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Abstract

For many applications in image analysis, learning models that are invariant to
translations and rotations is paramount. This is the case, for example, in medical
imaging where the objects of interest can appear at arbitrary positions, with arbitrary
orientations. As of today, Convolutional Neural Networks (CNN) are one of the
most powerful tools for image analysis. They achieve, thanks to convolutions,
an invariance with respect to translations. In this work, we present a new type
of convolutional layer that takes advantage of Bessel functions, well known in
physics, to build Bessel-CNNs (B-CNNs) that are invariant to all the continuous
set of possible rotation angles by design.

1 Introduction

Deep learning models, and more particularly Convolutional Neural Networks (CNNs), are known as
being among the most powerful tools for image analysis. For this reason, they are still constantly
upgraded in order to achieve better performance [1]. One of the main reasons why CNNs are so much
used in computer vision lies in the fact that they achieve translation invariance thanks to convolutions.
Filters sweep the image locally and patterns can be recognized regardless of their absolute position in
the image. However, some other important types of invariance are more difficult to obtain. It is for
example the case for the rotational invariance, which is relevant for many applications. One could for
example consider medical imaging where tissues, cells, tumors or other objects of interest have a
local, arbitrary, orientation in the images [2]. Another example is satellite imaging of ships, where
both the global orientation of the satellite and the local orientation of a ship are arbitrary [3].

Multiple works proposed solutions in order to bring rotational invariance in CNNs. However, many
of them (i) only make the model more robust to rotations without providing guarantees regarding
the rotational invariance [4, 5, 6, 7, 8], (ii) only provide guarantees for a finite set of rotation
angles [9, 10, 11, 12, 13, 14, 15] or (iii) only handle global rotational invariance, while a local one is
sometimes more relevant [4, 5, 6]. In addition to that, and more similarly to the method proposed in
this paper, other works present solutions to build CNNs that are rotational invariant for all rotation
angles, while providing mathematical guarantees. One can for example cite [16, 17, 18]. Our work
is in the continuity of those. We integrate a new kind of convolutional layer in CNNs to build
Bessel-Convolutional Neural Networks (B-CNNs). In B-CNNs, Bessel functions from physics are
used to build a representation of the images that is more adapted to deal with rotations. We propose a
new way to use this representation in order to compute feature maps in a rotational equivariant way
(see Figure 1 for an example). This rotational equivariance can then lead to rotational invariance with
a proper choice of architecture.
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Figure 1: This figure illustrates the lack of rotational equivariance in standard CNNs (left), as opposed
to the rotational equivariance of B-CNNs (right). For each triplet of images, the first image is the
input image, the second is the feature map obtained, and the last one is the feature map reoriented to
make the comparison easier. It can be seen that the last images in the two left triplets for the standard
CNN are different. Hence, a different orientation of the input image produces a different feature map.
However, feature maps are identical except for a rotation for the B-CNN on the right.

Section 2 formally defines the problem of rotational invariance in CNNs and provides the necessary
notations. Next, Section 3 presents the related works on bringing rotational invariance into CNNs. Our
method, B-CNN, is then introduced in Section 4, along with some background on Bessel functions.
Experiments are described and discussed in Section 5. Finally, a more general discussion about some
aspects of B-CNNs, as well as some future works, are presented in Section 6 before concluding the
paper in Section 7.

2 Background and problem definition

For several applications in computer vision, patterns of interest may appear in arbitrary orientations.
This typically happens in medical imaging [2], satellite imaging [3], astronomical imaging [19],
texture recognition [20], etc. In such cases, the fact that the orientation is meaningless can be used as
a prior during learning through a feature extraction that is orientation-agnostic. However, building
deep learning models that present guarantees with respect to the rotational invariance is not trivial.
Indeed, in the particular case of Convolutional Neural Networks (CNNs), the computation of a feature
map is clearly not rotation invariant since, in general, for a rotation of an angle α, we have

k1−1∑
m=0

k2−1∑
n=0

I (x−m, y − n)K (m,n) 6=
k1−1∑
m=0

k2−1∑
n=0

I (x′ −m, y′ − n)K (m,n) , (1)

where x′ = x cosα− y sinα, y′ = x sinα+ y cosα, I is the input of the convolutional layer and K
represents a particular filter of size k1 × k2. Figure 1 illustrates this lack of invariance.

Two important notions are central in this work: rotational invariance and rotational equivariance. On
the one hand, if f (I) represents the computation of feature maps in a particular layer of a CNN, f (I)
is rotational invariant if f (R (α) I) = f (I) ,∀α ∈ [0, 2π), where R (α) is an operator that rotates
I by an angle α. However, if f (R (α) I) = R (α) f (I) ,∀α ∈ [0, 2π), then f (I) is rotational
equivariant since feature maps are identical except for a rotation (see Figure 1). For particular
architectures where the feature maps in the final layer have a size of 1×1, this rotational equivariance
leads to a rotational invariance. Indeed, if I is one single value, R (α) I = I . Such a strong rotational
invariance is something usually not guaranteed, or sometimes only for a finite subset of [0, 2π).

3 Related work on rotational invariance for CNNs

The use of Bessel functions in the Machine Learning community has already been proposed for image
denoising, classification or recognition purposes. One can for example cite [21, 22, 23, 24], which
already use a decomposition using Bessel functions similar to the one used in this paper. However,
these works differ from ours since their objective is to build a rotational invariant covariance matrix,
and to obtain rotational invariant models on top of this, while the objective of B-CNNs is to perform
a rotational invariant convolutional operation between filters and images.
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Methods for introducing rotational invariance in CNNs can be categorized in different groups: those
(i) that just make CNNs more robust to rotations, without providing any mathematical guarantees,
those (ii) that provide mathematical guarantees but only for a finite set of rotations (typically obtained
by a discrete group of symmetries), and finally those (iii) that introduce a continuous rotational
invariance while providing mathematical guarantees.

Among the first category of methods, one can cite data augmentation [4], spatial transformer net-
works (STN) [5], rotation-invariant and fisher discriminative CNNs (RFID-CNNs) [6], deformable
CNNs [7], and SIFT-CNNs [8]. For the second category, one of the best-known method is Group
CNNs (G-CNNs) [9], which define the transformations for which an invariance is desired using
the theory of groups and symmetries. However, one can also cite transformation-invariant pooling
(TI-POOLING) [10], deep symmetry networks (DSN) [11], steerable CNNs [12], steerable filter
CNNs (SFCNNs) [13], dense steerable filter CNNs [14], and spherical CNNs [15]. Finally, there are
already a few methods in the third category, i.e. methods that are invariant to the continuous set of
rotations. General E(2)-equivariant steerable CNNs [17] present a general solution to obtain E(2)-
equivariant CNNs by constraining the kernels using a group representation, LieConv [3] generalizes
equivariance to arbitrary transformations from Lie groups, and Harmonic networks [16] use circular
harmonics to achieve a rotational invariance by maintaining a disentanglement of rotation orders
in the network. Our work is in the continuity of these techniques. It proposes a new framework to
achieve the invariance. For example, compared to harmonic networks, B-CNNs present different
advantages: (i) it involves real-valued feature maps, which make B-CNNs easier to use with already
existing techniques (it can use classic non-linear activation functions, classic batch-normalization,
etc.), (ii) it uses an arbitrary number of rotation orders, and (iii) it can also be made invariant to other
types of invariance in future works.

In the next section, we introduce Bessel-CNNs, based on the use of the Bessel functions well known
in physics, to make CNNs invariant by design to all rotation angles in the continuous set [0, 2π).

4 Exploiting Bessel functions for CNNs

The mathematical background on Bessel functions and the motivation of their use for rotational
invariant image recognition tasks are presented in this section. Some of these developments are
inspired from the use of Bessel functions in physics [25]. These mathematical developments lead
to a new type of Convolutional Neural Networks (CNN) that we call Bessel-Convolutional Neural
Network (B-CNN). Mathematical evidence of a rigorous rotational invariance is pointed out.

4.1 Bessel functions

Bessel functions are particularly well known in physics because they arise when solving some
important problems in polar or cylindrical coordinates. For example, they appear when dealing with
wave or heat propagation. Bessel functions may be of different order ν and are defined as a particular
solution of the Bessel’s differential equation

x2
d2y

dx2
+ x

dy

dx
+
(
x2 − ν2

)
y = 0. (2)

This equation involves two particular kinds of Bessel functions Jν (x) and Yν (x), called the Bessel
function of the first and of the second kind, respectively. In this work, ν must be an integer and
we only consider Jν (x) since Yν (x) diverges for x = 0. For ν ∈ N, Jν (x) and J−ν (x) are not
independent and

J−ν (x) = (−1)
ν
Jν (x) . (3)

Bessel functions also satisfy
Jν (−x) = (−1)

ν
Jν (x) , (4)

which means that Jν is an even function if ν is even, and an odd function otherwise. Bessel functions
of the first kind can be used to build a particular basis for the representation in polar coordinates of
images defined in a circular domain of radius R, as{

Nν,jJν (kν,jρ) eiνθ,∀ν, j ∈ N

}
, where Nν,j = 1/

√
2π

∫ R

0

ρJ2
ν (kν,jρ) dρ, (5)
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forms an orthonormal basis for all squared-integrable functions f such that f : D2 ⊂ R2 −→ R
(where the domain D2 is a disk in R2). Indeed, we can show that∫ 2π

0

∫ R

0

ρ
[
Nν,jJν (kν,jρ) eiνθ

]∗ [
Nν′,j′Jν′ (kν′,j′ρ) eiν

′θ
]
dθdρ = δνν′δjj′ , (6)

if the kν,j are solutions of either Jν (kν,jR) = 0 or J ′ν (kν,jR) = 0 [26]. We use J ′ν (kν,jR) = 0 as
condition for the kν,j because it makes it more convenient to represent arbitrary functions (by the fact
that for ν = 0 there is a kν,j = 0 with this condition, we can use J0(0.ρ)ei.0.θ = 1 to describe an
arbitrary constant intensity) [25]. The key advantage of using this basis is that it can deal easily with
rotations. Later, this basis will be used to build a new representation for images.

4.2 Bessel coefficients

An arbitrary function Ψ (ρ, θ) ∈ R, where ρ and θ are polar coordinates, can be expressed with the
basis in Equation (5) as

Ψ (ρ, θ) =

∞∑
ν=−∞

∞∑
j=0

Ψν,j Nν,jJν (kν,jρ) eiνθ, (7)

where the Bessel coefficients Ψν,j are obtained by projecting Ψ (ρ, θ) on this particular basis

Ψν,j =

∫ 2π

0

∫ R

0

ρ
[
Nν,jJν (kν,jρ) eiνθ

]∗
Ψ (ρ, θ) dθdρ. (8)

In order to be mathematically exact when describing Ψ(ρ, θ) using its Bessel coefficients, one should
consider all ν ∈ {−∞, ...,∞} and all j ∈ {0, ...,∞} to represent Ψ (ρ, θ) faithfully. Nevertheless,
as only a finite set of coefficients can be considered in practice, values of νmax and jmax need
to be chosen. By taking into account Properties (3) and (4) when looking at Equation (8) and as
Ψ (ρ, θ) ∈ R, we end up with the relations{

< (Ψ−ν,j) = (−1)
ν < (Ψν,j)

= (Ψ−ν,j) = (−1)
ν+1= (Ψν,j) ,

(9)

where < and = stands for the real and imaginary part, respectively. One can then only compute
the Bessel coefficients for ν (resp j) in {0, ..., νmax (resp. jmax)} since Ψ−ν,j and Ψν,j are not
independent. Also, note that, when ν or j increases, kν,j also increases. The values of νmax and
jmax can then be determined through a mathematical insight about the maximal value of kν,j to use
in a given problem (for example, using the Nyquist frequency, as in [21]).

To understand now why working with Bessel coefficients is particularly useful, one can see how an
arbitrary rotation of Ψ (ρ, θ) by an angle α modifies its Bessel coefficients Ψν,j . To do so, let us
consider Ψrot (ρ, θ) = Ψ (ρ, θ − α) for an angle α ∈ [0, 2π). Its Bessel coefficients are given by

Ψrot
ν,j =

∫ 2π

0

dθ

∫ R

0

dρρ
[
Nν,jJν (kν,jρ) eiνθ

]∗
Ψrot (ρ, θ) . (10)

By defining θ′ = θ − α, this leads to

Ψrot
ν,j =

∫ 2π

0

dθ′
∫ R

0

dρρ
[
Nν,jJν (kν,jρ) eiνθ

′
]∗

Ψ (ρ, θ′) e−iνα = Ψν,je
−iνα. (11)

This motivates our work, as a rotation of an arbitrary function by an angle α only modifies its Bessel
coefficients by a multiplying factor e−iνα, which makes rotations conveniently expressed in the
Fourier-Bessel transform domain (analogously to how the Fourier transform maps translations to
multiplications by complex exponentials). Therefore, if Ψ (ρ, θ) represents an image, its Bessel
coefficients constitute a more adapted representation to build rotational invariant operations.

4.3 Defining a rotational invariant operation

In order to build a rotational invariant operation • between the Bessel coefficients Ψν,j and a filter
made of the same number of complex numbers Kν,j , one can consider

K •Ψ =
1

2π

∫ 2π

0

|
∑
ν,j

K∗ν,jΨν,je
−iνα|2dα. (12)
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This operation is, by design, necessarily invariant to rotations as Equation (11) shows that multiplying
each Ψν,j by e−iνα is equivalent to applying a rotation to the image. By performing the integration
for α going from 0 to 2π, the image achieves a complete rotation around itself. Therefore, K •Ψ
does not depend anymore on the particular initial orientation of the image. Note that, without the
squared modulus, we can show that only the coefficients Ψ0,j contribute to the final results. The
operation would therefore rely on an incomplete representation of the image.

Using Equation 12 as such may look like a computationally expensive brute force strategy, since it
requires to evaluate the numerical integration over α. However, given that

|
k∑
i=1

αizi|2 =
∑
m,j

< (αm)< (αj) |zmzj | cos (θm − θj) +
∑
m,j

= (αm)= (αj) |zmzj | cos (θm − θj)

−2
∑
m,j

< (αj)= (αm) |zmzj | sin (θm − θj) , (13)

where αi and zi = |zi|eiθi are complex numbers, the squared modulus in Equation (12) becomes∑
ν,j
ν′,j′

<
(
K∗ν,j

)
<
(
K∗ν′,j′

)
|Ψν,jΨν′,j′ | cos (θν,j − θν′,j′ − α (ν − ν′))

+
∑
ν,j
ν′,j′

=
(
K∗ν,j

)
=
(
K∗ν′,j′

)
|Ψν,jΨν′,j′ | cos (θν,j − θν′,j′ − α (ν − ν′))

−2
∑
ν,j
ν′,j′

=
(
K∗ν,j

)
<
(
K∗ν′,j′

)
|Ψν,jΨν′,j′ | sin (θν,j − θν′,j′ − α (ν − ν′)) , (14)

if Ψν,j = |Ψν,j |eiθν,j . The three terms should be integrated over α thanks to Equation (12), but only
the trigonometric functions are α-dependent. A simple integration leads to∫ 2π

0

sc (θν,j − θν′,j′ − α (ν − ν′)) dα =

{
2π sc (θν,j − θν′,j′) if ν = ν′

0 otherwise,
(15)

where sc can represent the cosine or the sine function. Therefore,

K •Ψ =
∑
ν,j,j′

<
(
K∗ν,j

)
<
(
K∗ν,j′

)
|Ψν,jΨν,j′ | cos (θν,j − θν′,j′)

+
∑
ν,j,j′

=
(
K∗ν,j

)
=
(
K∗ν,j′

)
|Ψν,jΨν,j′ | cos (θν,j − θν′,j′)

−2
∑
ν,j,j′

=
(
K∗ν,j

)
<
(
K∗ν,j′

)
|Ψν,jΨν,j′ | sin (θν,j − θν′,j′) , (16)

and by using once again the result presented in Equation (13), we have

K •Ψ =
∑
ν

|
∑
j

K∗ν,jΨν,j |2, (17)

which is therefore equivalent to Equation (12), but much more convenient. By construction, the results
obtained by Equation (17) do not depend on the particular orientation of the image. Furthermore,
K •Ψ ∈ R (with Kν,j ∈ C and Ψν,j ∈ C), which is something convenient in order to use, for
example, classic activation functions. Using Equation 12 (or Equation 17) to achieve the rotational
invariance is one of the main contribution of this paper.

4.4 Bessel-Convolutional Neural Networks (B-CNNs)

In standard CNNs, a feature map is the result of the convolution between the image and a filter K of
k1×k2 weights, as described in Equation (1). The weights of this filter are real numbers that are tuned
during the learning process of the network. In Bessel-Convolutional Neural Networks (B-CNNs), the
process to build feature maps is slightly different as the representation of the image based on Bessel
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Figure 2: Illustration of how the feature maps are computed in B-CNNs.

coefficients are used. A filter K made of (νmax + 1)× (jmax + 1) complex weights Kν,j is used to
sweep the image over sub-regions of size k × k. Note that νmax and jmax are generally larger than
k1 and k2, which results in an increase of the number of trainable parameters in each layer. However,
as it is easier for B-CNNs to deal with rotational invariance, we show in Section 5 that architectures
with less layers than for other methods still achieve similar or even better performances. For each
sub-region of the image centered at position (m,n), its Bessel coefficients Ψ

(m,n)
ν,j are computed, and

a(m,n) =
∑
ν

|
∑
j

K∗ν,jΨ
(m,n)
ν,j |2 (18)

is computed, where a(m,n) is a real value that is invariant to rotation, i.e., it does not depend on
the particular orientation of the sub-region. All the values obtained for the different sub-regions
constitute the feature map, which is then rotation equivariant. This is schematized in Figure 2.

4.5 An efficient implementation of B-CNNs

Implementing B-CNNs as described in Section 4.4 can be slow, as it requires to evaluate Equation (8)
for each sub-region of the image. However, developing Equation (18) with Equation (8) gives

a(m,n) =
∑
ν

|
∑
j

K∗ν,j

∫ 2π

0

∫ R

0

Nν,jJν (kν,jρ) e−iνθΨ(m,n) (ρ, θ) ρdρdθ|2

=
∑
ν

|
∫ 2π

0

∫ R

0

Ψ(m,n) (ρ, θ)
∑
j

K∗ν,jNν,jJν (kν,jρ) e−iνθρdρdθ|2, (19)

where Ψ(m,n) (ρ, θ) represents a particular sub-region of the image centered at (m,n) in polar
coordinates. When going back to a Cartesian coordinates system, one can get

a(m,n) =
∑
ν

|
∫ R

2

−R2

∫ R
2

−R2
I (m− x, n− y)

∑
j

K∗ν,jNν,j
∼
Jν

(
kν,j

√
x2 + y2

)
e−iν

∼
θ(x,y)dxdy|2,

(20)

where I (x, y) is the input of the layer,
∼
θ (x, y) = π + arctan y

x and
∼
Jν (kν,jρ) is defined as

∼
Jν (kν,jρ) =

{
Jν (kν,jρ) if ρ ≤ R
0 otherwise.

(21)

Finally, by defining Tν,j (x, y) = Nν,j
∼
Jν

(
kν,j

√
x2 + y2

)
e−iν

∼
θ(x,y), Equation (20) leads to

a =
∑
ν

|I (x, y) ∗
∑
j

K∗ν,jTν,j (x, y) |2 =
∑
ν

|I (x, y) ∗ Fν (x, y) |2, (22)

where ∗ denotes a convolutional product and Fν (x, y) corresponds to a filter modified by the Bessel
functions. Compared to a standard CNN, the only difference is that, actually, a layer in B-CNN
performs νmax + 1 convolutions instead of one only, and it also needs to update the filters with the
Bessel functions. Nevertheless, Tν,j (x, y) is part of the model and only needs to be computed once,
as it does not depend on the input of the layer, but only on the choice of νmax and jmax.
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5 Experiments

This section presents the details of the experiments used to test the rotational invariance of B-CNNs,
including the datasets (Section 5.1), the baseline architectures (Section 5.2) and the experimental setup
(Section 5.3). Experimental results are presented in Section 5.4 and a discussion on the rotational
equivariance of feature maps is proposed in Section 5.5.

5.1 Datasets

In this comparative study, three datasets are used in an increasing complexity. In all of them,
orientations present in the test set are not present in the training set. The first dataset is MNIST [27],
a classic baseline of 28× 28 images of handwritten digits, where images in the test set are randomly
rotated by an angle in [0, 2π). For all runs, the training set contains 60, 000 images and the test set
10, 000 images. The second dataset is Outex-TC-00010-r dataset [28], a classic dataset for a more
complex classification involving both global and local rotations. It contains 128 × 128 grayscale
images of 24 particular textures. The training set contains 480 images with 20 orientations, and the
test set is composed of 3840 images with 160 orientations. The third dataset is made of 128×128×3
brain MRI images [29] that are either cancerous or non-cancerous. This dataset is used as a real-world,
more complex dataset, which contains local entities (the brain tumors) that can occur at arbitrary
orientations. Each image is cropped to make the brain fill the entire image. The training and test sets
contain 190 and 63 images, respectively.

5.2 Baseline architectures

Experiments aim to evaluate how good B-CNNs are for problems where rotational invariance is
desired. We decided to use G-CNNs, as well as standard CNNs in our comparative study. For
G-CNNs, the symmetry group C4 is used (rotations of angle π

2 , π, 3π
2 and 2π). For each dataset,

one architecture based on CNNs, G-CNNs and B-CNNs has been chosen by picking the one that
performs the best on a validation set. Importance is given to the fact that the three models contain
roughly the same number of trainable parameters, in order to perform fair comparisons. Attention is
also paid to the fact that the feature map in the last convolution layer should be of size 1× 1, in order
to achieve rotational invariance for G-CNNs and B-CNNs.

The standard CNN architecture for MNIST is made of 7 conv. layers with 32 filters for the first two
layers, and 64 filters of size 3× 3 for the other layers; one max-pooling layer that operates over 2× 2
regions after the second and last layers; and one dense layer with 10 units. The G-CNN architecture
is similar, except that the number of filters is divided by 2 in order to keep the same number of
parameters. The B-CNN for MNIST is made of 5 Bessel-convolutional (B-Conv) layers (one of 16
filters with νmax = 11, jmax = 9 and k = 3; three of 16 filters with νmax = 9, jmax = 7 and k = 5;
and one of 32 filters with νmax = 7, jmax = 5 and k = 7), a max-pooling layer over 2× 2 regions
after the fourth layer and a dense layer with 10 units. Activation functions are relu, except for the
B-CNN where tanh leads to better performances on the validation set. Adam optimization with a
learning rate of 0.0001 and an exponential decay rate of 0.9 is used for the three models.

The standard CNN for Outex is made of 5 conv. layers (one with 48 filters of size 5× 5, one with
64 filters of size 5× 5, two with 64 filters of size 3× 3 and one with 128 filters of size 3× 3), one
max-pooling layer over 3× 3 regions after the first layer, one over 2× 2 regions after the second and
third layers, and one dense layer with 24 units. The G-CNN architecture for Outex is similar, but the
number of filters is divided by 2 again to have the same number of parameters. The model based on
B-CNN is made of 3 B-Conv layers (one with 16 filters with νmax = 15, jmax = 11 and k = 15;
one with 32 filters with νmax = 10, jmax = 9 and k = 9; and one with 32 filters with νmax = 7,
jmax = 5 and k = 7), a max-pooling layer over 3 × 3 regions after the first layer, one over 2 × 2
regions after the two others, and a dense layer with 24 units. Again, activation functions are relu,
except for B-CNN where tanh are used. Adam optimization with a learning rate of 0.0005 and an
exponential decay rate of 0.9 is used for the three models.

The standard CNN for brain MRI is made of 5 conv. layers (one with 32 filters of size 7 × 7, one
with 32 filters of size 5× 5, two with 64 filters of size 5× 5 and one with 64 filters of size 3× 3),
one max-pooling layer over 3× 3 regions after the first layer, one over 2× 2 regions after the second
and third layers, and one dense layer with 2 units. The G-CNN architecture is similar but the number
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(a) Performance on MNIST (b) Performance on Outex (c) Performance on brain MRI

Figure 3: Mean test accuracy over 40 runs with 99% confidence intervals for B-CNN, G-CNN and
standard CNN on MNIST, Outex and brain MRI. In the first row, the training sets contain input
images as they are originally in the dataset, whereas data augmentation is used in the second row.

of filters is once again divided by 2. The model based on B-CNN is made of 4 B-Conv layers (one
with 32 filters with νmax = 11, jmax = 11 and k = 9; one with 16 filters with νmax = 9, jmax = 9
and k = 7; one with 16 filters with νmax = 7, jmax = 7 and k = 5; and one with 32 filters with
νmax = 7, jmax = 7 and k = 5), a max-pooling layer over 3×3 regions after the first layer, one over
2× 2 regions after the three other layers, and a dense layer with 2 units. Again, activation functions
are relu, except for B-CNN where tanh are used. Adam optimization with a learning rate of 0.001
and a exponential decay rate of 0.9 is used for the three models.

5.3 Experimental setup

Each experiment consists of 40 independent runs and mean accuracy scores with 99% confidence
intervals are reported. In order to isolate intrinsic rotational invariance, each model is trained for
each dataset in two different settings. In the first setting, images are not rotated at all during training.
In the second setting, input images are rotated by a random angle during training (a form of data
augmentation). In order to avoid border effects due to the appearance of black corners when images
are rotated for the Outex dataset, images are cropped from an initial size of 128× 128 to 88× 88.
This is not performed for MNIST and brain MRI, since image corners are already black.

In order to highlight the ability of B-CNNs to use the invariance for the continuous set of angles as
a prior knowledge, another experiment in a low data setting is also performed. This experiment is
exactly the same as the previous one on the Outex dataset (with rotation of the input images), except
that 75% of the training set is removed, and placed in the test set.

5.4 Experimental results

Figure 3 shows the mean test accuracy of B-CNNs, G-CNNs and standard CNNs on MNIST, Outex
and brain MRI. The first observation is that standard CNNs have poor performance in almost all cases,
which justifies the need for better methods. A second observation is that using data augmentation
(second row), as opposed to using the input images as they originally are in the dataset (first row),
increases the performance of all methods in all cases. Furthermore, in the setup without data
augmentation, it can be observed that B-CNNs largely outperform G-CNNs and standard CNNs on
MNIST. This indicates that G-CNNs need data augmentation in addition to the groups of symmetry
to learn rotational invariance, while Bessel convolutions intrinsically impose the invariance.

The results are interestingly reversed for Outex, where B-CNNs perform better than G-CNNs with
data augmentation, while being roughly equivalent without data augmentation. The good performance
of G-CNNs without data augmentation on Outex may be explained by the fact that the texture images

8



contain an intrinsic data augmentation (a rotation of an image can be present in the original dataset).
This is not the case of MNIST, where all images in the original dataset have the same orientation.

It can also be observed that the variance of G-CNNs is generally higher than B-CNNs, due to the fact
that a discrete set of rotations is encoded into the groups of the G-CNNs. Because of that, a mismatch
can happen between the rotations learned with the randomly rotated input images and the groups
on the one hand, and the rotation of the images in the test set on the other hand. This mismatch is
minimized for B-CNNs, as the continuous set of rotation angles is imposed by design. Thanks to that,
the predictions of B-CNNs are more stable than the one of G-CNNs.

The generalized instability in performance for all methods on brain MRI (see Figure 3c) can be
explained by the small number of instances used at each epoch (190 for training and 63 for testing).
This characteristic of the dataset may also explain that B-CNN achieves better performance more
quickly, as the rotational invariance is present by design (i.e., invariance is set as prior knowledge),
by opposition to G-CNN that more heavily relies on the training instances to learn this invariance.

Figure 4 presents the results obtained on the Outex dataset in a low data setting, where 75% of
the training data is removed. When, in the initial experiment presented in Figure 3b, we slightly
outperformed G-CNNs by less than 5% accuracy, in this experiment where less data is provided
during training, we outperform G-CNNs by a little bit less than 15%. Furthermore, the learning
curves are again much more stable with B-CNNs.

5.5 On the equivariance of feature maps

In addition to their performance stability, B-CNNs also offer a certain stability from the equivariance
of their feature maps. Unlike standard CNNs in Figure 1, the feature maps of B-CNNs extract the
exact same latent features, no matter the orientation of the input image. This characteristic of B-CNNs
can help in providing trust to its users. For instance, medical experts would see that the model extract
the same latent features for tumorous brain images, and this no matter the orientation of the tumor.

Figure 5 shows the equivariance in B-CNNs and G-CNNs. The feature maps in the figure are
randomly taken from the second convolution layer of the B-CNN and G-CNN. It can be observed that
the feature maps in the first row (for a non-rotated image from Outex) for the B-CNN are generally the
same as those of the second row (corresponding to the same image, but rotated of 60◦, see Figure 5a).
However, when training a G-CNN with the same number of layers and the same filter sizes, its feature
maps change significantly after rotating the input image (see Figure 5b).

In addition to Figure 5, we also performed a quantitative study in order to assess the rotational
equivariance of B-CNNs, G-CNNs and CNNs. To do so, we performed the same experiment as
the previous one, but for the whole test set and for random rotational angles. For each sample, the
4 feature maps that are the most active are min-max scaled between 0 and 1 (this step is needed
since feature maps of different architectures may have absolute values at a different scale). Then, the
difference between the non-rotated and the rotated feature maps is computed (the difference between
the first and second row in Figure 5). The bigger this value, the less equivariant the method is. We
obtained a mean value of 1.77% ± 2.78% for the B-CNN, 10.64% ± 5.64% for the G-CNN and
5.73%± 5.64% for the CNN. B-CNNs therefore achieve a better rotational equivariance.

Figure 4: Performance on the Outex dataset in low data setting (120 images in the training set).
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(a) Some feature maps of a B-CNN (b) Some feature maps of a G-CNN

Figure 5: The first row corresponds to random feature maps for a non-rotated image from the Outex
dataset. The second row corresponds to the same feature maps, but for a 60◦ rotated version of the
image. To ease the comparison with the first row, these feature maps have been reoriented. The corner
pixels of the images of the second row are hidden as they correspond to pixels that are out of the
bound. For the sake of comparison, the same pixels have been hidden in the images of the first row.

6 Discussion and future work

In practice, we are not always able to obtain a perfect rotational invariance. The main reason is
that the Bessel functions are discretely sampled on a grid, with a resolution fixed by the size of the
filters. It directly follows that, if too small filters are used, perfect rotational invariance may not be
achieved due to discretization errors. This is the reason why data augmentation helps, even when
using B-CNNs. Therefore, using larger filters helps to achieve a better rotational invariance. It would
be interesting to consider other interpolation methods to improve the sampling of input images and
reduce this effect (similarly to what is already done by [30] to ensure translation invariance in CNNs).

In future works, one could consider bringing several updates to B-CNNs. Firstly, the actual νmax + 1
convolutions can be converted to only one convolution. Secondly, performances of B-CNNs are
deeply dependent in this work on the choice of νmax and jmax. However, it is possible to consider
the Nyquist frequency in order to rather impose an upper limit to the kν,j as done in [21]. This will
both minimize the aliasing effect and maximize the amount of information preserved by the Bessel
coefficients. Thirdly, it is also possible to bring other types of invariance using the same framework,
like for example invariance under reflections (in order to make B-CNNs E(2)-invariant).

Before concluding, we would like to point out again that B-CNNs achieve a global rotational
invariance by a succession of local invariance, provided by the multiplication between the image and
the filters (it is the case for all similar techniques). This property can probably make B-CNNs and
similar models more easily fooled by adversarial techniques. In the future, it could be interesting to
evaluate the robustness of such rotation invariant CNNs, as adversarial techniques is an important
concern for many applications.

7 Conclusion

This paper proposes a new kind of CNNs, called Bessel CNNs (or B-CNNs), that are intrinsically
invariant to the rotation of input images. In order to achieve this, a new convolutional layer has been
designed, based on Bessel functions from physics. Experiments show that B-CNNs do not need any
preprocessing of the input images to be rotational invariant, and that the full rotational invariance
brought by the Bessel convolutions lead to more stable results. We conclude that Bessel convolutions
can be used in any application involving global and/or local rotations of images.

Acknowledgments and Disclosure of Funding

The authors want to thank José Oramas M. from the University of Antwerp for his insights on the
paper. A.M. is funded by the Fund for Scientific Research (F.R.S.-FNRS) of Belgium. V.D. benefits
from the support of the Walloon region with a Ph.D. grant from FRIA (F.R.S.-FNRS). This research
used resources of PTCI at UNamur, supported by the F.R.S.-FNRS under the convention n. 2.5020.11.

10



References
[1] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image classification:

A comprehensive review. Neural Computation, 29:1–98, 2017.

[2] Benjamin Chidester, Tianming Zhou, Minh N Do, and Jian Ma. Rotation equivariant and
invariant neural networks for microscopy image analysis. Bioinformatics, 35(14):i530–i537,
2019.

[3] Linhao Li, Zhiqiang Zhou, Bo Wang, Lingjuan Miao, and Hua Zong. A novel CNN-based
method for accurate ship detection in HR optical remote sensing images via rotated bounding
box. IEEE Transactions on Geoscience and Remote Sensing, 59(1):686–699, 2020.

[4] Facundo Quiroga, Franco Ronchetti, Laura Lanzarini, and Aurelio F Bariviera. Revisiting
data augmentation for rotational invariance in convolutional neural networks. In International
Conference on Modelling and Simulation in Management Sciences, pages 127–141, 2018.

[5] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial trans-
former networks. In Advances in Neural Information Processing Systems (NIPS), pages 2017–
2025, 2015.

[6] Gong Cheng, Peicheng Zhou, and Junwei Han. RIFD-CNN: Rotation-invariant and fisher
discriminative convolutional neural networks for object detection. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2884–2893, 2016.

[7] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei.
Deformable convolutional networks. In IEEE International Conference on Computer Vision
(ICCV), pages 764–773, 2017.

[8] Abhay Kumar, Nishant Jain, Chirag Singh, and Suraj Tripathi. Exploiting sift descriptor for
rotation invariant convolutional neural network. In IEEE India Council International Conference
(INDICON), pages 1–5, 2018.

[9] Taco S Cohen and Max Welling. Group equivariant convolutional networks. In International
Conference on Machine Learning (ICML), pages 2990–2999, 2016.

[10] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and Marc Pollefeys. TI-POOLING:
transformation-invariant pooling for feature learning in convolutional neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 289–297, 2016.

[11] Robert Gens and Pedro M Domingos. Deep symmetry networks. In Advances in Neural
Information Processing Systems (NIPS), pages 2537–2545, 2014.

[12] Taco S Cohen and Max Welling. Steerable CNNs. In International Conference on Learning
Representations (ICLR), 2017.

[13] Maurice Weiler, Fred A Hamprecht, and Martin Storath. Learning steerable filters for rotation
equivariant CNNs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 849–858, 2018.

[14] Simon Graham, David Epstein, and Nasir Rajpoot. Dense steerable filter CNNs for exploiting
rotational symmetry in histology images. IEEE Transactions on Medical Imaging, 39(12):4124–
4136, 2020.

[15] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In International
Conference on Learning Representations (ICLR), 2018.

[16] Daniel E Worrall, Stephan J Garbin, Daniyar Turmukhambetov, and Gabriel J Brostow. Har-
monic networks: Deep translation and rotation equivariance. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 5028–5037, 2017.

[17] Maurice Weiler and Gabriele Cesa. General E(2)-equivariant steerable CNNs. In Advances in
Neural Information Processing Systems (NeurIPS), pages 14334–14345, 2019.

11



[18] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Wilson. Generalizing convolutional
neural networks for equivariance to lie groups on arbitrary continuous data. In International
Conference on Machine Learning (ICML), pages 3165–3176, 2020.

[19] Sander Dieleman, Kyle W. Willett, and Joni Dambre. Rotation-invariant convolutional neural
networks for galaxy morphology prediction. Monthly Notices of the Royal Astronomical Society,
450(2):1441–1459, 2015.

[20] Diego Marcos, Michele Volpi, and Devis Tuia. Learning rotation invariant convolutional filters
for texture classification. In International Conference on Pattern Recognition (ICPR), pages
2012–2017, 2016.

[21] Zhizhen Zhao and Amit Singer. Fourier–Bessel rotational invariant eigenimages. Journal of the
Optical Society of America A, 30(5):871, 2013.

[22] Zhizhen Zhao, Yoel Shkolnisky, and Amit Singer. Fast Steerable Principal Component Analysis.
IEEE Transactions on Computational Imaging, 2(1):1–12, 2016.

[23] Zhizhen Zhao and Amit Singer. Rotationally invariant image representation for viewing direction
classification in cryo-EM. Journal of Structural Biology, 186(1):153–166, 2014.

[24] Cédric Vonesch, Frédéric Stauber, and Michael Unser. Steerable PCA for Rotation-Invariant
Image Recognition. SIAM Journal on Imaging Sciences, 8(3):1857–1873, 2015.

[25] Alexandre Mayer and Jean-Paul Vigneron. Transfer matrices combined with Green’s functions
for the multiple-scattering simulation of electronic projection imaging. Physical Review B,
60(4):2875–2882, 1999.

[26] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press, 2nd
edition, 1995.

[27] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[28] Timo Ojala, Topi Maenpaa, Matti Pietikainen, Jaakko Viertola, Juha Kyllonen, and Sami
Huovinen. Outex-new framework for empirical evaluation of texture analysis algorithms. In
Object Recognition Supported by User Interaction for Service Robots, pages 701–706, 2002.

[29] Navoneel Chakrabarty. Brain MRI images for brain tumor detection, ver-
sion 1. Retrieved May 9, 2021 from https://www.kaggle.com/navoneel/
brain-mri-images-for-brain-tumor-detection.

[30] Anadi Chaman and Ivan Dokmanic. Truly shift-invariant convolutional neural networks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 3773–3783, 2021.

12

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection

	Introduction
	Background and problem definition
	Related work on rotational invariance for CNNs
	Exploiting Bessel functions for CNNs
	Bessel functions
	Bessel coefficients
	Defining a rotational invariant operation
	Bessel-Convolutional Neural Networks (B-CNNs)
	An efficient implementation of B-CNNs

	Experiments
	Datasets
	Baseline architectures
	Experimental setup
	Experimental results
	On the equivariance of feature maps

	Discussion and future work
	Conclusion

