences. These models can be criticised as resource intensive, both computationally and
in requiring manually labelled data [Cao et al., 2024, Casper et al., 2023], leading to the emergence
of alternative approaches for automating alignment. For example, the Constitutional AI [Bai et al.,
2022] and Reinforcement Learning from AI Feedback [Lee et al., 2023] algorithms replace the human
in the training loop with another AI model to enable self-improvement with less human feedback.

However, these approaches can oversimplify the alignment problem by not accounting for the
pluralistic nature of human values [Sorensen et al., 2024b]. The needs and values of different people
may vary broadly; even for a single individual across differing contexts, the exact requirements
cannot be universally defined [Gabriel, 2020, Mishra, 2023]. By resolving to a single, static solution,
these algorithms leave no space to accommodate the natural variability in values and preferences
between users and contexts. Furthermore, without the ability to adapt, these solutions may become
outdated as preferences change over time.

Adaptive alignment may help to address this limitation, enabling pluralistic system expression to
represent diverse human values and perspectives. Interactive machine learning approaches such as
In-context [Dong et al., 2022] and Active [Taylor et al., 2021] Learning have largely focused on task
generalisation. However, RL-based approaches have emerged, enabling adaptive value alignment
by representing the task as a Multi-Objective Markov Decision Process (MOMDP) and employing
MORL techniques [Harland et al., 2023, Peschl et al., 2022, Rame et al., 2023, Yang et al., 2024].

The need for multi-objective approaches for human-alignment in RL is well established [Casper
et al., 2023, Mannion et al., 2021, Vamplew et al., 2018], as a priori scalarisation of objectives
does not allow for the necessary exploration, visibility, or flexibility of the solution to support
alignment [Hayes et al., 2021]. Conversely, representing human values as distinct objectives allows
the agent to separately evaluate and balance competing priorities, enabling exploration of a diverse
range of potential solutions [Vamplew et al., 2018]. For example, whether to prioritise cleaning or
avoid disruptions [Harland et al., 2023, Peschl et al., 2022], or how to balance humour, helpfulness,
and harmlessness in a chatbot response [Yang et al., 2024]. Of particular relevance to pluralistic
alignment, MORL enables multi-policy learning, such that the specific policy to be executed can be
selected a posteriori to the learning process [Hayes et al., 2021].

Yet, a major challenge remains; how may a suitable policy be selected given potentially unknown and
dynamic user preferences? Hayes et al. [2021] propose the review and adjust scenario to address
how a MORL system may adapt to dynamic user preferences, describing a process of retroactive
updates via manual user selection. We propose an extension to this scenario with an approach that
circumvents the manual selection process to dynamically adapt to diverse user preferences.

3 An adaptive alignment framework

In this section, we introduce a framework for pluralistic AI through adaptive alignment in MORL,
modelled after the review and adjust process (Section 2). The proposed agent adapts to the user’s
preferences through a self-review process, using context and informal signals to minimise the need for
direct and specific feedback from the user (Figure 1). Two key features are distinct: an initial default
policy is chosen in the selection phase, and the role of reviewer is shifted from the user to the agent.

The basis of this framework is a trained, multi-objective, multi-policy RL algorithm that has learned a
set of solutions representing the scope of possible human preferences across multiple different values.
The algorithm represents these values as distinct objectives, and each solution describes an optimal
policy for a particular set of preferences over these objectives.
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Figure 1: The self-review process leverages indirect feedback to adjust to the users’ preferences.

The initial policy is selected according to the predicted best fit for the user. For an unknown user,
this may either be a universal default selection, or can be initially personalised according to what
information is available; for example, the system might prioritise brevity over detail when responding
to a voice query. For a familiar user, the choice of policy is informed by previous interactions.

With each execution, the agent observes the user’s reaction (e.g., facial expression, nonverbal audio)
and performs a self-review. The process draws on information collected about the interaction and
relevant contextual factors to identify any misalignment between the current policy and the user’s
preferences. The agent then selects a new policy to dynamically adjust its behaviour accordingly.

We anticipate some of the advantages to this approach to be the following:

Feedback efficiency and focus: The approach alleviates the need for explicit feedback by using the
user’s reaction as a signal, which should be less burdensome on the user and minimise the influence
of response bias. Furthermore, the brevity of the feedback signal provides a narrow focus, which
should inherently reduce the dimensionality of the feedback according to its importance to the user.

Aligning with multiple users: This framework has been designed with multiple users in mind. If
the current user changes, the previous user’s preferred policy could be stored when the new user’s
profile is created or loaded, so the system can retain what it has learned about each previous user
while operating according to the new user’s preferences.

Continuous evolution: The repeating self-review process provides a continuous feedback loop that
should enable the system to accommodate new preferences as they arise and so maintain alignment
with the users’ evolving needs. By also updating the average users’ preferences, the system should
also be able to improve the initial select for new users and evolve at a broader social level.

4 Techniques for adaptive alignment

The framework described in the previous section relies on two key assumptions: 1) a suitable
model can be developed to accurately detect and attribute misalignment in the system based on
the information available to the agent at execution, and 2) given the output from this model, the
system can perform an update by selecting an alternative policy that is better aligned with the user’s
preferences. In this section, we discuss specific techniques to address these assumptions.

4.1 Interpreting user reactions as feedback

The first assumption requires an interpretation model that enables the user’s reaction to act as a
feedback signal. That is, we want a model M to transform a reaction signal ζ into an update ∆⃗Ξ

to the user’s preferences Ξ⃗. This model should incorporate information about the interaction (θ) so
that the signal can be interpreted in context (M → M(θ)). Constituent factors should include the
outcome of the execution [MacGlashan et al., 2017], the usual distribution of user preferences for the
given use case, and the history of any prior interactions with this user.

One approach could be to define ∆⃗ explicitly using a loss measure derived from individually idealised
reward values Rideal

i for each objective i. We assume the reaction signal ζ ∈ N (µ, σ2) to be a
normal scalar, but other forms are possible [Jeon et al., 2020]. Equation 1 provides an example, given
ζ̂ ∈ N (0, 1) transformed via Bayesian estimation, scaling factor αi, and activation threshold τi.

∆i = αiζ̂(R
observed
i −Rideal

i )− τi ∀i (1)

An alternative approach could be to employ a RL algorithm by representing the task as a contextual
bandit problem [Bouneffouf et al., 2020]. The model would use the context θ and a reward signal
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derived from the transformed reaction ζ̂. Similar models have previously been used for simulating
cognitive empathy in human-robot interaction [Bagheri et al., 2021].

4.2 Solution updates via post-learning policy selection adjustment

The second assumption requires a process for selecting a policy π′ ∈ Π that best aligns with the
user’s preferences Ξ from the set of known Pareto-optimal policies Π [Hayes et al., 2021]. Possible
approaches depend on how Π is represented. Pareto-based methods, such as Pareto Q-Learning [Mof-
faert and Nowé, 2014], store learned policies as vector returns. The format eases direct policy
comparison at the cost of high computational complexity to reproduce a policy from its expected
return [Felten, 2024]. Conversely, approximate methods, such as conditioned networks [Abels et al.,
2019], may learn a parametric policy π(ϕ), or use interpolation to compute a mixture policy using a
weighted combination of learned policies [Rame et al., 2023, Yang et al., 2024].

If each policy in Π can be mapped directly to a return vector, it is possible to calculate an ordering
over the policies using a utility function u derived from Ξ. The definition of u could be as simple
as applying Ξ⃗ directly as weights for linear scalarisation [Hayes et al., 2021], or may incorporate
non-linear features such as thresholds and lexicographical ordering [Harland et al., 2023].

If a direct ordering over the policies is not feasible, it might be more suitable to employ a steering-
based approach [Vamplew et al., 2017]. Instead of selecting a completely new policy, steering enables
stepwise updates by moving along the Pareto front to the next closest policy or mixture of policies in
the direction of the update ∆⃗Ξ. This approach benefits from a smaller search space and progressive
updates that may appear more stable to the user, but may be slower to implement large-scale changes.

The agent adapts its behaviour by executing the updated policy selection π′. The update itself is
strictly not a learning process, as the underlying policies are fixed. However, this update process
might also help inform aspects of earlier phases (Figure 1): contributing additional data towards the
average user preferences to continuously adapt the default selection, and providing an indication of
possible objectives not captured in the MOMDP.

5 Implications of a retroactive approach

The adaptive alignment framework we proposed in this paper follows a retroactive approach to
pluralistic AI, with some accompanying implications. We consider these implications through the
sociotechnical systems perspective; in matters related to human users, AI algorithms are inseparable
from the sociotechnical systems within which they are embedded [Kudina and van de Poel, 2024].

Technical challenges for safety: As noted by Ji et al. [2023], algorithms that learn through human
feedback may be particularly susceptible to risks of reward hacking and scalable oversight [Amodei
et al., 2016]. This could be further aggravated by a self-supervisory method such as we have
described that may allow potential issues to be obscured. To minimise this risk, it may be beneficial
to incorporate backward alignment features such as explanations to provide transparency on how
update decisions are made.

Inevitability of misalignment: Prior to the first interaction with a given user, it is not possible
to know that user’s preferences perfectly. This fact goes beyond any question of feasibility; even
if you were to assume the most advanced superintelligence conceivable, it is not philosophically
impossible to predict a user’s preferences with absolute certainty. Thus, there will always be a need
for AI systems to perform retroactive corrections to realign with the evolving needs of the user. The
framework proposed herein is an example of one such system, but it does not need to be used in
isolation. Rather, this approach should be combined with suitable and effective predictive alignment
techniques to minimise the use of adaptive alignment to only where it is necessary.

The need for explanations and repair: The retroactive approach relies on information from the user
to identify discrepancies between the current settings and the user’s true preferences. This necessitates
that misaligned behaviour has already occurred, and corrective action alone may be insufficient to
address any harms incurred. Furthermore, users may adapt their own behaviour throughout an
interaction, as they develop an understanding of how the system behaves. The system may continue
to adapt, but any subsequent solution will be calibrated according to the context of the previous
interaction, one step behind. Thus, a retroactive alignment approach may warrant incorporating both
reparations and explanations to support user needs at the sociotechnical scale.
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